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® Alcohols-amines-water  significantly
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effectively prevent amines from de-
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® This technology can utilize low-tem-
perature waste heat for CO, capture.
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ABSTRACT

The conventional regeneration processes for aqueous amine-based sorbents require high regeneration tem-
perature and are very energy intensive. In this work, a low-temperature and energy-saving CO, capture tech-
nology has been successfully developed by using alcohols-amines-water mixtures as sorbents. The addition of
certain amounts of alcohols [especially ethanol (EtOH)] to amines can significantly increase the CO, desorption
rates and cyclic CO, capture capacities in comparison with those of monoethanolamine-water, diethanolamine-
water, and methyldiethanolamine-water systems. The sorbent containing 40 wt% EtOH, 20wt% mono-
ethanolamine (MEA), and 20 wt% H,O can increase cyclic CO, capture capacity by 6.8 times and a maximum
improvement of 236 times in CO, desorption rate at 75 °C, which makes the use of the low-temperature waste
heat in power plants for CO, capture or self-supported CO, capture in power plants possible. To the best of
authors’ knowledge, this is the first time that Raman and Fourier transform infrared spectroscopy character-
izations have been used to confirm that ethanol in EtOH-MEA-H,0 can change the reaction pathway by forming
C,Hs0CO, ™ instead of HCO3 ™, which is difficult to decompose. In addition, the experimental results confirm
that the new technology can significantly avoid amine degradation — a common challenge of the state-of-the-art
CO,, capture technologies. Therefore, the new CO, capture technology is promising from the perspectives of
energy saving and environmental protection.
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1. Introduction

The continuous increase in atmospheric CO, concentration that
could be the cause of noticeable climate changes has drawn significant
attention [1,2]. What should people do with the potentially en-
vironmentally non-friendly force? The CO, capture, utilization, and
storage (CCUS) process is one of the most promising approaches to
reduce the CO, emissions [3-8], and amine-based scrubbing is the
state-of-the-art capture technology [7-9]. However, two vital short-
comings of state-of-the-art technology are its high-energy consumption
[10-12] and secondary environmental pollutions resulting from the
degradation of amines. The latter could potentially result in health and
ecosystem damages. For example, conventional post-combustion CO,
capture technology could reduce the overall energy efficiencies of
thermal power plants from ~45% to ~35%, a significant energy pen-
alty for both energy industries and eventually a large financial burden
for consumer [12,13]. Also, the health issue or cancers potentially re-
sulting from the emission of the volatile byproduct from amine de-
gradation cannot be neglected when CO, capture is widely applied in
the world [14,15]. Therefore, the development of new CO, capture
technology to overcome the two large challenges is imperative [16-19].

Accordingly, various new technologies including blends of amines
[20-24], catalytic regeneration [16,25-28], biphasic solvents [29-33],
and electrochemically mediated amine regeneration [18] have been
developed. However, there is a long way to go for the CO, capture
technologies to be applicable in power industries.

Any novel but practical sorption-based CO, capture technologies
should have two factors considered. One of them is fast CO, sorption
and desorption rates even at low temperatures, especially CO, deso-
rption rate, and the other one is the use of a large amount of low-
temperature heat in power plants by significantly lowering CO, deso-
rption temperature. One of the methods for significantly increasing the
CO,, desorption rate is to lower H,O usage in the CO, capture system.
However, the strategy slows CO, sorption. Thus, the effective method
for resolving the dilemma is to partly replace H,O with other solvents.
Barzagli et al. investigated the low-temperature regeneration of blends
of 2-amino-2methyl-1-propanol, alkanolamine, and non-aqueous sol-
vents [34]. A non-aqueous absorbent of piperazine in diethylene gly-
col has been proposed by Yu et al. for CO, capture with reduced re-
generation energy [35]. Lin et al. reported thata piperazine/
diethylenetriamine/methanol/water blend could have a good re-
generation efficiency at 80 °C with a low energy penalty [36]. Novek
et al. used aqueous ammonia and organic solvents to realize low tem-
perature (68 °C) regeneration of sorbent for CO, capture [37]. Yu et al.
studied the regeneration of MEA in methanol at temperatures below
100 °C [38]. Guo et al. reported that the regeneration of nonaqueous
amine-based absorbents at 100 °C could achieve ~50% reduction of
regeneration energy [39]. However, the low-temperature (espe-
cially < 80°C) regeneration of amine-based sorbent is still challen-
ging.

The consequence of CO, desorption at low temperature can lead to
the realization of using low-temperature waste heats in power plants,
natural integration of simultaneous consideration of the above-
mentioned two factors, and realization of environmentally benign and
cost-saving CO, capture operation. According to Gingerich et al., there
were about 18.9 billion GJy, of waste heat discharged by the thermal
power plants in the U.S. in 2012 [40]. The waste heat with a weighted
average temperature of 88.6 °C even accounts for more than 68% of the
total energy generated by the thermal power plants [37,40]. Also, a
huge amount of other low-grade industrial waste heat is available for
potential utilization [41,42]. Unfortunately, the conventional amine
scrubbing technology requiring as high as ~120°C for sorbent re-
generation cannot utilize these large and valuable waste heat. To fur-
ther advance the progress in lowering energy penalty and preventing
secondary environmental emission, a low-temperature (< 80 °C) CO,
capture technology with the characteristic of considering both factors is
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Table 1
Effect of different alcohols on CO, capture with MEA-based sorbents.

MEA solvents CO; loading after ~ CO, loading after =~ CO capture

abs. step® des. step® capacity”
MEA-H,0 0.484 0.465 0.0188
EtOH-MEA-H,0" 0.499 0.352 0.1468
Isopropanol-MEA- 0.501 0.376 0.1249
H,0"
Butanol-MEA-H,0" 0.488 0.445 0.0433

2 mol CO, mol~ ! MEA.
> 40 wt% alcohols.

developed in this research by using alcohols-amines-water mixtures as
sorbents. This work not only provides a promising method for the low-
temperature regeneration of amine-based sorbent but also opens a new
avenue for reducing energy penalty of CO, capture through using waste
heat as the energy source for sorbent regeneration.

2. Experiment
2.1. Materials

Monoethanolamine (Sigma-Aldrich, =99.0%), diethanolamine
(Sigma-Aldrich, =99.0%), methyl diethanolamine (Sigma-Aldrich,
=>99%), sodium bicarbonate (Fisher Scientific, ACS grade), and ethanol
(Decon Laboratories, USP grade) were used without further purification
in this work. 100 g liquid amine solution was prepared by mixing amine
with certain amounts of deionized water and EtOH. The typical com-
positions of the EtOH, MEA, and H,0 in EtOH-MEA-H,0 (EMH) sorbent
were 20 wt%, 40 wt%, and 40 wt%, respectively, while the corre-
sponding compositions MEA and H,O in MEA-H,0 (MH) sorbents were
20 wt% and 80 wt%.

CO5 (99.99%), O2 (99.999%), and N, (99.999%) gas were pur-
chased from US Welding Inc. A simulated flue gas with 10 vol% CO,,
10vol% O,, and 80 vol% N, was prepared by mixing individual gases
from their corresponding cylinders. A Parker mass flow controller
(Model 201) was used to control the gas flow from each gas cylinder.

2.2. CO; capture experiments

CO,, capture tests were performed using a setup as shown in Fig. S1.
100 g of 20 wt% amine-based sorbents were evaluated using a 200 ml
batch reactor with a magnetic stirrer. Tests with and without the ad-
ditions of EtOH were performed to evaluate the effect of EtOH. All CO,
absorption tests were performed at 25 °C and under local atmospheric
pressure (78 kPa, Laramie, WY). A stirring rate of 600 rpm was used for
all CO, absorption and desorption tests. The simulated flue gas (10 vol
% CO,, 10vol% O, and 80 vol% N,) with a flow of 500 ml/min was
employed for all the CO, absorption tests. The gas was bubbled into the
prepared sorbent via a muffler (< 100 pm). The CO, concentration of
outlet gas was measured by an online non-dispersion infrared gas
analyzer from California Analytical Instruments and recorded per
second with a data recorder. The quantities of CO, sorbed under various
conditions were obtained by integrating the recorded CO, absorption
profiles. The absorption times for the fresh 20 wt% amine-based sorbent
and the cyclic sorbents were 5400 s and 1800 s, respectively.

The CO, desorption experiments were performed by heating the
spent sorbents to ~75 °C without introduction of the carrier gas into the
reactor. A 500 ml/min of N, was used to mix with desorbed CO, gas
exiting the reactor and then the mixture gas was analyzed by the online
gas analyzer. The measured CO, concentration of the mixed gas was
recorded by the data recorder. The cooling liquid from a cooling unit
with its temperature being set as —1 °C was used to condense vapors in
the condenser. The time for the desorption step was 30 min. The fol-
lowing cyclic test was started after the sorbent was cooled to 25 °C.
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Fig. 1. Effect of different alcohols on CO, desorption from spent MEA. (a) The rates of CO, desorption from spent MEA sorbent without and with the presence of
40 wt% alcohols. (b) The increases in CO, desorption rate due to the presence of 40 wt% EtOH. (c) Effects of alcohols on the quantities of desorbed CO,. (d) The

increases in CO, desorption amount due to the presence of 40 wt% EtOH.

2.3. Thermal degradation experiments

The 20 ml of 20 wt% MEA solutions with and without EtOH loaded
with 0.4 mol of CO, per mole of amine were introduced into a 200 ml
Teflon-lined stainless-steel autoclave. The autoclave containing EMH
solution was put into an oven maintained at 80 °C for 120 h, while the
autoclave containing MH solution was put into an oven maintained at
80°C or 125°C for 120h. The solutions after degradation test were
analyzed by gas chromatography (GC) and gas chromatography-mass
spectrometry (GC-MS).

2.4. Analytical methods

An Advantage 785 Raman Spectrometer (758 nm laser and up to
60 mW radiation power) were used for Raman spectrum studies. The
sorbent samples with different desorption time were prepared by taking
~1ml solutions with a dropper at the different time and then trans-
ferring solutions into clear shell vials for further measurements. 5 wt%
NaHCO3-H,0-EtOH mixtures were prepared by mixing NaHCO; with
certain amounts of deionized water first and then adding the required
amount of EtOH into the mixtures. Thermo/Nicolet Magna-IR 760
Spectrometer was used to collect Fourier transform infrared (FT-IR)
spectroscopy of fresh and spent sorbents as well as the liquid of 5 wt%
NaHCO3-H,0-EtOH mixtures with various EtOH amount. GC analysis
was carried out on an Agilent 7890A GC system with an auto sampler,
flame ionization detection (FID) detector, and HP-5 column (30m,
0.32 mm i.d., 0.25 pm film thickness). The samples were diluted to 1/10
in EtOH before the analysis. GC-MS analysis was performed on an
Agilent 7890B GC system with an auto sampler, Agilent 2977B MSA
mass spectrometer, and DB-XLB column (30 m, 0.25mm i.d., 0.1 pm
film thickness).

3. Results and discussion
3.1. Effect of different alcohols on CO, capture

CO,, capture experiments with 100 g sorbents containing 20 wt%
amines were performed using the setup as shown in Fig. S1. The CO,
sorption and desorption with and without uses of EtOH, isopropanol,
and butanol were conducted to evaluate the effect of alcohols on the
CO, capture performances of 20 wt% MEA based sorbents. Table 1
summarizes the CO, loadings under the conditions of 5400s of ab-
sorption and 1800s of desorption as well as the cyclic CO, capture
capacities of MEA sorbents. The CO, loading of MH sorbent after the
absorption step is 0.484 mol CO, mol~' MEA. As shown in Table 1,
alcohols-MEA-H,0 sorbents with 40 wt% of EtOH, isopropanol, and
butanol all show slightly increased amounts of CO, absorption within
the same time — 5400s. The CO, desorption experiments were con-
ducted by heating the spent MEA sorbents to the desired desorption
temperature (~75 °C). The MH sorbent only shows a cyclic CO, capture
capacity of 0.0188 mol CO, mol~! MEA, an indication of the poor re-
generation ability of MH sorbent at such a low temperature. However,
alcohols-MEA-H,0 sorbents show excellent CO, desorption capacities
under the same temperature. Among them is EMH sorbent that desorbs
as high as 0.1468 mol CO, mol~! MEA, an increase by 6.8 times in
comparison to that of MH. It should be noted that this desorption ca-
pacity is already similar to 0.18 mol CO, mol ™! MEA achieved by the
practical implication of aqueous MEA sorbent regeneration under high
temperatures [43-45]. While, the performances of the sorbents with
40 wt% isopropanol and 40 wt% butanol are 5.6 and 1.3 times better
than that of MH, respectively. These results clearly demonstrate that the
addition of alcohols, especially EtOH, to MEA can significantly improve
the CO, desorption of MEA based sorbents.
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Fig. 2. Effect of the EtOH concentration on CO, desorption from spent MEA. (a)
The rates of CO, desorption from spent MEA sorbent with different EtOH
concentrations. (b) Effects of EtOH concentration on the quantities of desorbed
COs.

Table 2
Effect of the presence of 40 wt% EtOH on different amines for their CO, capture
capacities.

20 wt% amine CO, loading after =~ CO, loading after =~ CO, capture

solvents abs. step” des. step” capacity”
MEA-H,0 0.484 0.465 0.0188
EtOH-MEA-H,0" 0.499 0.352 0.1468
DEA-H,0 0.531 0.458 0.0726
EtOH-DEA-H,0" 0.491 0.173 0.3184
MDEA-H,0 0.398 0.385 0.0131
EtOH-MDEA-Hzob 0.365 0.159 0.2061

@ mol CO, mol~ ! MEA.
> 40 wt% EtOH.

Although the quantity of CO, desorbed is important, CO, desorption
rate reflecting the CO, desorption kinetics is more important to the
application of the sorption based CO, capture technology. Fig. 1a shows
the changes in the rates of CO5 desorption from the spent 20 wt% MEA
sorbents with and without 40 wt% alcohols with time. It is obvious that
the additions of EtOH, isopropanol, and butanol lead to great im-
provement in CO, desorption. While the spent MH sorbent maximally
desorbs CO, with the rate of 0.0213 mmol/s at 928 s, the CO, deso-
rption rate of the spent EMH sorbent reaches 0.137 mmol/s at as early
as 622s. The maximum CO, desorption rates of the spent isopropanol-
MEA-H,0 and butanol-MEA-H,0 sorbents are 0.135 and 0.0548 mmol/
s, respectively. Fig. 1b presents the percentage increase of CO, deso-
rption rate due to the addition of 40 wt% EtOH with time. Remarkably,
the increase of CO, desorption rate can be as high as 236 times at 614 s.
Therefore, EtOH can significantly enhance CO, desorption at a low
desorption temperature, making the regeneration of MEA based sorbent
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sorbents without and with uses of EtOH.

at 75°C practical. Such a low desorption temperature requirement
makes the utilization of the low-temperature waste heat of thermal
power plants in sorbent regeneration feasible, an effective pathway for
a significant reduction in the energy penalty resulting from CO, cap-
ture.

The variation of the quantities of CO, desorbed with time is given in
Fig. lc. The alcohols-MEA-water sorbents not only enhance the CO,
desorption kinetics but also increase the total quantities of CO, des-
orbed. Only 6.27 mmol CO, is desorbed from the spent MH sorbent,
however, the butanol-MEA-H,O sorbent desorbs 11.4 mmol CO,. The
rapid kinetics of the isopropanol-MEA- H,0O sorbent result in 11.5 mmol
of CO, desorption within 650 s and a high total CO, desorption amount
of 41.6 mmol. Extraordinarily, 48.9 mmol CO, is desorbed from spent
EMH sorbent, about 6.8 times higher than that of spent MH sorbent,
6.27 mmol. Percentage increase in CO, desorption quantity due to the
presence of 40 wt% EtOH is shown in Fig. 1d. In comparison with the
CO,, desorption of MH sorbent, the cumulatively desorbed CO, quantity
of the spent EMH is found to be 53 times higher than that of MH at
709s.

3.2. Effect of ethanol concentration on CO, capture

EMH sorbents with different EtOH concentrations from 0 to 50 wt%
were used to investigate the effect of EtOH concentration on CO, cap-
ture. The EtOH concentration did not significantly affect the CO, ab-
sorption of MEA based sorbents (Fig. S2 and Table S1). However, the
EtOH concentration significantly affects the CO, desorption of MEA
based sorbents. The desorption capacity of spent sorbents increased
significantly from 0.0188 to 0.1468 mol CO, mol ~! MEA with the in-
crease of EtOH concentration from O to 40 wt% at 75 °C. Further in-
crease of the EtOH concentration from 40 to 50 wt% barely increases
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To further illustrate the effect of EtOH concentration on the CO,
desorption, the CO, desorption rates of the spent 20 wt% MEA sorbents
with different EtOH concentrations are presented in Fig. 2a. It clearly
shows that the maximum CO, desorption rate of the sorbents increases
with EtOH concentration within 0-40 wt%. Moreover, the increase in
EtOH concentration shortens the time needed for reaching the max-
imum desorption rates. The addition of 10 wt% EtOH increases the
maximum desorption rate from 0.0213 to 0.0647 mmol/s and shortens
the required time from 928 to 771s. The spent sorbent with 40 wt%
EtOH showed the highest rate of 0.137 mmol/s among all tested MEA
sorbents. Fig. 2b further shows that the EMH sorbent improves deso-
rption kinetics and amount in the 0-40 wt% range of EtOH. The addi-
tion of 10 wt% EtOH improves the quantity of the CO, desorption from
6.27 mmol to 17.9 mmol, an increase by 1.9 times. The EMH sorbent
with 40 wt% EtOH only takes 702 s to desorb 6.27 mmol and desorbs

1400 1200

1000

1300
1200

Wavenumber (cm )

48.9 mmol of CO, at the end of desorption. The CO, desorption char-
acteristics of the MEA sorbent change barely with the further increase
in the EtOH concentration within 40-50 wt%. Clearly, the optimal
EtOH concentration is 40 wt% and thus is used for further studies.

3.3. Effect of ethanol on different amine-based sorbents

To investigate whether the EtOH also works for other amines, 20 wt
% diethanolamine (DEA) and 20 wt% methyl diethanolamine (MDEA)
based sorbents were also tested. Although the addition of EtOH im-
proves the CO, absorption of DEA and MDEA based sorbents within the
first 2500 s (Fig. S3), these two sorbents show slightly reduced CO,
loadings after 5400 s of absorption (Table 2). However, the addition of
EtOH significantly improves the CO, desorption capacity of DEA and
MDEA based sorbents. As shown in Table 2, the addition of 40 wt%
EtOH significantly increases the CO, desorption capacity of 20 wt%



Q. Lai, et al.
= 60 O Absorption
E i & O Desorption
= =l oqQ© 3
= o) @) 58 B o
=
2 40
£
< L
g
S 20F
%
=
< L
0 1 1 " 1 i 1 i 1

0 2 4 6 8 10
Cylcle number

Fig. 6. Stability of EtOH-MEA-H,0 sorbent with 20 wt% MEA, 40 wt% EtOH,
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DEA based sorbent from 0.0726 to 0.3184 mol CO, mol~! DEA, in-
creased by 3.4 times. For 20 wt% MDEA based sorbent, the EtOH-
MDEA-H,0 remarkably improves the desorption capacity from 0.0131
to 0.2061 mol CO, mol~! MDEA, increased by 14.8 times. The high
desorption capacity at 75 °C makes practical implication of this tech-
nology feasible.

The rates of CO, desorption from the spent sorbents with and
without alcohols are presented in Fig. 3a. Similar to that observed in
MEA based sorbents, the addition of 40 wt% EtOH significantly in-
creases the maximum CO, desorption rates of both DEA and MDEA
based sorbents with lower temperatures and shorter time. As shown in
Fig. 3a, desorption rate of the spent EtOH-DEA-H,O sorbent reaches
0.168mmol s~ ! at as early as 617 s, while the desorption rate of the
spent DEA- H,0 sorbent is only 0.00229 mmols~! at the same time
point. Similarly, EtOH-MDEA-H,0 sorbent shows the maximum deso-
rption rate of 0.0727 mmols~' at 643 s, about 36 times increase com-
pared with the maximum rate of 0.00190 mmol s~ * achieved by MDEA-
H,0 sorbent. The effect of EtOH on the quantity of desorbed CO, is
showed in Fig. 3b. Only 13.8 mmol CO, is desorbed from the spent
DEA-H,O0 sorbent, while the EtOH-DEA-H,0 sorbent significantly im-
proves CO, desorption amount to 60.6 mmol. The EtOH also increases
the desorbed CO, of MDEA based sorbent from 1.26 to 19.9 mmol.
These results clearly illustrate that the addition of EtOH can drastically
enhance the CO, desorption of different amine-based sorbents, in-
cluding primary amine, secondary amine, and tertiary amine, at low
regeneration temperatures.
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Table 3
Summary of thermal degradation experiment results of MEA based solvents.

20 wt% MEA Temperature (°C)  Time (h)  Change of FID peak area of
solvents MEA (%)

MEA-H,0 125 120 —26.2 * 0.6

MEA-H,0 80 120 0.8 + 2

EtOH-MEA-H,0 80 120 -06 =1

3.4. Mechanism

EtOH is a multifunctional additive in the novel CO, capture process.
Firstly, EtOH can change the reaction pathway by forming C;HsOCO5 ™~
instead of HCO3;~ that is difficult to decompose (Fig. 4). As shown in
Fig. 5a and b, unlike MH showing strong Raman peaks of both HCO5; ™
and CO52~, the spent EMH sorbent only shows a tiny HCO3;~ peak.
These results indicate that the reaction pathway in EMH is different
from that in MH. Raman experiments with NaHCO3 and EtOH mixtures
show that the HCO3;~ peak decreases with the concentration of EtOH
(Fig. 5C), a clear sign of confirming the interaction between HCO3; ™~ and
EtOH. While the HCO3; ™~ peak also decreases with the concentration of
EtOH in Fourier transform infrared (FT-IR) spectra (Fig. 5d) of NaHCO3
and EtOH mixtures, a new peak at 1308 cm ™! not associated with
HCO3;~ and EtOH increases with increase in the EtOH concentration
within 0 to 20 wt%. The new peak can be attributed to C;HsOCO5 ™
resulting from the reaction between NaHCO3 and EtOH [34,46]. Also,
EtOH can reduce the dielectric constant of the solvent and thus is able
to reduce the basic strength of the sorbent, which benefits the release of
acidic CO, from spent EMH sorbent at a lower temperature [47]. The
reduced basic strength may also lower the activation energy of CO,
desorption. Moreover, the addition of EtOH can lower the CO, con-
centration in the vapor phase, which can shift the equilibrium to lower
CO,, concentrations in MEA solvents and facilitate the CO, desorption at
lower temperatures [48].

3.5. Stability and thermal degradation

Amine thermal degradation is one of the problems caused by high-
temperature regeneration, which leads to the loss of amines and also
the increase in operation cost [49-51]. Moreover, the degraded amines
may react with nitrogen oxides to form some carcinogenic nitrosamines
in the atmosphere [14,15]. One of the advantages of the low re-
generation temperature achieved in this work is that it can minimize
the amine degradation and the environmental impacts caused by
thermal degradation. The stability of EMH was elucidated by 10 cycle
tests. As shown in Fig. 6, no obvious decrease in desorption
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Fig. 7. GC chromatograms of the MEA solutions before and after degradation experiments.
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performance is observed within 10 cycle tests. The stable cyclic per-
formance indicates that not only does MEA remain stable during the
cyclic tests but also EtOH and MEA vapor are well condensed without
significant loss. Gas chromatography (GC) analysis and infrared spec-
troscopy (IR, Fig. S7) analysis of the spent MEA solutions also confirm
that MEA and EtOH remain stable during the cyclic tests. Thermal de-
gradation experiments of the spent MEA solution with CO, loading of
0.4 mol CO, per mole of MEA were conducted at 80 °C and 125 °C for
120 h to further confirm the advantage of low-temperature regenera-
tion in this work. As shown in Fig. 7, the results from GC for both MH
and EMH solutions do not show detectable degradation products after
the experiment at 80 °C for 120 h. However, major degradation pro-
ducts such as N-(2-hydroxyethyl)-ethylenediamine (HEEDA), N-(2-hy-
droxyethyl)-imidazolidin-2-one (HEIA), 1-(2-hydroxyethyl)-piperazin-
2-one (1HEPO), and 4-(2-hydroxyethyl)-piperazin-2-one (4HEPO) are
detected for MH treated at 125°C for 120 h. The peak area of MEA
decreases by 26.2 *+ 0.6% after MH is treated at 125°C for 120h
(Table 3). While EMH treated at 80 °C for 120 h only shows a negligible
decrease of 0.6 + 1%. In sum, the low-temperature CO, desorption can
effectively reduce the amine solvent degradation rate and avoid en-
vironmental impacts caused by degradation byproducts, leading to
operation costs saving and environmental protection in the real appli-
cation.

4. Conclusions

EtOH has demonstrated its great potential in significantly improving
CO, desorption performance of primary, secondary, and tertiary amines
based sorbents at much low temperatures, which makes the utilization
of waste heat or low-value heat in power plants as the energy source for
sorbent regeneration possible. Three possible promoting mechanisms
are proposed and discussed in this work. Raman and Fourier transform
infrared characterizations demonstrated that the addition of ethanol
changes the reaction pathway of CO, capture. The resultant low-tem-
perature CO, desorption can effectively prevent amines from degrada-
tion, which is desired for reducing operation cost and alleviating the
negative environmental impacts of amine and its decomposition by-
products. The research could inspire people’s interests in developing
low temperature but fast CO, capture pathways.
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