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Classification of Blind Users’ Image Exploratory
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Abstract—Individuals who are blind adopt multiple procedures
to tactually explore images. Automatically recognizing and clas-
sifying users’ exploration behaviors is the first step towards the
development of an intelligent system that could assist users to
explore images more efficiently. In this paper, a computational
framework was developed to classify different procedures used
by blind users during image exploration. Translation-, rotation-
and scale-invariant features were extracted from the trajectories
of users movements. These features were divided as numerical
and logical features and were fed into neural networks. More
specifically, we trained spiking neural networks (SNNs) to further
encode the numerical features as model strings. The proposed
framework employed a distance-based classification scheme to
determine the final class/label of the exploratory procedures.
Dempster-Shafter Theory (DST) was applied to integrate the
distances obtained from all the features. Through the experiments
of different dynamics of spiking neurons, the proposed frame-
work achieved a good performance with 95.89% classification
accuracy. It is extremely effective in encoding and classifying
spatio-temporal data, as compared to Dynamic Time Warping
and Hidden Markov Model with 61.30% and 28.70% accuracy.
The proposed framework serves as the fundamental block for
the development of intelligent interfaces, enhancing the image
exploration experience for the blind.

Index Terms—Blind or Visually Impaired, Dempster-Shafer
Theory, Exploration Procedures, Image Perception, Spatio-
temporal Data, Spiking Neural Networks.

I. INTRODUCTION

NDIVIDUALS who are blind often rely on tactual and au-

ditory sensations to perceive images using current sensory-
substituted interfaces [1], [2]. However, multimodal sensory
substitution for image perception is still a daunting task that
requires time, cognitive strenuous, and may require the help
of personal assistants [2], [3]. There is a need to develop
intelligent systems that can understand users’ behavior and
provide additional and appropriate assistance to facilitate the
perception of images for the blind community. Automatically
recognizing users’ behavior is a fundamental step towards the
development of such systems, which is the focus of this paper.

For people who are blind, the perception of images are
constructed based on the visual features gathered from the per-
formed exploration [4]. Blind people use different exploration
procedures to better understand specific visual information or
features of interest [5], [6]. For example, blind users often
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follow the contour of an object, to understand its shape
and size [6]. Table I summarizes five exploration procedures
commonly used by the blind community as reported in the
literature and our previous studies, which includes Frame
Following (FF), Contour Following (CF), Surface Sweeping
(SS), Relative Positioning (RP) and Absolute Positioning (AP)
[5], [7]-[9]. In Table I illustrations, blood smear images are
used as an example and dotted red lines with arrows represent
the trajectory of a user’s exploration. Red blood cells are
shown in red, and white blood cells are purple.

To automatically recognize the exploration procedures sum-
marized in Table I, a framework using Spiking Neural Net-
works (SNNs) was developed. These exploration procedures
are characterized as distinct spatio-temporal patterns. SNNs
have been adopted in various applications to recognize spatio-
temporal patterns [10]-[13]. Previous research has indicated
exciting results with a relatively high accuracy by giving
only a small amount of training samples [14]. This property
seems attractive to the studies that benefit the blind community
since recruiting high numbers of subjects is challenging [15].
Additionally, SNN-encoded features have shown the capability
of early prediction from previous studies, which is well-suited
for intelligent systems [11].

Previous studies have focused on training a single SNN to
characterize the spatio-temporal patterns with only one feature,
such as the traversed pixels or the angles of movement of the
trajectories [11], [14]. However, exploration procedures have
to be characterized by multiple features that are invariant to
scale, rotation and translation. For example, the trajectories of
procedure RP and AP show similar features in terms of di-
rections of movements. To distinguish them, it is necessary to
include the morphological differences of objects on the image
that are related to the procedures. Procedure RP interacts be-
tween two objects, while procedure AP interacts between one
object and the boundary of the image. Therefore, a multimodal
SNN approach was developed in this paper to encode the
spatial and temporal characteristics of each pattern. Multiple
SNNs were adapted and trained to encode these features. With
this unsupervised encoding of features using SNNs, distance-
based classification and decision fusion techniques are applied
to distinguish the exploration procedures.

The contribution of this paper is three-fold: (1) developed
a computational framework that recognizes five exploration
procedures frequently used during image exploration for the
blind; (2) conducted experiments to measure the performance
of the proposed approach; (3) performed analysis to evaluate
the effect on classification performance of different dynamics
of SNNs.
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TABLE I
SUMMARY OF EXPLORATION PROCEDURES.
I;,?:)lcoel;;ll:;:n Description Illustration
F(ifg&en Trace the boundary of the image to 0
(FF) g obtain the image size. 0
Contour Trace the boundary of objects on the ,,"“'\\
Following image to learn the size and shape of { \
(CF) objects. N
Siu;iagﬁ Back-and-forth movement inside ob- @
(SSp) g jects to learn the features of objects. \
Relative Back-and-forth movements between ,’f' ¥
Positioning | objects to obtain their relative loca- .
(RP) tions. O
Absolute Back-and-forth movements between
Positionin objects and the image boundary to : A
€ | obtain their absolute locations on the Vo 1(
(AP) ima Ry
ge. (VY

The rest of the paper is organized as the following. Section
II summaries the state-of-art. Section III explains the proposed
framework for procedure recognition. The evaluation of the
proposed methodology and results of the experiments are
illustrated in section IV. Section V discusses the potentials
for this work. Section VI gives the conclusion and presents
future work.

II. RELATED WORK

In this section, we reviewed current assistive technologies
for people who are blind to perceive images, and then dis-
cussed various exploration procedures.

A. Assistive Technologies for Image Exploration

There has been a substantial interest in developing assistive
technologies to allow visual information be accessible to blind
individuals ranging from low-tech tactile papers to high-tech
real-time sensory substitution systems [16]-[19]. The state of
the art in image exploration techniques can be summarized
into two catogories: exploring images physically or digitally.

Among physical image representations, tactile graphics is
the most common approach to deliver two-dimensional visual
information to individuals who are blind or visually impaired
(BVI), such as diagrams, pictures and charts. Despite of its
widespread use, tactile graphics cannot be used to deliver
complex visual information and often requires additional de-
scription from human assistants [20]. In addition to tactile
paper, 3D printing technology became an alternative as 3D
printers becomes more affordable [21]. In spite of its apparent
superiority to represent more complicated visual information
than tactile paper, studies indicated that 3D printed tactile
images require fine adjustment of parameters and 3D modeling
techniques to convert 2D images into 3D objects [22].

Complementary to the physical representation of images,
force feedback devices have drawn much attention for blind

individuals as another modality that supports digital image
exploration [2], [23], [24]. Instead of using fingers, blind indi-
viduals can feel the virtual graphic rendered by the computer
via the motion of a haptic device across the image. Tactile
feedback is provided according to the position of the haptic
device. Yu and Brewster developed a multimodal system that
people can use to explore bar graphs using a haptic device,
together with auditory feedback [25]. Experimental results
indicated significant improvement in the understanding of bar
charts through the haptic interface compared to traditional
tactile diagram. In addition to this, interactive systems have
been developed using haptic devices and sound to facilitate
the learning of visual concept, such as astronomy [26] and
maps [27]. Students reported better understanding of the
concepts and increased interest in the learning of complex
visual concepts.

B. Exploration Procedures

As opposed as to using vision to perceive images, exploring
visual information through touch is more difficult and com-
plicated. It imposes cognitive load as well as effective (well-
developed) procedures [28]. Studies focusing on what type of
procedures are adopted by the blind community have been
conducted in two major types of visual properties: local and
global visual information.

Lederman & Klatzky [4], [6], [29] summarized six ex-
ploration procedures when internal properties of objects are
acquired including dimensions, texture, hardness, weight, and
shape. For example, “lateral motion” or ‘“surface sweeping”
referred in [30] is a back-and-forth movement across a small
area within the object’s surface. People use this procedure to
understand the texture, interior structure of an object. “Contour
following” is another often-used procedure to understand the
exact shape of an object. Different from “surface sweeping”,
it is a motion that focuses on the boundaries of objects.
Vinter et al. summarized seven procedures from studies with
children who are BVI using elevated 2D tactile images [5]. The
“contour following” procedure was the most common found
in their study, and was highly correlated with the recognition
of object’s shape and size. “Surface sweeping” was the second
most common procedure found in their study.

Besides understanding the internal properties of objects,
measuring the spatial relations between objects is another
challenging task for BVI individuals. In the experiments con-
ducted [31] with children with visual impairments, participants
were asked to explore a circular board with a number of
objects placed on it, and then replicate the setup on a different
board. Results revealed that participants finished the task
with higher accuracy when they applied “relative positioning”
and “absolute positioning” procedures. Other works conducted
with adults who are BVI confirmed such results [32].

III. METHODOLOGY

Trajectory of users’ exploration behavior was collected
during trials involving subjects exploring images using a pre-
viously developed multimodal interface [2]. In our proposed
framework, a sequence of multidimensional feature vectors
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Fig. 1. Proposed framework to learn exploration procedures. The trajectory
of user motion is characterized as spatio-temporal data and encoded as
model strings through the training of SNNs. Classification of the exploration
procedures are then performed by computing distances between samples.

was extracted from each sample of an exploration procedure.
The features represent the directions of movements, context of
the trajectory and users’ frame of reference during exploration.
The features representing the angles and context information
of trajectories have numerical values, while the feature repre-
senting users’ frame of reference is a logic variable (e.g. has
the reference been changed or not). The numerical features
are further encoded through trained SNNs. These features
are fed to the SNNs for training acting as the stimulus of
the network. Once the SNNs are trained, the characteristic
responses of each sample to the SNNs are encoded as model
strings, serving as the templates for each sample. Those
templates are further used for classification, together with the
logic feature (indicating the switch of reference points during
the interaction). For classification, we adapted a modified
version of Dynamic Time Warpping (DTW) with Longest
Common Subsequence (LCS) as the similarity measurement
between model strings. Dempster-Shafer Theory (DST) was
then applied at last to merge the beliefs from multiple features
into a final decision (i.e. the predicted type of the sample). The
proposed framework is illustrated in Fig. 1.

A. Data Collection

Trajectory data were collected from 10 blind-folded human
subjects exploring 12 blood smear images using a haptic-
based multimodal image exploration interface. In previous
studies, we experimented with both blind and blind-folded
subjects with no significant difference in performance [2]. The
multimodal interface consists of a haptic controler (Force Di-

mentions Omega 6), a vibration tactor (Engineering Acoustics,
Inc) and a computer speaker for audio feedback. The sample
rate of the multimodal interface is 10 Hz with the spatial
resolution of less than 0.01 mm and workspace of ¢ 160 mm
by 110 mm. Recruited participants included 5 females and 5
males with age ranging from 18 to 30. Participants were asked
to explore a blood smear image using the multimodal interface
and replicate the image with 3d printed cell models. The
replicated image indicated their understanding of the image.

Exploration procedures were used as samples and were
manually annotated. The procedures were segmented from a
longer data trajectory corresponding to a full image routine.
In total, the dataset included 168 samples for FF, 803 for CF,
207 for SS, 238 for RP and 483 for AP. Twenty samples of
each procedures were separated from the dataset working as
the training set, while the rest of the samples were used for
testing. Fig. 2 shows an example of Absolute Positioning (AP)
in three iterations. The different shades of red indicate the
elapsed time of trajectory. The lighter shades happened earlier
than darker shades.

B. Temporal Representation of Data

Each sample of trajectory data is a sequence of time and
cursor’s 2D position on the image, represented as a tuple
(ti, x;,y;), where i ranges from 1 to the length of the sample.
The procedures are then extracted from the trajectory data as
spatio-temporal patterns, that have different spatial appearance
over time. Three types of features were computed to character-
ize the trajectories in a fashion that is translation, rotation and
scale-invariant: the “angle of motion”, the “context of cursor’s
position” and the “switch of reference point”.

1) Angle: For any two consecutive time frames ¢;,_; and
t;, the vector v; representing the direction of movement is
obtained following (1). The angle of motion 6;_1 ; ;41 is then
computed as the angle between two consecutive vectors v; and
v;41 following (2).

v = (Tim1 — T4, Yie1 — Yi) (H
—1 Vi X Vi1 )

[vil[ Vil

2) Contextual Information: To model user behavior, it is
crucial to include the context of the interaction as it par-
tially determines the procedure that a user will perform. For
instance, contour following (CF) is defined as a procedure

9i71,i,¢+1 = COs

=

Fig. 2. An example of Absolute Positioning (AP) performed by participants.
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TABLE I
CONTEXTUAL INFORMATION ASSIGNMENT.

Index Contextual Information
1 Background
2 Object contour
3 Object Inside Area
4~8 Pixels from 1 to 5 away outwards from the object contour
9 Image boundary
10 ~ 13 Pixels from 1 to 4 away from the boundaries of an image

that user follows the boundary of an object. Despite of the
variant shapes of objects, the traversed pixels in CF should
belong to the contour of an object that is recognized through
image processing techniques. Therefore, shape- and location-
invariant features are defined by creating an index map of
the image to be explored. An index is assigned for each
unique contextual information (C'Iy) for a given time frame
k, following the rules explained in Table II.

3) Reference Switch: When people explore a visual land-
scape, such as an image, using only tactile information,
features and objects are used as reference points. This can
be accomplished by applying image processing techniques to
segment the different objects, whereas each object gets unique
IDs (ranging from object 1 to n, where n is the number of
objects in the image) [2]. Once the objects are recognized,
a reference point is defined as the object that the user is in
contact with, including the image boundary and object number
i (¢ = 1...n). The last reference point r; is annotated for each
time frame t;. The switch of reference point (§") is computed
based on three consecutive time frames, following (3).

T _ 07
i—1,4,04+1 =
1,

Next, a feature vector (4) for the spatio-temporal data is
extracted using three consecutive time frames ¢;,_;, ¢; and ¢, 1,
where, the angle 6;_1 ; ;41 is computed using (2), the context
index (C1I;) is calculated for each time frame t¢; following
Table II and the reference switch d;_; ; ;. is obtained using

(3).

Ti—1 =Ti = Ti41

3)

otherwise

J=00i-1i41,CLi1,CL;, Clig1,6] 1 i01) (D)

C. Spiking Neural Network

SNNs are trained to encode the numerical features in (4),
including the “angle of motion” and the “context information”.
As defined in (3), it may be cumbersome to encode ;_; ; ;41
using SNN as it is a logic variable with Boolean values, so
this feature will be used for classification directly. Therefore,
there are four SNNs trained in this work, each corresponding
to feature 6;_1 ; i+1, Cl;—1, CI; and CI;1 1. The four SNNs
have different number of neurons due to the range of features,
but same configuration for other parameters.

1) Network Configuration: In an SNN, neurons are mutu-
ally connected through the synapses, and can be configured
with the number of neurons, the connectivity among neurons,

the conduction delay of each synapse, and the weights of
synapses, as defined in Izhikevich [33]. Izhikevich’s model was
used in this work considering its ability to simulate different
neuron dynamics while requiring relatively small computa-
tional power, compared to other widely used models, such
as “Integrate-and-Fire” and “HodgkinHuxley” [34]. There are
two types of neurons in an SNN, the excitatory and inhibitory
neurons, of which the amount has a ratio of 4:1. The number
of neurons for each of the four SNNs is then determined based
on the range of the feature it is encoding and discussed in the
next section. These neurons are mutually connected and the
four SNNs developed in this work have a connectivity of 10%
among all neurons. The synapses can have different conduction
delay that partially determines the firing pattern of neurons.
The differences between firing patterns of input data are then
used for classification. The conduction delay is randomized
from 1 ms to 20 ms for each synapse. The synaptic weights
are configured as +6 for excitatory neurons, and —5 for
inhibitory neurons initially. The weights are then updated using
the rule of the spiking dependent plasticity (STDP) [33]. Based
on the time-locked firing patterns of neurons, the STDP rule
boosts or degrades inter-neuron connections by increasing or
decreasing the synaptic weights. Fig. 9 in Appendix illustrates
an example SNN.

2) Number of Neurons: The number of neurons for an SNN
is dependent on the range of the feature. The degree of feature
angle 6;_;;;+1 ranging from 0 to 180 inclusive, is divided
into 19 intervals. Five excitatory neurons are allocated for
each interval, resulting in 95 excitatory neurons. Twenty-three
inhibitory neurons are allocated as the ratio between excitatory
and inhibitory neurons is 4 to 1 as discussed above. The SNN
encoding feature angle has a total of 118 neurons, with 95
excitatory and 23 inhibitory neurons.

For feature contextual information (C'I;), the index ranges
from 1 to 13 as defined in Table II. Similarly to the con-
figuration for feature angle, each index is allocated with 5
excitatory neurons, thus leading to a network of 81 neurons
with 65 excitatory and 16 inhibitory neurons.

3) Network Training: The input data (feature Angle and
CI) are fed into the network following the sequence of
feature vectors defined in (4) by stimulating the corresponding
neurons with a 20 mA current. Since there are 5 neurons
allocated for each interval of feature values, the neurons are
stimulated one by one with an interval of 1 ms. For instance,
if the value of feature C'I at a certain time frame is associated
with neurons 1 to 5, then neuron 1 is firstly stimulated with
a 20 mA current. After 1 ms, neuron 2 is then stimulated,
followed by neuron 3, 4 and 5 at a 1 ms interval. A training
sample with n time frames will have a pattern with length
of 5n ms fed into the SNN. Fig. 3 shows an example of
how neurons were fired given the input sequence of feature
angle. The raster plot on the top indicates the firing patterns
of neurons, while the bottom plot shows the input values of
feature angle over time.

To learn the 5 types of procedures, m sets of training
samples were used where each set of training samples contains
one sample from each class . Therefore, there are 5 samples in
one training set. The total number of training samples is 5m.
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Fig. 4. Examples of synapse weights fluctuation. The synaptic weights remain
stable after 30 rounds of training.

One round of training involves feeding these sets of training
samples into the network one by one. The STDP rule is used
during the training process to update the synaptic weights for
all neurons. Till the end of each round of training, the summa-
tion of the synaptic weights of all neurons is calculated. For
two consecutive rounds of training, the differences between the
synaptic weights, AW, are computed following (5), where w;,
is the weight of synapse p at training round ¢, and the SNN
has a total number of n synapses. The training is completed
when synaptic weights remain stable. Fig. 4 shows an example
of the fluctuation of synaptic weights over different rounds of
training. The training of the network is completed around 30
rounds.

AW =) [lwh, — wj||? )
p=1

D. Classification

The features encoded by SNNs, including the angle and
C1 are used together with feature “reference switch” 6" to
classify the various procedures. A distance-based metric is
used to measure the similarities between samples. For SNN-
encoded features, a modified dynamic time warping (DTW)
is used to compute the distance, while for feature §”, the

distance is computed as the difference between 0" over time.
Then, Dempster-Shafer Theory (DST) is applied to determine
the type of procedure being used by combining the distances
obtained from all the features.

1) Representation of SNN-encoded Features: Features en-
coded by SNNs are represented as model strings that are
sequences of characters. The length of model strings varies
according to the length of the input sample. One character
contains the indices of fired neurons (voltage > 30 mV) at a
time stamp of the training process [11]. For example, {(2,6,7),
(3), (5,6)} is a model string that contains three characters.
(2,6,7) is a character that indicates neuron 2, 6 and 7 are fired
at the same time. The characters in a model string are formed
one by one following the order of time. Considering the same
example showed above, neuron 5 and 6 fired at the same time
after neuron 3 fired. Model strings are built by stimulating the
trained SNN without updating the synaptic weights of neurons.

2) Distance Function: As samples of data have different
number of time frames, DTW is used to align the sequences
and compute the distance between the model strings. The
length of Longest Common Subsequences (LCS) is used
as the distance function of DTW to compute the distance
between characters. Since LCS computes the similarities of
two characters instead of distance, its negative value is used
for DTW.

To calculate the distance between two samples a and b in the
logic feature 6" dimension, the difference of summation over
time is used, follow (6), where sample a has p time frames
and sample b has g time frames.

0.0, b dg+ =0 and i bt =10
Z,b =4 0.0, Zf:1 5g7t > 0 and 23:1 g,t >0 (6
1.0, otherwise

In (6), condition 1 indicates there is no reference switch in both
sample a and b, while condition 2 means that user’s reference
was switched in both samples a and b. Therefore, there is
no difference between the two samples in terms of “reference
switch”.

3) Decision Fusion using Dempster-Shafer Theory (DST):
With a 5-dimension feature vector defined in (4), DST is used
to determine the label of the observation by combining the
knowledge obtained from each individual feature. Compared
to feature fusion, this kind of decision fusion scheme is
more flexible and can easily include new features or exclude
unnecessary ones [35], [36]. In DST, to classify a sample as
label y, the contribution of each feature k is characterized by
the Basic Belief Assignment (BBA) function my(y), where
k=1,2..,5and y € {FF,CF,SS,RP, AP} in this study.
For feature k, the value of the BBA function my(y) is
determined using the average distance between the testing
sample and procedure y’s trained templates. The Dempster’s
Rule of Combination (DRC) is then applied repetitively to
calculate the joint BBA function mq 2(-) from two individual
BBA functions mq(-) and ms(-).The joint BBA function
obtained from each iteration is then combined with one of the
remaining BBA functions of a single feature, until all features
are combined [12].
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The complete classification procedure is summarized in
Algorithm 1 below.

Algorithm 1: Classification with modified DTW and DST

Input: Testing model string ¢ of length n¢(c1,c2, ..., ¢n)

Output: label of ¢: predicted type of exploration procedure
1: for each training sample « of length n, do

for each feature channel k do

S

3 for each character c; in t do

4 for character c; in x between the window do

5: similarity = — LCS (¢4, cg)

6: cost(i,j) = similarity+
min(cost{(i, j), (i + 1,), (i, j + 1)})

7: end for

8: end for

9: distance(t,xz, k) = cost(nt + 1,nx + 1)

10: end for

11: end for

12: for each feature channel k& do

13: for all training templates x of label y in S do

14: my(y) = mean . g distance(t, z, k)

15: end for

16: end for

17: return label of ¢ - DRC(m1, ..., my)

IV. EXPERIMENTAL RESULTS

Experiments were conducted to evaluate the proposed
framework using real world data collected from human partic-
ipants.This study (protocol number: 1207012484) is approved
by the institutional review board at Purdue University and
informed consent was received from all participants.

A. Evaluation

A 10-fold cross-validation was performed to evaluate the
proposed framework, where in each fold, a leave-n-subject-
out practice was utilized. The value of n depends on the
number of training samples. For example, when one sample is
used for training, the user of the training sample is eliminated
from the testing set which results in n = 9. Otherwise,
when there are 9 training samples, 9 participants’ samples
are used for training, so the remaining one subject’s data are
used for testing (n = 1). The proposed framework has an
average classification accuracy of 95.89% with 18 training
samples for each exploration procedure type. Fig. 5a shows
the confusion matrix, where rows represent ground truth and
columns represent predicted labels. The precision rate, recall
rate and F1 score were also computed for each class of
exploration procedure according to the one-vs-rest basis (Table
III).

More analysis was conducted to understand the effect on
classification accuracy when the SNNs were trained with
different number of samples. Fig. 6 shows the average classifi-
cation accuracy with variance over different number of training
samples. The accuracy reaches 94% with 5 training samples.

B. Time Complexity Analysis

The proposed classification algorithm is an instance-based
approach where the testing sample is compared with all the
trained templates. It has a time complexity of O(mN) where
m is the number of classes and N is the number of trained
templates for each class. With the increasing of number of
training samples, classification takes longer to complete.

100%
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AP 041%  041%  0.00%
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Fig. 5. Confusion matrix of classification accuracy for (a) the proposed
framework with 95.89% accuracy; (b) SNN with NHNF descriptor with
88.68% accuracy.
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Fig. 6. Classification accuracy over different number of training samples.

Instead of using distance-based metrics, a classification
scheme that requires constant time complexity O(1) was
developed in [37] for SNN encoded features. A Normalized
Histogram of Neuron Firings (NHNF) is firstly computed
and then trained with a support vector machine (SVM) for
classification. The NHNF approach was tested in this paper
by concatenating the normalized histogram of the logic feature
“reference switch” with the NHNFs of the four SNN-encoded
features. Classification was then performed by training this
concatenated histogram using a SVM. The 10-fold leave-one-
subject-out cross-validation was performed for this compar-
ison. Compared with the proposed approach with 95.89%
accuracy, faster classification was achieved by sacrificing the
accuracy to 88.68% with the NHNF approach. Fig. 5b shows
its confusion matrix.

C. Comparisons with DTW and HMM

The proposed framework was validated by comparing it
with other popular algorithms for time-series data classifica-
tion, such as DTW [38] and HMM [39]. Without the encoding
of features using SNNs, DTW and HMM were trained and

TABLE III
THE PRECISION RATE, RECALL RATE AND F1 SCORE OF THE
RESULTS.
FF CF SS RP AP
Precision 1.00 0.97 1.00 0.83 0.99
Recall 1.00 1.00 0.88 0.97 0.90
F1 score 1.00 0.98 0.94 0.90 0.94
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tested using the raw features extracted from data in (4). In
these comparisons, 18 training samples were used for each
type of procedure. The leave-one-subject-out cross-validation
was also performed.

Comparing with DTW, Euclidean distance was used to
calculated the differences between samples in terms of feature
angle since it is a continuous value, while the LCS used in
sectionlII-D2 was used as the distance function for feature
context index and reference switch. Each testing sample was
compared with 18 training samples for each type of procedure.
The DTW confusion matrix shows an accuracy of 61.30%
(Fig. 7a). It was observed that Frame Following (FF), Contour
Following (CF) and Surface Sweeping (SS) were mostly
recognized, while DTW failed with the other two types of
procedures. Relative Positioning (RP) were likely recognized
as CF because both procedures were related to the objects
on an image. In contrast, Absolute Positioning (AP) were
recognized mostly as FF as both trajectories had contact with
the boundary of the image.

In terms of HMM, one model was trained for each type of
exploration procedure. Therefore, in this experiment, five mod-
els were trained for classification. During classification, the
testing sample was fed into all five models and the probability
that this sample belongs to each model was calculated. The
label of model with the highest probability was determined as
the predicted label. In this study, every model had five hidden
states and k-means was applied to categorize the observations
into discrete values as the features contain continuous values.
The value of k& was determined empirically as 10 in this
experiment.An accuracy of 28.70% was obtained with the
confusion matrix shown in Fig. 7b. Except Frame Following
(FF), HMM has difficulties distinguishing the rest procedures.

D. Training SNNs with different dynamics of neurons

The spiking neurons used to build the network were mod-
eled based on the approach proposed by Izhikevich [40]
which depends on two variables, the neuron’s membrane
potential and the membrane recovery variable. There were four
parameters a, b, ¢ and d defined in the model that determined
the property of the neuron, thus affecting neuron firing ac-
tivity. Parameter a describes how fast the neuron recovers,
where smaller values leads to slower recovery. Parameter b
indicates the sensitivity of the recovery variable to fluctuations
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Fig. 7. Confusion matrix of recognition accuracy for (a) DTW with 61.30%
accuracy; (b) HMM with 28.70% accuracy.

TABLE IV
RECOGNITION ACCURACY OF DIFFERENT NEURONS.
Neuron Type a b c d Accuracy
(a) Tonic Spiking 0.02 0.2 -65 6 94.39%
(b) Phasic Spiking 0.02 | 0.25 -65 6 72.76%
(c) Tonic Bursting 0.02 0.2 -50 2 82.99%
(d) Phasic Bursting 0.02 | 025 | -55 | 0.05| 75.76%
(e) Mixed Mode 0.02 0.2 -55 4 85.55%
(f) Frequency Adaption 0.01 0.2 -65 8 93.72%
(g) Subthreshold Oscillations 0.05 0.26 -60 0 69.21%
(h) Resonator 0.1 0.26 | -60 -1 56.03%
(i) Rebound Spike 0.03 | 025 | -60 4 61.15%
(j) Rebound Burst 0.03 | 025 | -52 0 73.21%
(k) Threshold Variability 0.03 | 025 | -60 46.75%
(1) Bistability 1 1.5 -60 0 71.65%
(m) DAP 1 0.2 -60 | -21 76.26%
(n) Accommodation 0.02 1 -55 4 18.51%

of membrane’s potential. ¢ is the reset value of a neuron’s
membrane potential and d is the reset value of the recovery
variable after it is fired. Fourteen primary types of neurons
[41] that were applicable in this study were examined. Their
parameters are summarized in Table IV with the classification
accuracy achieved by the respective SNNs trained with these
different types of neurons. Their responses to different input
current are also illustrated in Appendix Fig. 10.

It was observed that the type of neuron that fired a train of
spikes and adapted its spiking frequency over time exhibited
the highest the accuracy of 94.39% and 93.72%. These were
very similar to the higher accuracy of 94.55% achieved by
using the regular spiking neurons (¢ = 0.02,b = 0.2,¢ =
—65,d = 8).

V. DISCUSSIONS

It is observed from the experimental results that with the
encoding of SNNs, a relatively good classification accuracy (>
90%) could be achieved by training with only small amount of
data. This differed from state-of-art neural networks for spatio-
temporal pattern classification, such as 3D-CNN and RNN [9],
[42] in that they require large amounts of data. The ability to
perform this well with such few observations is a significant
advantage considering that data collection is a daunting task
with people with disabilities due to the cognitive and physical
effort required.

When compared with DTW, SNN showed its advantages in
better capturing the underlying structure of the data through
feature encoding. Features in different spaces can all be
encoded into one single manifold, as the indices of fired
neurons. This is crucial when dealing with features that have
dramatic differences, such as continuous features versus dis-
crete features. For the DTW compared in this study, procedure
RP is mostly recognized as CF since they share common
context information, but the shape of the trajectory is not
emphasized, because the Euclidean distance used for feature
angle is not comparable for the LCS distance used for feature
context index.
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Fig. 8. Examples of complete and incomplete exploration procedures.

It is also found that better classification performance was
achieved with neurons firing tonic spikes or tonic spikes with
frequency adaption. Compared to phasic spikes or burstings
(Fig. 10(b)(c)(d)(e), the frequency of tonic spikes may encode
the elapsed time between the onsite of input data, thus captured
the unique time-series patterns for different classes.

More importantly, our classification framework was capable
of early prediction. It was determined from the collected
exploration data that users do not always perform a com-
plete procedure. Instead, partial procedures are frequently
performed for different reasons. For example, complete CFs
are observed when users trace the whole contour of an object
to identify its type and shape. However, it is more often applied
partially by users to identify their positions. If the user is trying
to understand the object’s position relative to the left side of
the image, it is common practice for users to partially trace
the contour of an object in order to reach the uppermost left
side of it and then leave from there to detect the left edge of
the image. Fig. 8 shows several examples of CF performed by
the users, where (a) shows a complete CF and (b), (c) and (d)
shows different forms of incompletion.

A large proportion of exploration procedures found in this
study were incomplete. Training and collecting all forms of
incomplete samples of procedures is time-consuming and not
able to be realistically performed. The classification results
demonstrated that the proposed SNN-based framework could
recognize partial procedures when it was only trained with
complete ones. Conversely, this was particularly challenging
for DTW and HMM.

Incomplete trajectories could be successfully recognized,
because only the first several time frames of a procedure are
sufficient for correct prediction. This early prediction property
is a desired attribute to develop intelligent interfaces that can
proactively offer assistance to the user before determinative
errors occur. For example, the sense of distance and direction
is degraded when vision is not available. If the users apply
procedure Relative Positioning (RP) to measure the distance
between two objects, it is crucial for the users to follow
the shortest path on the image. An intelligent interface can
therefore indicate the position of the shortest path to the users,
once it detects partially the performed procedure.

Nonetheless, the findings of this study have to be seen in
light of some limitations. The first limitation concerns the data
collected from blindfolded participants rather than blind users.
Exploration of digital images using a haptic-based multimodal
interface is new to both blind and blindfolded community.
Both of them needs to go through extensive training practices
to get familiar with this new form of interaction. Although

no significant differences were found in most tasks in our
previous studies when comparing the performance of blind
and blindfolded participants [2], it is worthwhile to validate
this proposed framework using data from blind participants
in the future. Another limitation of this study origins from
the limitation of the haptic interface. Different from exploring
paper-based images using both of their hands, blind users
use a stylus-style haptic controller to explore digital images.
Although they only have a single contact point with the
image thus made their explorations less efficient, the blind
community can have real-time access to images as fast as
their sighted peers, while printing paper-based tactile images
can take hours. With the proposed framework in this study,
more efficient interfaces can be developed to compensate the
limitation of single-point interaction and thus improve the
performance of haptic-based image exploration.

VI. CONCLUSIONS

Individuals who are blind have developed routine ex-
ploratory behaviors to facilitate their understanding of visual
features, while they are interacting with images. Automatically
recognizing these behaviors grants the potential to develop
intelligent systems to further assist them in image exploration
and enhance their understanding of the images. We proposed a
computational framework in this paper that classifies different
exploratory behaviors of blind users. The exploratory behav-
iors are summarized as five different exploration procedures.
These procedures consist of various spatio-temporal patterns
that are uniquely characterized by rotational, translational
and scale invariant features. Numerical features representing
the angle of movements and context related to the image
features were further encoded through the training of multiple
SNNs. The logic feature, referred as “reference switch”, was
used later for classification without the encoding of a SNN.
The SNN-encoded features were then represented by model
strings, that are the characteristic responses from the trained
SNNs for the input sample. A distance-based classification
scheme was applied in this work. We modified the DTW
algorithm with a distance function using the length of LCS
to compute the differences between model strings. To make
the final decision of the predicted label for a sample, DST
was integrated in the framework that combines the knowledge
obtained from multiple features. Experimental results show
that the proposed framework achieves an accuracy of 94.55%
for exploration procedure recognition. This framework leads
to encouraging future studies that involve the development of
intelligent decision-support systems that automatically assist
users in understanding image information at the accuracy
equaling that of having human assistance.
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