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Abstract 

The continuity of the position-vector gradients at the nodal points of a finite element (FE) mesh 
does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of 
the gradients at the interface not only adversely affects the quality of the simulation results, but 
can also lead to computer models that do not properly represent realistic physical system behaviors, 
particularly in the case of soft and fluid material applications. In this study, the absolute nodal 
coordinate formulation (ANCF) finite elements are used to define general curvature-continuity 
conditions that allow for eliminating or minimizing the discontinuity of the position gradients at 
the element interface. For the ANCF solid element, with four-node surfaces, it is shown that 
continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the 
continuity of the gradients at the nodal points. The general ANCF continuity conditions are 
applicable to both reference-configuration straight and curved geometries. These conditions are 
formulated without the need for using the computer-aided-design (CAD) knot vector and knot 
multiplicity, which do not account properly for the concept of system degrees of freedom. The 
ANCF curvature-continuity conditions are written in terms of constant geometric coefficients 
obtained using the matrix of position-vector gradients that defines the reference-configuration 
geometry. The formulation of these conditions is demonstrated using the ANCF fully-parametrized 
three-dimensional solid and tetrahedral elements, which employ a complete set of position 
gradients as nodal coordinates. Numerical results are presented in order to examine the effect of 
applying the curvature-continuity conditions on achieving a higher degree of smoothness at the 
element interfaces in the case of soft and fluid materials.  
 
Keywords: Curvature continuity; position gradients; absolute nodal coordinate formulation; 
soft and fluid materials; integration of geometry and analysis.  
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1. Introduction 

Finite elements (FE) based on the absolute nodal coordinate formulation (ANCF), which have 

been used in the analysis of large-deformation problems, can describe arbitrarily large motion 

because of the use of position gradients as nodal coordinates [1 – 11]. For accurate formulation of 

the equations of motion that govern the dynamics of flexible bodies, a distinction is made between 

position and displacement gradients. Position gradients are tangent to coordinate lines (fibers), 

while displacement gradients do not have this important geometric interpretation [12]. This 

important geometric property of the position gradients allowed over the past few years introducing 

new concepts and FE formulations that can contribute successful integration of the geometry and 

analysis and for addressing many of the computer-aided-engineering (CAE) challenges that cannot 

be addressed using existing FE technology [13 - 18].  

 The standard FE assembly of ANCF finite elements ensures the continuity of the position 

gradients at the nodal points. This, in turn, ensures the continuity of the rotation, strain, and stress 

fields at the FE mesh nodal points. Nonetheless, the continuity of the position gradients at the 

nodes of an FE mesh does not ensure the continuity of these gradients at the element interfaces. 

Such a gradient discontinuity at the element interface not only has an adverse effect on the quality 

of the simulation results in some important applications, but can also lead to computer models that 

do not properly describe the system behavior, particularly in the case of soft and fluid materials. 

For example, in the case of fluids, the constitutive equations are formulated in terms of the time 

rate of the position gradients using the Navier-Stokes equations [19]. Discontinuity of the gradients 

at the element interfaces can lead to discontinuities in the viscous stresses and the resulting fluid 

damping forces. Similarly, in the case of soft materials which can experience large deformations, 
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the gradient discontinuity at the element interface can lead to discontinuity of the rotation, strain, 

and stress fields that can have adverse effect on the accuracy of the computer models. 

 The use of the position gradients as nodal coordinates allows for conveniently shaping the 

element geometry. If the position gradients are not used as nodal coordinates, regardless of whether 

or not they can be computed at arbitrary points, describing the element geometry in the reference 

configuration can be difficult even when conventional isoparametric elements are used. As 

demonstrated in this study, the matrix of position-vector gradients that defines the reference-

configuration geometry enters into the definitions of the general curvature equations that are 

applicable to both straight and curved geometries. Therefore, it is not straightforward to formulate 

these general curvature equations using conventional finite elements or rotation-based elements 

that do not employ position gradients as nodal coordinates [13 - 18]. The position gradients do not 

only enter in the formulations of the strains and stresses, but also define the stress-free reference 

configuration. Consequently, their use as nodal coordinates is necessary in order to be able to 

develop realistic and geometrically-accurate models without the need for using the B-spline (Basis 

Splines) and NURBS (Non-Uniform Rational B-Splines) control points, knot multiplicity, and 

knot vectors [20 - 22]. B-splines and NURBS were developed as graphics tools without 

consideration of the important concept of the degrees of freedom which is fundamental in 

mechanics. Therefore, such graphics tool can have limited potential in addressing the fundamental 

and challenging CAE problems, and their use in analysis will put severe restrictions on the types 

of models that can be developed in the future. In fact, the appropriateness of using B-spline and 

NURBS representations in developing physics-based models for visualization and computer 

animations has been debated by the computer science research communities for decades [23 - 28]. 
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 In this study, ANCF finite elements are used to formulate curvature-continuity conditions that 

allow for eliminating or minimizing the discontinuity of the position gradients at the element 

interface. The general ANCF continuity conditions developed in this investigation are applicable 

to both straight and curved reference-configuration geometries, and as previously mentioned, do 

not require the use of the CAD control points, knot vectors, and knot multiplicity which do not 

properly account for the concept of degrees of freedom. In order to properly account for the stress-

free reference-configuration geometry, the ANCF curvature-continuity conditions are formulated 

in terms of constant geometric coefficients obtained using the elements of the matrix of position-

vector gradients that defines the mapping between the straight and curved reference-configuration 

geometries. The formulation of these conditions is demonstrated using the three-dimensional 

ANCF fully-parametrized eight-node solid and four-node tetrahedral elements; each of which has 

twelve coordinates per node; three position and nine gradient coordinates [6, 29, 30]. One of the 

basic differences between the ANCF solid and tetrahedral elements used in this paper is the type 

of parameterization and gradients used. For the ANCF fully-parametrized tetrahedral element, two 

different position gradients are introduced; the volume and Cartesian gradients. The volume 

gradients are systematically converted to Cartesian gradients in order to allow using a standard 

FE assembly procedure. For the fully-parametrized ANCF solid element, on the other hand, only 

Cartesian gradients are used. Using the ANCF solid and tetrahedral elements, numerical results 

are obtained in order to demonstrate the effect of applying the curvature-continuity conditions on 

reducing the element-interface gradient discontinuities in the case of soft and fluid materials. 

 

2. Problem definition 
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Enforcing higher degree of continuity at the nodal points of an FE mesh can contribute to achieving 

higher degree of smoothness at the element interface. In general, continuity of the position 

gradients at the nodal points does not ensure continuity of the same gradients at the element 

interface. One option to achieve a higher degree of smoothness at the element interface is to impose 

curvature-continuity conditions at the nodal points. Achieving a higher degree of smoothness at 

the element interface is particularly important in the case of soft and fluid materials in which the 

definition of the forces, including the viscous forces, depends on the position gradients and their 

time rate. Figures 1 shows the ANCF solid and tetrahedral elements considered in this study to 

examine the effect of enforcing the curvature continuity [6, 29, 30]. The ANCF solid element has 

8 nodes, while the ANCF tetrahedral element has 4 nodes. Each node of these two elements has 

twelve nodal coordinates that include three position and nine gradient coordinates. The shape 

functions of the two elements are provided in Appendix A of this paper. The displacement field of 

these two elements is written as ( ) ( ) ( ), t t=r x S x e , where r  is the global position vector, S  is the 

element shape function matrix, e  is the vector of nodal coordinates, t  is time, and  

[ ]1 2 3
Tx x x=x  is the vector of the element spatial coordinates. The vector of the coordinates 

at a node k  of the ANCF solid and tetrahedral elements can be written as 

1 2 3

T T T T
T

k k k k k
x x x

 =   
e r r r r , where superscript k  refers to the node number, and 

, 1, 2,3
jx jx j= ∂ ∂ =r r , are the position gradient vectors.  

2.1  Illustrative example 

Figure 2 shows a flexible pendulum made of soft material that is connected to rigid body at points 

1 2 3, ,O O O , and 4O  by four spherical joints. The pendulum is modeled using simple ANCF solid- 

and tetrahedral-element meshes. In this example, the rigid body is connected to the ground by a 
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revolute joint that allows for only relative rotation about the 2X  axis. The coordinate system

1 2 3X X X  is selected as the structure coordinate system, which is initially parallel to the global 

coordinate system. The dimensions of the two meshes are 1 m, 0.2 ma b c= = = , and the numbers 

of the elements in the solid-element and tetrahedral-element meshes are assumed two and five, 

respectively. This simple example, which is used in this section to demonstrate the position-

gradient discontinuity at the element interface, will be further examined in the numerical results 

section where the model material properties and other mesh dimensions are presented and 

discussed in more detail. The standard assembly of the ANCF meshes ensures the continuity of 

the position gradients at the nodes. In order to examine the continuity of the gradients at the 

element interface, the rigid body is allowed to rotate about the 2X  axis freely from an initial 

horizontal configuration. The motion about this axis is assumed to be specified and defined by the 

function ( )=2t tϕ ω , where ω  is a constant angular velocity that equal to 1rad s . The effect of 

gravity is neglected in this example.  

 In order to use this simple example to demonstrate the fact that the continuity of the position 

gradients at the nodes does not guarantee the same continuity at an arbitrary point on the element 

interface, the central point B  on the element interface shown in Fig. 2 is considered. The standard 

ANCF FE assembly process ensures continuity of both position and gradient coordinates at the 

nodal points when two elements are rigidly connected. For the solid-element mesh, the position-

gradient continuities ( )
2

1

x
C  and ( )

3

1

x
C at the element interface are automatically achieved as the 

result of the standard FE assembly, while the ( )
1

1

x
C  position-gradient continuity is not ensured, 

where the notation ( )lC
α

 implies l th degree of continuity ( 0l =  for position, and 1l =  for position 
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gradients) associated with the coordinate 1 2 3, ,x x xα = .When assembling solid elements, the 

connectivity interface defines a surface whose geometry is described by two parameters. The 

continuity of the two gradients associated with these two parameters at the element interface 

surface is ensured as the result of the continuity of the gradients at the nodal points, as will be 

explained in the following sub-section. On the other hand, the continuity of the third gradient 

associated with the remaining coordinate at the element interface surface is not ensured. Figure 3 

shows the difference in the first element of the gradient vectors 
1x

∆r  at point B  when it is evaluated 

using the two neighboring finite elements that share this point. This difference can be used as a 

measure of the degree of the position-gradient discontinuity at the element interface. It is clear 

from the results presented in this figure that the position gradients are not continuous for the soft 

material example considered. Figure 4 shows the differences in the results as measured by 

( ) , 1, 2,3
jx j j∆ =r  at point B  when the tetrahedral-element mesh is used. The results presented in 

this figure also show the discontinuities in the position gradients at the element interface. Similar 

position-gradient discontinuities at the element interface are also observed with the components of 

other gradient vectors. Furthermore, numerical studies performed in this investigation 

demonstrated that conventional lower-order tetrahedral finite elements which enforce only 

position continuity at the nodal points suffer from more serious gradient discontinuity problems at 

the element interface. The displacement field of the conventional tetrahedral element used in these 

numerical studies is presented in the appendix of this paper. 

2.2  Discussion of the results 

The results obtained in the example discussed in this section demonstrate that the position-gradient 

vectors associated with the parameters 2x  and 3x  of the element interface surface are continuous 

everywhere on such an interface surface as the result of imposing the ANCF position-gradient 
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continuity at the nodal points. On the other hand, the position-gradient vector associated with the 

third parameter 1x  is not continuous on the interface surface despite the continuity of this gradient 

vector at the nodal points. This interesting result can be explained by recognizing the fact that for 

a given value for the coordinate 1x , the interface surface is defined by a two-parameter polynomial 

which has twelve coordinates as shown in the appendix of the paper. For a given value of the 

coordinate 1x , this cubic interpolating polynomial is function of the two parameters 2x  and 3x  

only. Therefore, imposing the continuity on 
2

, xr r , and 
3xr  at the nodal points leads to twelve 

conditions that ensure that the two surfaces on the two elements are identical. This position-

gradient continuity can be achieved at the cubic element-interface surface because the solid 

element surface has four nodes that can be used to define the twelve constraint equations that 

ensure that the two surfaces on the two elements are the same. These twelve conditions cannot be 

obtained for the four-node tetrahedral element which has interface surfaces defined by three nodes 

only, and therefore, there are only nine conditions available when imposing the continuity of 
2

, xr r

, and  
3xr  at the nodal points. The tetrahedral-element nine conditions are not sufficient to ensure 

that the two interface cubic surfaces of the two elements have the same geometry, and therefore, 

there is no guarantee that these two interface surfaces are the same. This explains the 
2xr , and 

3xr  

discontinuity results obtained using the simple example discussed in this section in the case of the 

tetrahedral element. For any surface on the tetrahedral element, one can always define two gradient 

vectors tangent to a tetrahedral surface and a third gradient vector normal to the surface by using 

gradient tensor transformation. The gradient vector normal to the surface does not enter into the 

surface definition, and therefore, the continuity of the position and the two gradient vectors tangent 

to the surface only contribute to the definition of the cubic surface. 
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 Based on the discussion presented in this section, any ANCF element (solid or plate), which 

can be used to define four-node surfaces ensures that there will be no gaps at the element interfaces. 

This is an important feature that can be effectively exploited for developing new composite-

structure models which can be developed using conventional finite elements. The ANCF 

continuity conditions at the nodal points ensure that the two interface surfaces of two elements 

have the same geometry and location, and therefore, there are no gaps at the element interfaces. 

Accomplishing such an important geometric feature is not even straight forward when B-splines 

and NURBS, which employ control points, are used. Furthermore, as discussed in this paper, the 

matrix of the position-vector gradients in the reference configuration plays a fundamental role in 

the definition of the continuity conditions. 

2.3  Proposed solution 

A higher degree of smoothness can be achieved by imposing higher degree of continuity at the 

nodal points. For example, curvature continuity at the nodal points can be used to achieve a higher 

degree of smoothness at the element interface. Imposing the curvature continuity has also the 

advantage of reducing the model dimensions. Curvature-continuity conditions can be 

systematically formulated and applied at a preprocessing stage. Dependent mesh variables can be 

eliminated, leading to a reduced-order model. Having such a capability of adjusting the degree of 

continuity is necessary for the integration of geometry and analysis and for the development of 

future mechanics-based CAD systems. Using the mechanics-based approach described in this 

investigation, position, gradient, and curvature continuities can be enforced independently, a 

feature that is necessary for efficient formulation of the MBS joint constraint equations using 

ANCF finite elements.  

2.4  CAD/analysis systems 
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By adopting the mechanics-based approach described in this section to adjust the degree of 

continuity, the use of the knot multiplicity and knot vectors of B-splines and NURBS can be 

avoided, while properly accounting for the correct number of degrees of freedom of the system. 

While determining the correct number of degrees of freedom as the result of properly imposing 

any algebraic constraint conditions is a major mechanics issue that cannot be ignored, there is 

another major limitation of using the graphics-based B-spline and NURBS representations as 

analysis tools [31]. When the B-spline and NURBS knot multiplicity and knot vectors are used, 

gradient continuity cannot be enforced before enforcing position continuity, and curvature 

continuity cannot be enforced before imposing both position and gradient continuities. This serious 

drawback limits the scope of future CAD/analysis systems by excluding some of the constraints 

or joints which can be formulated as linear algebraic equations at a preprocessing stage. For 

example, the formulation of linear ANCF joint constraints may require imposing conditions on the 

gradient vectors in some directions without imposing position constraints in the same directions. 

Because ANCF meshes do not require the use of local frames as it is the case with the floating 

frame of reference (FFR) formulation, two gradient vectors at two points on two ANCF finite 

elements i  and j  along a certain fiber defined by the parameter β  can be assumed equal using 

the linear algebraic equations i jβ β∂ ∂ = ∂ ∂r r , where the superscript refers to the element 

number in the mesh. A large number of algebraic constraint equations, traditionally formulated as 

highly nonlinear equations in the MBS literature, can be formulated as linear equations using 

ANCF finite elements; thereby allowing for the elimination of a large number of dependent 

variables at a preprocessing stage, as previously discussed and also demonstrated in the literature. 

 The curvature-continuity conditions derived in this investigation shed light on the importance 

of using the position gradients as nodal coordinates and also explain some of the fundamental 
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problems that will be encountered if B-splines and NURBS are used to obtain these equations. In 

the case of stress-free initially curved geometry, the matrix of position-vector gradients must be 

formulated and used in the computations of the strains and stresses in a manner consistent with the 

theory of continuum mechanics. As will be clear from the analysis presented in this investigation, 

properly formulating some of the algebraic equations for curved reference-configuration geometry 

does not preserve the B-spline and NURBS rigid recurrence structure. Therefore, such a rigid 

recurrence structure will be eventually destroyed if general CAD/analysis algorithms are to be 

developed in the future. This because curvature continuity conditions, as demonstrated in this 

paper, require the use of the matrix of position-vector gradients in the reference stress-free 

configuration. This matrix cannot be accounted for using the B-spline and NURBS knot 

multiplicity and knot vector. Furthermore, such B-splines and NURBS approach for increasing the 

degree of continuity does not always lead to the correct number of degrees of freedom 

Consequently, general continuity conditions cannot, in general, be handled by B-splines and 

NURBS without destroying their rigid recurrence structure [34]. 

 

3. General curvature definitions 

In order to define the general curvature equations in the case of of initially curved reference 

configuration, the straight-element and curved-structure coordinates (parameters) are defined, 

respectively, as 

[ ] [ ]1 2 3 1 2 3,T Tx x x X X X= =x X     (1) 

The use of the structure coordinates X  is necessary in order to be able to properly impose the 

constraint equations between two different finite elements. The matrices of position-vector 
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gradients defined with respect to the element and structure coordinates are defined, respectively, 

as 

1 2 3 1 2 3
,e x x x X X X   = =   J r r r J r r r     (2) 

where α α= ∂ ∂r r . One also has 

1
e o

−=J J J      (3) 

where, when using the ANCF kinematic description, o o=J Se  is the matrix of the position-vector 

gradients that accounts for the stress-free reference configuration. This matrix is the identity matrix 

if the reference configuration is not curved. Because, in the case of general geometry, 1
o o

− =J J I , 

where I  is the 3 3×  identity matrix, one has 

( ) ( )1 1 , 1, 2,3
k k

o o o ox x
k− −+ = =J J J J 0     (4) 

This equation leads to the following identity 

( ) ( )1 1 1, 1, 2,3
kk

o o o oxx
k− − −= − =J J J J     (5) 

In this equation, ( )
k

o o kx
x= ∂ ∂J J . The identity of Eq. 5 enables computing the derivatives of the 

inverse of oJ  from the derivative of oJ . Therefore, upon using this identity, one can write 

( ) ( )
1 2 3

1 , 1, 2,3
j j jj j

e o X X X X X XX X
j−  = = = J J J r r r    (6) 

This equation, in which ( )
j

jX
X= ∂ ∂J J  and ( )1 1

j
e o e o jX

X− −= ∂ ∂J J J J , can be written as 

( ) ( ) ( )
1 2 3

3 3
1 1

1 1
1, 2,3

j j jj k k

k
X X X X X X e o e o kjX x x

k kj

x j
X

α− −

= =

∂ = = = =  ∂∑ ∑J r r r J J J J   (7) 

where , , 1, 2,3kj k jx X j kα = ∂ ∂ = . Therefore, the matrix 1
o
−J  can be written as  
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[ ]1
1 2 3

1 1 1 2 1 3 11 12 13

2 1 2 2 2 3 21 22 23

3 1 3 2 3 3 31 32 33

o J J J

x X x X x X
x X x X x X
x X x X x X

α α α
α α α
α α α

− =

∂ ∂ ∂ ∂ ∂ ∂   
   = ∂ ∂ ∂ ∂ ∂ ∂ =   
   ∂ ∂ ∂ ∂ ∂ ∂   

J C C C

.    (8) 

where JjC  is the j th column of 1
o
−J , that is, , , 1, 2,3kl k lx X k lα = ∂ ∂ = . Using this definition, one 

can write the general expression for the curvatures as 

( )

( ) ( )( )
1 2 3

3
1

1
3

1 1

1
, 1, 2,3

j j j k

k k

X X X X X X e o kjx
k

e o e o kjx x
k

j

α

α

−

=

− −

=

  = 

= + =

∑

∑

r r r J J

J J J J
  (9) 

where ( )
1 2 3

, 1, 2,3
j j jj

e x x x x x xx
j = = J r r r . Equation 9 defines the general expression for the 

curvature vectors. In the case of a surface, there are only three independent curvature vectors, 

while in the case of a volume, there are six independent curvature vectors. This is clear from the 

preceding equation since , , 1, 2,3
k l l kX X X X k l= =r r . 

 

4. Curvature constraints and Jacobian matrix 

The general curvature expressions developed in the preceding section are defined with respect to 

the structure coordinates X , and therefore, they can be used to impose the curvature constraint 

conditions at arbitrary points including the element nodes. These conditions automatically account 

for the gradient tensor transformation which can be used to define tangents to the same structure 

coordinate lines.  Vector transformations normally used with conventional FE formulations are not 

appropriate when gradient and curvature vectors, which have a clear geometric meaning, are 

considered. Furthermore, the curvature expressions developed in this investigation allow for 

imposing curvature constraints without the need for imposing position and gradient continuity 
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constraints, as it is the case when using the graphics-based B-splines and NURBS. This important 

ANCF feature provides the flexibility for developing general mechanics-based geometry/analysis 

algorithms that are necessary to address the CAE and durability-investigation challenges.  

 Using the general curvature expressions of Eq. 9, different curvature vectors can be equated at 

two arbitrary points on the same element or on two different elements of the ANCF mesh. For 

example, in the case of imposing curvature constraints at two points on two different elements i  

and j , one can write the curvature vector constraint equation as 

     , , , , 1, 2,3
k l m n

i j
X X X X k l m n= =r r     (10) 

While this vector equation defines three scalar equations, the algorithm can be designed in order 

to allow imposing curvature-continuity conditions on only scalar equations. In order to use the 

preceding constraint equations at a preprocessing stage to obtain the desired continuity conditions, 

eliminate the dependent variables, and obtain a reduced-order model, the constraint Jacobian 

matrix must be evaluated. To this end and after dropping the superscript that refers to the element 

number for simplicity, the curvature vectors 2 , , 1, 2,3
i jX X i jX X i j= ∂ ∂ ∂ =r r  , can be written as  

( )( )
( )
( ) ( )

1 2 3 1 2 3

1 2 3 1 2 3

3

1
3

1 2 3 1 2 3
1

3 3

1 2 3 1 2 3
1 1

i j k

k k k k kk

k k k k k k

X X e Ji e Jxi kjx
k

i x x i x x i x x x i x x i x x i x kj
k

i x x i x x i x x kj x i x x i x x i x kj
k k

α

α α α α α α α

α α α α α α α α

=

=

= =

= +

= + + + + +

= + + + + +

∑

∑

∑ ∑

r J C J C

r r r r r r

r r r r r r

 (11) 

where , , 1, 2,3
kx lm l mα =  is the lm th element of the matrix ( )1

k
o x

−J , that is, 

( )
11 12 13

1
21 22 23

31 32 33

k k k

k k kk

k k k

x x x

o x x xx

x x x

α α α

α α α

α α α

−

 
 

=  
 
  

J     (12) 
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Because the displacement field of ANCF finite elements is defined as ( ) ( ) ( ), t t=r x S x e , the 

derivative of the curvature vectors with respect to the nodal coordinates e  can then be evaluated 

as 

( ) ( )1 2 3 1 2 3

3 3

1 2 3 1 2 3
1 1

i j

k k k k k k

X X
i x x i x x i x x kj x i x x i x x i x kj

k k
α α α α α α α α

= =

∂
= + + + + +

∂ ∑ ∑
r

S S S S S S
e

  (13) 

The shape function matrix S  of an ANCF finite element can always be written as  

( ) ( ) ( ) ( )1 2 sns s s =  S x x I x I x I     (14) 

where , 1, 2, ,k ss k n=  , are the shape functions, and sn  is the number of the element shape 

functions. The shape functions of the ANCF solid and tetrahedral elements used in this study are 

provided in the appendix of this paper. The first summation on the right hand-side of the preceding 

equation that defines 
i jX X∂ ∂r e  can be written as 

( )

( )( ) ( )( ) ( )( )
1 2 3

3 3 3

1 2 3
1 1 1

3 3

1 2
1 1

k k k l k

l k l k l k

i x x i x x i x x kj li kj x x
k k l

li kj nsx x x x x x
k l

s s s

α α α α α α

α α

= = =

= =

+ + =

 =
 

∑ ∑∑

∑∑

S S S S

I I I

   (15) 

This equation can also be written as 

( )

( )( ) ( )( ) ( )( )
1 2 3

3 3 3

1 2 3
1 1 1

3 3

1 2
1 1

k k k l k

l k l k l k

i x x i x x i x x kj li kj x x
k k l

li kj li kj li kj nsx x x x x x
k l

s s s

α α α α α α

α α α α α α

= = =

= =

+ + =

 =
 

∑ ∑∑

∑∑

S S S S

I I I

  (16) 

The second summation on the right hand-side of Eq. 13, which does not require the evaluation of 

the second derivatives of the shape function matrix with respect to the structural coordinates X  

can be also evaluated in a straight forward manner. Equation 13 defines the element of the 

constraint Jacobian matrix associated with the generalized coordinates of the finite element. The 
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computations of the constraint Jacobian matrix is necessary in order to properly impose the 

curvature constraint conditions. 

 The form of Eq. 16 demonstrates clearly the effect of the geometry in the reference 

configuration on the shape functions when the curvature vectors are evaluated. Similar 

manipulations can also be made for the second summation on the right hand-side of Eq. 13 that 

defines the curvature Jacobian matrix 
i jX X∂ ∂r e . The equations developed in this section show the 

role of the matrix oJ  which must be evaluated to properly account for the curved geometry in the 

reference configuration according to the continuum mechanics theory. It is, therefore, not clear 

how such a matrix can be systematically evaluated and used in developing general curvature 

equations when the graphics-based B-splines and NURBS are used in the analysis without 

destroying their structure. This raises questions on the appropriateness of using these graphics 

methods as analysis tools despite concerns on fundamental issues previously discussed in this 

study and in the literature [34]. 

 It is important to point out that Ma.et al [27] examined the discontinuity problem of solid 

elements in the case of a flexible pendulum. They imposed continuity conditions using element 

coordinates to achieve 1C  continuity along 1x  at the solid element interface. In this paper, 

however, the general continuity conditions are formulated using structure coordinates to allow 

handling discontinuities when fully-parameterized ANCF elements have different orientations and 

have curved geometry in the reference-configuration.  

 

5. Numerical investigation 

As demonstrated in Section 2 of this paper, the standard FE assembly of ANCF fully-

parameterized finite element ensures the continuity of the gradient vectors at the nodal points but 
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does not ensure such a continuity for all gradients at the element interface. The discontinuity of 

the gradients at the element interface can adversely affect the strains and stress calculations, 

particularly in the case of soft and fluid materials. In the case of fluid materials, for example, the 

viscous stresses and forces are evaluated using the Naiver-Stokes equations which are expressed 

in terms of the time-rate of the position gradients. Gradient discontinuities at the element interface 

lead to discontinuities in the definitions of the viscous forces as well as in the accelerations. This 

is true since the viscous and elastic forces are normally evaluated at integration points and not only 

at nodal points. In this section, the effect of imposing the curvature-continuity conditions at the 

nodal points on the gradient continuity at the element interface is examined for both soft and fluid 

materials. 

5.1 Solution procedure 

The augmented form of the equations of motion of MBS systems that consist of rigid and flexible 

ANCF bodies can be written in terms of the system generalized reference and ANCF nodal 

coordinates rq  and e , respectively. The nonlinear algebraic constraint equations are combined 

with the system differential equations of motion using the technique of Lagrange multipliers λ . 

In general, the augmented form of the equations of motion can be written as  

 =
r

r

T
r r r

T
e e

d

     
     
     
         

q

e

q e

M 0 C q Q
0 M C e Q

C C 0 Q





λ
 (17) 

where rq  and e  are, respectively, the second time derivatives of the rigid body and ANCF element 

coordinates; rM and eM are, respectively, the mass matrices associated with the rigid body and 

ANCF element coordinates; 
rqC  and eC  are, respectively, the constraint Jacobian matrices 

resulting from the differentiation with respect to the rigid body and ANCF coordinates; rQ and 
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eQ  are, respectively, the vectors of generalized forces associated with the rigid body and ANCF 

nodal coordinates; and dQ  is a quadratic velocity vector that results from the differentiation of 

the constraint equations twice with respect to time. The solution of the preceding equation defines 

the generalized accelerations as well as the vector of Lagrange multipliers λ , which can be used 

to determine the constraint forces [11]. 

 Because the general continuity conditions are developed in this paper using linear algebraic 

equations, dependent variables resulting from imposing these conditions are eliminated at a 

preprocessing stage. Consequently, there is no need for using curvature formulations in the main 

processor, and as a result, the model dimension can be significantly reduced.  

5.2  Soft material 

The example used in this section is the same as the illustrative example used in Section 2.1 to 

introduce the gradient discontinuity problem at the interface. The results are obtained in this 

section by applying curvature-continuity conditions at the nodal points in order to examine the 

effect of such curvature-continuity conditions on the gradient continuity at the element interface. 

For the solid-element mesh, since only ( )
1

1

x
C continuity is not ensured at the element interface, 

one can impose continuity of 
1 2X Xr  and 

1 3X Xr  curvature vectors at the interface nodal points. While 

for the tetrahedral-element mesh, ( )
1

1

x
C , ( )

2

1

x
C and ( )

3

1

x
C continuities are not ensured at the 

element interface, and therefore, the continuities of , 1, 2,3
i jX X i j= =r  curvature vectors are 

imposed. The model material properties used in this numerical study are the density 

3=1500kg mρ , and Young’s modulus =1.2 MpaE .   
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 For the soft-material example considered in this section, it was found that the difference in the 

results of the gradient vector 
1x

r  at the interface point B  obtained using the displacement fields of 

the two neighboring solid elements when the curvature-continuity conditions are imposed is of 

order 10−13 . This difference, when compared to the results presented in Fig. 3, can be used as 

measure of the degree of discontinuity and clearly demonstrates the significant effect of imposing 

the curvature-continuity conditions. The curvature-continuity conditions used for the solid-

element model at a node k  between two elements 1i E=  and 2j E=  are 
1 2 1 2

ik jk
X X X X=r r , and 

1 3 1 3

ik jk
X X X X=r r , 2,3,6,7k = . The curvature vectors are defined by differentiation with respect to the 

structure coordinates as previously explained in this paper. Therefore, twenty four linear algebraic 

curvature-continuity equations are imposed for the solid-element model, and consequently, the 

number of degrees of freedom of the model is reduced to 120. As previously discussed in this 

paper, the dependent variables as the result of imposing the curvature-continuity conditions can be 

eliminated at a preprocessing stage.  

The differences, ( ) , 1, 2,3
jx j j∆ =r , between the results obtained using the displacement 

fields of the two elements when using the tetrahedral-element model with the curvature-continuity 

conditions is of order 10−11 . For the five-tetrahedral-element mesh, the curvature constraints are 

imposed at the nodes of the interface surface between elements 1i E=  (blue) and 2j E=  (red) as 

shown in Fig. 2(b). The curvature constraints used for the tetrahedral-element model are 

1 2 1 2

3 3i j
X X X X=r r ,

1 3 1 3

3 3i j
X X X X=r r ,

2 3 2 3

3 3i j
X X X X=r r for interface node 3 and 

1 1 1 1

5 5i j
X X X X=r r ,

2 2 2 2

5 5i j
X X X X=r r ,

3 3 3 3

5 5i j
X X X X=r r for interface node 5; these conditions require the formulation of eighteen linear 

algebraic equations, and consequently the number of degrees of the tetrahedral-element model is 

reduced to seventy two.  
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 Figures 5 – 8 show the displacement and velocity of the tip point A  in the 3X  direction and 

Figs. 9 and 10 show the change in the normal strain at point B  predicted using the solid- and 

tetrahedral-element models in the case of the soft material used in this section. The results 

presented in these figures demonstrate that imposing the curvature-continuity conditions can have 

an effect on the results, particularly in the case of the tetrahedral-element model. This can be 

attributed to the reduction in the number of degrees of freedom of the model, which in turn, can 

have an effect on the amount of energy absorbed due to the deformation of the soft materials. 

5.3  Fluid material 

In order to examine the effect of the curvature-continuity conditions on the behavior of the fluid 

material, the simple liquid-sloshing example shown in Fig. 11 is considered. The fluid, which is 

modeled using two simple ANCF solid- and tetrahedral-element meshes, is assumed to fill a cubic 

container subjected to a harmonic motion ( )1 =0.3sin 3cx t  in the 1X  direction. The dimensions of 

cubic container are 1 ma b c= = = . The fluid is assumed to have mass density 3=1000kg mρ , 

and viscosity =0.001 Pa sµ ⋅ ; and the gravity effect is considered in this example. Figure 12 shows 

the first coordinate of the position-gradient vector 
1x

r  at point B  predicted using the displacement 

fields of the two neighboring elements of the solid-element model when the curvature-continuity 

conditions are not imposed. It is clear from the results presented in this figure that this position-

gradient vector is not continuous, and the difference in the first coordinate of this gradient vector 

1x
∆r is shown in Fig. 13. Figure 14 shows the results obtained when applying the curvature 

constraints described in Section 5.1. It is clear from the results presented in this figure that the two 

elements predict the same gradient solution at the interface.  
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 Figures 15 and 16 show the results obtained using the tetrahedral-element model without and 

with applying the curvature-continuity conditions, respectively. Comparing the results of these 

two figures show clearly the effect of the curvature-continuity constraints on the position gradients 

at the interface point B . It is noticed from the results presented in Figs. 15 and 16 that the 

differences in the magnitudes of gradients as predicted by the displacement fields of the two 

elements reduce when the curvature-continuity conditions are applied, and this contributes to 

achieving a higher degree of smoothness. Figures 17 shows fluid sloshing simulation at different 

time intervals using two-solid-element mesh without and with imposing the curvature constraints. 

This figure shows, as previously discussed in the introduction, that imposing the curvature 

constraints leads to improving the accuracy of the model and quality of the simulation results as 

well as to smoother free surface.  

 Figures 18 – 21 show the displacement and velocity of the mass center in the 3X direction 

predicted using the solid and tetrahedral-element models. As in the case of the soft materials, the 

results presented in these figures show that imposing curvature-continuity conditions has more 

significant effect on the motion of the tetrahedral-element mesh as compared to the solid-element 

mesh. This can be attributed to the fact that the fluid constitutive model is function of the time-rate 

of the position-vector gradients, thereby, reducing the number of degrees of freedom of the model 

can have an impact on the energy absorbed by the deformation of the fluid material. 

 Figures 22 and 23 demonstrate the reduction in the difference between the gradient coordinates 

at point B  by increasing the magnitude of the penalty coefficient for both solid and tetrahedral 

element models. These results show that, for incompressible materials, the effect of the 

discontinuities can be reduced because of the penalty force. The increase of the penalty coefficient, 

however, can lead to significant increase in the CPU time. 
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 Figures 24 and 25 show the effect of number of elements on the gradient continuity when the 

curvature constraints are not imposed. For the solid element mesh, point C  with the absolute 

position [ ]0.5 0.25 0.5 T  is considered; while for the tetrahedral element mesh, point D  with 

the absolute position [ ]0.75 0.25 0 T  is considered. The results demonstrate that while mesh 

refinement can improve the gradient continuity, the discontinuity problem is not totally solved. 

Furthermore, increasing the mesh size leads to a larger model dimension that adversely affects the 

computational efficiency. On the other hand, the curvature constraints can solve the discontinuity 

problem without increasing the mesh size. This can be further demonstrated by performing a 

comparison between ANCF and conventional Lagrangian solid elements using the sloshing 

problem. The conventional element model is developed using the commercial software Ls-Dyna, 

in which the Lagrangian eight-node solid element is selected to develop the fluid model. The water 

constitutive model is defined using a “Null material” with Grüneisen equation of state [35]. The 

algorithm used to define the contact between the water and the container boundary is 

“Boundary_SPC”, while the algorithm used for the container motion is 

“Boundary_Prescribed_Motion (BPM)” [36]. Figure 26 compares the tip 3X -displacement at the 

nodal point [ ]1 1 1 T  obtained using ANCF and Ls-Dyna solutions. It is clear from the results 

presented in this figure that the two different models agree up to a certain point and start deviating 

as the displacement of the fluid increases due to the significant differences in the assumed 

displacement fields of the two elements and the achieved degrees of continuity. No curvature 

continuity constraints are applied to the ANCF model. The ANCF fluid models have been 

extensively tested, verified numerically, and validated experimentally [37, 38]. Therefore, the 

accuracy of the ANCF fluid solution for models that experience significant geometry changes and 
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require a higher degree of smoothness to capture accurately such geometric changes has been 

evaluated. The results show that when using the two Lagrangian methods, the ANCF solution 

requires fewer elements to achieve a converged solution ( 6 6 6× ×  elements) compared to the 

conventional FE method ( 60 60 60× ×  elements) for this sloshing problem; demonstrating better 

convergence characteristics of ANCF finite elements in solving the fluid problem. Furthermore, if 

the curvature continuity conditions would be applied, the number of degrees of the freedom of the 

ANCF model would be further reduced while achieving a higher degree of smoothness at the 

element interface. Recent investigations by other authors have confirmed the advantages of using 

ANCF finite elements as compared to conventional finite elements in the analysis of sloshing 

problems [39]. 

 

6. Conclusions 

In soft- and fluid-material applications including flexible and soft robots and liquid sloshing 

problems, continuity of the position gradients ensures continuity of the strains, stresses, and forces. 

Nonetheless, continuity of the position-vector gradients at the nodal points of an FE mesh does not 

ensure the continuity of these gradients at the element interfaces. Discontinuity of the gradients at 

the interface not only adversely affects strain, stress, and force calculations as well as the quality 

of the simulation results, but can also lead to computer models that do not properly represent 

realistic physical behaviors of the systems to be investigated. In this study, the ANCF finite 

elements are used to develop general curvature-continuity conditions that allow for eliminating or 

minimizing the discontinuity of the position gradients at the interfaces of the elements of an FE 

mesh. The general curvature-continuity conditions, which systematically account for both straight 

and curved geometries in the stress-free reference configuration, are developed without the need 
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for using the CAD knot vector and knot multiplicity which do not properly account for the system 

degrees of freedom. The ANCF curvature-continuity conditions are expressed in terms of constant 

geometric coefficients defined using the matrix of position-vector gradients that describes the 

reference-configuration geometry. The formulation of these curvature-continuity conditions is 

demonstrated using the ANCF fully-parametrized three-dimensional solid and tetrahedral 

elements, which employ position gradients as nodal coordinates. The numerical results obtained 

in this investigation show that by applying the curvature-continuity conditions in the case of soft 

and fluid materials, higher degree of smoothness at the element interface can be achieved. Being 

able to adjust the degree of continuity of an FE mesh using a mechanics-based approach is 

necessary for the integration of geometry and analysis and for addressing the CAE- and durability-

investigation challenges [31]. 
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Appendix 

In this appendix, the shape functions of the conventional tetrahedral, ANCF solid, and ANCF 

tetrahedral elements used in this study are presented.   

A.1 Conventional tetrahedral element 

For the conventional four-node (FN) tetrahedral element, the nodal coordinates ke  at node k  are 

defined as 

                              ( ) , =1,2,3,4
Tk k k=e r                              (A.1) 

where kr is the global position vector of node k . The displacement field of each position coordinate 

of the element can be defined using a linear polynomial with four coefficients as                    

( )1 2 3 1 2 1 3 2 4 3, ,x x x x x xφ α α α α= + + + , where , 1, 2,3, 4k kα = , are the polynomial coefficients. The 

position vector of an arbitrary material point on element can be written as =r Ne , where N  is the 

shape function matrix and e  is the vector of the nodal coordinates, which can be written 

respectively as  

                                         
[ ]

( ) ( ) ( ) ( )
1 2 3 4

1 2 3 4
TT T T T

N N N N =

 =    

N I I I I

e e e e e
                                        (A.2) 

where I  is the 3 3×  identity matrix. The conventional FN tetrahedral element has twelve degrees 

of freedom, and the shape functions , 1, 2,3, 4kN k = , are defined in a closed form as, 

                                    ( )1 2 3
1 , 1, 2,3, 4

6k k k k kN a b x c x d x k
V

= + + + =                                    (A.3) 

where V is the volume of the element, and , , ,k k k ka b c d  are defined as 
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( ) ( )

( ) ( )

1 2 3 2 3
1

1 2 3 2 3

1 2 3 2 3

1 3 1 2
1

1 3 1 2

1 3 1 2

1
= 1 , = 1 1

1

1 1
= 1 1 , = 1 1

1 1

m m m m m
k k

k n n n k n n

p p p p p

m m m m
k k

k n n k n n

p p p p

x x x x x
a x x x b x x

x x x x x

x x x x
c x x d x x

x x x x

+

+

− −

− −

                           (A.4) 

where , ,m n p are the other three node numbers that are different from node k , arranged according 

to the sequence used for this element. 

A.2 ANCF solid element 

For the ANCF solid element, the coordinates ke  at node k are defined as [6, 29] 

                                  ( ) ( ) ( ) ( )1 2 3
, =1,2,...,8

TTT TTk k k k k
x x x k =   

e r r r r                               (A.5) 

where kr  is the global position vector of node k , and 
1

k
xr , 

2

k
xr , and 

3

k
xr  are the position-gradient 

vectors obtained by differentiation with respect to the spatial coordinates 1 2,x x , and 3x , 

respectively. The interpolating polynomial of each position coordinate of the ANCF solid element 

is defined using thirty two coefficients as 

        

( ) 2 2 2
1 2 3 1 2 1 3 2 4 3 5 1 6 2 7 3

3 3 3
8 1 2 9 2 3 10 1 3 11 1 12 2 13 3

2 2 2 2 2
14 1 2 15 1 3 16 2 3 17 1 2 18 1 3

2 3 3 3
19 2 3 20 1 2 3 21 1 2 22 1 3 23 1 2

3 3
24 2 3 25 1 3 2

, ,x x x x x x x x x

x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x x
x x x x

φ α α α α α α α

α α α α α α

α α α α α

α α α α α

α α α

= + + + + + +

+ + + + + +

+ + + + +

+ + + + +

+ + + 3 2 2
6 2 3 27 1 2 3 28 1 2 3

2 3 3 3
29 1 2 3 30 1 2 3 31 1 2 3 32 1 2 3

x x x x x x x x
x x x x x x x x x x x x

α α

α α α α

+ +

+ + + +

               (A.6) 

where , 1, 2, ,32i iα =   are the polynomial coefficients. The position vector of an arbitrary 

material point on element can be written as 8 ,1 ,2 ,3 ,4
1

k k k k k
k

S S S S
=
 = = ∑r I I I I e Se , where S  

is the shape function matrix and e  is the vector of the nodal coordinates defined, respectively, as 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1,1 1,2 1,3 1,4 8,1 8,2 8,3 8,4

1 2 3 4 5 6 7 8
TT T T T T T T T

s s s s s s s s  =   
 =    

S I I I I I I I I

e e e e e e e e e



                 (A.7) 

where I  is the 3 3×  identity matrix. The ANCF solid element has ninety six degrees of freedom, 

and the shape functions of the element are defined in a closed form as 

              

( ) ( )( )( )
( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

1

1

1

1 1

1,1

1 1,2

2 1,3

1 21,4 1

1 1 1

1 2 1 2 1 2

1 1 1

1

1

1

1

1

1

1 1

1 1 1

k
k kk k k

k
k k kk k k

k

k k k

k kk k

k k

k

k k

k
k

k k

k k k

k

k

k

s

s a

s b

s c

ξ

ξ

ξ

η ζξ η ζ

ξ η ζξ η

ξ η ζ

ζ

ξ ηξ η

η ζ

ζ

η ζ

ξ ξ η η ζ ζ

ξ ξ ξ η η η ζ ζ ζ

ξ ξ η η ζ ζ

ξ ξ η η ζ ζ

ξ ξ η η ζ ζ

−

−

−

+

+

+ + +

+ − −

+ −+

+ +

−

+ −

+ − + − + −

− − − − − −

− − −

−

= − ⋅

+ + +

= −

= −

=

− −

− − − −

1,2,...,8

k

k

ζ−











=

                           (A.8) 

where ,a b , and c  are the dimensions of the element in the 1 2,x x , and 3x  directions, 

1 2 3= , = , =x a x b x cξ η ζ , [ ], , 0,1ξ η ζ ∈ , and , ,k k kξ η ζ  are the dimensionless nodal coordinates 

for node k . 

 For a given a given value for the coordinate x , one can show that the interpolation of Eq. A.6 

reduces to  

   
( ) 2 2 3

1 2 3 1 2 2 3 3 4 2 5 3 6 2 3 7 2

3 2 2 3 3
8 3 9 2 3 10 2 3 11 2 3 12 2 3

, ,x x x x x x x x x x

x x x x x x x x x

φ α α α α α α α

α α α α α

= + + + + + +

+ + + + +
  (A.9) 

This two-parameter cubic interpolation has twelve coefficients, and therefore, imposing continuity 

on 
2

, xr r , and 
3xr  at the nodal points will ensure the continuity of the gradients 

2xr  and 
3xr  at the 

element interface surfaces as discussed in this paper.  

 For a given a given value for the coordinate 1x , one can show that the interpolation of Eq. A.6 

reduces to  
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( ) 2 2 3

1 2 3 1 2 2 3 3 4 2 5 3 6 2 3 7 2

3 2 2 3 3
8 3 9 2 3 10 2 3 11 2 3 12 2 3

, ,x x x x x x x x x x

x x x x x x x x x

φ α α α α α α α

α α α α α

= + + + + + +

+ + + + +
  (A.9) 

This two-parameter cubic interpolation has twelve coefficients, and therefore, imposing continuity 

on 
2

, xr r , and 
3xr  at the nodal points will ensure the continuity of the gradients 

2xr  and 
3xr  at the 

element interface surfaces as discussed in this paper. 

A.3 ANCF tetrahedral element 

For the ANCF four-node (FN) tetrahedral element, the vector of the element nodal coordinates can 

be written as [30] 

                  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

T T T T T T T T

TT T T T T T T T

η ζ χ ζ χ ξ

χ ξ η ξ η ζ

= 




e r r r r r r r r

r r r r r r r r
                     (A.10) 

where kr is the global position vector of node k of the element, and k k
ξ ξ= ∂ ∂r r , k k

η η= ∂ ∂r r , 

k k
ζ ζ= ∂ ∂r r , k k

χ χ= ∂ ∂r r , 1, 2,3, 4k = , are the position-gradient vectors obtained by 

differentiation with respect to the volume coordinates , ,ξ η ζ , and χ , respectively. The ANCF FN 

tetrahedral element assumed displacement field is defined using a cubic Bezier tetrahedral patch 

with twenty basis polynomials and four linear constraints [30]. The twenty Bezier basis functions 

are 

                              

3 3 3 3
1 2 3 4
2 2 2 2

5 6 7 8
2 2 2 2

9 10 11 12
2 2 2 2

13 14 15 16

17 18 19 20

, , ,
3 , 3 , 3 , 3

3 , 3 , 3 , 3
3 , 3 , 3 , 3
6 , 6 , 6 , 6

g g g g
g g g g

g g g g
g g g g

g g g g

ξ η ζ χ
ξ η ξη η ζ ηζ
ξ ζ ξζ ξ χ ξχ
η χ ηχ ζ χ ζχ
ξηζ ξηχ ηζχ ξζχ

= = = =
= = = = 

= = = = 
= = = = 
= = = = 

                           (A.11) 

Using the four linear constraint equations [30], the displacement field of the ANCF FN tetrahedral 

element can be defined using sixteen polynomials. The position vector of an arbitrary material 
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point on element can be written as =r Se , where S  is the shape function matrix and e  is the vector 

of the nodal coordinates defined, respectively, as 

                                   
[

]

( ) ( ) ( ) ( )

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4
TT T T T

s s s s s s s s

s s s s s s s s


=




  =    

S I I I I I I I I

I I I I I I I I

e e e e e

                            (A.12) 

where I  is the 3 3×  identity matrix. The ANCF FN tetrahedral element has forty eight degrees of 

freedom, and its shape functions are defined in a closed form as 

 

 
 

 

     (A.13) 

 

 

A surface, in general, can be described in terms of two parameters 1s  and 2s , using the 

following parametric form [25, 26],  

                                       ( ) ( ) ( ) ( )1 2 1 1 2 2 1 2 3 1 2, , , ,
T

s s r s s r s s r s s=   r                                           (A.14) 

The surface Jacobian matrix defined by differentiation with respect to the parameters 1s  and 2s  is,  

                                       
1 2

1 1

1 2

2 2

1 2 1 2

3 3

1 2

s s s

r r
s s
r r

s s s s
r r
s s

 ∂ ∂
 ∂ ∂ 
   ∂ ∂∂ ∂  = = =     ∂ ∂ ∂ ∂   
 ∂ ∂
 
∂ ∂ 

r rJ r r                                          (A.15) 

This matrix has rank equal to two, and the condition 
1 2s s× ≠r r 0  must be satisfied.  

( ) ( )( )( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( )( )( )

( ) ( ) ( )

1 2 3

4 5 6

7 8 9

10 1

2

2

2

1 12

1 13 2 , 3 , 3 ,
3 3

1 13 , 3 2 , 3 ,
3 3
1 13 , 3 , 3 2 ,
3 3
1 1 13 , 3 , 3
3 3 3

s s s

s s s

s s s

s s s

ξ ξ ξ η ζ χ ηζ χ η ζ ξη ξ ζ χ ξζ ξ χ η

ξχ ξ η ζ η η η ζ χ ξ ζχ ξ ζ χ ηζ η χ ξ

ηχ η ξ ζ ηξ η ζ χ ζ ζ ζ χ ξ η χξ η χ ξ

ζχ ζ ξ η ζξ ζ η χ ζη ζ χ ξ

+ + + + + + − − − −
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The relationship between the Cartesian gradients 
jXr and the surface gradients 

isr is 

                       = = 1,2 1,2,3
i j

j j j j
s s X Jsi

i j i i

i j
∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂

r r X X
J r J r C

s X s s
                        (A.16) 

where, =Jsi j i∂ ∂C X s  is a 3 2×  transformation matrix defined as 

 

1 1

1 2

2 2

1 2

3 3

1 2

=Jsi

X X
s s
X X
s s
X X
s s

 ∂ ∂
 ∂ ∂ 
 ∂ ∂
 ∂ ∂ 
 ∂ ∂
 
∂ ∂ 

C   (A.17) 

At the nodes, the Cartesian gradients 
jXr are continuous, therefore, the surface gradients 

isr  tangent 

to the element interface surface are also continuous due to the gradient transformation. Use of 

cubic interpolation with ten polynomial coefficients requires imposing ten conditions to ensure 

that the interface surfaces of the two elements are the same. Because only nine continuity 

conditions result from 
1

, sr r , and 
2sr of the three nodes, they are not sufficient to ensure that the two 

interface surfaces of the two elements have the same geometry. 
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Figure 2. Flexible pendulum 

(a) ANCF solid-element mesh, (b) ANCF tetrahedral-element mesh 
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Figure 11. Fluid sloshing example  
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Figure 17. Fluid deformed shape using ANCF solid-element mesh 
(a) Without curvature constraints, (b) With curvature constraints 
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Figure 22. Influence of penalty coefficient on the gradient coordinate difference at point B  when 

using ANCF solid element in the case of fluid material without curvature constraints 
( 71 10ICk = × , 81 10ICk = × )  
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Figure 23. Influence of penalty coefficient on the gradient coordinate difference at point B  when 

using ANCF tetrahedral element in the case of fluid material without curvature constraints 
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Figure 24. Influence of mesh size on the gradient coordinate difference at point C  when using 

ANCF solid element in the case of fluid material  
(  2 elements, 8 elements) 
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Figure 25. Influence of mesh size on the gradient coordinate difference at point D  when using 

ANCF tetrahedral element in the case of fluid material  
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( 2 elements, 5 elements, 40 Elements) 
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Figure 26. Comparison test in the case of ANCF solid element and LsDyna solid element  

(  ANCF 4 4 4× ×  elements,  ANCF 5 5 5× ×  elements,  ANCF 6 6 6× ×  
elements;  Ls-Dyna 40 40 40× ×  elements,  Ls-Dyna 50 50 50× ×  elements,  Ls-
Dyna 60 60 60× ×  elements) 
 


