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Abstract
Quantum discord measures quantum correlation by comparing the quantum 
mutual information with the maximal amount of mutual information 
accessible to a quantum measurement. This paper analyzes the properties 
of diagonal discord, a simplified version of discord that compares quantum 
mutual information with the mutual information revealed by a measurement 
that correspond to the eigenstates of the local density matrices. In contrast 
to the optimized discord, diagonal discord is easily computable; it also finds 
connections to thermodynamics and resource theory. Here we further show 
that, for the generic case of non-degenerate local density matrices, diagonal 
discord exhibits desirable properties as a preferable discord measure. We 
employ the theory of resource destroying maps (Liu Z-W et al 2017 Phys. 
Rev. Lett. 118 060502) to prove that diagonal discord is monotonically 
nonincreasing under the operation of local discord nongenerating qudit 
channels, d  >  2, and provide numerical evidence that such monotonicity holds 
for qubit channels as well. We also show that it is continuous, and derive a 
Fannes-like continuity bound. Our results hold for a variety of simple discord 
measures generalized from diagonal discord.
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1.  Introduction

Quantum discord measures a very general form of non-classical correlation, which can be 
present in quantum systems even in the absence of entanglement. Since the first expositions 
of this concept more than a decade ago [1, 2], a substantial amount of research effort has been 
devoted to understanding the mathematical properties and physical meanings of discord and 
similar quantities. Comprehensive surveys of the properties of discord can be found in [3, 4], 
and [5–8] provide recent perspectives on the field.

The study of discord presents many challenges and open questions. One major difficulty 
with discord-like quantities is that they are hard to compute or analyze. The canonical version 
of discord is defined to be the difference between quantum mutual information (total correla-
tion) and the maximum amount of correlation that is locally accessible (classical correlation), 
which involves optimization over all possible local measurements. Such optimization renders 
the problem of studying discord and its variants (such as quantum deficit [9], geometric dis-
cord [10]) very difficult. In general, computing these optimized quantities is NP-complete 
[11], and the analytic formulas are only known for very limited cases [12–14].

Diagonal discord is a natural simplification of discord, in which one looks at the mutual 
information revealed by a measurement in the optimal eigenbasis (unique in the absence of 
degeneracy) of the reduced density matrix of the subsystem under study [15]. That is, we 
allow the local density matrix to ‘choose’ to define mutual information by the locally mini-
mally disturbing measurement. Because such measurement does not disturb the local states, 
diagonal discord truly represents the property of ‘correlation’. Note that diagonal discord 
needs to be distinguished from basis-dependent discord [3], which is given by a prefixed local 
measurement and hence can be studied with tools from coherence theory [16]. By defini-
tion, diagonal discord is an upper bound for discord as originally defined, and is a faithful 
discord measure, meaning that it takes zero only for states with zero discord, or equivalently 
the classical-quantum states. Different entropic measures of discord (the optimized discord 
and deficit [3, 17]) coincide with diagonal discord when the optimization procedure leads to 
measurements with respect to a local eigenbasis. We note that quantities defined by a similar 
local measurement strategy have been considered before: the so-called measurement induced 
disturbance [18] and nonlocality [19] are close variants of diagonal discord defined by local 
eigenbases as well, but crucially they are not faithful one-way discord measures, as opposed 
to diagonal discord. Diagonal discord has been shown to play key roles in thermodynamic 
scenarios, such as energy transport [15], work extraction [20], temperature estimation [21], 
and local parameter estimation [22]. In contrast to optimized discord-type quantities, diago-
nal discord is in general efficiently computable. A similar case is the entanglement negativ-
ity [23], which, as a computable measure of entanglement, greatly simplifies the study of 
entanglement in a wide variety of scenarios. Furthermore, diagonal discord naturally emerges 
from the theory of resource destroying maps [24], a recent general framework for analyzing 
quantum resource theories. We believe that the study of diagonal discord may forge new links 
between discord and resource theory.

Because diagonal discord is defined without optimization over local measurements, several 
of its important mathematical properties must be verified. First, monotonicity (nonincreasing 
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property) under operations that are considered free is a defining feature of resource meas-
ures; identifying such monotones is a central theme of resource theory. A curious property of 
discord is that it can even be created by some local operations [25, 26]. It is unclear whether 
some other local operation can increase diagonal discord. Note that the monotonicity under 
all nongenerating operations is arguably an overly strong requirement [4], which automati-
cally implies monotonicity for all theories with less free operations. Second, continuity is 
also a desirable feature [4, 27], which indicates that the measure does not see a sudden jump 
under small perturbations. From examples given in [27, 28], where the local states are both 
maximally mixed qubits, we know that diagonal discord can generally be discontinuous at 
degeneracies. However, the continuity properties otherwise remains unexplored. These two 
unclear features represent the most important concerns of restricting to local eigenbases.

The purpose of this paper is to address the above concerns. We first find that, rather surpris-
ingly, diagonal discord exhibits good monotonicity properties under local discord nongenerat-
ing operations. The discord cannot be generated under local operation if and only if the local 
operation is commutativity-preserving [26]. We show that local isotropic channels, a subset of 
commutativity-preserving maps, commute with the canonical discord destroying map, which 
implies that diagonal discord is monotone under them by [24]. By the classification of commu-
tativity-preserving operations [25, 26, 29], we conclude that monotonicity holds for all local 
commutativity-preserving operations except for unital qubit channels that are not isotropic. 
However, numerical studies imply that monotonicity holds for these channels as well. Then, 
we prove that, when the local density operator is nondegenerate, diagonal discord is continu-
ous. We derive a Fannes-type continuity bound, which diverges as the minimum gap between 
eigenvalues tends to zero as expected. At last, we explicitly compare diagonal discord with 
the optimized discord for a large number of randomly sampled symmetric two-qubit X-states, 
which are expected to reveal the generic behaviors of bipartite states, to better understand the 
simplification of measurement strategy. We find that, for a significant proportion of states, 
the optimal measurement that induces discord is given by a local eigenbasis, or equivalently, 
diagonal discord matches the optimized discord. In other cases, the value of diagonal discord 
could be significantly greater than discord. However, it should be emphasized that diagonal 
discord should just be seen as a different way of measuring the same type of resource, which 
correspond to different operational and physical meanings. In this sense, it is not very mean-
ingful to directly compare the values of diagonal discord and optimized discord.

2.  Diagonal discord

Here, we define the notion of diagonal discord more formally. Without loss of generality, we 
mainly study the one-sided discord of a bipartite state ρAB, where the local measurements are 
made on subsystem A. As will be shown later, it is straightforward to generalize the results to 
two-sided measurements or multipartite cases.

Let {ΠA
i ≡ |i〉A〈i|} be a local eigenbasis of A, i.e. suppose ρA = trBρAB admits spectral  

decomposition ρA =
∑

i piΠ
A
i . Note that the eigenbasis is not uniquely determined in the 

presence of degeneracy in the spectrum. Define  πA(ρAB) =
∑

i(Π
A
i ⊗ IB)ρAB(ΠA

i ⊗ IB) =  ∑
i Π

A
i ⊗ 〈i|ρAB|i〉, where 〈i|ρAB|i〉 := trA([ΠA

i ⊗ IB]ρAB). This describes the local measure-
ment in some eigenbasis {ΠA

i }.
Diagonal discord of ρAB as measured by A, denoted as D̄A(ρAB), quantifies the reduction 

in mutual information induced by πA. Since πA does not perturb ρA, D̄A equals the increase 
in the global entropy. So diagonal discord represents a unified simplification of discord and 
deficit. Formally,

Z-W Liu et alJ. Phys. A: Math. Theor. 52 (2019) 135301
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D̄A(ρAB) := I(ρAB)−max
πA

I(πA(ρAB))� (1)

= min
πA

S(πA(ρAB))− S(ρAB)� (2)

where the optimization is taken over the local eigenbases spanning the possibly degenerate 
subspace. (To avoid issues concerning the existence of optimal measurements, we use mini-
mum instead of infimum, following e.g. [2, 30, 31].) If the optimization is instead taken over 
all local measurements, the first line equation (1) would reduce to discord (note that the two 
original definitions of discord differ slightly in the local measurements allowed: Ollivier and 
Zurek [1] used von Neumann measurements, while Henderson and Vedral [2] used POVMs), 
and the second line equation (2) would reduce to deficit, which are inequivalent in general.

It is crucial that diagonal discord can also take the form of relative entropy. First notice that

S(πA(ρAB)) = −tr(πA(ρAB) log πA(ρAB)) = −tr

(∑
i

(ΠA
i ⊗ IB)ρAB(ΠA

i ⊗ IB) log πA(ρAB)

)
� (3)

= −tr

(∑
i

(ΠA
i ⊗ IB)ρAB log πA(ρAB)(Π

A
i ⊗ IB)

)
� (4)

= −tr

(∑
i

(ΠA
i ⊗ IB)2ρAB log πA(ρAB)

)
� (5)

= −tr

(∑
i

(ΠA
i ⊗ IB)ρAB log πA(ρAB)

)
� (6)

= −tr (ρAB log πA(ρAB)) ,� (7)

where the second line follows from the fact that each (ΠA
i ⊗ IB) commutes with πA(ρAB), the 

third line follows from the cyclic property of trace, the fourth line follows from the idempo-
tence of ΠA

i ⊗ IB, and the fifth line follows from the completeness relation 
∑

i(Π
A
i ⊗ IB) = I . 

Therefore, by equation (2),

D̄A(ρAB) = min
πA

S(πA(ρAB))− S(ρAB) = min
πA

tr{ρAB (log ρAB − log πA(ρAB))} = min
πA

S(ρAB‖πA(ρAB)).
� (8)

That is, diagonal discord of ρAB equals the relative entropy to πA(ρAB), minimized over eigen-
bases πA in the presence of degeneracies. From the above relation, it can be seen that diagonal 
discord indeed obeys the faithfulness condition, that is, it only vanishes for classical-quantum 
states (as the optimized discord [1, 32, 33]), the fixed points of πA. Note that, in general, 
optimization is still needed within degenerate subspaces. It can be seen that, as long as the 
degenerate subspace is small, diagonal discord can be efficiently computed. In this paper, we 
are mostly concerned with the nondegenerate case, where πA is unique. Note that the (one-
sided version of) measurement-induced disturbance [18] and measurement-induced nonlocal-
ity [19, 34] are not faithful due to the absence of the above minimization within the degenerate 
subspace [35], which is a crucial difference from the diagonal discord.

Z-W Liu et alJ. Phys. A: Math. Theor. 52 (2019) 135301
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3.  Structure of π theory and monotonicity

In this section, we investigate the monotonicity property of diagonal discord. The main idea 
is to employ the monotonicity theorem of commuting free operations, which comes from the 
theory of resource destroying maps [24]. To do so, we need to analyze whether the discord-
free operations commutes with certain resource destroying map for discord. The cases of 
qubits and higher dimensions turn out to be quite different and are discussed separately.

3.1.  Resource destroying maps and the monotonicity theorem

Before going into details, we first briefly review the theory of resource destroying maps [24]. 
A map λ is called resource destroying map if it maps all non-free states to free ones, and does 
nothing on free states. It allows to classify quantum channels (completely-positive trace pre-
serving maps) into some classes depending on the condition that the channel satisfies. Let E be 
a channel. The nongenerating condition λ ◦ E ◦ λ = E ◦ λ gives the maximal nontrivial set of 
free operations; a little thought will convince one that it captures the resource nongenerating 
property of E. It turns out to be useful to consider a stronger condition λ ◦ E = E ◦ λ, which 
we call the commuting condition. Let X̄(λ) and X(λ) denote the sets of operations satisfying 
the nongenerating condition and commuting condition respectively. Note that any channel in 
X(λ) is also in X̄(λ) but the converse is not true in general. This classification is very useful 
when the monotonicity of resource measures is concerned. One can easily show the following:

Theorem 1 ([24]).  Let λ be a resource destroying map. Then the distance-based resource 
measure δ(ρ,λ(ρ)), where δ is any distance measure satisfying the data processing inequality, 
is nonincreasing under X(λ) (channels that satisfy the commuting condition).

3.2. Theory of discord destroying map π and the monotonicity of diagonal discord

When it comes to the discord where free states are classical-quantum states, πA (defined in the 
last section) is a natural discord destroying map. We stress that πA is not a quantum channel. 
(Since the set of classical-quantum states is nonconvex, any discord destroying map is nonlin-
ear [24].) By equation (8), taking πA as the resource destroying map and the relative entropy 
as the distance measure gives us diagonal discord.

3.2.1.  Classification of discord nongenerating local operations.  We consider operations acting 
on subsystem A, the dimension of whose Hilbert space is denoted by dA. The largest possible 
set of free operations is the set of discord nongenerating channels of the form E ⊗ IB ∈ X̄(πA). 
We call such E local discord nongenerating channels and write the set of local discord non-
generating channels as X̄A(πA). Recall the definitions of the following classes of channels:

	 •	�Mixed-unitary channels (MU): EMU(ρ) =
∑

µ pµUµρU†
µ, where { pµ} is a probability 

distribution (pµ ∈ [0, 1],
∑

µ pµ = 1) and Uµ are unitary channels.
	 •	�Isotropic channels (ISO): E ISO(ρ) = (1− γ)W(ρ) + γI/d, where γ ∈ [0, 1], d denotes 

the dimension of the Hilbert space so I/d is the maximally mixed state, and W is either 
unitary or antiunitary.

	 •	�Semiclassical channels (SC): channels whose outputs are diagonal with a certain preferred 
basis.

Z-W Liu et alJ. Phys. A: Math. Theor. 52 (2019) 135301
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It has been shown that E ∈ X̄A(πA) if and only if E is commutativity-preserving [26], and the 
set of commutativity-preserving channels consist of unital channels for qubits (dA  =  2) and 
isotropic channels for qudits (dA  >  2) [25, 26, 29], in addition to all semiclassical channels 
(which always destroy discord). Note that, for qubits, the set of unital channels is equivalent 
to the set of mixed-unitary channels [36]. The structure of X̄A(πA) is depicted in figure 1. Note 
that the completely depolarizing channel, which maps everything to the maximally mixed 
state, is in SC as well as ISO. We exclude the completely depolarizing channel from SC so 
that SC ∩ ISO = ∅. For simplicity, ρA is assumed to be nondegenerate. We are interested in 
the monotonicity of D̄A under E ⊗ I  for E ∈ X̄A(πA).

3.2.2.  π-commuting local operations and monotonicity.  In general, identifying operations 
under which some measure behaves as a monotone is a highly nontrivial task. Due to the relative 
entropy form equation (8), the above monotonicity theorem (theorem 1) can be applied to diago-
nal discord: D̄A is monotonically nonincreasing under E ⊗ IB ∈ X(πA). Let XA(πA) denote the 
set of local operations on A that commute with πA together with identity operation on B. We now 
identify operations that belong to XA(πA). First, it is known that SC ∩ XA(πA) = ∅ [24]. Liu 
et al [24] also showed that unitary-isotropic channels are in XA(πA). We analyze the remaining 
cases for qubits and qudits separately, since they exhibit different structures in the theory of π.

Qubit (dA  =  2).  For the qubit case, we derive an explicit local condition that determines if a 
local mixed-unitary channel is in XA(πA):

Lemma 2.  Consider the qubit mixed-unitary channel EMU(ρ) =
∑

µ pµUµρU†
µ. Let 

{|ψ〉, |ψ̄〉} be some orthonormal basis, and {|η+〉, |η−〉} be the common eigenbasis of 
EMU(|ψ〉〈ψ|) and EMU(|ψ̄〉〈ψ̄|). Then EMU ∈ XA(πA) if and only if

∑
µ

pµ〈ηl|Uµ|ψ〉〈ψ̄|U†
µ|ηl〉 = 0� (9)

for any choice of basis {|ψ〉, |ψ̄〉} and l = +,−.

Proof.  Since qubit mixed-unitary channels are commutativity-preserving, all input states 

with the same eigenbasis share a common output eigenbasis. Let {|0〉, |1〉} be the eigenbasis 

of ρA. Denote the common eigenbasis of EMU(|0〉〈0|) and EMU(|1〉〈1|) as {|η+〉, |η−〉}, and 
the corresponding eigenvalues ηi+, η

i
− for i = 0, 1, that is, EMU(|i〉〈i|) =

∑
l=+,− ηil |ηl〉〈ηl|. 

Figure 1.  Structure of commutativity-preserving channels ( X̄A(πA)). Note that we define 
SC to exclude the completely depolarizing channel. (a) Qubits: note that ISO � MU, 
SC ∩MU includes e.g. completely dephasing channels; (b) Qudits with d  >  2. Grey 
area ( ISO): in XA(πA); dotted area (MU\(ISO ∪ SC)): numerical evidence of being in 
XA(πA); white area ( SC): not in XA(πA).

Z-W Liu et alJ. Phys. A: Math. Theor. 52 (2019) 135301
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Note that, since 
∑

i EMU(|i〉〈i|) = I , η0l = 1− η1l  for l = +,−. By linearity, EMU(ρA) admits a 
spectral decomposition in the basis {|η+〉, |η−〉}.

We first obtain

[EMU
A ⊗ IB] ◦ πA(ρAB) =

∑
i=0,1

EMU(|i〉〈i|)⊗ 〈i|ρAB|i〉� (10)

=
∑
i=0,1

∑
l=+,−

ηil |ηl〉〈ηl| ⊗ 〈i|ρAB|i〉.� (11)

On the other hand,

πA ◦ [EMU
A ⊗ IB](ρAB) =

∑
l=+,−

|ηl〉〈ηl| ⊗ 〈ηl|[EMU
A ⊗ IB](ρAB)|ηl〉� (12)

=
∑
µ

∑
l=+,−

pµ|ηl〉〈ηl| ⊗ 〈ηl|(Uµ ⊗ I)ρAB(U†
µ ⊗ I)|ηl〉� (13)

=
∑
i,j=0,1

∑
µ

∑
l=+,−

pµ〈ηl|Uµ|i〉〈j|U†
µ|ηl〉|ηl〉〈ηl| ⊗ 〈i|ρAB|j〉� (14)

=
∑
i=0,1

∑
l=+,−

ηil |ηl〉〈ηl| ⊗ 〈i|ρAB|i〉

+
∑
i�=j

∑
µ

∑
l=+,−

pµ〈ηl|Uµ|i〉〈j|U†
µ|ηl〉|ηl〉〈ηl| ⊗ 〈i|ρAB|j〉,� (15)

where the first line follows from the spectral decomposition of EMU(ρA). Therefore, the two 
sides of the commuting condition equations (11) and (15) coincide if and only if

Ml +Ml
† = 0� (16)

for l = +,−, where

Ml =
∑
µ

pµ〈ηl|Uµ|0〉〈1|U†
µ|ηl〉〈0|ρAB|1〉� (17)

is a matrix defined on B. In other words, Ml is a skew-Hermitian matrix: it has zero or pure 
imaginary diagonal entries. Since the diagonals of 〈0|ρAB|1〉 can be real or imaginary depend-
ing on ρAB (for example, for ρAB = 1

2 [|0+〉+ |1−〉][〈0+|+ 〈1−|], 〈00|ρAB|10〉 = 1/4 and 
〈01|ρAB|11〉 = −1/4, but for ρAB = 1

2 [|0+〉+ i|1−〉][〈0+| − i〈1−|], 〈00|ρAB|10〉 = −i/4 and 
〈01|ρAB|11〉 = i/4), Ml can only be the zero matrix so that the skew-Hermitian condition holds 
for arbitrary ρAB. Furthermore, notice that the eigenbasis can vary arbitrarily depending on ρAB, 

so equation (16) must hold for any basis. Therefore, equation (16) is reduced to the following 

final condition. Let {|ψ〉, |ψ̄〉} be some orthonormal basis, and {|ηψ+〉, |η
ψ
−〉} be the common 

eigenbasis of EMU(|ψ〉〈ψ|) and EMU(|ψ̄〉〈ψ̄|). Then EMU
A ⊗ IB and πA commute if and only if

∑
µ

pµ〈ηψl |Uµ|ψ〉〈ψ̄|U†
µ|η

ψ
l 〉 = 0� (18)

for any choice of basis {|ψ〉, |ψ̄〉} and l = +,−.� □ 

Z-W Liu et alJ. Phys. A: Math. Theor. 52 (2019) 135301
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By explicitly using lemma 2, we can show that all isotropic channels are in XA(πA):

Theorem 3.  For dA  =  2, ISO ⊂ XA(πA).

Proof.  Here we show that ISO ⊂ XA(πA) for qubits by directly employing the condition 
introduced in lemma 2.

Unitary-isotropic channels are already shown to be in XA(πA) [24]. One can confirm that uni-
tary-isotropic channels indeed satisfy the condition as follows. Consider a qubit unitary-isotrop-
ic channel u(ρ) = (1− γ)UρU† + γI/2 = (1− γ)UρU† + γ

4 (XρX + YρY + ZρZ + IρI), 
where X, Y , Z  are defined to be Pauli matrices in the basis {|ψ〉, |ψ̄〉}. Here the basis {|ψ〉, |ψ̄〉} 
can be arbitrarily chosen since the identity operator can be decomposed as the uniform Pauli 
twirling [37, 38] in any basis. It is clear that |η+,−〉 = {U|ψ〉,U|ψ̄〉}. One can verify that U|ψ〉 
satisfies the condition as follows. The first term (unitary component) gives

(1− γ)〈ψ|U†U|ψ̄〉〈ψ|U†U|ψ〉 = 0.� (19)

For the Pauli components, we obtain

〈ψ|U†X|ψ̄〉〈ψ|XU|ψ〉+ 〈ψ|U†Y|ψ̄〉〈ψ|YU|ψ〉+ 〈ψ|U†Z|ψ̄〉〈ψ|ZU|ψ〉+ 〈ψ|U†|ψ̄〉〈ψ|U|ψ〉
= 〈ψ|U†|ψ〉〈ψ̄|U|ψ〉 − 〈ψ|U†|ψ〉〈ψ̄|U|ψ〉 − 〈ψ|U†|ψ̄〉〈ψ|U|ψ〉+ 〈ψ|U†|ψ̄〉〈ψ|U|ψ〉 = 0,

�
(20)

by plugging in the Pauli matrices. It can be seen that the terms corresponding to X, Y and Z, I  
respectively cancel each other. The condition holds for U|ψ̄〉 as well. So we conclude that 
u ∈ XA(πA).

We now show that any antiunitary-isotropic channel ū(ρ) = (1− γ)UρTU† + γI/2 
also satisfies the condition. Let {V|ψ〉,V|ψ̄〉} be the basis with respect to which the trans-
pose is taken, where V  is unitary. Notice that transpose operation can be written as 
ρT = 1

2 (ρ+ XVρXV − YVρYV + ZVρZV), where XV = VXV†, YV = VYV†, ZV = VZV† are 
Pauli matrices in the transposition basis. So

ū(ρ) =
1− γ

2
U(ρ+ XVρXV − YVρYV + ZVρZV)U† + γ

I
2

� (21)

= (2− γ)
I
2
− (1− γ)UYVρYVU†.� (22)

We are now ready to examine whether ū(ρ) satisfies the condition. Due to equation  (20), 
the first term gives zero. Notice that the new eigenbasis is |η+,−〉 = {U′|ψ〉,U′|ψ̄〉}, where 
U′ = UYV  is unitary. So the second term also gives zero due to equation (19). So ū ∈ XA(πA).
� □ 

Therefore, combining with the fact that local semiclassical channels always output clas-
sical-quantum states (with zero discord and diagonal discord) by definition, we obtain the 
following result for qubits:

Corollary 4.  For dA  =  2, diagonal discord is monotonically nonincreasing under SC ∪ ISO.

However, the condition in lemma 2 does not hold in general, which implies that 
XA(πA) � MU for qubits. For instance, consider E(·) = 1

3 I(·)I +
2
3H(·)H where H is the 

Hadamard transformation in the computational basis {|0〉, |1〉}. Straightforward calculation 

gives |η+〉 = 1√
N
(|0〉+ −1+

√
5

2 |1〉) and |η−〉 = 1√
N
(−1+

√
5

2 |0〉 − |1〉) where N is the normali-

zation factor. Then
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∑
i

pi〈η+|Ui|1〉〈0|U†
i |η+〉 =

1
3
〈η+|0〉〈1|η+〉+

2
3
〈η+|+〉〈−|η+〉 =

1
3N

(
√
5− 1) �= 0.

So this probabilistic Hadamard is not in XA(πA). We conjecture (which is not important for 
our current purpose) that ISO = XA(πA). That is, qubit mixed-unitary channels that are not 
isotropic all fail to satisfy the condition.

For qubit channels that live in MU \ XA(πA), the current idea for proving monotonicity 
do not apply. However, we provide numerical results which strongly indicate that diagonal 
discord is monotone under such channels as well. Figure 2 displays the comparison between 
diagonal discord before and after the action of several typical non-isotropic mixed-unitary 
channels, for a large number of randomly generated input states. It can be seen that all data 
points reside on the nonincreasing side. All other channels that we have analyzed exhibit simi-
lar behaviors. We put this as a conjecture at the moment:

Conjecture 1.  For dA  =  2, diagonal discord is monotonically nonincreasing under any lo-
cal discord nongenerating channel.

Qudit (dA  >  2).  The analysis for dA  >  2 turns out to be simpler. In fact, it can be shown in 
general dimensions that ISO ⊂ XA(πA). The main step of the proof is to explicitly write out 
the eigenbasis after an antiunitary transformation.

Theorem 5.  For dA � 2, ISO ⊂ XA(πA). In particular, for dA  >  2, ISO = XA(πA).

Proof.  Here we provide a general proof of ISO ⊂ XA(πA). Note that theorem 3 for qubit 
systems is just a special case of this result. For dA  >  2 we have X̄A(πA) = SC ∪ ISO [26, 29], 
so ISO = XA(πA).

Again, recall that unitary-isotropic channels are shown to be in XA(πA) [24]. Here we show 
that any antiunitary-isotropic channel ū(ρ) = (1− γ)UρTU† + γI/d  is also in XA(πA) for 
any dA. Let {|ti〉} be the complete orthonormal basis with respect to which the transposition 
is taken. Suppose the input state ρAB reads ρAB =

∑
ijkl qijkl|ti〉〈tj| ⊗ |rk〉〈rl|, where i, j and k, l 

Figure 2.  Comparison of diagonal discord of the input and output states of channels 
E = EMU

A ⊗ IB such that EMU ∈ MU \ XA(πA). The black line D̄A(E(ρAB)) = D̄A(ρAB) 
serves as a baseline for the comparison. The local mixed unitary channels 
considered are (a) EMU(ρ) = 1

3ρ+
2
3HρH , (b) EMU(ρ) = 1

3ρ+
2
3Rn(π/2)ρRn(π/2)† 

where Rn(π/2) is the π/2 rotation with respect to the axis n ∝ (1, 1, 1), and (c) 
EMU(ρ) = 1

6ρ+
1
3RX(π/10)ρRX(π/10)† + 1

2RZ(π/5)ρRZ(π/5)† where RX and RZ are 
rotations with respect to X axis and Z axis respectively. The choice of these channels is 
arbitrary. The number of samples is set to 1000 for each channel.
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are respectively indices of A and B, and {|rk,l〉} denotes some basis of the Hilbert space of B. 
Given that the spectral decomposition of A reads ρA =

∑
α λα|α〉〈α|, we have

πA(ρAB) =
∑
α

∑
ij

∑
kl

qijkl〈α|ti〉〈tj|α〉|α〉〈α| ⊗ |rk〉〈rl|� (23)

=
∑
α

∑
ijmn

∑
kl

qijkl〈α|ti〉〈tj|α〉〈tm|α〉〈α|tn〉|tm〉〈tn| ⊗ |rk〉〈rl|,� (24)

and so

[ūA ⊗ IB] ◦ πA(ρAB) = (1− γ)
∑
α

∑
ijmn

∑
kl

qijkl〈α|ti〉〈tj|α〉〈tm|α〉〈α|tn〉U|tn〉〈tm|U† ⊗ |rk〉〈rl|+ γ
IA
dA

⊗ ρB.

� (25)

On the other hand,

[ūA ⊗ IB](ρAB) = (1− γ)
∑
ij

∑
kl

qijklU|tj〉〈ti|U† ⊗ |rk〉〈rl|+ γ
IA
dA

⊗ ρB,� (26)

which involves a partial transpose. In order to express the action of πA, we need to find the 
eigenbasis of the reduced density operator

trB([ūA ⊗ IB](ρAB)) = (1− γ)
∑
ij

∑
k

qijkkU|tj〉〈ti|U† + γ
IA
dA

= (1− γ)UρTAU
† + γ

IA
dA

.� (27)

We essentially need to find the eigenbasis of ρTA. Rewrite ρA as ρA =
∑

ij

∑
α λα〈ti|α〉  

〈α|tj〉|ti〉〈tj|, that is, 
∑

k qijkk =
∑

α λα〈ti|α〉〈α|tj〉. So we obtain

ρTA = ρ∗A =
∑
ij

∑
α

λ∗
α〈ti|α〉∗〈α|tj〉∗|ti〉〈tj|� (28)

=
∑
ij

∑
α

λα〈α|ti〉〈tj|α〉|ti〉〈tj|� (29)

=
∑
α

λα

(∑
i

〈α|ti〉|ti〉

)(∑
i

〈α|ti〉|ti〉

)†

,� (30)

where we used the fact that eigenvalues λα are real for the second line. Therefore, {|ᾱ〉} 
with |ᾱ〉 ≡

∑
i〈α|ti〉|ti〉 forms the eigenbasis of ρTA, and hence {U|ᾱ〉} is the eigenbasis of 

trB([ūA ⊗ IB](ρAB)). So starting from equation (26), we obtain

πA ◦ [ūA ⊗ IB](ρAB) = (1− γ)
∑
α

∑
ij

∑
kl

qijkl〈ᾱ|tj〉〈ti|ᾱ〉U|ᾱ〉〈ᾱ|U† ⊗ |rk〉〈rl|+ γ
I
dA

⊗ ρB

� (31)

= (1− γ)
∑
α

∑
ijmn

∑
kl

qijkl〈ᾱ|tj〉〈ti|ᾱ〉〈tn|ᾱ〉〈ᾱ|tm〉U|tn〉〈tm|U† ⊗ |rk〉〈rl|+ γ
I
dA

⊗ ρB� (32)
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= (1− γ)
∑
α

∑
ijmn

∑
kl

qijkl〈tj|α〉〈α|ti〉〈α|tn〉〈tm|α〉U|tn〉〈tm|U† ⊗ |rk〉〈rl|+ γ
I
dA

⊗ ρB,� (33)

where we used 〈ti|ᾱ〉 = 〈ti|(
∑

j〈α|tj〉|tj〉) = 〈α|ti〉 for the third line. By comparing to equa-
tion (25), we conclude that πA ◦ [ūA ⊗ IB](ρAB) = [ūA ⊗ IB] ◦ πA(ρAB), so ū ∈ XA(πA).� □ 

The complete result for qudits then follows, again by combining with the fact that local 
semiclassical channels always output classical-quantum states:

Corollary 6.  For dA  >  2, diagonal discord is monotonically nonincreasing under any local 
discord nongenerating channel.

Figure 1 summarizes the structure of different classes of free local operations in the theory 
of π.

4.  Continuity

As mentioned, [27, 28] brought up examples of states with maximally mixed marginals, where 
diagonal discord can be discontinuous. The discontinuity essentially comes from the maxi-
mization within the degenerate subspace: one can perturb the state in the direction that is far 
away from the optimal eigenbasis. However, in the absence of degeneracies, the eigenbasis is 
unique, so the above phenomenon cannot occur. We first formally prove that diagonal discord 
is indeed continuous when the local density operator being measured is nondegenerate, by 
deriving a continuity bound in a similar spirit as the celebrated Fannes-type inequalities for 
the continuity of the von Neumann entropy [39, 40]. The main idea is that π changes continu-
ously, which is also known as ‘weak continuity’ [27].

Theorem 7.  Diagonal discord is continuous at states such that the local density operator 
being measured is nondegenerate. More explicitly, let ρAB be a bipartite state in finite dimen-
sions such that ρA = trBρAB has distinct eigenvalues, and the smallest gap is ∆. Suppose ρ′AB 
is a perturbed state such that ‖ρ′AB − ρAB‖1 � ε. For sufficiently small ε > 0, it holds that

|D̄A(ρ
′
AB)− D̄A(ρAB)| �



√

2 d3Ad
3
B

∆
+ 1


 ε log(dAdB − 1) + H


1
2


2

√
2 d3Ad

3
B

∆
+ 1


 ε


+ H(ε/2)

� (34)

where H(ε) = −ε log ε− (1− ε) log(1− ε) is the binary entropy function.

Proof.  In the following, we adopt matrix norms given by vectorization, i.e. for an opera-
tor M, ‖M‖p := ‖vec(M)‖p. For density matrices, ‖·‖p  is equivalent to the Schatten p -norm.  
In particular, p   =  1 yields the trace norm, and p   =  2 yields the Frobenius norm, also known  
as Hilbert–Schmidt norm or Schur norm.

Notice that

|D̄A(ρ
′
AB)− D̄A(ρAB)| = |[S(πA(ρ

′
AB))− S(ρ′AB)]− [S(πA(ρAB))− S(ρAB)]|

�
(35)

� |S(πA(ρ
′
AB))− S(πA(ρAB))|+ |S(ρAB)− S(ρ′AB)| ,� (36)
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where the inequality follows from the triangle inequality. So, by the continuity of von Neu-
mann entropy, diagonal discord is continuous as long as the discord-destroyed state πA(ρAB) 
is continuous, that is, πA(ρ

′
AB) and πA(ρAB) remain close. We show that it is so when ρA is 

nondegenerate. (Indeed, discontinuity can occur in the vicinity of degeneracies, since the lo-
cal eigenbases of perturbed states can be far from one another due to the nonuniqueness of 
eigenbases within the degenerate subspace, and hence πA(ρAB) cannot be continuous. This is 
the essence behind the examples of discontinuities given in [27, 28].) Given ρA =

∑
i piΠi, 

the spectral decomposition of the perturbed marginal can take the form ρ′A =
∑

i p
′
iΠ

′
i  with 

perturbed eigenvalues and eigenvectors, since they change continuously [41]. By triangle in-
equality,

‖πA(ρ
′
AB)− πA(ρAB)‖1 �

∥∥∥∥∥πA(ρ
′
AB)−

∑
i

(Πi ⊗ I)ρ′AB(Πi ⊗ I)

∥∥∥∥∥
1

+

∥∥∥∥∥
∑
i

(Πi ⊗ I)ρ′AB(Πi ⊗ I)− πA(ρAB)

∥∥∥∥∥
1

.

�
(37)

Since the trace distance is contractive [37], the second term directly satisfies ∥∥∑
i(Πi ⊗ I)ρ′AB(Πi ⊗ I)− πA(ρAB)

∥∥
1 � ‖ρ′AB − ρAB‖1 � ε. The first term is also well 

bounded due to the continuity of eigenprojection πA [41]. Now we derive an explicit bound 
for the first term. We assume that ε is sufficiently small so that any ρ′A still remains nondegen-
erate. (This is always possible since the spectrum is bounded away from a degenerate one by 
assumption.) By triangle inequality,
∥∥∥∥∥πA(ρ

′
AB)−

∑
i

(Πi ⊗ I)ρ′AB(Πi ⊗ I)

∥∥∥∥∥
1

=

∥∥∥∥∥
∑
i

(Π′
i ⊗ I)ρ′AB(Π

′
i ⊗ I)−

∑
i

(Πi ⊗ I)ρ′AB(Πi ⊗ I)

∥∥∥∥∥
1

�

(38)

�
∑
i

(‖(Π′
i ⊗ I)ρ′AB(Π

′
i ⊗ I)− (Π′

i ⊗ I)ρ′AB(Πi ⊗ I)‖1 + ‖(Π′
i ⊗ I)ρ′AB(Πi ⊗ I)− (Πi ⊗ I)ρ′AB(Πi ⊗ I)‖1) .

� (39)

Notice that

‖(Π′
i ⊗ I)ρ′AB(Π

′
i ⊗ I)− (Π′

i ⊗ I)ρ′AB(Πi ⊗ I)‖1 = ‖(Π′
i ⊗ I)ρ′AB[(Π

′
i −Πi)⊗ I]‖1

�
(40)

�
√
dAdB ‖(Π′

i ⊗ I)ρ′AB[(Π
′
i −Πi)⊗ I]‖2� (41)

�
√
dAdB ‖(Π′

i ⊗ I)‖2 ‖ρ
′
AB‖2 ‖(Π

′
i −Πi)⊗ I‖2� (42)

� dB
√
dAdB ‖Π′

i −Πi‖2 ,� (43)

where the second line follows from ‖M‖1 �
√
rankM ‖M‖2 [42], the third line follows from 

submultiplicativity of the Frobenius norm, and the fourth line follows from ‖·‖2 � ‖·‖1 [42] 
and ‖ρ′AB‖1 = 1. Similarly for the second term. So, we obtain

∥∥∥∥∥πA(ρ
′
AB)−

∑
i

(Πi ⊗ I)ρ′AB(Πi ⊗ I)

∥∥∥∥∥
1

� 2dB
√
dAdB

∑
i

‖Π′
i −Πi‖2 .� (44)
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We next derive an upper bound for ‖Π′
i −Πi‖2. Let ξτA := ρ′A − ρA where τA is a traceless 

Hermitian operator with ‖τA‖2 = 1 and ξ � 0 is a scaling constant. We have

ξ = ‖ξτA‖2 = ‖ρ′A − ρA‖2 � ‖ρ′A − ρA‖1 � ‖ρ′AB − ρAB‖1 � ε,� (45)

where the first inequality follows from ‖·‖2 � ‖·‖1, and the second inequality follows from 
the contractivity of the trace norm. Now, notice that ‖Π′

i −Πi‖2 =
√
2(1− |〈i′|i〉|2). By non-

degenerate perturbation theory [41, 43], we express |i′〉 as |i′〉 = Zi
1
2 |ĩ′〉, where |ĩ′〉 is the un-

normalized perturbed state |ĩ′〉 = |i〉+ ξ|i(1)〉+ ξ2|i(2)〉+ . . . with |i(k)〉 being the k th order 
correction, and Zi is the normalization constant. Zi has the form

Z−1
i = 〈ĩ′|ĩ′〉 = 1+ ξ2

∑
j�=i

|〈j|τA|i〉|2

(λi − λj)2
+O(ξ3),� (46)

where λi denote the eigenvalues of ρA. Since λi − λj � ∆ > 0 for all i, j with i �= j by  
assumption (recall that ∆ is a constant determined by the spectrum of ρA), this perturbation 

series converges for sufficiently small ξ. Since Z
1
2
i = 〈i|i′〉 because of the structure of the  

perturbation series [43], for sufficiently small ξ, we have

1− |〈i|i′〉|2 = 1− Zi = ξ2
∑
j�=i

|〈j|τA|i〉|2

(λi − λj)2
+O(ξ3) � 2ξ2

∑
j�=i

|〈j|τA|i〉|2

(λi − λj)2
,

� (47)

where in the inequality we used that the higher-order terms approach zero more rapidly than 

the second-order term with ξ → 0, so they can be bounded by ξ2
∑

j �=i
|〈j|τA|i〉|2
(λi−λj)2

 for sufficiently 

small ξ. Equation (47) is guaranteed to hold for sufficiently small ε as well, since ξ is bounded 
from above by ξ � ε due to equation (45). Therefore, it holds for sufficiently small ε that

‖Π′
i −Πi‖2 =

√
2(1− |〈i′|i〉|2) �

√
2ξ

√√√√2
∑
j�=i

|〈j|τA|i〉|2
(λi − λj)2

�
√
2ξ

√∑
i,j |〈j|τA|i〉|2

∆
�

√
2ε
∆

� (48)

where the last inequality is due to equation (45) and ‖τA‖2 =
√∑

i,j |〈j|τA|i〉|2 = 1.

Plugging this result into equation (44) and then equation (37), we get

‖πA(ρ
′
AB)− πA(ρAB)‖1 �


2

√
2 d3Ad

3
B

∆
+ 1


 ε.� (49)

By the Fannes–Audenaert inequality [39, 40],

|S(πA(ρ
′
AB))− S(πA(ρAB))| �

1
2


2

√
2 d3Ad

3
B

∆
+ 1


 ε log(dAdB − 1) + H


1
2


2

√
2 d3Ad

3
B

∆
+ 1


 ε


 ,

� (50)

|S(ρAB)− S(ρ′AB)| �
ε

2
log(dAdB − 1) + H(ε/2),� (51)
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where H is the binary entropy function. By equation (36),

|D̄A(ρ
′
AB)− D̄A(ρAB)| �



√

2 d3Ad
3
B

∆
+ 1


 ε log(dAdB − 1) + H


1
2


2

√
2 d3Ad

3
B

∆
+ 1


 ε


+ H(ε/2).

� (52)

The source of discontinuity in the presence of degeneracies is essentially the first term 
of the right hand side of equation  (37): 

∑
i(Πi ⊗ I)ρ′AB(Πi ⊗ I) is not necessarily close to 

πA(ρ
′
AB).� □ 

Remark.  Using theorem 7, one can find an explicit form of ε to achieve a certain target acc
uracy E  >  0 for the diagonal discord, thereby obtaining an ε-δ statement of continuity. Since 
equation (34) is only applicable to sufficiently small ε, we restrict our attention to the regime 
of sufficiently small E and ε, which is sufficient for the sake of demonstrating continuity. Note 

that ε <
√
ε and H(ε) < 2

√
ε  for 0 < ε < 1. Writing a =

(√
2 d3Ad

3
B

∆ + 1
)
log(dAdB − 1), and 

b =

√√
2 d3Ad

3
B

∆ + 1
2 , we get |D̄A(ρ

′
AB)− D̄A(ρAB)| < (a+ 2b+

√
2)
√
ε. Therefore, to achieve 

|D̄A(ρ
′
AB)− D̄A(ρAB)| < E , it is sufficient to take ε <

(
E/(a+ 2b+

√
2)
)

2. Note that the 

inequalities in the above ε-δ-criterion are strict inequalities.

Locally nondegenerate states such that the local eigenbasis minimizes discord (and deficit), 
which we call π-optimal states, represent an important class of states such that the restriction 
to eigenbasis is indeed optimal. Note that all locally nondegenerate zero discord states are 
π-optimal states. The above continuity result indicates some special properties of π-optimal 
states. For example, it directly follows from theorem 7 that diagonal discord remains close to 
optimized discords in the vicinity of π-optimal states. Also, continuity of the optimal basis 
(termed ‘strong continuity’ [27]) is known to fail for discord and deficit. However, we conjec-
ture that strong continuity holds at π-optimal states.

5.  Generalizations

The above results can be generalized to a wide variety of simple discord-type measures defined 
by π, such as different distances and multi-sided measures, which can be seen as close variants 
of diagonal discord.

5.1.  Diagonal discord given by other distance measures

First, consider general distance measures besides relative entropy. Let δ be a nonnegative real 
function satisfying δ(ρ,σ) = 0 iff ρ = σ . Consider

D̄(ρAB)δ,πA := δ(ρAB,πA(ρAB))� (53)

as a discord measure defined by δ and the resource destroying map πA.
If δ satisfies δ(E(ρ), E(σ)) � δ(ρ,σ), D̄(ρAB)δ,πA is monotonically nonincreasing under 

XA(πA) [24]:

Corollary 8.  If δ is contractive, D̄(ρAB)δ,πA is monotonically nonincreasing under 
SC ∪ ISO on A.
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Furthermore, the continuity holds when δ is given by the Schatten-p  norm:

Theorem 9.  Let ρAB be a bipartite state in finite dimensions such that ρB = trAρAB has  
distinct eigenvalues, and the smallest gap is ∆. Suppose ‖ρ′AB − ρAB‖1 � ε where ε is  
sufficiently small, it holds that

∣∣∣D̄(ρ′AB)‖·‖p,πA − D̄(ρAB)‖·‖p,πA

∣∣∣ � 2


1+

√
2d3Ad

3
B

∆


ε.� (54)

Proof.  By definition,
∣∣∣D̄(ρ′AB)‖·‖p,πA − D̄(ρAB)‖·‖p,πA

∣∣∣ =
∣∣∣‖ρ′AB − πA(ρ

′
AB)‖p − ‖ρAB − πA(ρAB)‖p

∣∣∣
� (55)

� ‖ρ′AB − ρAB − (πA(ρ
′
AB)− πA(ρAB))‖p� (56)

� ‖ρ′AB − ρAB‖p + ‖πA(ρ
′
AB)− πA(ρAB)‖p� (57)

� ‖ρ′AB − ρAB‖1 + ‖πA(ρ
′
AB)− πA(ρAB)‖1� (58)

� 2


1+

√
2d3Ad

3
B

∆


ε,� (59)

where the first and the second inequalities follow from the triangle inequality, the third in-
equality follows from the monotonicity of Schatten norms ‖·‖p � ‖·‖p′ for p � p′, and the 
last inequality follows from the perturbation assumption and equation (49). Note that, as in 
theorem 7, ε needs to be sufficiently small so that ρ′A always remains nondegenerate and the 
perturbation series converges.� □ 

An ε-δ statement can be obtained in a similar manner as in the remark after theorem 7.

5.2.  Multi-sided diagonal discord

In the above, we focused on the one-sided discord measures. The results can be easily extended 
to multi-sided measures where we also make a measurement on system {Ak}nk=1 in such a way 
that it will not disturb the marginal state. Here, we assume that n is finite. Let ρ{Ak} be a com-
posite state over the systems A1, . . . ,An and ρAj be nondegenerate for all j = 1 . . . n. Denote 
π{Ak}(ρ{Ak}) =

∑
i1...in (⊗

n
k=1Πik) ρAB (⊗n

k=1Πik) where {|ik〉} is the local eigenbasis of sys-
tem Ak. Then we obtain the following.

Corollary 10.  D̄(ρ{Ak})δ,π{Ak}
 is monotonically nonincreasing under local operations in 

SC ∪ ISO.

Corollary 11.  D̄(ρ{Ak})δ,π{Ak}
, where δ is Schatten-p  norm or relative entropy, is continuous 

at states such that the local density operators being measured are nondegenerate.
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We note that the known discord-type quantities given by local measurement in the eigen-
basis belong to such generalizations when the local density operators being measured are 
nondegenerate. D̄(ρAB)S,πAπB on a bipartite state (where S denotes relative entropy) gives the 
measurement-induced disturbance [18], and D̄(ρAB)‖·‖2,πA gives the measurement-induced 
nonlocality [19] (the similar quantity given by geometric distance measure is investigated in 
[44]).

6.  Comparison with optimized quantum discord

The faithfulness, monotonicity and continuity properties shown above indicate that the diago-
nal discord is a reasonable measure of quantum correlation, even though it is easily calculable 
due to the natural, simplified strategy for determining the local measurement, in contrast to 
the original quantum discord and many variants. Here, we intend to gain further insights into 
the relation between these two quantities by numerically comparing them for an important 
class of two-qubit states, the symmetric X-states. Recall that the quantum discord introduced 
by Olliver and Zurek is defined similarly to equation (1) while the maximum is instead taken 
over all the local von Neumann measurements. The symmetric X-states we consider are the 
two-qubit states whose density matrices have the form




a 0 0 w
0 b z 0
0 z b 0
w 0 0 d


� (60)

where all the entries are real numbers. The states in this class are known to play an impor-
tant role in non-Markovian dynamics [12], and they also work as good benchmarks for the 
comparison because (very approximately correct) analytical formula for the quantum discord 
is known for this class of states [12, 31] while the states with X-state structure can cover the 
whole spectrum of the discord measure [35].

In figure 3, we show the comparison between quantum discord (DA(ρAB)) and diagonal 
discord (D̄A(ρAB)) for symmetric X-states randomly sampled from the geometry given by 

Figure 3.  Quantum discord (DA(ρAB)) and diagonal discord (D̄A(ρAB)) computed for 
the symmetric two-qubit X-states with the form of equation (60), randomly sampled 
from the uniform distribution induced by the generalized Bloch representation. The 
number of samples is set to 104.
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the generalized Bloch representation. The justification and technical details of this sampling 
scheme is given in appendix. The point is that the states sampled according to this distribution 
can be regarded as reasonably random (although there is no naturally distinguished uniform 
measure for mixed states). Recall that the diagonal discord is always an upper bound for the 
quantum discord (which is confirmed in figure 3). We also find that diagonal discord matches 
the optimized discord exactly for a significant fraction of the sampled states. That is, the opti-
mal measurement for discord is given by an local eigenbasis for such states. In our numerical 
experiment of 104 random samples, we find the fraction of such instances to be approximately 
32% (recall that this fraction is with respect to the distribution induced by the generalized 
Bloch representation; see appendix). This non-vanishing fraction highlights the special role 
of local eigenbases, as they typically only represent a zero-measure subset of the set of all 
local measurements. One might be worried about the large deviation of diagonal discord from 
quantum discord observed for some instances in figure 3. However, we stress that, now that 
diagonal discord is shown to be a valid faithful measure as explained in the above sections, 
one should regard optimized discord and diagonal discord as the measures corresponding to 
two different ways of characterizing the quantum correlation, and which measure is prefer-
able just depends on the physical or operational setting one is interested in (for instance, see  
[15, 20–22] for several scenarios in which diagonal discord plays the major role).

Although more thorough investigation would be necessary to draw a definite conclusion 
on generic states, we expect that a similar behavior would still be observed because of the 
capability of the X-states to cover the broad range of spectrum.

7.  Concluding remarks

Diagonal discord is an easily computable and natural measure of discord that has potentially 
wide application. Here we showed that diagonal discord and a variety of similar measures 
exhibit desirable mathematical properties of monotonicity and continuity in the generic 
case that the measured subsystem is nondegenerate. In particular, our analysis indicates the 
somewhat surprising result that diagonal discord is a monotonone under all local discord 
nongenerating qudit channels, d  >  2, and is very likely a monotone for discord nongenerating 
qubit channels as well. This result represents a nontrivial application of the theory of resource 
destroying map. Moreover, the direct thermodynamic interpretations of diagonal discord  
[15, 20, 21] suggests that diagonal discord may play a particularly important role in the 
resource theory of quantum correlation in general.
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Appendix.  Sampling symmetric X-states

In section 6, we intend to compare the values of diagonal discord and ordinary (optimized) 
discord of some generic class of states. In particular, we consider symmetric two-qubit 
X-states (which take the form of equation (60)), since the (very approximately) correct ana-
lytical expression of optimized discord is known [12, 31].
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To observe the generic behaviors, a scheme for randomly sampling symmetric two-qubit 
X-states states is needed. In particular, we need a distribution that is uniform in some sense to 
reasonably estimate the proportion of states such that the optimal basis for optimized discord 
is given by an eigenbasis, or equivalently, the optimized discord is exactly given by diago-
nal discord. For mixed states, there is no unique, naturally distinguished uniform probability 
measure [45, 46]. Here, we use the following simple method. We express the two-qubit state 
in terms of the generalized Bloch representation [46–49], and uniformly sample the allowed 
Bloch vector. Such methods based on the Bloch representation is expected to give rise to a 
reasonable and natural notion of uniform distribution of mixed states: for example, it is known 
that uniform sampling from the qubit Bloch ball corresponds to the Hilbert–Schmidt measure, 
a standard distribution of mixed states induced by the Hilbert–Schmidt metric or partial trac-
ing over the environment of equal size as the system [46]. For higher dimensions the intuition 
is similar.

The technical details of our scheme are given below. The generalized Bloch representation 
of a general two-qubit (4-dimensional) takes the following form:

R(�r) =
1
4
(I4 +

√
6�r · �Λ),

� (A.1)
where I4 is the identity matrix, �r = {ri}i=1,...,15, ri ∈ [−1, 1] is the generalized Bloch vector, 
and �Λ = {Λi}i=1,...,15, in analogy to Pauli matrices of SU(2) and Gell-Mann matrices of SU(3), 
are the 15 Hermitian, traceless generators of SU(4):

Λ1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , Λ2 =




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 , Λ3 =




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 ,

Λ4 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 , Λ5 =




0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0


 , Λ6 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 ,

Λ7 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 , Λ8 =

1√
3




1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0


 , Λ9 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 ,

Λ10 =




0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0


 , Λ11 =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 , Λ12 =




0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0


 ,

Λ13 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 , Λ14 =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 , Λ15 =

1√
6




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3


 .

They satisfy the orthogonality relation tr(ΛiΛj) = 2δij  (and also the standard commutation 
relations and Jacobi identities). The point is that they form a standard ‘orthonormal’ basis of 
Hermitian matrices in dimension 4, in analogy to the unit basis vectors in Euclidean space. 
Note that, in contrast to the basic Bloch representation for qubits, there exist matrices inside 
the unit ball of �r  with negative eigenvalues, i.e. do not represent valid density operators, in 
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higher dimensions [49]. So we need to add the constraint of positive semidefiniteness to guar-
antee that the matrix is a density matrix.

The constraints enforced by the form of symmetric X-states are the following. First, several 
entries are restricted to be zero, which implies:

r1 = r4 = r11 = r13 = 0.� (A.2)

Second, the entries are real numbers, which implies:

r2 = r5 = r7 = r10 = r12 = r14 = 0.� (A.3)

Finally, the b entries imply that

1
4
(1−

√
6r3 +

√
2r8 + r15) =

1
4
(1− 2

√
2r8 + r15),� (A.4)

so

r3 =
√
3r8.� (A.5)

Therefore, the Bloch representation of symmetric two-qubit X-states take the following form, 
in terms of the four free parameters r6, r8, r9, r15:

X(�r) =
1
4

(
I4 +

√
6
(√

3r8Λ3 + r6Λ6 + r8Λ8 + r9Λ9 + r15Λ15

))
,� (A.6)

and the matrix form is

X(�r) =
1
4




1+ 4
√
2r8 + r15 0 0

√
6r9

0 1− 2
√
2r8 + r15

√
6r6 0

0
√
6r6 1− 2

√
2r8 + r15 0√

6r9 0 0 1− 3r15


 .

�
(A.7)

To sample such states uniformly according to the Bloch geometry, we draw r6, r8, r9, r15 from 
the uniform distribution on [−1, 1], and further require that ‖�r‖2 = r26 + 4r28 + r29 + r215 � 1  
(so that the data point is on or inside the generalized Bloch ball) and that X(�r) is positive 
semidefinite (so that the data point represents a valid density operator).
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