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Abstract—In this paper, an intelligent multi-microgrid (MMG) 

energy management method is proposed based on deep neural 

network (DNN) and model-free reinforcement learning 

techniques. In the studied problem, multiple microgrids are 

connected to a main distribution system and they purchase power 

from the distribution system to maintain local consumption. From 

the perspective of the distribution system operator (DSO), the 

target is to decrease the demand-side peak-to-average ratio (PAR), 

and to maximize the profit from selling energy. To protect user 

privacy, DSO learns the multi-microgrid response by 

implementing a deep neural network (DNN) without direct access 

to user’s information. Further, the DSO selects its retail pricing 

strategy via a Monte Carlo method from reinforcement learning, 

which optimizes the decision based on prediction. The simulation 

results from the proposed data-driven deep learning method, as 

well as comparisons with conventional model-based methods, 

substantiate the effectiveness of the proposed approach in solving 

power system problems with partial or uncertain information. 

Keywords—Deep neural network (DNN), Monte Carlo method, 

multi-microgrid, reinforcement learning, peak-to-average ratio 

(PAR). 

I. INTRODUCTION 

he latest advancement of deep learning has opened the 

door of new AI-driven approaches to solve a broad range 

of power system problems [1]. Demand-side resource 

management is one of such problems. In recent years, emerging 

demand-side resources are playing an increasingly important 

role in maintaining the economy and security of bulk power 

system operation [2]-[4]. Many existing research works have 

been dedicated to exploring the function of multifarious 

demand-side resources, e.g., distributed generators, plug-in 

electric vehicles, demand response programs, and microgrids, 

in providing energy and ancillary services to the utility grid in 

both normal and emergent status [5]. Compared with 

conventional stand-by units, the demand-side resources hold 

the merit of high flexibility because they are free from ramping 

constraints. Their diversity in type adds additional reliability for 

serving as alternative power and frequency support to the bulk 

power system in case of contingency.  

 The increasing penetration of demand-side resources into the 

power system calls for demand-side energy management, 

which aims to enable a coordinated and mutually beneficial 

interaction between the main grid and the local resources. One 

of the primary goals of demand-side management is to reduce 

the peak-to-average ratio (PAR) of the load. A low PAR 

indicates a smooth load profile, which avoids overloading or 

underloading the system. Local consumers also benefit from a 

low PAR by shifting their energy consumption to off-peak 

hours with low prices. 

 There have been substantial efforts to investigate the optimal 

scheduling of demand-side resources in the literature. The 

concept of autonomous demand-side management is first 

introduced in [6], in which a non-cooperative game is 

formulated between the utility company and local customers. 

Iteratively, the utility provides dynamic pricing signals 

according to the aggregated consumer response, and the 

customers optimize their energy consumption schedules under 

the given price in a distributed manner. At the point of Nash 

Equilibrium, the minimum total energy cost and the decreased 

PAR is achieved. In [7], the temporally coupled constraints of 

the local consumer’s energy scheduling problem are included, 

and the coupled-constrained game model is tackled by dual 

decomposition. In [8], the authors prove that the non-

cooperative game between the users and the utility provider is 

the general case of the minimum peak-to-average ratio problem. 

In [9,10], the gradient method is utilized for solving local 

consumption schedule problem with fast convergence. In [11], 

an online learning algorithm is developed, where each user 

learns through past experience to approximate other users’ 

decisions, and to optimize its own energy scheduling. 

 All the above methods can be categorized as model-based 

methods, where the mathematical equations are formulated to 

describe local users’ energy scheduling. Because the demand-

side management problem is usually a partially observable 

problem, i.e., unknown or uncertain information exists, the 

models are generally solved in an iterative way. There are two 

deficiencies of the iterative algorithm: 1) the convergence of the 

algorithm cannot always be guaranteed. The convergence can 

only be achieved under some strict prerequisites, e.g., convex 

payoff functions, which require certain assumptions and 

simplifications of the problem; 2) applying an iterative 

algorithm in the real-world can be impractical, especially in 

real-time scenarios. In real-world practices, it is more likely that 

the utility provider releases the price signal, and the consumers 

schedule their consumption accordingly, which tends to be a 

one-step process. The iterative interaction between the two 

sides can be both time-consuming and resource-consuming 

with the potential challenge of divergence.  

 Based on the above challenges and motivations, we propose 

a data-driven method in this paper for optimizing demand-side 

energy management. Especially, we propose the combination 

of two techniques, the deep neural networks (DNN) and the 

reinforcement learning (RL) method to overcome the 

complexity and inefficiency of model-based methods. The 

recent years have witnessed the rapid advancement of deep 

neural network in a variety of applications, e.g., computer 

vision, machine translation, and remote sensing. In the field of 

power system, the deep neural network has been applied for 

prediction of uncertain factors [12]-[14] , smart meter data 
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identification [15], modeling of renewable energy [16], and 

energy storage dispatch [17]. The DNN is a data-driven method 

that does not rely on any analytical equations, but it utilizes 

voluminous existing data to formulate the mathematical 

problem and to approximate the solutions. The multiple hidden 

layers and the large number of neurons within the DNN can 

automatically extract features for data analysis to achieve an 

accurate model regression or classification. Once the DNN is 

well trained, it will develop high generalization and can be 

directly applied to new instances without costly numerical 

computation. Compared to the conventional model-based 

method, the DNN is highly computational efficient while 

maintaining considerable accuracy. 

 The reinforcement learning (RL) method is well known for 

its applicability in solving problems with hidden information. 

Reinforcement learning focuses on providing the optimal time-

sequential decisions within an unknown environment. This is 

realized via continuous interactions between the decision-

maker, which is called the agent, and the environment. Through 

this learning process, the agent is able to gain knowledge of the 

environment and to take actions that affect the environment in 

order to reach its objective. Currently, RL has been widely 

spotted in areas including robotics and automation, computer 

games, auto pilot, and dialog system.  

 There have also been significant efforts in implementing RL 

method for solving complex power system problems. The 

utilization of RL to optimize the residential demand response 

schedule is first discussed in [18]. The method is later 

decomposed to the device-level to achieve higher 

computational efficiency [19]. The research in [20] further 

includes the smart energy hub to the residential DR 

management to initiate a real-time energy monitoring and to 

boost the learning process. In [21,22], both a deep neural 

network and reinforcement learning are leveraged for an 

economically efficient residential load control. The deep neural 

network is used to estimate the potential reward of each move 

of the consumer, and the reinforcement learning is used to 

coordinate the actions from a long-term perspective. This 

combination is called deep reinforcement learning (deep RL). 

The authors in [23] proposed the application of deep RL to 

optimize the real-time electric vehicle charging schedule with 

the consideration of future electricity price. The feasibility of 

applying deep RL to load frequency control with stochastic 

renewable energy penetration is investigated in [24]. More 

potential applications of deep RL  in power system studies have 

been discussed in [25]. 

 Inspired by the previous works, in this paper, we also propose 

the utilization of both deep neural network and reinforcement 

learning method to solve the problem of multi-microgrid 

(MMG) energy management. Different from the load control 

model in the previous works, a microgrid contains both 

generation and consumption units, leading to more variables 

and constraints with higher model complexity. In such cases, 

the conventional model-based method may become 

inapplicable due to the computational burden, which makes the 

data-driven method a more desirable and efficient alternative 

solution. 

The main contributions of this work are summarized as 

follows: 

 1) A data-driven DNN is constructed to model the multi-

microgrid response under dynamic retail price signals. The 

DNN is trained based on historical data and without requiring 

the user information from local microgrid operators. Uncertain 

factors within the microgrid system are also included in the 

training set. The well-trained DNN has high generalization and 

can automatically generate multi-microgrid power exchange 

under the new given input. 

2) A model-free RL technique is applied for the distribution 

system operator (DSO) to optimize the retail pricing for local 

microgrids. The RL method aims to maximize the profit of 

selling power while reducing the peak-to-average ratio. The 

DSO is able to achieve a near-optimal pricing strategy with the 

substantial exploration ability of the proposed RL method.  

 3) A comprehensive performance evaluation of the proposed 

method is provided through various simulations to verify its 

feasibility in practical scenarios. A comparison with model-

based method is also presented to demonstrate the superiority 

of the proposed reinforcement learning method. 

The rest of the paper is organized as follows: Section II 

presents the mathematical model of the MMG energy 

management problem; Section III demonstrates the detailed 

design of the proposed DNN and the training process; Section 

IV elucidates the model-free RL algorithm for retail price 

setting of DSO; Section V provides the simulation results of the 

proposed algorithm as well as observations and analysis; finally, 

Section VI concludes the paper. 

II. MODELING OF MULTI-MICROGRID ENERGY MANAGEMENT 

In this section, we first introduce the mathematical model of 

the proposed multi-microgrid energy management problem. 

The interaction between the MMG and distribution system is 

shown in Fig. 1. In the figure, a bi-directional communication 

channel is constructed between the microgrids and the DSO, 

where the DSO releases its retail price to the microgrids, and 

the microgrids send back the amount of power to purchase. The 

goal of MMG energy management is to smoothen the hourly 

power exchange profile of the MMG with proper retail price 

setting strategies. 

 
Fig. 1. Multi-microgrid energy management under DSO pricing control 

From the perspective of an individual microgrid, each 

microgrid operator attempts to minimize its operation cost 

under the given retail price, which leads to the following 

microgrid economic dispatch (ED) model: 
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The objective function (1) represents the operation cost of the 

mth microgrid over dispatch cycle NT, which is usually 24 hours. 

The first term in (1) is the generation cost of the kth dispatchable 

generator, which has a quadratic form of the generation quantity 

P
DG 

k (t), as shown in (2). The second term in (1) is the power 

exchange cost, where λ(t) is the retail price at the point of 

common coupling (PCC), and ηm is a factor to represent 

network losses. P
grid 

m (t) is the power purchased by the microgrid. 

Note that ηm can differ among different microgrids, because the 

locations of the microgrids within the distribution network may 

vary. Thus, each microgrid bears different network losses and 

receives different retail prices, which is also known as 

distribution locational marginal price (DLMP).  The third term 

in (1) is the cost of dispatching DR resources that reside in the 

microgrid, where u
z 

m (t) is a 0-1 binary variable indicating 

whether the zth demand response block q
z 

m(t) is dispatched or 

not, and ec
z 

m is the unit price [26]. And the last term is the 

degradation cost of energy storage. The change between two 

consecutive states of charge (SOC) is measured as the energy 

storage life degradation caused by charging or discharging [27]. 

Microgrid economic dispatch should also satisfy the following 

constraints: 
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Constraint (3) is the generator capacity constraint of DGs in 

the mth microgrid; constraints (4)-(5) mean that the total 

demand response dispatched should not exceed the load P
Load 

m (t), 

and the demand response blocks are dispatched in an increasing 

order; constraint (6) is the charge/discharge rate limit of the 

energy storage, where P
ch 

es (t) and P
dis 

es (t) are the charging and 

discharging quantity of the energy storage; constraint (7) 

calculates the energy level of energy storage, which is SOCes(t),  

where ƞes is its efficiency and ∆ is the length of the time interval; 

constraint (8) is the capacity limit of energy storage; and finally, 

constraint (9) is the power balance constraint of the microgrid.   

The DSO decides the retail price by solving the following 

optimization problem: 
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In (10), the first term is the DSO’s profit from selling energy 

to the microgrids, where Nm is the total number of microgrids. 

m is a conversion factor. This is because P
grid 

m (t) is calculated by 

the local microgrid operators and does not include the network 

losses, hence cannot reflect the real amount of power exchange 

at PCC. The function m is to transform the local power 

exchange to the power exchange at PCC. Due to the limit of the 

page lengths, we do not consider the detailed distribution 

network topology in this paper for a full-fledge DLMP model 

and assume that m is a known value in the following 

simulations.  

The second term in (10) is the peak-to-average (PAR) ratio 

over the entire dispatch cycle, which is the ratio between the 

maximum power exchange and the average power exchange of 

MMG. Since PAR is unitless, the first term is divided by a 

constant base profitbase value to remove its unit. The DSO 

intends to find the optimal retail price λ (t) that maintains a 

balance between the two objectives, hence there is a weighting 

factor α added before the two terms.  

The difficulty of solving (10) is that the individual microgrid 

power exchange P
grid 

m (t) varies with the retail price λ(t), hence it 

cannot be solved directly. In the following sections, we will 

introduce two data-driven techniques, the DNN and RL, to 

crack the above problem with high computational efficiency. 

III. MULTI-MICROGRID OPERATION SIMULATION WITH DEEP 

NEURAL NETWORK 

In this section, a deep neural network is applied to simulate 

the multi-microgrid operation under given price signals, i.e., to 

solve (1)-(9). There are two main advantages of utilizing the 

DNN:  

1) The neural network is readily available as a toolbox. Once 

the parameters are well-trained, it has high generalization 

and can automatically generate the estimated amount of 

power exchange between the MMG and DSO under the 

new retail price. Given that the individual microgrid 

economic dispatch model is a nonconvex problem and 

that the number of microgrids can be large, solving the 

MMG power exchange using the conventional analytical 

method can be highly time-consuming. The data-driven 

DNN has much higher computational efficiency with 

considerable accuracy; 

2) The individual microgrids do not need to expose their 

generation or consumption information to the distribution 

system operator (DSO), given that the DNN is trained 

using the historical retail price data and power exchange 

data. Therefore, the user privacy of microgrid owners is 

well protected. 

A. Deep Neural Network Structure 

The artificial neural network has long been recognized as an 

efficient regression tool for handling problems that are difficult 

to accurately model or with high computational complexity. 

MMG energy management fits this category. Hence, a DNN is 

constructed as follows: 

As shown in Fig. 2, the input to the DNN is the retail price, 

and the output is the aggregated MMG power exchange with the 

distribution system under the given price signal. The goal of the 

DNN is to generate a simulated power exchange that is as close 

as possible to the actual MMG response. 

Before sending the raw training data to the DNN for 

regression analysis, data preprocessing is implemented. The 
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function of data preprocessing is to minimize the deviation of 

the training data for improving the regression accuracy and 

computational efficiency. 
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Fig. 2. Multi-layer structure of the Deep Neural Network 

The data preprocessing for MMG response raw data includes 

two steps: firstly, all the sample input data and output data are 

transformed into the per unit value. By utilizing the per unit 

value, different features of the sample data become comparable 

with each other. For the retail price sample, given that they are 

at the scale of 10$/MWh, 100$/MWh is set as the base value; for 

the aggregated MMG power exchange, given that they are at the 

scale of 100 kW, 1000 kW is set as the base value. 

Secondly, a min_max_scaler transformation is applied for 

further normalization, as shown below: 
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In (13), s is the index of training samples, maxsλ(t) and 

minsλ(t) are the maximum and minimum values of the retail 

price at the tth interval among the entire training set. Through 

the above normalization, the values of the retail price samples 

will lie within the range of [0,1]. The above data preprocessing 

helps create a more regular search region for faster algorithm 

convergence. 

In the DNN structure, between the input layer and the output 

layer are numerous hidden layers. The term “deep” refers to the 

multiplicity of hidden layers. Each hidden layer is composed of 

neurons that complete the following affine transformation of the 

input: 
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The calculation of the output of the lth hidden layer is shown 

by (14), where s is the index of the sample, j is the index of the 

features of the sample, and k is the index of neurons. Also, ω
(l) 

jk 

is the weight assigned to the jth feature of the input, and b
(l) 

k is the 

bias. As can be observed, the output y
(l) 

sk  is the weighted 

aggregation of all the features of the input x
(l) 

s  captured by the 

kth neuron. The function of the hidden layer is to extract 

sufficient features from the input data and to construct the 

mapping between the input and the output.  

Notice that (14) is a linear transformation. However, the 

microgrid ED model (1) is nonlinear, and cannot be handled by 

a mere linear transformation. An activation function is thus 

added to the hidden layer to delinearize the model, as shown in 

Fig. 2. In this study, the rectifier linear units (ReLU) function is 

used as the activation function [28]. The ReLU function has the 

following form: f(x) = max(x,0), which is very close to a linear 

expression. Hence, the gradient-based methods used in linear 

optimization can be easily applied to ReLU-based nonlinear 

models. The ReLU function also preserves strong generalization 

abilities. 

B. DNN Training Algorithm 

In the DNN, the network parameters ω
(l) 

jk  and b
(l) 

k  are the 

unknown variables that need to be calculated. The back-

propagation algorithm is applied for this cause. Before the 

implementation of the algorithm, a loss function is defined as 

the objective of the DNN training. The loss function implies the 

accuracy of the output from the DNN. In the MMG energy 

management problem, mean square error (MSE) is utilized as 

the loss function: 
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In (15), NS is the number of training samples, P
grid* 

total,s (t) is the 

actual MMG power exchange at the tth time interval of the sth 

sample, P
grid 

total,s(t) is the estimated MMG power exchange. The 

loss function tries to minimize the deviation between the ground 

truth and the estimated value to obtain an accurate enough 

approximation of the MMG response.  

In the studied MMG system, there exist uncertainties, e.g., 

distributed renewable generation fluctuation, load variations. 

These uncertainties may cause extremely large or small power 

exchanges. The existence of such abnormal values in the 

training set can lead to the issue of overfitting, where the DNN 

attempts to fit to all the training samples and loses its 

generalization.  

To overcome the overfitting problem, we introduce L2 

regularization to the loss function (15), which is shown as 

follows [28]: 
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In (17), a norm-2 penalty for parameters, α/2ωTω, is added to 

the loss function. α is called the regularization parameter, which 

is a positive constant. The norm-2 penalty term restricts that the 

values of weight parameters do not grow excessively large to fit 

to the abnormal values and noises, hence the generalization of 

the model can be maintained. 

Once the loss function is calculated, the first partial 

derivatives of the loss function to the weights and biases can be 

obtained and used to update the variables: 
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In (18), i is the index of iteration, l is the index of hidden 

layers, NL is the total number of hidden layers, J
(i) 

l is the output 

of the lth layer, η is called the learning rate. Since the DNN has 

multiple hidden layers, the chain rule is applied to calculate the 

partial derivative of the parameters at each layer. The bias b is 

updated similarly. As can be observed, the back-propagation 
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algorithm utilizes the gradient to manipulate the neural network 

parameter, and to guide the model’s evolution toward the global 

optimum. 

IV. MONTE CARLO REINFORCEMENT LEARNING METHOD FOR 

DSO DECISION-MAKING 

In Section III, the deep neural network is constructed to 

simulate the multi-microgrid operation under the given price. 

As such, the DSO can obtain a reliable estimation of the 

aggregated MMG power exchange without much computation. 

Next, the DSO will decide the optimal retail price setting with 

the goal of maximizing the profit of selling power and 

minimizing the PAR, as shown by (10). 

Note that the PAR in (10) is not an explicit expression of the 

decision variable, which is the retail price λ (t), hence (10) is 

difficult to solve. In previous literature, similar problems are 

usually solved in a distributed and iterative manner, where the 

utility provider first releases the retail prices, and each local 

user sends back their power consumption under the given price. 

The utility provider then evaluates the current PAR and adjusts 

the price accordingly. The above process repeats until no power 

consumption change or price change happens.  

The iterative method is not applicable to MMG energy 

management problem for the following two reasons: 1) In 

previous studies, the local users are only consumers and are 

only allowed to shift their load. In this way, the total energy 

demand becomes constant and the average hourly load can be 

calculated, which only leaves P
grid 

max  unknown, as is the case in 

[6,9]. However, in the MMG case, since each microgrid is a 

prosumer, their final energy consumption cannot be predicted, 

hence both P
grid 

max  and P
grid 

avg  are unknown terms, and the division 

leads to a nonconvex problem, the iterative algorithm cannot 

guarantee to converge in a nonconvex case; 2) The iterative 

algorithm can be time-consuming and resource-consuming, and 

not applicable for real-time applications.  

Motivated by the above considerations, the reinforcement 

learning method is applied in this paper to crack the 

intractability of the DSO pricing problem. The reinforcement 

learning method is well-known for its applicability to problems 

with unknown search spaces. For example, in the MMG energy 

management problem, both maximum power exchange P
grid 

max  and 

average power exchange   P
grid 

avg  remain unknown to the decision-

maker DSO, and they are also not analytically expressed as 

functions of the retail price. The reinforcement learning method 

has strong exploration abilities through continuous interactions 

with the unknown environment and constantly update the 

agent’s experience in order to make the optimal decision. In this 

section, we will discuss how to implement the reinforcement 

learning method to optimize the retail pricing strategy of DSO. 

A. A Brief Overview of Reinforcement Learning 

Reinforcement learning is a type of machine learning 

approach focusing on how agents take actions within an 

unknown environment with the goal of maximizing reward 

[29]. Briefly speaking, in a provided environment, at each state, 

the agent randomly takes an action, and receives an immediate 

reward from the environment. Then the agent moves to the next 

state with a certain probability and repeats the above process, 

as shown in Fig. 3: 

State 0Environ-
ment

State 1

Agent Action a0

Reward r0

State s

Action a1

Reward r1

  

Action as-1

Reward rs-1

p(s0,a0,s1) p(s1,a1,s2) p(ss-1,as-1,ss)

 
Fig. 3. Illustration of reinforcement learning 

In the beginning, the agent has no knowledge of what reward 

and next state are linked to each action. To maximize the 

accumulative reward, the agent must learn the above knowledge 

by continuously interacting with the environment. In most 

cases, the action taken at the current state not only affects the 

immediate reward, but also the next state and all the future 

rewards. Hence, it can be concluded that reinforcement learning 

is a decision-making process with trial-and-error-search and 

delayed reward. 

B. Mapping Multi-microgrid Energy Management Problem to 

Reinforcement Learning 

The reinforcement learning assumes that the problem under 

study is a Markovian Decision Process (MDP), which is 

composed of four fundamental elements: 1) a series of 

environment states S; 2) a set of actions A; 3) the transition 

function P that gives the state probabilities; and 4) a sequence 

of rewards R.  

In the MMG energy management problem, the fundamental 

elements of the reinforcement learning are defined as follows: 

 The agent: DSO 

 State: hourly total power exchange of MMG, ∑Nm 

m=1 P
grid 

m (t), 

for t = 1…, NT 

 Action: hourly retail price λ (t), for t = 1…, NT 

 Reward: Hourly profit of selling power, λ (t) ∑Nm 

m=1 mP
grid 

m (t) 

The ultimate objective of DSO is to maximize the total profit 

of selling power over the entire dispatch cycle, plus weighted 

PAR, as shown in (10). Since both the accumulative profit and 

PAR are decided by the power exchange through the entire 

dispatch cycle instead of a single time step, the DSO has to be 

farsighted to predict the future MMG power exchange when 

deciding the retail price for the current time step. This 

corresponds with the delayed-reward feature of reinforcement 

learning, and makes reinforcement learning a natural fit for the 

MMG energy management problem.  

Note that the transition function is not given in the above 

definitions. This is because the state in this problem is the 

hourly total power exchange of MMG, which is difficult to 

predict. The hourly power exchange of microgrids are related 

to various uncertain factors within the microgrid system, e.g., 

load variations and distributed renewable energy. In the next 

subsection, we will introduce a model-free method to overcome 

the barrier of lacking transition function. 

C. Model-free Monte Carlo Method 

There are two types of reinforcement learning methods: the 

model-based method and the model-free method. The former 

assumes that the problem is a known Markov Decision Process 

with full knowledge of state transition probabilities. In this way, 

the problem can be solved analytically via dynamic 

programming or other iteration methods. However, for some 

reinforcement learning problems, obtaining the transition 

probabilities is not a trivial task. In such occasions, the agent 

has to estimate the transitions and rewards from the interactive 
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experiences with the environment. This is called the model-free 

method, since no state transition model can be constructed in 

advance due to the lack of information.  

The Monte Carlo method is a type of model-free method. To 

obtain the state and the reward information, the Monte Carlo 

method deploys the simplest possible policy. It utilizes the 

averaged sample reward for a certain action as its reward value. 

According to the law of large numbers, when there are enough 

simulations and enough samples of reward, the averaged value 

is approximately equal to the actual value, which proves the 

reasonability of the Monte Carlo method.  

As has mentioned before, it is very difficult to obtain the 

transition probability of the state, which is the hourly total 

power exchange of MMG, mainly due to the microgrid 

uncertainties. Therefore, in the MMG energy management 

problem, we also adopt the model-free Monte Carlo method to 

optimize the retail pricing strategy of the DSO. The Monte 

Carlo method is displayed in Algorithm 1 [29]:  

Algorithm 1: Monte Carlo Method for DSO decision-

making 

1: Generate daily retail price sequence samples NS 

2: Input the price samples to the DNN to obtain the MMG 

power exchange profile 

3: for t in 1 to NT  do 

4:        Choose retail price λ(s)(t) from price samples NS 

5:        Initialize the counter n(s) →0 

6:        for s’ in 1 to NS  do 

7:              if λ(s’)(t) equals λ(s)(t) 

8:                 do n(s) →n(s) + 1 

9:              end if 

10:        end for 

11:        Evaluate λ(s)(t) based on average weighted reward: 

r(λ(s)(t)) = 1/n(s) ·(α∑ profit(λ(s)(t)) - (1-α) ∑
PAR(λ(s)(t))) 

12: Select λ (t) = argmax r (λ(s)(t)), for all s∈ NS 

13: end for 

Algorithm 1 is explained as follows: to begin with, the DSO 

randomly generates large quantities of retail price sequence 

samples. The price samples are then sent into the DNN to obtain 

the estimated aggregated MMG power exchange. After the 

generation of all the price samples and the power exchange 

samples, the DSO selects the optimal hourly retail price based 

on the procedure as follows:  

First, at each time step t, the DSO randomly picks a retail 

price λ(s)(t) from the sample set, then counts the number of price 

samples that contains λ(s)(t) and records it as n(s).  

Then, the DSO evaluates λ(s)(t) based on its average profit 

and average PAR. The profit(λ(s)(t)) is calculated as follows: 

 
( ) ( ) ,( ( )) ( ) ( )/

TNs k t s grid s

m m basek t
profit t k P k profit   


  (19) 

It can be seen from (19) that the profit of λ(s)(t) is the 

discounted accumulated profit of selling power from t to NT , 

where the discount factor γ is between 0 and 1. When γ is zero, 

it implies that the decision-maker focuses only on the current 

profit and is totally myopic; when γ is greater than zero, it 

means that the decision-maker is farsighted by evaluating the 

current pricing with the consideration of potential future profit. 

In this study, γ is set to 0.9 to ensure that the DSO has a more 

robust pricing strategy to avoid future risks. 

Next, for a single price λ(s)(t), the PAR under the price 

sequence [λ(s)(1), …, λ(s)(t),...., λ(s)(NT)] is taken as PAR(λ(s)(t)). 

The PAR also reveals part of the influences of selecting λ(s)(t) 

at the current time interval to the potential future decisions. 

Each price is then evaluated based on the weighted sum of 

average profit(λ(s)(t)) and average PAR(λ(s)(t)), as shown in line 

11 of Algorithm 1. The weight factor α represents the tradeoff 

between maximizing profit and minimizing PAR.  

Finally, all the prices are compared and the price with the 

maximum weighted reward is selected as the price for time step 

t, as shown in line 12. The above process is repeated for all the 

time steps until the whole optimal retail price sequence is 

decided. 

The above algorithm is a Monte Carlo method because the 

DSO selects the optimal price sequences from a randomly 

generated sample set. Note that in the above algorithm, the price 

for each time step is selected separately, i.e., the price selection 

process (line 6-line 10) repeats for NT times to obtain a complete 

price sequence. A more intuitive way is to directly select the 

price sequence with the maximum weighted reward from the 

sample set. However, this intuitive method cannot guarantee to 

reach global optimization when the possible realizations of the 

price sequence are huge. For instance, if there are NT  time steps 

in a dispatch cycle, and for each hour, there are Np  possible 

prices, then the total number of candidate price sequences will 

be Np^(NT), which can be an enormous figure even for small Np 

and NT, and cannot be completely represented by a limited 

sample set. By using the average value to evaluate each hourly 

price and regrouping them, the algorithm can explore beyond 

the given sample set and discover solutions better than the 

existing combinations. This judgement will be verified in the 

simulation part in next section. 

V. SIMULATION ANALYSIS 

In this section, we first reveal the detailed structural design 

of the DNN for simulating multi-microgrid operation. Then the 

testing performance of the DNN is presented. Next, based on 

the simulated results from the DNN, the model-free Monte 

Carlo method is applied for the DSO to decide the optimal 

pricing strategy. The results are evaluated and compared with a 

conventional model-based method to demonstrate the 

advantages of the proposed data-driven method. 

A. Simulating Multi-microgrid Operation with DNN 

1) Multi-microgrid system setup 

A test case where 10 microgrids are connected to one DSO 

is considered here. For simplicity, we assume that microgrids 

with greater serial number are farther away from PCC, hence 

suffer from more network losses and receive a higher retail 

price. The ηm for the 10 microgrids are assumed to be in the 

range of 1.01-1.1, with an incremental size of 0.01. The setting 

of ηm is aligned with the results of distributional locational 

marginal price (DLMP) in [30], in which the DLMP range is 

around 100% to 110% of the price at PCC. The m is assumed 

to be the same as ηm. The compositions of each microgrid are 

summarized in TABLE I.   

TABLE I MICROGRID COMPOSITION 
No. Compositions No. Compositions 

1 WT, DE, DE, ES, DR 2 WT, DE MT, FC,ES,DR 
3 WT,  MT,MT,FC, ES,DR 4 WT, MT, FC,ES,DR 

5 WT, DE, MT, MT,ES 6 WT, DE, FC, FC,ES,DR 

7 WT, DE, DE, FC, ES, DR 8 WT, FC, FC, ES, DR 
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9 WT, DE, MT, FC, FC, ES, DR 10 WT, MT, MT, MT,ES,DR 

WT: wind turbine; DE: diesel generation; MT: micro turbine; FC: fuel cell; 

ES: energy storage; DR: demand response 

TABLE II PARAMETERS OF DISTRIBUTED ENERGY RESOURCES 

DG type 
P

DG,min 

k
 

(kW) 
 P

DG,max 

k  
(kW) 

Quadratic coefficients 

a
p 

k

($/h) 
b

p 

k  
($/kWh) 

c
p 

k  
($/kW2h) 

Micro turbine 0 30 0.4 0.0397 0.00051 

Fuel cell 0 30 0.38 0.0267 0.00024 

Diesel generator 0 60 1.3 0.0304 0.00104 

Energy 
 storage 

SOC
min 

es

(kWh) 

SOC
max 

es  

(kWh) 

P
ch,max 

es

(kW) 

P
dis,max 

es

(kW) 
ηes 

ρes 

($/MW) 

20 50 25 25 0.9 100 

DR quantity 
33% of 

 total DR 

66% of  

total DR 

100% of 

total DR 

DR unit price ($/kWh) 0.44 0.46 0.48 

2) Design of DNN regression model 

We design a DNN with 3 hidden layers for simulating MMG 

operation under the given retail price. The number of neurons 

in each layer is 1000. The number of inputs and outputs are both 

24, since there are 24 hourly prices with 24 hourly power 

exchanges (i.e., the dispatch cycle considered here is 1 day). 

The number of neurons in each hidden layer is decided via 

repeated trial and error. The selection of the number of neurons 

is a trade-off between the regression accuracy and 

computational efficiency. The self-adaptive Adam Optimizer is 

applied with an initial learning rate of 1e-2 [31]. In addition, the 

exponential decay of learning rate is applied to stabilize the 

training. The initial values of the weights and biases of the DNN 

are obtained from Xavier initialization [32]. Furthermore, to 

guarantee that the output from each hidden layer is regularized 

within a certain range, batch normalization is applied to avoid 

algorithm divergence [33]. 

In this case study, 12,000 samples of retail price and power 

exchange are generated for the neural network training. In the 

first place, the daily retail price is randomly generated as 1 to 

1.5 times higher than the wholesale market price, with a step 

size of 0.1. The wholesale market price can be obtained from 

historical market data. Then the generated retail price data is 

sent to model (1)-(9) to calculate the hourly power exchange of 

each participated microgrid. In addition, there exist uncertain 

factors with the microgrid, e.g., the output of wind turbine, and 

the demand variation. To make the DNN regression model 

more robust against uncertainties, we assume that the forecast 

error of load and wind generation follows a normal distribution 

with zero mean and a standard deviation of 0.1 and 0.05, 

respectively. Because a large number of training samples are 

generated to cover enough uncertain scenarios, the well-trained 

deep neural network has high generalization to unseen 

microgrid uncertainties and can provide regression results with 

high accuracy. 

3) DNN training and test results 

The conventional model-based method is used at this stage 

to solve model (1)-(9). In this study, we use GAMS/CPLEX 

software package to solve the model. The ratio of training 

samples to testing samples is 8:2. The total number of iterations 

is 2,000. The hardware environment is a Nvidia GeForce GTX 

1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core 

clock. The software environment is the online open-source deep 

learning platform TensorFlow, which is implemented on 

Python. The whole simulation framework is shown in Fig. 4. 

TABLE III shows the detailed settings of DNN training. The 

training result is summarized as follows: for the 2,400 test 

samples, the average relative error of estimated power exchange 

is 0.96%, which indicates the considerable accuracy of DNN 

regression. The training loss (mean square error plus L2 

weighted penalty) for 9,600 training samples is 0.0034, which 

is small enough as an indicator of the training convergence. The 

time for completing 2,000 iterations is 91.05 s, which is 

acceptable since the training is completed off-line. 

 
Fig. 4. Simulation framework for multi-microgrid energy management 

TABLE III SUMMARY OF DNN TRAINING SETTINGS 

Item Value 

No. of hidden layers 3 

No. of neurons in each hidden 
layer 

1000 

Activation function ReLU 

Loss function 
Mean square error plus L2 
regularization 

Learning rate 1e-2 

Exponential decay rate 0.96 
Exponential decay step 50 

Optimizer Adam Optimizer 

No. of training samples 9,600 
No. of test samples 2,400 

Iteration steps 2,000 

Data preprocessing min_max_scaler 

4) Sensitivity analysis 

To further verify the high generalization of the well-trained 

DNN to unseen inputs, we conduct the following sensitivity 

analysis of the DNN regression accuracy.  

First, the effect of price disturbance is discussed. As previous 

discussed, for the training set generation, the daily retail price 

is randomly generated as 1 to 1.5 times higher than the 

wholesale market price. To include the price disturbance, in the 

test set generation, we manually create a price peak at hours 10-

11. Note that this disturbance is not included in the training set. 

The comparison of price samples for training and test is shown 

in Fig. 5. 

Note that there appear to be only six lines in Fig. 5, because 

some price samples are overlapped with others. A test set with 

the size of 500 based on the above price disturbance is 

generated and input to the DNN. The average relative error of 

estimated power exchange is 1.65%. Note that this error is 

slightly higher than the above 0.96%, given that the price 

disturbance is not included in the training set. Still, this average 

relative error is low enough to verify the robustness of DNN 

regression under price disturbance. 

We further explore the effect of microgrid load variation to 

the DNN regression accuracy. Similar to retail price 
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disturbance, we manually create a load valley for hours 13-14 

on the original microgrid load profile for the test set generation. 

The comparison of the microgrid load for training and test is 

shown in Fig. 6. A test size with the size of 500 based on the 

microgrid load disturbance is generated and input to the DNN. 

The average relative error of estimated power exchange is 

1.60%. This further verifies the robustness of DNN regression 

under load profile disturbance.  

Based on the above observations, it can be safely concluded 

that the DNN has formulated a considerably accurate regression 

model between the input, which is the retail price, and the 

output, which is the MMG power exchange, and is immune to 

the unseen disturbance in the input data. This is due to the 

strong automatic feature extraction ability of the large number 

of neurons embedded within the DNN.  As a result, the DNN 

has tremendous potential in solving problems with unclear or 

complex mathematical formulations. 

 
Fig. 5. Disturbance of retail price 

 
Fig. 6. Disturbance of microgrid load 

B. Monte Carlo Method for Optimizing DSO Pricing Strategy 

Once the deep neural network is well trained, the fine-tuned 

parameters can be properly stored for repeated use. The DSO 

can now apply the Monte Carlo method to search for the 

optimal retail price for the MMG. Since the Monte Carlo 

method is based on the law of large numbers, the more samples 

are generated, the closer the obtained solution is to the actual 

global optimum. As previously mentioned, each hourly retail 

price falls within 1 to 1.5 times of the wholesale market price, 

with a step size of 0.1. Then the total number of all possible 

price sequences is 524 ≈ 5.96 × 1016, which is far beyond the 

hardware’s computation capabilities. Instead, we generate 104, 

2×104, 5×104, and 8×104 price samples respectively, to observe 

the effect of sample sizes on the performance of the Monte 

Carlo method.  

TABLE IV COMPUTATION TIME FOR DNN AND MONTE CARLO METHOD 

No. of  

samples 

Calculation time(s) 

DNN Monte Carlo 

10,000 2.67 31.35 

20,000 3.84 35.25 

50,000 7.90 41.82 

80,000 12.51 51.44 

No. of samples 
Calculation time(s) 

(model-based method) 
Acceleration 
ratio of DNN 

10,000 28,301 10,600 

In the first place, the computation time for using the DNN to 

calculate an MMG power exchange, and for the Monte Carlo 

method to scan all the generated samples for price setting are 

shown in TABLE IV. The DNN calculation and Monte Carlo 

method are implemented on Matlab R2017b plus Python, and 

the hardware environment is a laptop with Intel®Core™ i7-

7600U 2.8 GHz CPU, and 16.00 GB RAM. As seen from Table 

IV, using the well-trained parameters of the DNN to calculate 

the approximated MMG power exchange is fast enough to 

generate large numbers of samples for the Monte Carlo method. 
Also, the proposed Monte Carlo method is able to scan through 

large quantities of candidate retail price sequences with an 

acceptable time elapse.  

In addition, we also test the computing time for solving (1)-

(9) using a conventional model-based method. The software 

solver is GAMS/CPLEX, and the hardware environment is the 

same as previously mentioned. The computational efficiency is 

shown in the last row in TABLE IV. The acceleration ratio is 

the ratio between the computation time of model-based method 

and the DNN regression. The latter is thousands of times faster 

than the former, thus the high computational efficiency of the 

data-driven DNN is verified. 

Note that in Algorithm 1, each price is evaluated by a 

weighted reward. The value of the weight factor α will affect 

the eventual price selection. Fig. 7 demonstrates the optimal 

price setting obtained by the Monte Carlo method with different 

weight factors. Fig. 8 and Fig. 9 compare the total profit and 

PAR under different weight factors. More detailed explanations 

of Fig. 7-Fig. 9 are shown as follows. 

 
               (a) 10,000 samples                                (b) 20,000 samples 

 
                (c) 50,000 samples                                (d) 80,000 samples    

Fig. 7. Optimal price setting under different weight factors 
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In Fig. 7, it can be observed that with a larger weight factor, 

the DSO intends to increase the hourly retail price. For example, 

in all the subfigures at hour 20, as α increases from 0 to 1, the 

hourly retail price goes from green, which stands for a lower 

price value, to bright yellow, which stands for a higher price 

value. This is because an increasing weight factor implies that 

the DSO weighs the profit of selling power more than the PAR, 

as shown in (10). The DSO intends to raise the price to achieve 

a higher profit. 

Fig. 8 and Fig. 9 demonstrate the DSO’s profit of selling 

power and the PAR under the specific weight factor. The profit 

and PAR shown in the figures are obtained by sending the 

selected price sequence to the individual microgrid model (1)-

(9), and to calculate their aggregated power exchange. The 

DNN is not used here because we only need to test the selected 

price sequence, and the conventional model will provide an 

accurate result. As seen in the figures, a growing weight 

parameter leads to higher profit and higher PAR. For example, 

when α is 0.1, the optimal profit of selling power obtained based 

on 10,000, 20,000, 50,000, and 80,000 samples are $609, $626, 

$663, and $651, respectively, and the optimal PAR are all 

1.0686,1.0744,1.0744,1.0744; when α is 0.7, the optimal profit 

of selling power obtained based on 10,000, 20,000, 50,000, and 

80,000 samples are $681,$679,$682, and $682, respectively, 

and the optimal PAR are 1.082,1.0777,1.0840, and 1.0840, 

respectively. This is because with an increasing weight factor, 

the DSO values the total profit more than PAR, and tends to 

increase the hourly retail price, which has already been 

discussed in Fig. 7. An increasing price level drives microgrids 

to shift more of their load to hours with relatively lower prices, 

which exacerbates the peak to valley distance, and increases 

PAR. Therefore, the DSO needs to make a trade-off between 

gaining more profit and maintaining a smooth load profile. 

It can also be observed from Fig. 7-Fig. 9 that the results 

based on larger sizes of samples (i.e., 5×104 and 8×104) don’t 

show much difference. Hence, we can assume that such sample 

sizes are large enough for the Monte Carlo method to find the 

optimal solution. 

 
Fig. 8. Total profit ($) under different weight factors 

 
Fig. 9. Final PAR under different weight factors 

A final conclusion that can be drawn from Fig. 8 and Fig. 9 

concerns the optimal value of the weight factor. It can be 

observed from Fig. 9 that as α increases from 0 to 0.7, the PAR 

increases considerably slow, while the profit of selling power 

keeps growing. When α is greater than 0.7, the PAR shows 

obvious increase. Hence, the DSO is recommended to set the 

weight factor to 0.7 to maximize the profit of selling power, 

while maintaining a considerably low PAR. 

 
(a) 10,000 samples 

 
(b) 20,000 samples 

  
(c) 50,000 samples 

  
(d) 80,000 samples 

Fig. 10. Comparison of Monte Carlo method and intuitive method 

As stated in Section IV-C, the Monte Carlo method regroups 

the prices from different price sequence samples instead of 

intuitively choosing the price sequence with the largest 
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weighted reward. To verify the merit of the Monte Carlo 

method, a comparison with the intuitive method is shown in 

Fig. 10. As can be observed in the figure, with the change of 

weight factor, the Monte Carlo method is able to achieve higher 

profit of selling power and lower PAR than the intuitive method. 

For example, in subfigure (d), when α is 0.6, the profits of 

selling power obtained from the Monte Carlo method and the 

intuitive method are $675 and $658, respectively; and the PARs 

are 1.0705 and 1.1003, respectively. This is because the Monte 

Carlo method has a strong exploration ability to discover new 

price sequences by regrouping the existing price samples, 

which can lead to better solutions; while the intuitive method 

only relies on the existing samples, which can be stuck to local 

optimum. 

VI. CONCLUSIONS 

In this paper, a novel data-driven method is proposed for the 

multi-microgrid (MMG) energy management problem. First, a 

deep neural network is constructed to simulate MMG operation 

under dynamic retail price signals, with no requirement of local 

generation or consumption information, which protects 

customer privacy. Second, the DSO applies a model-free Monte 

Carlo reinforcement learning method to optimize its pricing 

strategy, with the aim of maximizing profit of selling power and 

minimizing PAR. Simulation results demonstrate that the DNN 

regression model has considerable accuracy due to its automatic 

feature extraction ability. It also outshines the conventional 

model-based method in computational efficiency with its high 

generalization. Compared with an intuitive selection method, 

the Monte Carlo method proves to have strong exploration 

ability in problems with no explicit mathematical formulations 

or with high computation complexity. The combination of the 

proposed data-driven deep neural network and the Monte Carlo 

method can be a promising tool for studying power system 

problems with hidden information or vast search spaces in 

future researches.  
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