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Abstract—In this paper, an intelligent multi-microgrid (MMG)
energy management method is proposed based on deep neural
network (DNN) and model-free reinforcement learning
techniques. In the studied problem, multiple microgrids are
connected to a main distribution system and they purchase power
from the distribution system to maintain local consumption. From
the perspective of the distribution system operator (DSO), the
target is to decrease the demand-side peak-to-average ratio (PAR),
and to maximize the profit from selling energy. To protect user
privacy, DSO learns the multi-microgrid response by
implementing a deep neural network (DNN) without direct access
to user’s information. Further, the DSO selects its retail pricing
strategy via a Monte Carlo method from reinforcement learning,
which optimizes the decision based on prediction. The simulation
results from the proposed data-driven deep learning method, as
well as comparisons with conventional model-based methods,
substantiate the effectiveness of the proposed approach in solving
power system problems with partial or uncertain information.

Keywords—Deep neural network (DNN), Monte Carlo method,
multi-microgrid, reinforcement learning, peak-to-average ratio
(PAR).

[. INTRODUCTION

r I Yhe latest advancement of deep learning has opened the
door of new Al-driven approaches to solve a broad range
of power system problems [1]. Demand-side resource

management is one of such problems. In recent years, emerging
demand-side resources are playing an increasingly important
role in maintaining the economy and security of bulk power
system operation [2]-[4]. Many existing research works have
been dedicated to exploring the function of multifarious
demand-side resources, e.g., distributed generators, plug-in
electric vehicles, demand response programs, and microgrids,
in providing energy and ancillary services to the utility grid in
both normal and emergent status [5]. Compared with
conventional stand-by units, the demand-side resources hold
the merit of high flexibility because they are free from ramping
constraints. Their diversity in type adds additional reliability for
serving as alternative power and frequency support to the bulk
power system in case of contingency.

The increasing penetration of demand-side resources into the
power system calls for demand-side energy management,
which aims to enable a coordinated and mutually beneficial
interaction between the main grid and the local resources. One
of the primary goals of demand-side management is to reduce
the peak-to-average ratio (PAR) of the load. A low PAR
indicates a smooth load profile, which avoids overloading or
underloading the system. Local consumers also benefit from a
low PAR by shifting their energy consumption to off-peak
hours with low prices.
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There have been substantial efforts to investigate the optimal
scheduling of demand-side resources in the literature. The
concept of autonomous demand-side management is first
introduced in [6], in which a non-cooperative game is
formulated between the utility company and local customers.
Iteratively, the utility provides dynamic pricing signals
according to the aggregated consumer response, and the
customers optimize their energy consumption schedules under
the given price in a distributed manner. At the point of Nash
Equilibrium, the minimum total energy cost and the decreased
PAR is achieved. In [7], the temporally coupled constraints of
the local consumer’s energy scheduling problem are included,
and the coupled-constrained game model is tackled by dual
decomposition. In [8], the authors prove that the non-
cooperative game between the users and the utility provider is
the general case of the minimum peak-to-average ratio problem.
In [9,10], the gradient method is utilized for solving local
consumption schedule problem with fast convergence. In [11],
an online learning algorithm is developed, where each user
learns through past experience to approximate other users’
decisions, and to optimize its own energy scheduling.

All the above methods can be categorized as model-based
methods, where the mathematical equations are formulated to
describe local users’ energy scheduling. Because the demand-
side management problem is usually a partially observable
problem, i.e., unknown or uncertain information exists, the
models are generally solved in an iterative way. There are two
deficiencies of the iterative algorithm: 1) the convergence of the
algorithm cannot always be guaranteed. The convergence can
only be achieved under some strict prerequisites, e.g., convex
payoff functions, which require certain assumptions and
simplifications of the problem; 2) applying an iterative
algorithm in the real-world can be impractical, especially in
real-time scenarios. In real-world practices, it is more likely that
the utility provider releases the price signal, and the consumers
schedule their consumption accordingly, which tends to be a
one-step process. The iterative interaction between the two
sides can be both time-consuming and resource-consuming
with the potential challenge of divergence.

Based on the above challenges and motivations, we propose
a data-driven method in this paper for optimizing demand-side
energy management. Especially, we propose the combination
of two techniques, the deep neural networks (DNN) and the
reinforcement learning (RL) method to overcome the
complexity and inefficiency of model-based methods. The
recent years have witnessed the rapid advancement of deep
neural network in a variety of applications, e.g., computer
vision, machine translation, and remote sensing. In the field of
power system, the deep neural network has been applied for
prediction of uncertain factors [12]-[14] , smart meter data
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identification [15], modeling of renewable energy [16], and
energy storage dispatch [17]. The DNN is a data-driven method
that does not rely on any analytical equations, but it utilizes
voluminous existing data to formulate the mathematical
problem and to approximate the solutions. The multiple hidden
layers and the large number of neurons within the DNN can
automatically extract features for data analysis to achieve an
accurate model regression or classification. Once the DNN is
well trained, it will develop high generalization and can be
directly applied to new instances without costly numerical
computation. Compared to the conventional model-based
method, the DNN is highly computational efficient while
maintaining considerable accuracy.

The reinforcement learning (RL) method is well known for
its applicability in solving problems with hidden information.
Reinforcement learning focuses on providing the optimal time-
sequential decisions within an unknown environment. This is
realized via continuous interactions between the decision-
maker, which is called the agent, and the environment. Through
this learning process, the agent is able to gain knowledge of the
environment and to take actions that affect the environment in
order to reach its objective. Currently, RL has been widely
spotted in areas including robotics and automation, computer
games, auto pilot, and dialog system.

There have also been significant efforts in implementing RL
method for solving complex power system problems. The
utilization of RL to optimize the residential demand response
schedule is first discussed in [18]. The method is later
decomposed to the device-level to achieve higher
computational efficiency [19]. The research in [20] further
includes the smart energy hub to the residential DR
management to initiate a real-time energy monitoring and to
boost the learning process. In [21,22], both a deep neural
network and reinforcement learning are leveraged for an
economically efficient residential load control. The deep neural
network is used to estimate the potential reward of each move
of the consumer, and the reinforcement learning is used to
coordinate the actions from a long-term perspective. This
combination is called deep reinforcement learning (deep RL).
The authors in [23] proposed the application of deep RL to
optimize the real-time electric vehicle charging schedule with
the consideration of future electricity price. The feasibility of
applying deep RL to load frequency control with stochastic
renewable energy penetration is investigated in [24]. More
potential applications of deep RL in power system studies have
been discussed in [25].

Inspired by the previous works, in this paper, we also propose
the utilization of both deep neural network and reinforcement
learning method to solve the problem of multi-microgrid
(MMG) energy management. Different from the load control
model in the previous works, a microgrid contains both
generation and consumption units, leading to more variables
and constraints with higher model complexity. In such cases,
the conventional model-based method may become
inapplicable due to the computational burden, which makes the
data-driven method a more desirable and efficient alternative
solution.

The main contributions of this work are summarized as
follows:

1) A data-driven DNN is constructed to model the multi-
microgrid response under dynamic retail price signals. The
DNN is trained based on historical data and without requiring
the user information from local microgrid operators. Uncertain
factors within the microgrid system are also included in the
training set. The well-trained DNN has high generalization and
can automatically generate multi-microgrid power exchange
under the new given input.
2) A model-free RL technique is applied for the distribution
system operator (DSO) to optimize the retail pricing for local
microgrids. The RL method aims to maximize the profit of
selling power while reducing the peak-to-average ratio. The
DSO is able to achieve a near-optimal pricing strategy with the
substantial exploration ability of the proposed RL method.

3) A comprehensive performance evaluation of the proposed
method is provided through various simulations to verify its
feasibility in practical scenarios. A comparison with model-
based method is also presented to demonstrate the superiority
of the proposed reinforcement learning method.

The rest of the paper is organized as follows: Section II
presents the mathematical model of the MMG energy
management problem; Section III demonstrates the detailed
design of the proposed DNN and the training process; Section
IV elucidates the model-free RL algorithm for retail price
setting of DSO; Section V provides the simulation results of the
proposed algorithm as well as observations and analysis; finally,
Section VI concludes the paper.

II. MODELING OF MULTI-MICROGRID ENERGY MANAGEMENT

In this section, we first introduce the mathematical model of
the proposed multi-microgrid energy management problem.
The interaction between the MMG and distribution system is
shown in Fig. 1. In the figure, a bi-directional communication
channel is constructed between the microgrids and the DSO,
where the DSO releases its retail price to the microgrids, and
the microgrids send back the amount of power to purchase. The
goal of MMG energy management is to smoothen the hourly
power exchange profile of the MMG with proper retail price
setting strategies.
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Fig. 1. Multi-microgrid energy management under DSO pricing control

From the perspective of an individual microgrid, each
microgrid operator attempts to minimize its operation cost
under the given retail price, which leads to the following
microgrid economic dispatch (ED) model:
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The objective function (1) represents the operation cost of the
m™ microgrid over dispatch cycle Ny, which is usually 24 hours.
The first term in (1) is the generation cost of the k" dispatchable
generator, which has a quadratic form of the generation quantity
P (%), as shown in (2). The second term in (1) is the power
exchange cost, where A(¢) is the retail price at the point of
common coupling (PCC), and 7, is a factor to represent
network losses. P4 (#) is the power purchased by the microgrid.
Note that #,, can differ among different microgrids, because the
locations of the microgrids within the distribution network may
vary. Thus, each microgrid bears different network losses and
receives different retail prices, which is also known as
distribution locational marginal price (DLMP). The third term
in (1) is the cost of dispatching DR resources that reside in the
microgrid, where u, (f) is a 0-1 binary variable indicating
whether the z demand response block ¢;(¢) is dispatched or
not, and ec], is the unit price [26]. And the last term is the
degradation cost of energy storage. The change between two
consecutive states of charge (SOC) is measured as the energy
storage life degradation caused by charging or discharging [27].
Microgrid economic dispatch should also satisfy the following
constraints:
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Constraint (3) is the generator capacity constraint of DGs in
the m™ microgrid; constraints (4)-(5) mean that the total
demand response dispatched should not exceed the load Pl ),
and the demand response blocks are dispatched in an increasing
order; constraint (6) is the charge/discharge rate limit of the
energy storage, where P. (f) and P% (f) are the charging and
discharging quantity of the energy storage; constraint (7)
calculates the energy level of energy storage, which is SOCe(?),
where 7., is its efficiency and A is the length of the time interval;
constraint (8) is the capacity limit of energy storage; and finally,
constraint (9) is the power balance constraint of the microgrid.

The DSO decides the retail price by solving the following
optimization problem:
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In (10), the first term is the DSO’s profit from selling energy
to the microgrids, where N, is the total number of microgrids.
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& is a conversion factor. This is because P4 () is calculated by
the local microgrid operators and does not include the network
losses, hence cannot reflect the real amount of power exchange
at PCC. The function &, is to transform the local power
exchange to the power exchange at PCC. Due to the limit of the
page lengths, we do not consider the detailed distribution
network topology in this paper for a full-fledge DLMP model
and assume that &, is a known value in the following
simulations.

The second term in (10) is the peak-to-average (PAR) ratio
over the entire dispatch cycle, which is the ratio between the
maximum power exchange and the average power exchange of
MMG. Since PAR is unitless, the first term is divided by a
constant base profityse value to remove its unit. The DSO
intends to find the optimal retail price A (¢) that maintains a
balance between the two objectives, hence there is a weighting
factor o added before the two terms.

The difficulty of solving (10) is that the individual microgrid
power exchange P (¢) varies with the retail price A(¢), hence it
cannot be solved directly. In the following sections, we will
introduce two data-driven techniques, the DNN and RL, to
crack the above problem with high computational efficiency.

III. MULTI-MICROGRID OPERATION SIMULATION WITH DEEP
NEURAL NETWORK

In this section, a deep neural network is applied to simulate
the multi-microgrid operation under given price signals, i.e., to
solve (1)-(9). There are two main advantages of utilizing the
DNN:

1) The neural network is readily available as a toolbox. Once
the parameters are well-trained, it has high generalization
and can automatically generate the estimated amount of
power exchange between the MMG and DSO under the
new retail price. Given that the individual microgrid
economic dispatch model is a nonconvex problem and
that the number of microgrids can be large, solving the
MMG power exchange using the conventional analytical
method can be highly time-consuming. The data-driven
DNN has much higher computational efficiency with
considerable accuracy;

2) The individual microgrids do not need to expose their
generation or consumption information to the distribution
system operator (DSO), given that the DNN is trained
using the historical retail price data and power exchange
data. Therefore, the user privacy of microgrid owners is
well protected.

A. Deep Neural Network Structure

The artificial neural network has long been recognized as an
efficient regression tool for handling problems that are difficult
to accurately model or with high computational complexity.
MMG energy management fits this category. Hence, a DNN is
constructed as follows:

As shown in Fig. 2, the input to the DNN is the retail price,
and the output is the aggregated MMG power exchange with the
distribution system under the given price signal. The goal of the
DNN is to generate a simulated power exchange that is as close
as possible to the actual MMG response.

Before sending the raw training data to the DNN for
regression analysis, data preprocessing is implemented. The



function of data preprocessing is to minimize the deviation of
the training data for improving the regression accuracy and
computational efficiency.

([[Z BN SR @) e e RN, ]
f 1
Activation

1
[ @ @ @ function
(o000 ooollly

Activation

EEE K
O

[@ @ @ @ @ @ @j function
ot Tt

bt tot

[([m) M) VD)

Fig. 2. Multi-layer structure of the Deep Neural Network
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The data preprocessing for MMG response raw data includes
two steps: firstly, all the sample input data and output data are
transformed into the per unit value. By utilizing the per unit
value, different features of the sample data become comparable
with each other. For the retail price sample, given that they are
at the scale of 10$/MWh, 100$/MWh is set as the base value; for
the aggregated MMG power exchange, given that they are at the
scale of 100 kW, 1000 kW is set as the base value.

Secondly, a min_max_scaler transformation is applied for
further normalization, as shown below:

(A, (6)—min ()
A (0)= —
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(13)

In (13), s is the index of training samples, maxsA(f) and
mingd(f) are the maximum and minimum values of the retail
price at the #* interval among the entire training set. Through
the above normalization, the values of the retail price samples
will lie within the range of [0,1]. The above data preprocessing
helps create a more regular search region for faster algorithm
convergence.

In the DNN structure, between the input layer and the output
layer are numerous hidden layers. The term “deep” refers to the
multiplicity of hidden layers. Each hidden layer is composed of
neurons that complete the following affine transformation of the

input:
) _ 0y (1) (1)
W=D x ol (14)

The calculation of the output of the / hidden layer is shown
by (14), where s is the index of the sample, j is the index of the
features of the sample, and  is the index of neurons. Also, )
is the weight assigned to the j” feature of the input, and b} is the
bias. As can be observed, the output y§ is the weighted
aggregation of all the features of the input x\” captured by the
k™ neuron. The function of the hidden layer is to extract
sufficient features from the input data and to construct the
mapping between the input and the output.

Notice that (14) is a linear transformation. However, the
microgrid ED model (1) is nonlinear, and cannot be handled by

a mere linear transformation. An activation function is thus
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added to the hidden layer to delinearize the model, as shown in
Fig. 2. In this study, the rectifier linear units (ReLU) function is
used as the activation function [28]. The ReLU function has the
following form: f{x) = max(x,0), which is very close to a linear
expression. Hence, the gradient-based methods used in linear
optimization can be easily applied to ReLU-based nonlinear
models. The ReLU function also preserves strong generalization
abilities.

B.  DNN Training Algorithm

In the DNN, the network parameters w} and b{ are the
unknown variables that need to be calculated. The back-
propagation algorithm is applied for this cause. Before the
implementation of the algorithm, a loss function is defined as
the objective of the DNN training. The loss function implies the
accuracy of the output from the DNN. In the MMG energy
management problem, mean square error (MSE) is utilized as
the loss function:
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In (15), Nsis the number of training samples, Ps,. (?) is the
actual MMG power exchange at the # time interval of the s”
sample, Py (f) is the estimated MMG power exchange. The
loss function tries to minimize the deviation between the ground
truth and the estimated value to obtain an accurate enough
approximation of the MMG response.

In the studied MMG system, there exist uncertainties, e.g.,
distributed renewable generation fluctuation, load variations.
These uncertainties may cause extremely large or small power
exchanges. The existence of such abnormal values in the
training set can lead to the issue of overfitting, where the DNN
attempts to fit to all the training samples and loses its
generalization.

To overcome the overfitting problem, we introduce L
regularization to the loss function (15), which is shown as
follows [28]:
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In (17), a norm-2 penalty for parameters, o/2® o, is added to
the loss function. o is called the regularization parameter, which
is a positive constant. The norm-2 penalty term restricts that the
values of weight parameters do not grow excessively large to fit
to the abnormal values and noises, hence the generalization of
the model can be maintained.

Once the loss function is calculated, the first partial
derivatives of the loss function to the weights and biases can be
obtained and used to update the variables:

. . sy
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In (18), i is the index of iteration, / is the index of hidden
layers, N; is the total number of hidden layers, Ji”is the output
of the /M layer, 7 is called the learning rate. Since the DNN has
multiple hidden layers, the chain rule is applied to calculate the

partial derivative of the parameters at each layer. The bias b is
updated similarly. As can be observed, the back-propagation

L(w,b) =

A rl(i)

vwy



algorithm utilizes the gradient to manipulate the neural network
parameter, and to guide the model’s evolution toward the global
optimum.

IV. MONTE CARLO REINFORCEMENT LEARNING METHOD FOR
DSO DECISION-MAKING

In Section III, the deep neural network is constructed to
simulate the multi-microgrid operation under the given price.
As such, the DSO can obtain a reliable estimation of the
aggregated MMG power exchange without much computation.
Next, the DSO will decide the optimal retail price setting with
the goal of maximizing the profit of selling power and
minimizing the PAR, as shown by (10).

Note that the PAR in (10) is not an explicit expression of the
decision variable, which is the retail price 4(#), hence (10) is
difficult to solve. In previous literature, similar problems are
usually solved in a distributed and iterative manner, where the
utility provider first releases the retail prices, and each local
user sends back their power consumption under the given price.
The utility provider then evaluates the current PAR and adjusts
the price accordingly. The above process repeats until no power
consumption change or price change happens.

The iterative method is not applicable to MMG energy
management problem for the following two reasons: 1) In
previous studies, the local users are only consumers and are
only allowed to shift their load. In this way, the total energy
demand becomes constant and the average hourly load can be
calculated, which only leaves P4 unknown, as is the case in
[6,9]. However, in the MMG case, since each microgrid is a
prosumer, their final energy consumption cannot be predicted,
hence both P2 and Pf; are unknown terms, and the division
leads to a nonconvex problem, the iterative algorithm cannot
guarantee to converge in a nonconvex case; 2) The iterative
algorithm can be time-consuming and resource-consuming, and
not applicable for real-time applications.

Motivated by the above considerations, the reinforcement
learning method is applied in this paper to crack the
intractability of the DSO pricing problem. The reinforcement
learning method is well-known for its applicability to problems
with unknown search spaces. For example, in the MMG energy
management problem, both maximum power exchange P, and
average power exchange P, remain unknown to the decision-
maker DSO, and they are also not analytically expressed as
functions of the retail price. The reinforcement learning method
has strong exploration abilities through continuous interactions
with the unknown environment and constantly update the
agent’s experience in order to make the optimal decision. In this
section, we will discuss how to implement the reinforcement
learning method to optimize the retail pricing strategy of DSO.

A. A Brief Overview of Reinforcement Learning

Reinforcement learning is a type of machine learning
approach focusing on how agents take actions within an
unknown environment with the goal of maximizing reward
[29]. Briefly speaking, in a provided environment, at each state,
the agent randomly takes an action, and receives an immediate
reward from the environment. Then the agent moves to the next
state with a certain probability and repeats the above process,
as shown in Fig. 3:
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Fig. 3. Illustration of reinforcement learning

In the beginning, the agent has no knowledge of what reward
and next state are linked to each action. To maximize the
accumulative reward, the agent must learn the above knowledge
by continuously interacting with the environment. In most
cases, the action taken at the current state not only affects the
immediate reward, but also the next state and all the future
rewards. Hence, it can be concluded that reinforcement learning
is a decision-making process with trial-and-error-search and
delayed reward.

B.  Mapping Multi-microgrid Energy Management Problem to
Reinforcement Learning

The reinforcement learning assumes that the problem under
study is a Markovian Decision Process (MDP), which is
composed of four fundamental elements: 1) a series of
environment states S; 2) a set of actions A4; 3) the transition
function P that gives the state probabilities; and 4) a sequence
of rewards R.

In the MMG energy management problem, the fundamental
elements of the reinforcement learning are defined as follows:

e The agent: DSO

o State: hourly total power exchange of MMG, X% P4 (1),

fort=1...,Nr

e Action: hourly retail price A(¢), fort=1..., Nr

e Reward: Hourly profit of selling power, A(£) X, &nP%" (£)

The ultimate objective of DSO is to maximize the total profit
of selling power over the entire dispatch cycle, plus weighted
PAR, as shown in (10). Since both the accumulative profit and
PAR are decided by the power exchange through the entire
dispatch cycle instead of a single time step, the DSO has to be
farsighted to predict the future MMG power exchange when
deciding the retail price for the current time step. This
corresponds with the delayed-reward feature of reinforcement
learning, and makes reinforcement learning a natural fit for the
MMG energy management problem.

Note that the transition function is not given in the above
definitions. This is because the state in this problem is the
hourly total power exchange of MMG, which is difficult to
predict. The hourly power exchange of microgrids are related
to various uncertain factors within the microgrid system, e.g.,
load variations and distributed renewable energy. In the next
subsection, we will introduce a model-free method to overcome
the barrier of lacking transition function.

C. Model-free Monte Carlo Method

There are two types of reinforcement learning methods: the
model-based method and the model-free method. The former
assumes that the problem is a known Markov Decision Process
with full knowledge of state transition probabilities. In this way,
the problem can be solved analytically via dynamic
programming or other iteration methods. However, for some
reinforcement learning problems, obtaining the transition
probabilities is not a trivial task. In such occasions, the agent
has to estimate the transitions and rewards from the interactive



experiences with the environment. This is called the model-free
method, since no state transition model can be constructed in
advance due to the lack of information.

The Monte Carlo method is a type of model-free method. To
obtain the state and the reward information, the Monte Carlo
method deploys the simplest possible policy. It utilizes the
averaged sample reward for a certain action as its reward value.
According to the law of large numbers, when there are enough
simulations and enough samples of reward, the averaged value
is approximately equal to the actual value, which proves the
reasonability of the Monte Carlo method.

As has mentioned before, it is very difficult to obtain the
transition probability of the state, which is the hourly total
power exchange of MMG, mainly due to the microgrid
uncertainties. Therefore, in the MMG energy management
problem, we also adopt the model-free Monte Carlo method to
optimize the retail pricing strategy of the DSO. The Monte
Carlo method is displayed in Algorithm 1 [29]:

Algorithm 1: Monte Carlo Method for DSO decision-
making
1: Generate daily retail price sequence samples Ns
2: Input the price samples to the DNN to obtain the MMG
power exchange profile
for tin 1 to Nr do
Choose retail price A)(¢) from price samples Ns
Initialize the counter n(s) —0
for s’ in 1 to N5 do
if 1¢)(¢) equals A9(r)
do n(s) —n(s) + 1
end if
end for
Evaluate 1“)(f) based on average weighted reward:
rA9®0) = Un(s) “(a X profitA9(F)) - (1-a) ¥
PAR(L(1))
12: Select A (f) = argmax r (A“)(¥)), for all s€ N
13: end for

Algorithm 1 is explained as follows: to begin with, the DSO
randomly generates large quantities of retail price sequence
samples. The price samples are then sent into the DNN to obtain
the estimated aggregated MMG power exchange. After the
generation of all the price samples and the power exchange
samples, the DSO selects the optimal hourly retail price based
on the procedure as follows:

First, at each time step ¢, the DSO randomly picks a retail
price A1¥)(f) from the sample set, then counts the number of price
samples that contains A“)(¢) and records it as n(s).

Then, the DSO evaluates A“)(f) based on its average profit
and average PAR. The profit(/°)({)) is calculated as follows:

profit(2” )=, 72" (e, B () profit,, (19)
It can be seen from (19) that the profit of A“)(¢) is the
discounted accumulated profit of selling power from ¢ to N7,
where the discount factor y is between 0 and 1. When y is zero,
it implies that the decision-maker focuses only on the current
profit and is totally myopic; when y is greater than zero, it
means that the decision-maker is farsighted by evaluating the
current pricing with the consideration of potential future profit.
In this study, y is set to 0.9 to ensure that the DSO has a more
robust pricing strategy to avoid future risks.
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Next, for a single price A¥)(¢), the PAR under the price
sequence [A“(1), ..., A9(D)....., AO(Np)] is taken as PAR(A“)(£)).
The PAR also reveals part of the influences of selecting A“)(¥)
at the current time interval to the potential future decisions.
Each price is then evaluated based on the weighted sum of
average profit(A®(¢)) and average PAR(A“)(¢)), as shown in line
11 of Algorithm 1. The weight factor a represents the tradeoff
between maximizing profit and minimizing PAR.

Finally, all the prices are compared and the price with the
maximum weighted reward is selected as the price for time step
t, as shown in line 12. The above process is repeated for all the
time steps until the whole optimal retail price sequence is
decided.

The above algorithm is a Monte Carlo method because the
DSO selects the optimal price sequences from a randomly
generated sample set. Note that in the above algorithm, the price
for each time step is selected separately, i.e., the price selection
process (line 6-line 10) repeats for Nrtimes to obtain a complete
price sequence. A more intuitive way is to directly select the
price sequence with the maximum weighted reward from the
sample set. However, this intuitive method cannot guarantee to
reach global optimization when the possible realizations of the
price sequence are huge. For instance, if there are Nr time steps
in a dispatch cycle, and for each hour, there are N, possible
prices, then the total number of candidate price sequences will
be N,"(Nr), which can be an enormous figure even for small N,
and Ny, and cannot be completely represented by a limited
sample set. By using the average value to evaluate each hourly
price and regrouping them, the algorithm can explore beyond
the given sample set and discover solutions better than the
existing combinations. This judgement will be verified in the
simulation part in next section.

V. SIMULATION ANALYSIS

In this section, we first reveal the detailed structural design
of the DNN for simulating multi-microgrid operation. Then the
testing performance of the DNN is presented. Next, based on
the simulated results from the DNN, the model-free Monte
Carlo method is applied for the DSO to decide the optimal
pricing strategy. The results are evaluated and compared with a
conventional model-based method to demonstrate the
advantages of the proposed data-driven method.

A. Simulating Multi-microgrid Operation with DNN

1) Multi-microgrid system setup

A test case where 10 microgrids are connected to one DSO
is considered here. For simplicity, we assume that microgrids
with greater serial number are farther away from PCC, hence
suffer from more network losses and receive a higher retail
price. The #,, for the 10 microgrids are assumed to be in the
range of 1.01-1.1, with an incremental size of 0.01. The setting
of #, is aligned with the results of distributional locational
marginal price (DLMP) in [30], in which the DLMP range is
around 100% to 110% of the price at PCC. The g, is assumed
to be the same as #,. The compositions of each microgrid are
summarized in TABLE 1.

TABLE I MICROGRID COMPOSITION

No. Compositions No. Compositions
1 WT, DE, DE, ES, DR 2 WT, DE MT, FC,ES,DR
3 WT, MT,MT,FC, ES,DR 4 WT, MT, FC,ES,DR
5 WT, DE, MT, MT.ES 6 WT, DE, FC, FC,ES,DR
7 WT, DE, DE, FC, ES, DR 8 WT, FC, FC, ES, DR



9 WT, DE, MT, FC, FC, ES,DR | 10 WT, MT, MT, MT,ES,DR
WT: wind turbine; DE: diesel generation; MT: micro turbine; FC: fuel cell;
ES: energy storage; DR: demand response

TABLE Il PARAMETERS OF DISTRIBUTED ENERGY RESOURCES
Quadratic coefficients

(W) W) ) (skwWh)  (8/kW?h)
Micro turbine 0 30 04 00397 0.00051
Fuel cell 0 30 038 00267 0.00024
Diesel generator 0 60 13 0.0304 0.00104
SOCI" SOC pim  pim Pes
Energy (KWh) (kWh) (W) W) T ($/MW)
storage 20 50 25 25 09 100
DR quantity 33% of 66% of 100% of
total DR total DR total DR
DR unit price ($/kWh) 0.44 0.46 0.48

2) Design of DNN regression model

We design a DNN with 3 hidden layers for simulating MMG
operation under the given retail price. The number of neurons
in each layer is 1000. The number of inputs and outputs are both
24, since there are 24 hourly prices with 24 hourly power
exchanges (i.c., the dispatch cycle considered here is 1 day).
The number of neurons in each hidden layer is decided via
repeated trial and error. The selection of the number of neurons
is a trade-off between the regression accuracy and
computational efficiency. The self-adaptive Adam Optimizer is
applied with an initial learning rate of 1e-2 [31]. In addition, the
exponential decay of learning rate is applied to stabilize the
training. The initial values of the weights and biases of the DNN
are obtained from Xavier initialization [32]. Furthermore, to
guarantee that the output from each hidden layer is regularized
within a certain range, batch normalization is applied to avoid
algorithm divergence [33].

In this case study, 12,000 samples of retail price and power
exchange are generated for the neural network training. In the
first place, the daily retail price is randomly generated as 1 to
1.5 times higher than the wholesale market price, with a step
size of 0.1. The wholesale market price can be obtained from
historical market data. Then the generated retail price data is
sent to model (1)-(9) to calculate the hourly power exchange of
each participated microgrid. In addition, there exist uncertain
factors with the microgrid, e.g., the output of wind turbine, and
the demand variation. To make the DNN regression model
more robust against uncertainties, we assume that the forecast
error of load and wind generation follows a normal distribution
with zero mean and a standard deviation of 0.1 and 0.05,
respectively. Because a large number of training samples are
generated to cover enough uncertain scenarios, the well-trained
deep neural network has high generalization to unseen
microgrid uncertainties and can provide regression results with
high accuracy.

3) DNN training and test results

The conventional model-based method is used at this stage
to solve model (1)-(9). In this study, we use GAMS/CPLEX
software package to solve the model. The ratio of training
samples to testing samples is 8:2. The total number of iterations
is 2,000. The hardware environment is a Nvidia GeForce GTX
1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core
clock. The software environment is the online open-source deep

learning platform TensorFlow, which is implemented on
Python. The whole simulation framework is shown in Fig. 4.

TABLE III shows the detailed settings of DNN training. The
training result is summarized as follows: for the 2,400 test
samples, the average relative error of estimated power exchange
is 0.96%, which indicates the considerable accuracy of DNN
regression. The training loss (mean square error plus Lo
weighted penalty) for 9,600 training samples is 0.0034, which
is small enough as an indicator of the training convergence. The
time for completing 2,000 iterations is 91.05 s, which is
acceptable since the training is completed off-line.
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Fig. 4. Simulation framework for multi-microgrid energy management
TABLE III SUMMARY OF DNN TRAINING SETTINGS

Item Value
No. of hidden layers 3
No. of neurons in each hidden 1000
layer
Activation function ReLU
Loss function Mean square  error plus L,

regularization

Learning rate le-2
Exponential decay rate 0.96
Exponential decay step 50
Optimizer Adam Optimizer
No. of training samples 9,600
No. of test samples 2,400
Iteration steps 2,000

Data preprocessing min_max_scaler

4) Sensitivity analysis

To further verify the high generalization of the well-trained
DNN to unseen inputs, we conduct the following sensitivity
analysis of the DNN regression accuracy.

First, the effect of price disturbance is discussed. As previous
discussed, for the training set generation, the daily retail price
is randomly generated as 1 to 1.5 times higher than the
wholesale market price. To include the price disturbance, in the
test set generation, we manually create a price peak at hours 10-
11. Note that this disturbance is not included in the training set.
The comparison of price samples for training and test is shown
in Fig. 5.

Note that there appear to be only six lines in Fig. 5, because
some price samples are overlapped with others. A test set with
the size of 500 based on the above price disturbance is
generated and input to the DNN. The average relative error of
estimated power exchange is 1.65%. Note that this error is
slightly higher than the above 0.96%, given that the price
disturbance is not included in the training set. Still, this average
relative error is low enough to verify the robustness of DNN
regression under price disturbance.

We further explore the effect of microgrid load variation to
the DNN regression accuracy. Similar to retail price



disturbance, we manually create a load valley for hours 13-14
on the original microgrid load profile for the test set generation.
The comparison of the microgrid load for training and test is
shown in Fig. 6. A test size with the size of 500 based on the
microgrid load disturbance is generated and input to the DNN.
The average relative error of estimated power exchange is
1.60%. This further verifies the robustness of DNN regression
under load profile disturbance.

Based on the above observations, it can be safely concluded
that the DNN has formulated a considerably accurate regression
model between the input, which is the retail price, and the
output, which is the MMG power exchange, and is immune to
the unseen disturbance in the input data. This is due to the
strong automatic feature extraction ability of the large number
of neurons embedded within the DNN. As a result, the DNN
has tremendous potential in solving problems with unclear or
complex mathematical formulations.
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B. Monte Carlo Method for Optimizing DSO Pricing Strategy

Once the deep neural network is well trained, the fine-tuned
parameters can be properly stored for repeated use. The DSO
can now apply the Monte Carlo method to search for the
optimal retail price for the MMG. Since the Monte Carlo
method is based on the law of large numbers, the more samples
are generated, the closer the obtained solution is to the actual
global optimum. As previously mentioned, each hourly retail
price falls within 1 to 1.5 times of the wholesale market price,
with a step size of 0.1. Then the total number of all possible
price sequences is 5** = 5.96 x 10!, which is far beyond the
hardware’s computation capabilities. Instead, we generate 104,
2x10* 5x10%, and 8x10* price samples respectively, to observe

the effect of sample sizes on the performance of the Monte
Carlo method.

TABLE IV COMPUTATION TIME FOR DNN AND MONTE CARLO METHOD

No. of Calculation time(s)
samples DNN Monte Carlo
10,000 2.67 31.35
20,000 3.84 35.25
50,000 7.90 41.82
80,000 12.51 51.44
No. of samples Calculation time(s) Ac?eleration
(model-based method) ratio of DNN
10,000 28,301 10,600

In the first place, the computation time for using the DNN to
calculate an MMG power exchange, and for the Monte Carlo
method to scan all the generated samples for price setting are
shown in TABLE 1V. The DNN calculation and Monte Carlo
method are implemented on Matlab R2017b plus Python, and
the hardware environment is a laptop with Intel® Core™ 1i7-
7600U 2.8 GHz CPU, and 16.00 GB RAM. As seen from Table
IV, using the well-trained parameters of the DNN to calculate
the approximated MMG power exchange is fast enough to
generate large numbers of samples for the Monte Carlo method.
Also, the proposed Monte Carlo method is able to scan through
large quantities of candidate retail price sequences with an
acceptable time elapse.

In addition, we also test the computing time for solving (1)-
(9) using a conventional model-based method. The software
solver is GAMS/CPLEX, and the hardware environment is the
same as previously mentioned. The computational efficiency is
shown in the last row in TABLE IV. The acceleration ratio is
the ratio between the computation time of model-based method
and the DNN regression. The latter is thousands of times faster
than the former, thus the high computational efficiency of the
data-driven DNN is verified.

Note that in Algorithm 1, each price is evaluated by a
weighted reward. The value of the weight factor a will affect
the eventual price selection. Fig. 7 demonstrates the optimal
price setting obtained by the Monte Carlo method with different
weight factors. Fig. 8 and Fig. 9 compare the total profit and
PAR under different weight factors. More detailed explanations
of Fig. 7-Fig. 9 are shown as follows.
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In Fig. 7, it can be observed that with a larger weight factor,

the DSO intends to increase the hourly retail price. For example,

in all the subfigures at hour 20, as o increases from 0 to 1, the
hourly retail price goes from green, which stands for a lower
price value, to bright yellow, which stands for a higher price
value. This is because an increasing weight factor implies that
the DSO weighs the profit of selling power more than the PAR,
as shown in (10). The DSO intends to raise the price to achieve
a higher profit.

Fig. 8 and Fig. 9 demonstrate the DSO’s profit of selling
power and the PAR under the specific weight factor. The profit
and PAR shown in the figures are obtained by sending the
selected price sequence to the individual microgrid model (1)-
(9), and to calculate their aggregated power exchange. The
DNN is not used here because we only need to test the selected
price sequence, and the conventional model will provide an
accurate result. As seen in the figures, a growing weight
parameter leads to higher profit and higher PAR. For example,
when a is 0.1, the optimal profit of selling power obtained based
on 10,000, 20,000, 50,000, and 80,000 samples are $609, $626,
$663, and $651, respectively, and the optimal PAR are all
1.0686,1.0744,1.0744,1.0744; when a is 0.7, the optimal profit
of selling power obtained based on 10,000, 20,000, 50,000, and
80,000 samples are $681,$679,$682, and $682, respectively,
and the optimal PAR are 1.082,1.0777,1.0840, and 1.0840,
respectively. This is because with an increasing weight factor,
the DSO values the total profit more than PAR, and tends to
increase the hourly retail price, which has already been
discussed in Fig. 7. An increasing price level drives microgrids
to shift more of their load to hours with relatively lower prices,
which exacerbates the peak to valley distance, and increases
PAR. Therefore, the DSO needs to make a trade-off between
gaining more profit and maintaining a smooth load profile.

It can also be observed from Fig. 7-Fig. 9 that the results
based on larger sizes of samples (i.e., 5x10* and 8x10*) don’t
show much difference. Hence, we can assume that such sample
sizes are large enough for the Monte Carlo method to find the
optimal solution.
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A final conclusion that can be drawn from Fig. 8 and Fig. 9
concerns the optimal value of the weight factor. It can be
observed from Fig. 9 that as o increases from 0 to 0.7, the PAR
increases considerably slow, while the profit of selling power
keeps growing. When o is greater than 0.7, the PAR shows
obvious increase. Hence, the DSO is recommended to set the
weight factor to 0.7 to maximize the profit of selling power,
while maintaining a considerably low PAR.
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As stated in Section IV-C, the Monte Carlo method regroups
the prices from different price sequence samples instead of
intuitively choosing the price sequence with the largest
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weighted reward. To verify the merit of the Monte Carlo
method, a comparison with the intuitive method is shown in
Fig. 10. As can be observed in the figure, with the change of
weight factor, the Monte Carlo method is able to achieve higher

profit of selling power and lower PAR than the intuitive method.

For example, in subfigure (d), when a is 0.6, the profits of
selling power obtained from the Monte Carlo method and the
intuitive method are $675 and $658, respectively; and the PARs
are 1.0705 and 1.1003, respectively. This is because the Monte
Carlo method has a strong exploration ability to discover new
price sequences by regrouping the existing price samples,
which can lead to better solutions; while the intuitive method
only relies on the existing samples, which can be stuck to local
optimum.

VI. CONCLUSIONS

In this paper, a novel data-driven method is proposed for the
multi-microgrid (MMG) energy management problem. First, a
deep neural network is constructed to simulate MMG operation
under dynamic retail price signals, with no requirement of local
generation or consumption information, which protects
customer privacy. Second, the DSO applies a model-free Monte
Carlo reinforcement learning method to optimize its pricing
strategy, with the aim of maximizing profit of selling power and
minimizing PAR. Simulation results demonstrate that the DNN
regression model has considerable accuracy due to its automatic
feature extraction ability. It also outshines the conventional
model-based method in computational efficiency with its high
generalization. Compared with an intuitive selection method,
the Monte Carlo method proves to have strong exploration
ability in problems with no explicit mathematical formulations
or with high computation complexity. The combination of the
proposed data-driven deep neural network and the Monte Carlo
method can be a promising tool for studying power system
problems with hidden information or vast search spaces in
future researches.
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