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Abstract—The rate regions of many variations of the standard
and wire-tap channels have been thoroughly explored. Secrecy
capacity characterizes the loss of rate required to ensure that
the adversary gains no information about the transmissions.
Authentication does not have a standard metric, despite being
an important counterpart to secrecy. While some results have
taken an information-theoretic approach to the problem of
authentication coding, the full rate region and accompanying
trade-offs have yet to be characterized. In this paper, we provide
an inner bound of achievable rates with an average authentication
and reliability constraint. The bound is established by combining
and analyzing two existing authentication schemes for both noisy
and noiseless channels. We find that our coding scheme improves
upon existing schemes.

I. INTRODUCTION

Authentication, or the ability to verify the identity of the
sender of received transmissions, is crucial in secure commu-
nications. It is especially important in the wireless channel
where malicious parties have easy access to all nodes and
can attempt to intercept messages and impersonate legitimate
senders. While cryptographic authentication methods are very
practical, they are limited to computational complexity as the
basis for security. The first information theoretic analysis of
authentication was done by Simmons [1] for the noiseless
channel in which it was shown that an opponent’s attack
success probability is lower bounded by 2−nκ/2 when the
legitimate parties share a key of length nκ.

Similar to coding for secrecy in the wire-tap channel, an
authentication constraint can be added to a channel code. In
[2], Maurer likened authentication to a binary hypothesis test
for whether a received message is authentic versus inauthentic.
Naturally then, an authentication code would have a decoder
that groups certain observations as authentic and others as
inauthentic in addition to mapping to possible codewords.
A larger authentic set would allow for an increase in rate
since fewer observations would be thrown out as inauthentic,
but would allow an adversary to more easily send messages
that would be falsely authenticated. It is because of this that
the additional constraint on the code should lead to a trade-
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off between rate and authentication capabilities in our inner
bound.

In [3], Lai et. al. presented a code for noisy channels with
authentication capabilities and concluded that if the main chan-
nel is not less noisy than the adversary, it is possible to limit
the attack success probability to 2−nκ with a shared key K of
length nκ. Although it was shown that the communication rate
is unaffected if nκ is small, their analysis is only concerned
with cases where nκ is a constant independent of n. Gungor
and Koksal [4] explored a more general problem and presented
an inner bound on the achievable rate with error and erasure
exponents for impersonation and substitution attacks both with
and without a shared key. We consider the model of [3], while
not requiring a constant nκ and determine an inner bound
that improves upon Gungor and Koksal’s coding scheme. Of
interest is that the coding scheme can be decomposed into
two separate coding schemes, one for source authentication
and one for channel authentication. A direct proof is given for
the region while the converse is left for future work. If the
converse were true, it would prove that authentication under
the operational requirements is a limited resource, and that this
resource and the message rate must linearly share the channel’s
capacity.

Our contributions are as follows. First, for all DM-
ASC(t, q, 1), a substitution channel, defined in Section II-B,
we give an inner bound on the trade-off between the rate
r, the key rate κ, and the average type I error exponent α,
when the average probability of message error, ε, must go
to zero with block length n going to infinity. The average
type I error exponent is a measure of authentication ability
and is defined in Section II-C. It should be noted that this
measure of authentication subsumes both the “impostor” and
“substitution” attack. Our inner bound is characterized in terms
of (in principal) computable information theoretic measures
in the form of an inner bound. The derived region subsumes
the results of Lai et. al. [3] in which only an asymptotically
vanishing key rate is considered. The inner bound is also
a strict improvement over the bounds found in Gungor and
Koksal [4]. Our scheme benefits from higher communication
rates and less key leakage.

Due to space limitations the proofs can be found in [5].
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Fig. 1: Channel Model

II. NOTATION, MODEL, AND METRICS

A. Notation

Random variables and their realizations will be denoted
by uppercase and lowercase letters, respectively. The support
set of a random variable and other sets are denoted by a
calligraphic font. An n-length sequence of random variables,
realizations, or sets will be denoted by superscript n. So, Xn

is a n-length sequence of random variables which may take
on values xn ∈ Xn. The probability X = x is denoted
Pr(X = x), or pX(x), and even p(x) when clear. The
probability of a set is written as pX(A) =

∑
x∈A p(x),

assuming A ⊆ X where the set will often be omitted from
the summation notation when it is clear, i.e.,

∑
x. The set

of all probability distributions on a certain set, say X , is
denoted by P(X ). Similarly, the set of probability distributions
of Y conditioned on X is denoted as P(Y|X ). The set
P(Y � X ) represents a special subset of P(Y|X ), where if
v ∈ P(Y � X ) for any y ∈ Y , there exists at most one x ∈ X
such that v(y|x) > 0. Note, for random variables X,Y, Z, if
pY |X ∈ P(Y � X ), then X, Y, Z form a Markov chain,

X c Y c Z. A superscript of ⊗n will denote the n-fold
product distribution of v.

The use of O will refer to the Bachmann-Landau notation.
When there is a range of possible values for O, we will use
=̇ to denote it. Throughout the paper, the order will only be
dependent on continuous functions of the cardinalities of the
support sets.

B. Model

Our authentication model consists of three parties. Alice,
a legitimate transmitter, wishes to authenticate her commu-
nications with Bob, a legitimate receiver, over a discrete
memoryless channel in the presence of Grı́ma, a malicious
adversary. Grı́ma has the ability to intercept Alice’s message
and send his own to Bob via a noiseless channel. His goal is
to have Bob accept his messages as if they were from Alice.
To aid in authentication, Alice and Bob share a secret key K
which is distributed uniformly over K := {1, . . . , 2nκ}.

When Alice wishes to communicate, she jointly encodes a
message M , distributed uniformly over M := {1, . . . , 2nr},
and the key K, as codeword Xn. The distribution of Xn is de-
fined by the encoder f ∈ P(Xn|M,K), where P(Xn|M,K)
is the set of all probability distributions over Xn conditioned
on M×K. Alice then transmits Xn to both Bob and Grı́ma.

The three parties are connected via a discrete memoryless-
adversarial substitution channel (DM-ASC) which consists of
three discrete memoryless channels, (t, q, t̃), and a Grı́ma-
controlled switch. The triple represents the channels from
Alice to Bob, Alice to Grı́ma, and Grı́ma to Bob, respectively,
while the switch controls Bob’s observations.

Note that for simplicity, we use the triple (t, q, t̃) instead of
the formal septuple (X ,Y,Z, X̃ , t, q, t̃), assuming that these
values specify X , Y, Z, X̃ by their non-zero indices. Fur-
thermore, we will assume for the remainder that X , Y, Z, X̃
are all discrete and finite. The channel is depicted in Figure
1.

When the switch is open, Bob will receive Alice’s trans-
mission over t. In other words, Y n|Xn will be distributed ac-
cording to t⊗n(yn|xn) :=

∏n
i=1 t(yi|xi) where t ∈ P(Y|X ).

When the switch is closed, Grı́ma first obtains Zn|Xn, then
determines X̂n and transmits to Bob. We only consider (t, q, 1)
in which the channel from Grı́ma to Bob is noiseless, i.e.
X̃ = Y , as in [3], [4]. Thus, Y n|Xn will be distributed
according to ∑

zn

ψ(yn|zn)q⊗n(zn|xn),

where q ∈ P(Z|X ), and ψ ∈ P(Yn|Zn). Grı́ma is free to
choose any attack strategy, ψ, including ones modeled after the
standard impersonation and substitution attacks. Regardless of
the switch’s position, Bob receives Y n and either makes an
estimate of the message, M∗, or declares an intrusion, !, which
is determined by a decoder ϕ ∈ P(M∪ {!} |Yn,K).

C. Performance Metrics

Before presenting the performance metrics, we define an
authentication code.

Definition 1. A code is any pair (f, ϕ), where f ∈
P(Xn|M,K) and ϕ ∈ P(M∪{!} |Yn,K). The rate of (f, ϕ)
is n−1 log2 |M|, the block-length of (f, ϕ) is n, and the key
requirement of (f, ϕ) is n−1 log2 |K|.

The performance of the code is measured in two ways,
reliability and type I error. Reliability is measured by the
average probability of error over all keys and messages at
Bob, that is

εf,ϕ := |K|−1 |M|−1
∑
m,k

εf,ϕ(m, k) < ε, (1)

where ε ∈ (0, 1) is a chosen constraint and

εf,ϕ(m, k) := 1−
∑
xn,yn

ϕ(m|yn, k)t⊗n(yn|xn)f(xn|m, k).

(2)
Type I error refers to the fact that authenticating is equivalent
to a binary hypothesis test where the null hypothesis is an in-
trusion and the alternate hypothesis is authenticity. Therefore,
a good code limits the average type I error by

ωf,ϕ := max
ψ∈P(Yn|Zn)

EZn,M,K [ωf,ϕ(ψ, z
n,m, k)] ≤ 2−na,

(3)
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where

ωf,ϕ(ψ, z
n,m, k) :=

∑
yn

ψ(yn|zn)ϕ(M−{m} |yn, k). (4)

Definition 2. A code (f, ϕ) is called an (r, α, κ, ε, n)-average
authentication (AA) code for DM-ASC(t, q, 1) if the block-
length is n, the rate at least r, the key requirement at most
κ, it is reliable in that εf,ϕ < ε and it satisfies the average
authenticity requirement:

ωf,ϕ < 2−nα. (5)

Our study aims to determine what types of codes are
possible in the following sense.

Definition 3. A triple (a, b, c) is said to be achievable
for the DM-ASC (t, q, 1) if there exist a sequence of
{(ri, αi, κi, εi, i)}∞i=1-AA codes (fi, ϕi) such that

lim
i→∞

|(ri, αi, κi, εi, i)− (a, b, c, 0, i)|2 → 0.

The average authentication region (AAR) is then

CA(t, q, 1)
:= {(a, b, c) : (a, b, c) is achievable for DM-ASC(t, q, 1)} .

(6)

III. BACKGROUND

Before presenting the inner bound for the average authen-
tication region, we review existing schemes. First, we review
Lai’s [3] strategy and frame it in terms of information metrics
for ease of comparison. Next, we examine Simmons’ [1]
strategy for the noiseless channel and transform Gungor and
Koksal’s [4] inner bound into our terms.

A. Lai’s Strategy

In [3], Lai et. al. propose essentially using a code designed
for a wire-tapper channel, and sending the key as part of the
message. The specific code they proposed is optimal for their
limited scenario (key requirement → 0), but in light of the
forthcoming discussion, it is not optimal in ours.

Recognizing that the essence of the construction is to
transmit two independent messages (the message itself and the
key), with one subject to a secrecy constraint, the most logical
coding scheme is a special class of codes for the discrete mem-
oryless broadcast channel with confidential communications
(t,q,) (DM-BCC(t, q)). While we are the first to notice and use
this specific construction for the purpose of authentication, we
refer to this as Lai’s strategy. Before continuing we discuss the
DM-BCC.

The achievable rate region of the DM-BCC was first de-
rived by Csiszár and Körner in [6] and later refined in [7,
Chapter 17]. In said model, there exist three messages that
Alice wishes to send, a common message, m0 ∈ M0 :=
{1, . . . , 2nr0}, that is to be decoded by both Bob and Grı́ma,
a private message, ms ∈ Ms := {1, . . . , 2nrs}, that is to be
decoded by Bob and kept secret from Grı́ma, and finally a
message, m1 ∈ M1 := {1, . . . , 2nr1}, to be decoded by only

Bob, but without a secrecy constraint. Secrecy in this context
is indicated by

I(pZn|Ms
, pMs

) ≤ εn,

where εn → 0 as n→∞. Meaning that the information gained
about Ms from Grı́ma’s observations asymptotically vanishes.
All messages have reliability constraints for their intended
recipients. The three messages are jointly coded as Xn and
sent through the channel where Bob observes Y n|Xn, which
is distributed as t⊗n(yn|xn) while Grı́ma observes, Zn|Xn,
distributed as q⊗n(zn|xn).

The triple (r0, rs, r1) is achievable for the DM-BCC(t, q)
if

r0 + rs + r1 ≤ I(tρ, σ|τ) + min (I(tρσ, τ), I(qρσ, τ))

rs ≤ I(tρ, σ|τ)− I(qρ, σ|τ)
r0 ≤ min (I(tρσ, τ), I(qρσ, τ)) ,

for some ρ ∈ P(X|U), σ ∈ P(U � W) and τ ∈ P(W),
and sets U and W such that |U| = (|X | + 1)(|X | + 3) and
|W| = |X |+3. It can be seen here that secrecy is only possible
when the channel from Alice to Grı́ma’s is not less noisy than
the channel from Alice to Bob.

Lai’s strategy attains authentication capabilities by imple-
menting the coding scheme for the DM-BCC(t, q) in which
Alice’s message is sent as M1 and the key is sent as Ms

while M0 = ∅. If message rates are chosen within the
achievable region above, Bob will decode the message reliably,
satisfying the reliability constraint of an authentication code.
Additionally, since the key is also reliably decoded and each
yn corresponds to only one k, he can declare authenticity
when k̂ = k. The security constraint on Ms = K reduces the
information about the key that is leaked to Grı́ma; the analysis
of our work will determine the degree of effectiveness.

As stated before, non-zero rates are only possible when t is
less noisy than q, i.e. when I(tρ, σ|τ) > I(qρ, σ|τ). To solve
this issue, we return to Simmons’ strategy for the noiseless
case.

B. Simmon’s Strategy

Simmons’ authentication scheme [1] for noiseless channels
breaks down the problem into protecting against two different
attacks, i.e., an impostor formerly referred to as “imperson-
ation” attack and a substitution attack. The attacks differ in
that in the former, Grı́ma attacks without first observing one
of Alice’s transmissions, while in the latter, Grı́ma does. In the
strategy, the code is created by independently and randomly
choosing |K| = 2nκ not necessarily unique subsets of M,
each denoted as M(k) ⊂ M. The size of each subset is
|M(k)| = 2−nκ/2|M| where each element m ∈M(k) corre-
sponds to a single message m̃ ∈ M̃ :=

{
1, . . . , |M| 2−nκ/2

}
.

Then, to communicate m̃, Alice sends the associated m from
the subset indexed by their shared key, k. Bob authenticates
a message when the observed m is an element of the cor-
rect M(k). The rate of communication in this scheme is
n−1 log2

∣∣∣M̃∣∣∣ = n−1 log2 |M| − κ/2.
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Since an observed m can be contained in multiple M(k),
Grı́ma will be unable to immediately infer which key was
used for authentication. In order to launch a successful sub-
stitution attack, Grı́ma must choose an m′ 6= m that is
contained in the sameM(k), however on average there is only
|K| (|M(k)| / |M|)2 = 1 subset that contains both m and m′.
Therefore, he must essentially guess the correct key to fool
Bob which happens with probability 2−nκ/2 since there are, on
average, |K| (|M(k)| / |M|) = 2nκ/2 subsets that contain m.
In terms of an achievable rate region, this scheme can achieve
the triple (n−1 log2 |M| − κ/2, κ/2, κ). Simmons’ strategy,
together with Lai’s strategy, forms the basis for our code.

C. Gungor and Koksal’s Bounds

Inner bounds for the average achievability region of a DM-
ASC(t, q, t̃), have been established by Gungor and Koksal [4].
Specifically, their scheme splits Alice and Bob’s shared key
into two smaller keys, one for authentication (á la Lai’s strat-
egy) and one for secrecy. These two keys are then used as the
dimensions in a two dimensional dimensional binning process,
where the codeword corresponding to the triple of messages
and keys is chosen independently. The independent choice over
the secrecy key, though, leaks extraneous information since
there is no need to differentiate between secrecy keys at the
legitimate receiver.

In any case, the set of all achievable (r, α, κ) derived from
their scheme is a subset of

(r, α, κ) ∈
⋃
κ̃∈R+

RG(κ̃) (7)

where RG(κ̃)

:=

r, α, κ :
r + κ ≤ I(tρ, τ) + κ̃
α− κ≤ −κ̃
α ≤ minν∈P(Z|U) LG(ν, qρ, tρ, κ̃, τ)

 (8)

and LG(ν, qρ, tρ, κ̃, τ) = D(ν||qρ|τ) +
|κ̃+ I(tρ, τ)− I(ν, τ)|+. A proof of this can be found
in [5, Appendix A].

IV. AUTHENTICATION CAPACITY REGION

We now present our main theorems and the inner bound
of the average authentication region. First, we present the
minor contribution of characterizing the inner bound of the
authentication region using Lai’s strategy.

Theorem 4.(r, α, κ) :

r + α ≤ I(tρ, στ)
α ≤ minν∈P(Z|U) L(ν; tρ, qρ, σ, τ)
α ≤ I(tρ, σ|τ)
α− κ ≤ 0


⊂ CA(t, q, 1), (9)

where L(ν; tρ, qρ, σ, τ) := D(ν||qρ|στ) + |I(tρ, σ|τ) −
I(ν, σ|τ) + |I(tρσ, τ)− I(νσ, τ)|+ |+, for all ρ ∈ P(X|U),
σ ∈ P(U � W), and τ ∈ P(W) where |U| and |W| are
finite.

Proof: See [5, Appendix C], along with the supporting
code construction, message error analysis and type I error
analysis in [5, Appendix F].

The type I error capabilities are limited by the capacity
of the wire-tap channel and if the secrecy capacity is 0,
then no authentication is possible. We now extend Simmons’
strategy and although it will only be applied to the triples
from Theorem 4, the associated code construction makes no
such assumption on the genesis of the original code.

Theorem 5. If (r, α, κ) ∈ CA then (r−β, α+β, κ+2β) ∈ CA,
for all non-negative β < r.

Proof: See [5, Appendix D].
Now to obtain our inner bound, we combine Theorems 4

and 5.

Theorem 6.(r, α, κ) :

r + α ≤ I(tρ, στ)
2α− κ ≤ minν∈P(Z|U) L(ν; tρ, qρ, σ, τ)
2α− κ ≤ I(tρ, σ|τ)
α− κ ≤ 0


⊂ CA(t, q, 1), (10)

where L(ν; tρ, qρ, σ, τ) := D(ν||qρ|στ) + |I(tρ, σ|τ) −
I(ν, σ|τ) + |I(tρσ, τ)− I(νσ, τ)|+ |+, for all distributions ρ ∈
P(X|U), σ ∈ P(U � W), and τ ∈ P(W) and |U| and |W|
are finite.

Proof: The proof can be found in [5, Appendix E].
This inner bound exhibits a trade-offs between rate, type I

error, and key requirement in information theoretic terms. It
is apparent from the first condition that this scheme requires
communication and authentication share the main channel’s
capacity. As long as minν∈P(Z|U) L(ν; tρ, qρ, σ, τ) is non-
zero, an increase in the length of the secret key provides
a proportional increase in type I error. Whereas when the
condition is zero, an increase in α requires twice the increase
in κ as evident in Simmons’ scheme.

Our scheme also improves over Gungor and Koksal’s inner
bound in this respect, since our scheme does not continue to
unnecessarily leak information when Grı́ma’s channel is less
noisy than Bob’s channel. Instead, in such a case, our scheme
reverts to that of Simmon’s, which is known to be optimal.

V. EXAMPLES

To demonstrate that our inner bound outperforms Gungor
and Koksal’s inner, we provide a few examples and analyses.
While it is easy to see that our inner bound (10) is larger
than Lai’s (9) due to the addition of 2α− κ, we will provide
an explicit example to show that (10) also improves upon
Gungor’s inner bound (8). For clarity, we will examine the
case where t and q are binary symmetric channels (BSC) with
transition probabilities λt and λq respectively.
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Fig. 2: AAR outperforms Gungor’s inner bound when α is
large.

In a BSC, (10) simplifies to

r + α < I(t, στ)

2α− κ < min
ν∈P(Z|X )

L∗(ν; t, q, σ, τ)

2α− κ ≤ I(t, σ|τ)
α− κ ≤ 0,

where σ is now a distribution on X given W and
L∗(ν; t, q, σ, τ) = D(ν||q|στ) + |I(t, σ|τ) − I(ν, σ|τ) +
|I(tσ, τ)− I(νσ, τ)|+ |+. Meanwhile, (8) simplifies to

RG(κ̃):=

r, α, κ :
r + κ ≤ I(t, τ) + κ̃
α− κ≤ −κ̃
α ≤ minν∈P(Y|X ) LG(ν, q, t, κ̃, τ)

 ,

(11)
where LG(ν, q, t, κ̃, τ) = D(ν||q|τ) + |κ̃+ I(t, τ)− I(ν, τ)|+.
In the interest of space, we will leave a more complete analysis
in [5] and only present numerical examples here.

A. BSC Examples

First, we consider a case when the main channel is less noisy
than Grı́ma’s channel, where in specific λt = .1 and λq = .15.
The trade off between the rate and the authentication, given
a fixed key rate, for both (10) and (8) is plotted in Figure 2.
Note the equivalence of the two regions for small α. As α
increases, though, (10) becomes strictly larger than (8). While
(10) obtains a constant value for r + α, which is equal to
the capacity of t, approximately .531, (8) struggles due to the
inefficiency of their coding scheme. This aligns with intuition,
as (10) uses the channel capacity for authenticity until the
secrecy capacity is exhausted, and then switches to Simmons’
scheme to further the authentication exponent.

Fig. 3: Given an r and κ pair, AAR achieves a greater range
of α for a constant adversarial channel (λt is the transition
probability of channel t).

Next, in Figure 3 the rate, key requirement, and adversarial
channel are held constant while the maximum possible α
achievable via (10) and (8) is computed for a range of main
channel transition probabilities, λt. Both schemes have a dra-
matic performance decrease when the main channel becomes
worse than the adversarial channel. Still (10) is generally larger
than (8) for many possible main channels. It should be noted
the point where α = 0 is exactly the point where the capacity
of the channel equals .25, in other words both schemes are
using all of the channels capacity simply to provide reliable
communications.

REFERENCES

[1] G. J. Simmons, “Authentication theory/coding theory.” in Advances in
Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings, 1984, pp. 411–431.

[2] U. Maurer, “Authentication theory and hypothesis testing,” IEEE Trans-
actions on Information Theory, vol. 46, no. 4, pp. 1350–1356, July 2000.

[3] L. Lai, H. El Gamal, and H. V. Poor, “Authentication over noisy channels,”
IEEE transactions on information theory, vol. 55, no. 2, pp. 906–916,
2009.

[4] O. Gungor and C. E. Koksal, “On the basic limits of rf-fingerprint-based
authentication,” IEEE transactions on information theory, vol. 62, no. 8,
pp. 4523–4543, 2016.

[5] J. Perazzone, E. Graves, and P. Yu, “Inner bound of the capacity region
of noisy channels with an authentication requirement,” arXiv preprint
arXiv:1801.03920, 2018.

[6] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,”
IEEE transactions on information theory, vol. 24, no. 3, pp. 339–348,
1978.

[7] ——, Information Theory: Coding Theorems for Discrete Memoryless
Systems, 2nd ed. Cambridge University Press, 2011. [Online]. Available:

http://books.google.com/books?id=2gsLkQlb8JAC

2018 IEEE International Symposium on Information Theory (ISIT)

130


		2018-08-07T12:31:44-0400
	Certified PDF 2 Signature




