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Abstract

Quantum discord measures quantum correlation by comparing the quantum
mutual information with the maximal amount of mutual information
accessible to a quantum measurement. This paper analyzes the properties
of diagonal discord, a simplified version of discord that compares quantum
mutual information with the mutual information revealed by a measurement
that correspond to the eigenstates of the local density matrices. In contrast
to the optimized discord, diagonal discord is easily computable; it also finds
connections to thermodynamics and resource theory. Here we further show
that, for the generic case of non-degenerate local density matrices, diagonal
discord exhibits desirable properties as a preferable discord measure. We
employ the theory of resource destroying maps (Liu Z-W et al 2017 Phys.
Rev. Lett. 118 060502) to prove that diagonal discord is monotonically
nonincreasing under the operation of local discord nongenerating qudit
channels, d > 2, and provide numerical evidence that such monotonicity holds
for qubit channels as well. We also show that it is continuous, and derive a
Fannes-like continuity bound. Our results hold for a variety of simple discord
measures generalized from diagonal discord.

Original content from this work may be used under the terms of the Creative
Commons Attribution 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.
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1. Introduction

Quantum discord measures a very general form of non-classical correlation, which can be
present in quantum systems even in the absence of entanglement. Since the first expositions
of this concept more than a decade ago [1, 2], a substantial amount of research effort has been
devoted to understanding the mathematical properties and physical meanings of discord and
similar quantities. Comprehensive surveys of the properties of discord can be found in [3, 4],
and [5-8] provide recent perspectives on the field.

The study of discord presents many challenges and open questions. One major difficulty
with discord-like quantities is that they are hard to compute or analyze. The canonical version
of discord is defined to be the difference between quantum mutual information (total correla-
tion) and the maximum amount of correlation that is locally accessible (classical correlation),
which involves optimization over all possible local measurements. Such optimization renders
the problem of studying discord and its variants (such as quantum deficit [9], geometric dis-
cord [10]) very difficult. In general, computing these optimized quantities is NP-complete
[11], and the analytic formulas are only known for very limited cases [12—14].

Diagonal discord is a natural simplification of discord, in which one looks at the mutual
information revealed by a measurement in the optimal eigenbasis (unique in the absence of
degeneracy) of the reduced density matrix of the subsystem under study [15]. That is, we
allow the local density matrix to ‘choose’ to define mutual information by the locally mini-
mally disturbing measurement. Because such measurement does not disturb the local states,
diagonal discord truly represents the property of ‘correlation’. Note that diagonal discord
needs to be distinguished from basis-dependent discord [3], which is given by a prefixed local
measurement and hence can be studied with tools from coherence theory [16]. By defini-
tion, diagonal discord is an upper bound for discord as originally defined, and is a faithful
discord measure, meaning that it takes zero only for states with zero discord, or equivalently
the classical-quantum states. Different entropic measures of discord (the optimized discord
and deficit [3, 17]) coincide with diagonal discord when the optimization procedure leads to
measurements with respect to a local eigenbasis. We note that quantities defined by a similar
local measurement strategy have been considered before: the so-called measurement induced
disturbance [18] and nonlocality [19] are close variants of diagonal discord defined by local
eigenbases as well, but crucially they are not faithful one-way discord measures, as opposed
to diagonal discord. Diagonal discord has been shown to play key roles in thermodynamic
scenarios, such as energy transport [15], work extraction [20], temperature estimation [21],
and local parameter estimation [22]. In contrast to optimized discord-type quantities, diago-
nal discord is in general efficiently computable. A similar case is the entanglement negativ-
ity [23], which, as a computable measure of entanglement, greatly simplifies the study of
entanglement in a wide variety of scenarios. Furthermore, diagonal discord naturally emerges
from the theory of resource destroying maps [24], a recent general framework for analyzing
quantum resource theories. We believe that the study of diagonal discord may forge new links
between discord and resource theory.

Because diagonal discord is defined without optimization over local measurements, several
of its important mathematical properties must be verified. First, monotonicity (nonincreasing
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property) under operations that are considered free is a defining feature of resource meas-
ures; identifying such monotones is a central theme of resource theory. A curious property of
discord is that it can even be created by some local operations [25, 26]. It is unclear whether
some other local operation can increase diagonal discord. Note that the monotonicity under
all nongenerating operations is arguably an overly strong requirement [4], which automati-
cally implies monotonicity for all theories with less free operations. Second, continuity is
also a desirable feature [4, 27], which indicates that the measure does not see a sudden jump
under small perturbations. From examples given in [27, 28], where the local states are both
maximally mixed qubits, we know that diagonal discord can generally be discontinuous at
degeneracies. However, the continuity properties otherwise remains unexplored. These two
unclear features represent the most important concerns of restricting to local eigenbases.

The purpose of this paper is to address the above concerns. We first find that, rather surpris-
ingly, diagonal discord exhibits good monotonicity properties under local discord nongenerat-
ing operations. The discord cannot be generated under local operation if and only if the local
operation is commutativity-preserving [26]. We show that local isotropic channels, a subset of
commutativity-preserving maps, commute with the canonical discord destroying map, which
implies that diagonal discord is monotone under them by [24]. By the classification of commu-
tativity-preserving operations [25, 26, 29], we conclude that monotonicity holds for all local
commutativity-preserving operations except for unital qubit channels that are not isotropic.
However, numerical studies imply that monotonicity holds for these channels as well. Then,
we prove that, when the local density operator is nondegenerate, diagonal discord is continu-
ous. We derive a Fannes-type continuity bound, which diverges as the minimum gap between
eigenvalues tends to zero as expected. At last, we explicitly compare diagonal discord with
the optimized discord for a large number of randomly sampled symmetric two-qubit X-states,
which are expected to reveal the generic behaviors of bipartite states, to better understand the
simplification of measurement strategy. We find that, for a significant proportion of states,
the optimal measurement that induces discord is given by a local eigenbasis, or equivalently,
diagonal discord matches the optimized discord. In other cases, the value of diagonal discord
could be significantly greater than discord. However, it should be emphasized that diagonal
discord should just be seen as a different way of measuring the same type of resource, which
correspond to different operational and physical meanings. In this sense, it is not very mean-
ingful to directly compare the values of diagonal discord and optimized discord.

2. Diagonal discord

Here, we define the notion of diagonal discord more formally. Without loss of generality, we
mainly study the one-sided discord of a bipartite state psp, where the local measurements are
made on subsystem A. As will be shown later, it is straightforward to generalize the results to
two-sided measurements or multipartite cases.

Let {II* = |i)4(i|} be a local eigenbasis of A, i.e. suppose ps = trgpap admits spectral
decomposition py = >, p;II. Note that the eigenbasis is not uniquely determined in the
presence of degeneracy in the spectrum. Define m4(pag) = >_,(II! ® Ip) pap(I2 @ I) =
ST @ (il pagli), where (i pag|i) := tra([II# @ Ig|pap). This describes the local measure-
ment in some eigenbasis {I14}.

Diagonal discord of psp as measured by A, denoted as D4 (pag), quantifies the reduction
in mutual information induced by 4. Since m4 does not perturb py, Dy equals the increase
in the global entropy. So diagonal discord represents a unified simplification of discord and
deficit. Formally,
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Da(pag) :=1(pas) — H}QXI(WA(PAB)) (1)

= minS(7a(pan)) — S(pas) 2)

where the optimization is taken over the local eigenbases spanning the possibly degenerate
subspace. (To avoid issues concerning the existence of optimal measurements, we use mini-
mum instead of infimum, following e.g. [2, 30, 31].) If the optimization is instead taken over
all local measurements, the first line equation (1) would reduce to discord (note that the two
original definitions of discord differ slightly in the local measurements allowed: Ollivier and
Zurek [1] used von Neumann measurements, while Henderson and Vedral [2] used POVMs),
and the second line equation (2) would reduce to deficit, which are inequivalent in general.

It is crucial that diagonal discord can also take the form of relative entropy. First notice that

S(ma(pag)) = —tr(ma(pag) log ma(pap)) = —tr (2:(1_114 ® Ig) pas(1L} @ Ip) log 7TA(PAB)) (3)

i

=-u (Z(H? ® Ig)pag log ma(pan) (11} @ 13)) “)
= —tr (Z(H? ® Ip)* pas log 7rA(PAB)> ®)
—— (Z(H? ® Ig) pas log FA(pAB)> (6)
= —tr (paglog ma(pag)) » O

where the second line follows from the fact that each (II# ® Iz) commutes with 74 (pap), the
third line follows from the cyclic property of trace, the fourth line follows from the idempo-
tence of IT} ® I, and the fifth line follows from the completeness relation y_,(II# ® I5) = 1.
Therefore, by equation (2),

Dy(pan) = II}FZHS(WA(PAB)) — S(pas) = H}g‘ntr{PAB (log pap — log ma(pag))} = H}rins(pABHWA(PAB))'

(®)
That is, diagonal discord of psp equals the relative entropy to w4 (pap), minimized over eigen-
bases 7, in the presence of degeneracies. From the above relation, it can be seen that diagonal
discord indeed obeys the faithfulness condition, that is, it only vanishes for classical-quantum
states (as the optimized discord [1, 32, 33]), the fixed points of m4. Note that, in general,
optimization is still needed within degenerate subspaces. It can be seen that, as long as the
degenerate subspace is small, diagonal discord can be efficiently computed. In this paper, we
are mostly concerned with the nondegenerate case, where m, is unique. Note that the (one-
sided version of) measurement-induced disturbance [18] and measurement-induced nonlocal-
ity [19, 34] are not faithful due to the absence of the above minimization within the degenerate
subspace [35], which is a crucial difference from the diagonal discord.
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3. Structure of 7 theory and monotonicity

In this section, we investigate the monotonicity property of diagonal discord. The main idea
is to employ the monotonicity theorem of commuting free operations, which comes from the
theory of resource destroying maps [24]. To do so, we need to analyze whether the discord-
free operations commutes with certain resource destroying map for discord. The cases of
qubits and higher dimensions turn out to be quite different and are discussed separately.

3.1. Resource destroying maps and the monotonicity theorem

Before going into details, we first briefly review the theory of resource destroying maps [24].
A map A is called resource destroying map if it maps all non-free states to free ones, and does
nothing on free states. It allows to classify quantum channels (completely-positive trace pre-
serving maps) into some classes depending on the condition that the channel satisfies. Let £ be
a channel. The nongenerating condition A o £ o A = £ o A gives the maximal nontrivial set of
free operations; a little thought will convince one that it captures the resource nongenerating
property of £. It turns out to be useful to consider a stronger condition A o & = & o A, which
we call the commuting condition. Let X(\) and X(\) denote the sets of operations satisfying
the nongenerating condition and commuting condition respectively. Note that any channel in
X(X) is also in X(\) but the converse is not true in general. This classification is very useful
when the monotonicity of resource measures is concerned. One can easily show the following:

Theorem 1 ([24]). Ler A be a resource destroying map. Then the distance-based resource
measure §(p, A(p)), where § is any distance measure satisfying the data processing inequality,
is nonincreasing under X(X) (channels that satisfy the commuting condition,).

3.2. Theory of discord destroying map m and the monotonicity of diagonal discord

When it comes to the discord where free states are classical-quantum states, 74 (defined in the
last section) is a natural discord destroying map. We stress that 4 is not a quantum channel.
(Since the set of classical-quantum states is nonconvex, any discord destroying map is nonlin-
ear [24].) By equation (8), taking 74 as the resource destroying map and the relative entropy
as the distance measure gives us diagonal discord.

3.2.1. Classification of discord nongenerating local operations. We consider operations acting
on subsystem A, the dimension of whose Hilbert space is denoted by d4. The largest possible
set of free operations is the set of discord nongenerating channels of the form £ ® Iz € X(74).
We call such £ local discord nongenerating channels and write the set of local discord non-
generating channels as X4 (74). Recall the definitions of the following classes of channels:

e Mixed-unitary channels (MU): EMV(p) =3~ p,U,.pU},, where {p,} is a probability
distribution (p,, € [0,1],>°, p,, = 1) and U, are unitary channels.

e Isotropic channels (ISO): £9(p) = (1 — v)W(p) + ~I/d, where ~ € [0, 1], d denotes
the dimension of the Hilbert space so //d is the maximally mixed state, and W is either
unitary or antiunitary.

e Semiclassical channels (SC): channels whose outputs are diagonal with a certain preferred
basis.
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SC ISO

(a) (b)

Figure 1. Structure of commutativity-preserving channels (X4 (4 )). Note that we define
SC to exclude the completely depolarizing channel. (a) Qubits: note that ISO C MU,
SC N MU includes e.g. completely dephasing channels; (b) Qudits with d > 2. Grey
area (ISO): in X4 (m4); dotted area (MU\ (ISO U SC)): numerical evidence of being in
Xa(ma); white area ( SC): not in Xy (ma).

It has been shown that £ € X4(74) if and only if € is commutativity-preserving [26], and the
set of commutativity-preserving channels consist of unital channels for qubits (d4 = 2) and
isotropic channels for qudits (d4 > 2) [25, 26, 29], in addition to all semiclassical channels
(which always destroy discord). Note that, for qubits, the set of unital channels is equivalent
to the set of mixed-unitary channels [36]. The structure of X4 (74 ) is depicted in figure 1. Note
that the completely depolarizing channel, which maps everything to the maximally mixed
state, is in SC as well as ISO. We exclude the completely depolarizing channel from SC so
that SC N ISO = (. For simplicity, p4 is assumed to be nondegenerate. We are interested in
the monotonicity of D4 under £ ® I for £ € X4(74).

3.2.2. m-commuting local operations and monotonicity. In general, identifying operations
under which some measure behaves as a monotone is a highly nontrivial task. Due to the relative
entropy form equation (8), the above monotonicity theorem (theorem 1) can be applied to diago-
nal discord: D, is monotonically nonincreasing under £ @ Iz € X(m4). Let X4 () denote the
set of local operations on A that commute with 74 together with identity operation on B. We now
identify operations that belong to X4 (m4). First, it is known that SC N X4 (m4) = 0 [24]. Liu
et al [24] also showed that unitary-isotropic channels are in X, (74 ). We analyze the remaining
cases for qubits and qudits separately, since they exhibit different structures in the theory of 7.

Qubit (da =2). For the qubit case, we derive an explicit local condition that determines if a
local mixed-unitary channel is in X4 (74 ):

Lemma 2. Consider the qubit mixed-unitary channel EMY(p) :Z#p#UﬂpU}L. Let

{|¥),[)} be some orthonormal basis, and {|n4),|n-)} be the common eigenbasis of
EMU(|9) (h]) and EMY(|) (¥]). Then EMY € X, (ma) if and only if

S Pl Ul 51U ) = 0 o
m
for any choice of basis {|{), |1)} and | = +, —.

Proof. Since qubit mixed-unitary channels are commutativity-preserving, all input states
with the same eigenbasis share a common output eigenbasis. Let {|0), |1)} be the eigenbasis
of ps. Denote the common eigenbasis of EMY(]0)(0]) and EMY(|1)(1]) as {|n+),|n-)}, and
the corresponding eigenvalues 7', 7" for i = 0,1, that is, EMV(|i) (i) = >°,_ _ njlm) (ml.

6
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Note that, since Y, EMY(|i)(i|) = 1, n) = 1 — n} for | = +, —. By linearity, £1Y(p4) admits a
spectral decomposition in the basis {|74), |[n-)}.
We first obtain
[ENY @ Ig] o wa(pag) Z eMY (i ® (il pasli) (10)
i=0,1
= Z Z 77;|771><771| ® (il pagli)- (11)
i=0,1 I=+,—
On the other hand,
a0 [ENY @ Igl(pas) = D lm)(ml © (ml[EX"Y @ I] (pas) mi) (12)
I=+.—
= Z Z Pu|771><771|®<771|<UM®I)PAB(UL®I)|771> (13)
o I=t.—

= 30> pulmlULD GIUL ) i) (| (il pasli) (14)

=01 p I=+,—

DD nilmdml @ (ilpasli)

i=0,1 I=+,—
D0 > pulml Ul GIU ) i) (il © il pasli)s (15)
i# p ==

where the first line follows from the spectral decomposition of EMY(p,). Therefore, the two
sides of the commuting condition equations (11) and (15) coincide if and only if

M+ Mt = (16)

for [ = +, —, where

M= py | U, 10) (LU ) O] pas| 1) (a7
)7

is a matrix defined on B. In other words, M, is a skew-Hermitian matrix: it has zero or pure
imaginary diagonal entries. Since the diagonals of (0|pap|1) can be real or imaginary depend-
ing on pap (for example, for pap = 3[|0+) + [1=)][(0+] + (1], (00|pap|10) = 1/4 and
(01]pag|11) = —1/4, but for pap = 2[|0+) + i[1-)][(0+] — i(1—]], (00|pag|10) = —i/4 and
(01|pag|11) = i/4), M, can only be the zero matrix so that the skew-Hermitian condition holds
for arbitrary psp. Furthermore, notice that the eigenbasis can vary arbitrarily depending on pp,

so equation (16) must hold for any basis. Therefore, equation (16) is reduced to the following

final condition. Let {|1),[1)} be some orthonormal basis, and {|n$), In¥)} be the common
eigenbasis of EMY(|¢) (1) and EMY(|4h) (1)|). Then EMV ® Ip and 74 commute if and only if

ZPH LU ) IUL ) = 0 (18)

for any choice of basis {|+), [¢)} and [ = +, —. O
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By explicitly using lemma 2, we can show that all isotropic channels are in X, (74):

Theorem 3. Fordy =2, ISO C X4 (ma).

Proof. Here we show that ISO C X, (m4) for qubits by directly employing the condition
introduced in lemma 2.

Unitary-isotropic channels are already shown to be in X, (74) [24]. One can confirm that uni-
tary-isotropic channels indeed satisfy the condition as follows. Consider a qubit unitary-isotrop-
ic channel u(p) = (1 —y)UpU' +~1/2 = (1 —y)UpU'" + 2(XpX + YpY + ZpZ + Ipl),
where X, Y, Z are defined to be Pauli matrices in the basis {|1), [/} }. Here the basis {|¢), [¢)}
can be arbitrarily chosen since the identity operator can be decomposed as the uniform Pauli
twirling [37, 38] in any basis. It is clear that|n, ) = {U|¢), U[¥)}. One can verify that U|t))
satisfies the condition as follows. The first term (unitary component) gives

(1 =N @IUTU) (U Ul) = 0. (19)
For the Pauli components, we obtain

(WIUTX[9) (XU ) + (UTY|0) (I YU) + (YU ZI) (0| ZU[0) + (|UT 1) (9| Uep)
= (UMY U ) — (|UT[0) (| U) — (|UT[) (| UNp) + (|UT|9) (| Ufp) =0, (20)

by plugging in the Pauli matrices. It can be seen that the terms corresponding to X, Y and Z,1
respectively cancel each other. The condition holds for U|y) as well. So we conclude that
u e Xu (7T A)-

We now show that any antiunitary-isotropic channel #(p) = (1 —y)Up"UT +~I/2
also satisfies the condition. Let {V|1), V|1))} be the basis with respect to which the trans-
pose is taken, where V is unitary. Notice that transpose operation can be written as
p" = 3(p+ XvpXy — YvpYy + ZypZy), where Xy =VXVI Yy =VYVI,Z, =VZV are
Pauli matrices in the transposition basis. So

I e ty 1
u(p) = TU(/)+XVPXV — YypYy + ZypZy)U +’Y§ 21

1
=(2-7); — (1= U (22)

We are now ready to examine whether u(p) satisfies the condition. Due to equation (20),
the first term gives zero. Notice that the new eigenbasis is |4 —) = {U’|¢), U'|¢)) }, where
U’ = UYy is unitary. So the second term also gives zero due to equation (19). So i € X4 (ma).

O

Therefore, combining with the fact that local semiclassical channels always output clas-
sical-quantum states (with zero discord and diagonal discord) by definition, we obtain the
following result for qubits:

Corollary 4. Ford, = 2, diagonal discord is monotonically nonincreasing under SC U ISO.

However, the condition in lemma 2 does not hold in general, which implies that
X4(ma) € MU for qubits. For instance, consider £(-) = 1I(-)I + 3H(-)H where H is the
Hadamard transformation in the computational basis {|0), |1)}. Straightforward calculation

gives |n4) = ﬁ(|0> + —1—52-\f5|1>) and |n_) = ﬁ(_l%@m) —|1)) where N is the normali-

zation factor. Then
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0.6 0.6 0.6
S05 205 205
J 04 . J 04 J 04 <
% 03 L S 03 S 03
S 02 - S 02 r S 02
0.1 ¢ A 0.1 0.1
%01 02 03 04 05 06 %07 02 03 04 05 06 % 07 02 03 04 05 06
Da(pan) Da(pan) Da(paB)
(a) (b) (c)
Figure 2. Comparison of diagonal discord of the input and output states of channels
£ = SQAU ® I such that EMU ¢ MU \XA(TFA). The black line DA(g(PAB)) = DA(PAB)
serves as a baseline for the comparison. The local mixed unitary channels
considered are (a) EMY(p) = 1p+ 2HpH, (b) EMY(p) = 1p+ 3R, (m/2)pRu(7/2)T
where Rp(7m/2) is the /2 rotation with respect to the axis n o (1,1,1), and (c)
EMY(p) = tp+ tRx(m/10)pRx(m/10)" + 1Rz(7/5)pRz(m/5)" where Ry and Ry are
rotations with respect to X axis and Z axis respectively. The choice of these channels is
arbitrary. The number of samples is set to 1000 for each channel.
4 1 2 1 N
> pilng | U 0|Uf Iny) = 310 (L) + 5 (e [ H) (= In4) = 35 (VS = 1) #0.
i

So this probabilistic Hadamard is not in X, (m4). We conjecture (which is not important for
our current purpose) that ISO = X, (7,4 ). That is, qubit mixed-unitary channels that are not
isotropic all fail to satisfy the condition.

For qubit channels that live in MU \ X4(m4), the current idea for proving monotonicity
do not apply. However, we provide numerical results which strongly indicate that diagonal
discord is monotone under such channels as well. Figure 2 displays the comparison between
diagonal discord before and after the action of several typical non-isotropic mixed-unitary
channels, for a large number of randomly generated input states. It can be seen that all data
points reside on the nonincreasing side. All other channels that we have analyzed exhibit simi-
lar behaviors. We put this as a conjecture at the moment:

Conjecture 1. For dy = 2, diagonal discord is monotonically nonincreasing under any lo-
cal discord nongenerating channel.

Qudit (da >2). The analysis for d4 > 2 turns out to be simpler. In fact, it can be shown in
general dimensions that ISO C X, (). The main step of the proof is to explicitly write out
the eigenbasis after an antiunitary transformation.

Theorem 5. Fordy > 2, ISO C X4 (ma). In particular, for dy > 2, ISO = X (7).

Proof. Here we provide a general proof of ISO C X4 (m4). Note that theorem 3 for qubit
systems is just a special case of this result. For d4 > 2 we have XA(TFA) = SCUISO [26, 29],
so ISO = XA(TFA).

Again, recall that unitary-isotropic channels are shown to be in X, (74 ) [24]. Here we show
that any antiunitary-isotropic channel @(p) = (1 —v)Up" Ut +~I/d is also in X4(ms) for
any dy4. Let {|t;)} be the complete orthonormal basis with respect to which the transposition
is taken. Suppose the input state psp reads pap = Zijkl gijua|t:) ;] ® |r)(ri|, where i,j and k,
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are respectively indices of A and B, and {|ry;)} denotes some basis of the Hilbert space of B.
Given that the spectral decomposition of A reads ps = Y, Aa|)(c, we have

ma(pan) = D D D dgwlelt) (glay|a)(al @ ro) (r 23)

ikl
= Z Z Z qija{arlts) (tjloo) (tml ) (aultn) [tm) (1] @ |ric) (ral, (24)
o ijmn ki
and so
1
g @ Ig) 0 Talpan) = (1 =) Y>> gywalalts) () (tmler) () Ultn) (1| UT @ |1 (] + vé ® pp.
o ijmn ki
: (25)
On the other hand,

_ 1
[a @ 1] (pag) = (1 — ) Z%:qz'jszVj)(fi\UT ® |re)(n| + ’Yi ® pBs (26)
ij

which involves a partial transpose. In order to express the action of w4, we need to find the
eigenbasis of the reduced density operator

I I
ta([in @ 5] (pan)) = (1= 9) 3 D aul) (lUT + 77 = (1= UV +9 2 (7
.z

ij
We essentially need to find the eigenbasis of p}. Rewrite py as ps = D 2oa Aaltila)
(alt)|6;) (4j]: thatis, 3= gy = 3, Aatile){a]t;). So we obtain

o= o5 = S0 ST Asnla) (el ) o o8

y

=323 dalalugla) iy 0

;
=> Aa <Z<a|fi>|ti>> <Z<a|fi>|fi>> , (30)

where we used the fact that eigenvalues A, are real for the second line. Therefore, {|a)}

with |@) = 3", (alf;)|t;) forms the eigenbasis of pj, and hence {U|a@)} is the eigenbasis of
trg([i#a @ Ip](pag))- So starting from equation (26), we obtain

ma o lin @ Ilpan) = (1= ) 3 > > du(@ls) (ul@)UlapalUt @ [ + Vé o
a ik

€2y

= (=YD > i) (6la@) () @) (@lim) Ulin) (6l UT @ Irid (] +

o jjmn ki

I
2, O re (32)

10



J. Phys. A: Math. Theor. 52 (2019) 135301 Z-W Liu et al

1

= (1= > awltla) (i) (@ltn) (tnl@) Ulta) (6 Ut @ |ri) (r + Vg @ rm (33)
a  jjmn kI
where we used (t;|a) = (4](3_;(e|t)|4;)) = (alt;) for the third line. By comparing to equa-
tion (25), we conclude that 74 o [ii4 ® I](pap) = [ita @ Ip] o Ta(pag), s0 it € Xa(ma). O

The complete result for qudits then follows, again by combining with the fact that local
semiclassical channels always output classical-quantum states:

Corollary 6. Fordy > 2, diagonal discord is monotonically nonincreasing under any local
discord nongenerating channel.

Figure 1 summarizes the structure of different classes of free local operations in the theory
of .

4. Continuity

As mentioned, [27, 28] brought up examples of states with maximally mixed marginals, where
diagonal discord can be discontinuous. The discontinuity essentially comes from the maxi-
mization within the degenerate subspace: one can perturb the state in the direction that is far
away from the optimal eigenbasis. However, in the absence of degeneracies, the eigenbasis is
unique, so the above phenomenon cannot occur. We first formally prove that diagonal discord
is indeed continuous when the local density operator being measured is nondegenerate, by
deriving a continuity bound in a similar spirit as the celebrated Fannes-type inequalities for
the continuity of the von Neumann entropy [39, 40]. The main idea is that = changes continu-
ously, which is also known as ‘weak continuity’ [27].

Theorem 7. Diagonal discord is continuous at states such that the local density operator
being measured is nondegenerate. More explicitly, let pag be a bipartite state in finite dimen-
sions such that py = trppap has distinct eigenvalues, and the smallest gap is A. Suppose pyg
is a perturbed state such that ||pjg — pasl||, < €. For sufficiently small € > 0, it holds that

\/2d3d3 1 [ 24/2d3d;
+1 | €log(dadg — 1)+ H 3 ———— +1]e| +H(e/2)

_ , 5 <
‘DA(pAB) DA(pAB)‘ = ( A A

(34)

where H(e) = —eloge — (1 — €)log(1 — €) is the binary entropy function.

Proof. In the following, we adopt matrix norms given by vectorization, i.e. for an opera-
tor M, [|M||, := [|vec(M)]
In particular, p = 1 yields the trace norm, and p = 2 yields the Frobenius norm, also known
as Hilbert—Schmidt norm or Schur norm.

Notice that

1Da(pag) — Dalpas)| = [[S(ma(pas)) — S(pap)] — [S(ma(pa)) — S(pas)| (35)

,- For density matrices, |-, is equivalent to the Schatten p-norm.

< |S(ma(phn)) — S(malpag))| + [S(pas) — S(P4s)] - (36)

1
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where the inequality follows from the triangle inequality. So, by the continuity of von Neu-
mann entropy, diagonal discord is continuous as long as the discord-destroyed state w4 (pap)
is continuous, that is, ma(p)z) and w4 (pap) remain close. We show that it is so when py4 is
nondegenerate. (Indeed, discontinuity can occur in the vicinity of degeneracies, since the lo-
cal eigenbases of perturbed states can be far from one another due to the nonuniqueness of
eigenbases within the degenerate subspace, and hence 74 (pap) cannot be continuous. This is
the essence behind the examples of discontinuities given in [27, 28].) Given py = >, piIl;,
the spectral decomposition of the perturbed marginal can take the form p, = >". p/II; with
perturbed eigenvalues and eigenvectors, since they change continuously [41]. By triangle in-
equality,

ma(phs) = D (I ® Dplyp (I @ 1)

i

+ Z(Hz‘ @ Dppp(IL @ 1) — 7a(pas)

i

lma(pas) — ma(pan)ll; <

1 1

(37
Since the trace distance is contractive [37], the second term directly satisfies
13°,(L @ 1 plyp(IL; @ 1) — WA(pAB)Hl < ||phg — pasll; < e The first term is also well
bounded due to the continuity of eigenprojection 74 [41]. Now we derive an explicit bound
for the first term. We assume that € is sufficiently small so that any p/; still remains nondegen-
erate. (This is always possible since the spectrum is bounded away from a degenerate one by
assumption.) By triangle inequality,

<AL @ Nphp( @ 1) — (I @ D (Ll @ DI, + (L @ Dphp (Ll @ 1) — (1L © D pl(L @ D)) -

Ta(Pag) — Z(Hi @ 1)pp(Il @ 1)

i

1

Y el =Y (1L o)1)

i i

(38)

1

i

(39)

Notice that
(I @ D) pap(I; @ 1) — (I @ D ph (T @ D, = (|11} @ 1) pjp[(1T; — 1) @ 1], (40)
< Vdadg |11 @ 1) plyp (1L — L) @ 1], (41)
< Vdadg (I @ D, |l papll, (AT — 11) @ 1], (42)
< dp/dadp |IT; — 11, (43)

where the second line follows from ||M||; < vrankM ||M]||, [42], the third line follows from
submultiplicativity of the Frobenius norm, and the fourth line follows from ||-||, < |||/, [42]
and ||p}y|/, = 1. Similarly for the second term. So, we obtain

<2dpy/dadp Yy |~ 10, (44)
1 i

ma(Phs) = Y (L @ D) p)p(IL @ 1)

i

12



J. Phys. A: Math. Theor. 52 (2019) 135301 Z-W Liu et al

We next derive an upper bound for ||II; — II;||,. Let £74 := p/; — pa Where 74 is a traceless

Hermitian operator with ||74||, = 1 and £ > 0 is a scaling constant. We have
&= l€mally = llph = pallz < llek = pally < lloas = paslly < e, (45)

where the first inequality follows from |||, < |-

;> and the second inequality follows from
T — ILifl, = +/2(1 = [(']9)]?). By non-
degenerate perturbation theory [41, 43], we express |i’) as |i') = Z;7|i"), where |7} is the un-
normalized perturbed state |i') = |i) 4 £[i()) 4 €2]i®) + ... with |i(Y)) being the k th order
correction, and Z; is the normalization constant. Z; has the form

the contractivity of the trace norm. Now, notice that

o . o\ 2
27 = i) =1+ 3 {2 o) o
i

where ); denote the eigenvalues of p,. Since A; — A; > A > 0 for all i,j with i #j by
assumption (recall that A is a constant determined by the spectrum of p,), this perturbation

1
series converges for sufficiently small £. Since Z7 = (i|i’) because of the structure of the

perturbation series [43], for sufficiently small £, we have

o |Gil7ali)|? |Gl7ali)|?
1— (i) =1-2=¢ 0) <2y 2,
; (A — /\1) ; (A=)

(47)

where in the inequality we used that the higher-order terms approach zero more rapidly than

the second-order term with £ — 0, so they can be bounded by &2 Zj 4i ‘&IZAL'))LZ for sufficiently

small £. Equation (47) is guaranteed to hold for sufficiently small € as well, since £ is bounded
from above by ¢ < e due to equation (45). Therefore, it holds for sufficiently small € that

i, ST
|W4m=mwwnmﬁQzZW”P\ﬂe—Kif<§wm

JF#L

where the last inequality is due to equation (45) and [|7al, = /> [{l7ald)* = 1.

Plugging this result into equation (44) and then equation (37), we get
/ 202 d}
I7a(hs) = maloas)l < [ 41 e (49)
By the Fannes—Audenaert inequality [39, 40],

24/2d;d 2/2d3d3
IS(ma(Pap)) — S(malpas))| < % (\/Ai + 1) elog(dadg — 1)+ H [; (\/7 + 1) e] .

A

S(pan) = S(ph)| < 5 log(dady — 1) + H(e/2). (51)

13



J. Phys. A: Math. Theor. 52 (2019) 135301 Z-W Liu et al

where H is the binary entropy function. By equation (36),

i . V28 | (2284
IDa(Pig) — Da(pan)| < ( N Tl clog(dadp — 1) + H A e + H(e/2).

A
(52)

The source of discontinuity in the presence of degeneracies is essentially the first term
of the right hand side of equation (37): ) .(II; ® I)p)z(II; ® I) is not necessarily close to

7a(Pp)- O

Remark. Using theorem 7, one can find an explicit form of € to achieve a certain target acc-
uracy E > 0 for the diagonal discord, thereby obtaining an e-§ statement of continuity. Since
equation (34) is only applicable to sufficiently small €, we restrict our attention to the regime
of sufficiently small £ and €, which is sufficient for the sake of demonstrating continuity. Note

/ 3 73
that e < /e and H(e) < 24/ for 0 < e < 1. Writing a = (ZAdAdB + 1) log(dadp — 1), and

3 73 — —
b= ZXAdB + 1, we get Da(plp) — Da(pag)| < (a+2b + v/2)\/c. Therefore, to achieve
|Da(plyg) — Dalpag)| < E, it is sufficient to take € < (E/(a +2b+ \@)) 2. Note that the

inequalities in the above e-d-criterion are strict inequalities.

Locally nondegenerate states such that the local eigenbasis minimizes discord (and deficit),
which we call m-optimal states, represent an important class of states such that the restriction
to eigenbasis is indeed optimal. Note that all locally nondegenerate zero discord states are
m-optimal states. The above continuity result indicates some special properties of m-optimal
states. For example, it directly follows from theorem 7 that diagonal discord remains close to
optimized discords in the vicinity of m-optimal states. Also, continuity of the optimal basis
(termed ‘strong continuity’ [27]) is known to fail for discord and deficit. However, we conjec-
ture that strong continuity holds at w-optimal states.

5. Generalizations

The above results can be generalized to a wide variety of simple discord-type measures defined
by 7, such as different distances and multi-sided measures, which can be seen as close variants
of diagonal discord.

5.1. Diagonal discord given by other distance measures

First, consider general distance measures besides relative entropy. Let 6 be a nonnegative real
function satisfying 6(p, o) = 0iff p = o. Consider

D(pag)s.my = 0(pan Ta(pas)) (53)

as a discord measure defined by ¢ and the resource destroying map 7.

If § satisfies §(E(p),E(0)) < 8(p, ), D(pag)s.x, is monotonically nonincreasing under
XA(ﬂ'A) [24]

Corollary 8. If 0 is contractive, D(pap)sx, IS monotonically nonincreasing under
SCUISO on A.

14
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Furthermore, the continuity holds when  is given by the Schatten-p norm:

Theorem 9. Let pap be a bipartite state in finite dimensions such that pg = ttapap has
distinct eigenvalues, and the smallest gap is A. Suppose ||php — pasll, < € where € is

sufficiently small, it holds that
J2did3

D (Pap) |11, 74 — D (PaB)|11|, 7a

Proof. By definition,

D(oan) |-, ma = D(PaB) |-, ima | = ’HPQB = ma(pap)ll, — llpas — ma(pas)ll,

(55)
< |1Phs — pan — (ma(Pig) — malpan))ll, (56)
< lpap — pasll, + [Ima(Pas) — Talpan)ll, (57)
< |lpas — paslly + 1ma(pias) — malpan)l; (58)
2|1+ r5— e (59)

where the first and the second inequalities follow from the triangle inequality, the third in-
equality follows from the monotonicity of Schatten norms |||, < ||-[|, for p > p’, and the
last inequality follows from the perturbation assumption and equation (49). Note that, as in
theorem 7, € needs to be sufficiently small so that p), always remains nondegenerate and the
perturbation series converges. O

An €-0 statement can be obtained in a similar manner as in the remark after theorem 7.

5.2. Multi-sided diagonal discord

In the above, we focused on the one-sided discord measures. The results can be easily extended
to multi-sided measures where we also make a measurement on system {A }7_, in such a way
that it will not disturb the marginal state. Here, we assume that 7 is finite. Let pg4,3 be a com-
posite state over the systems Ay, ...,A, and pa, be nondegenerate for all j = 1...n. Denote
T (Pian) = 2oi i (@i 10;,) pas (®5—,11;,) where {[i)} is the local eigenbasis of sys-
tem A;. Then we obtain the following.

Corollary 10. D(p(s,})
SCUISO.

Smiany is monotonically nonincreasing under local operations in

Corollary 11. ©(p(a,})s.x(s, , Where b is Schatten-p norm or relative entropy, is continuous
at states such that the local density operators being measured are nondegenerate.

15
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01 0.2 0.3 0.4 05 06 0.7 0.8 0.9
D4(paB)

Figure 3. Quantum discord (Da(pag)) and diagonal discord (Da(pag)) computed for
the symmetric two-qubit X-states with the form of equation (60), randomly sampled
from the uniform distribution induced by the generalized Bloch representation. The
number of samples is set to 10*.

We note that the known discord-type quantities given by local measurement in the eigen-
basis belong to such generalizations when the local density operators being measured are
nondegenerate. D (pap)s.x,x, ON a bipartite state (where S denotes relative entropy) gives the
measurement-induced disturbance [18], and Q(PAB)IH\MA gives the measurement-induced

nonlocality [19] (the similar quantity given by geometric distance measure is investigated in
[44]).

6. Comparison with optimized quantum discord

The faithfulness, monotonicity and continuity properties shown above indicate that the diago-
nal discord is a reasonable measure of quantum correlation, even though it is easily calculable
due to the natural, simplified strategy for determining the local measurement, in contrast to
the original quantum discord and many variants. Here, we intend to gain further insights into
the relation between these two quantities by numerically comparing them for an important
class of two-qubit states, the symmetric X-states. Recall that the quantum discord introduced
by Olliver and Zurek is defined similarly to equation (1) while the maximum is instead taken
over all the local von Neumann measurements. The symmetric X-states we consider are the
two-qubit states whose density matrices have the form

a 0 0 w
0 b z O
0 z b O (60)
w 0 0 d

where all the entries are real numbers. The states in this class are known to play an impor-
tant role in non-Markovian dynamics [12], and they also work as good benchmarks for the
comparison because (very approximately correct) analytical formula for the quantum discord
is known for this class of states [12, 31] while the states with X-state structure can cover the
whole spectrum of the discord measure [35].

In figure 3, we show the comparison between quantum discord (Dy(pap)) and diagonal
discord (D4 (pap)) for symmetric X-states randomly sampled from the geometry given by

16
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the generalized Bloch representation. The justification and technical details of this sampling
scheme is given in appendix. The point is that the states sampled according to this distribution
can be regarded as reasonably random (although there is no naturally distinguished uniform
measure for mixed states). Recall that the diagonal discord is always an upper bound for the
quantum discord (which is confirmed in figure 3). We also find that diagonal discord matches
the optimized discord exactly for a significant fraction of the sampled states. That is, the opti-
mal measurement for discord is given by an local eigenbasis for such states. In our numerical
experiment of 10* random samples, we find the fraction of such instances to be approximately
32% (recall that this fraction is with respect to the distribution induced by the generalized
Bloch representation; see appendix). This non-vanishing fraction highlights the special role
of local eigenbases, as they typically only represent a zero-measure subset of the set of all
local measurements. One might be worried about the large deviation of diagonal discord from
quantum discord observed for some instances in figure 3. However, we stress that, now that
diagonal discord is shown to be a valid faithful measure as explained in the above sections,
one should regard optimized discord and diagonal discord as the measures corresponding to
two different ways of characterizing the quantum correlation, and which measure is prefer-
able just depends on the physical or operational setting one is interested in (for instance, see
[15, 20-22] for several scenarios in which diagonal discord plays the major role).

Although more thorough investigation would be necessary to draw a definite conclusion
on generic states, we expect that a similar behavior would still be observed because of the
capability of the X-states to cover the broad range of spectrum.

7. Concluding remarks

Diagonal discord is an easily computable and natural measure of discord that has potentially
wide application. Here we showed that diagonal discord and a variety of similar measures
exhibit desirable mathematical properties of monotonicity and continuity in the generic
case that the measured subsystem is nondegenerate. In particular, our analysis indicates the
somewhat surprising result that diagonal discord is a monotonone under all local discord
nongenerating qudit channels, d > 2, and is very likely a monotone for discord nongenerating
qubit channels as well. This result represents a nontrivial application of the theory of resource
destroying map. Moreover, the direct thermodynamic interpretations of diagonal discord
[15, 20, 21] suggests that diagonal discord may play a particularly important role in the
resource theory of quantum correlation in general.
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Appendix. Sampling symmetric X-states

In section 6, we intend to compare the values of diagonal discord and ordinary (optimized)
discord of some generic class of states. In particular, we consider symmetric two-qubit
X-states (which take the form of equation (60)), since the (very approximately) correct ana-
lytical expression of optimized discord is known [12, 31].
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To observe the generic behaviors, a scheme for randomly sampling symmetric two-qubit
X-states states is needed. In particular, we need a distribution that is uniform in some sense to
reasonably estimate the proportion of states such that the optimal basis for optimized discord
is given by an eigenbasis, or equivalently, the optimized discord is exactly given by diago-
nal discord. For mixed states, there is no unique, naturally distinguished uniform probability
measure [45, 46]. Here, we use the following simple method. We express the two-qubit state
in terms of the generalized Bloch representation [46—49], and uniformly sample the allowed
Bloch vector. Such methods based on the Bloch representation is expected to give rise to a
reasonable and natural notion of uniform distribution of mixed states: for example, it is known
that uniform sampling from the qubit Bloch ball corresponds to the Hilbert—Schmidt measure,
a standard distribution of mixed states induced by the Hilbert—Schmidt metric or partial trac-
ing over the environment of equal size as the system [46]. For higher dimensions the intuition
is similar.

The technical details of our scheme are given below. The generalized Bloch representation
of a general two-qubit (4-dimensional) takes the following form:

R(F) = %(14 +V67- A),
(A.1)

are the 15 Hermitian, traceless generators of SU(4):

01 00 0 —i 0 0 1 0 00

1 000 i 0 00 0 -1 0 0

! 0000 oo oo | 7 o o 0 0|
00 00 0 0 00 0 0 0 0
0010 0 0 —i 0 00 00

00 00 00 0 O 0010
A4*1000’A5*1'000’A"*0100’
0000 00 0 O 00 00

00 0 0 1 0 0 O 00 0 1
oo —io ., ]l01 0 0 o000
A7*0i00’A8*3 00—20’A9*0000’
00 0 0 00 0 O 1 000
00 0 —i 00 0 0 000 O
000 O 0 0 0 1 0 0 0 —i
Alo*oooo’A“*OOOO’AH*OOOO’
i 00 0 01 00 0 i 0 0
0000 000 0 1 00 O
~[oo0oo0o0 o000 o0 . ]lo0o10 o0
M=o o001 " M={oo00 —i|" M=%|loo1 o
0010 00 i O 00 0 -3

They satisfy the orthogonality relation tr(A;A;) = 2J; (and also the standard commutation
relations and Jacobi identities). The point is that they form a standard ‘orthonormal’ basis of
Hermitian matrices in dimension 4, in analogy to the unit basis vectors in Euclidean space.
Note that, in contrast to the basic Bloch representation for qubits, there exist matrices inside
the unit ball of ¥ with negative eigenvalues, i.e. do not represent valid density operators, in
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higher dimensions [49]. So we need to add the constraint of positive semidefiniteness to guar-
antee that the matrix is a density matrix.

The constraints enforced by the form of symmetric X-states are the following. First, several
entries are restricted to be zero, which implies:

n=r=rm=r3=0. (A.2)
Second, the entries are real numbers, which implies:

r=rs=ry=rip=rip=ry4=0. (A.3)
Finally, the b entries imply that

1 1
Z(l—\/5r3+\@rg+r15):1(1_2\[2”3'*'”5)’ A4

SO

r3 = \@rg. (AS)

Therefore, the Bloch representation of symmetric two-qubit X-states take the following form,
in terms of the four free parameters r, 13, 19, r15:

. 1
X(F) = 1 (14 +V6 (\[’WSA3 + e + rgAg + roAg + r15A15)> , (A.6)
and the matrix form is
1+4ﬁrg+r15 0 0 \/grg
X(7) = 1 0 1 —2v2rg + 115 V6rs 0
_4 0 \/67'6 1*2\/57’34’7‘15 0
\/67’9 0 0 1-— 37‘15

(A7)

To sample such states uniformly according to the Bloch geometry, we draw rg, 13, r9, r15 from
the uniform distribution on [—1, 1], and further require that ||F||, = rg + 4r§ +r + 15 < 1
(so that the data point is on or inside the generalized Bloch ball) and that X(7) is positive
semidefinite (so that the data point represents a valid density operator).
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