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Abstract—Power consumption of multiuser (MU) precoding is a
major concern in all-digital massive MU multiple-input multiple-
output (MIMO) basestations with hundreds of antenna elements
operating at millimeter-wave (mmWave) frequencies. We propose
to replace part of the linear Wiener filter (WF) precoding matrix
by a Finite-Alphabet WF Precoding (FAWP) matrix, which en-
ables the use of low-precision hardware that consumes low power
and area. To minimize the performance loss of our approach,
we present methods that efficiently compute mean-square error
(MSE)-optimal FAWP matrices. Our results show that FAWP ma-
trices are able to approach infinite-precision error-rate and error-
vector magnitude performance with only 3-bit precoding weights,
even when operating under realistic mmWave propagation condi-
tions. Hence, FAWP is a promising approach to substantially re-
duce power consumption and silicon area in all-digital mmWave
massive MU-MIMO systems.

I. INTRODUCTION

Next-generation wireless systems are expected to achieve
unprecedentedly high data rates by combining the large band-
widths available at millimeter-wave (mmWave) frequencies [1]
with the high spectral efficiency provided by massive multi-
user multiple-input multiple-output (MU-MIMO) [2]. Unfortu-
nately, base-station (BS) architectures for MU-MIMO systems,
with hundreds of antenna elements, operating at the extreme
sampling rates needed for wideband mmWave communication
require excessively high power consumption and complex digital
circuitry. To keep the power consumption within acceptable
bounds, research has mostly focused on hybrid analog-digital
architectures [3]-[5]. Such hybrid BS architectures are, however,
limited in their beamforming capabilities [S]-[7], which leads
to reduced spectral efficiency. Per contra, all-digital BS architec-
tures [8]-[10] do not suffer from such such limitations. While it is
natural to believe that all-digital solutions are more power-hungry
than hybrid architectures, recent results show that—by reducing
the data-converter resolution—the radio-frequency circuitry and
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data-converters in an all-digital BS (i) have similar power con-
sumption as in a hybrid BS [7] and (ii) enable superior spectral
efficiency [9]. Despite these findings, the power consumption and
silicon area of baseband processing in all-digital BS architectures
are largely unexplored.

Finite-Alphabet Equalization:: In our recent paper [11], we
investigated the power consumption and silicon area required
for spatial equalization in the mmWave MU-MIMO uplink,
i.e., when the user equipments (UEs) transmit to the BS. We
considered a system with 16 UEs and 256 BS antenna elements
operating at a sampling rate of 2 G vectors/s. For such system, our
implementation results in 28 nm CMOS technology showed that,
even when considering data converters with only 7 bits of resolu-
tion, a simple, single-tap linear equalizer already requires 28 W
and 129 mm? [11]. For higher sampling rates or systems with
more BS antenna elements, UEs, or taps, power consumption and
area will increase even further. Hence, to reduce both power and
silicon area, we proposed finite-alphabet equalization in [11],
which uses coarsely quantized numbers to represent the entries of
the equalization matrices, while minimizing the post-equalization
mean-square error (MSE). In summary, we showed that finite-
alphabet equalizers enable a reduction in power and area by a
factor of 3.9x and 5.8 x, respectively, while offering competitive
error-rate performance to high-resolution equalizers [11].

Contributions: Similar to the case of equalization in the
uplink, the power consumption and silicon area of precoding
in the all-digital mmWave MU-MIMO downlink (BS transmits
to UEs) is expected to be critical, as high-dimensional data has
to be processed at extremely high rates. In order to reduce the
power consumption and silicon area of the precoding operation,
we apply the concept of finite-alphabet matrices used for linear
spatial equalization in [11] to linear precoding. We propose two
finite-alphabet precoding schemes to compute the matrix that best
mimics the linear Wiener filter (WF) precoder. To demonstrate
the effectiveness of what we call finite-alphabet Wiener filter
precoding (FAWP), we evaluate its performance in terms of
uncoded bit error-rate (BER) and error-vector magnitude (EVM)
for i.i.d. Rayleigh fading, and for line-of-sight (LoS) and non-
LoS mmWave channels.

Notation: Uppercase and lowercase boldface letters denote
matrices and column vectors, respectively. For a matrix A, its
Hermitian transpose, Frobenius norm, real and imaginary parts



are A7 ||A|p, R{A}, and S{A}, respectively. The M x M
identity matrix is Iy;. For the vector a, its kth entry, ¢5-norm, and
entry-wise complex conjugate are ay, ||al|,, and a*, respectively.
The kth standard basis vector is e. The set R contains the non-
negative real numbers. The signum function sgn(-) is defined
as sgn(a) = +1 fora € Ry and sgn(a) = —1 fora ¢ Ry, and
is applied entry-wise to vectors. The expectation operator with
respect to the random vector x is Ex|[-].

II. SYSTEM MODEL AND WF PRECODING

A. System Model

We focus on the downlink of a mmWave massive MU-MIMO
system in which a BS with B antennas serves U < B single-
antenna UEs in the same time-frequency resource. We consider a
narrowband scenario modeled by y = Hx+n, where y € CV is
the received vector, H € CU*B is the channel matrix, x € CB
is the precoded vector, and n € CY isi.i.d. circularly-symmetric
complex Gaussian noise with variance Ny per complex entry.
We assume that the channel matrix H is perfectly known to the
BS, and that the precoded vector x is subject to the following
average power constraint:

Ex [||x]3] < P. (1)

B. WF Precoding

The goal of precoding is to simultaneously transmit constel-
lation points s, € O tothe w = 1,...,U UEs while reducing
MU interference. Here, s, is assumed to have zero mean and
variance Fs and O denotes the constellation set (e.g., 16-QAM).
To transmit the vector s € OV, the BS maps the vector s into
a precoded vector x with the aid of channel state information.
The precoded vector x is crafted such that the UEs can form
an estimate s,, of the transmitted symbol s,, simply by scaling
the received signal y,. As in [12], [13], we assume that each
UE forms an estimate as §, = fy,. Here, § € Ry is a
precoding factor that can be estimated at the UE using pilot-
based transmission [13].

In what follows, we focus on linear precoders for which
x = Ps, where P € CB*U is the precoding matrix. While
the literature covers a range of optimization criteria for linear
precoding [14], in this work we shall limit ourselves to the design
of linear precoders that attempt to minimize the MSE between
the estimated symbols § and the transmitted symbols s:

MSE = Eq n[|ls — 8[13] = Es[|ls — BHx|3] + 8°UNo. (2)

Minimizing (2) subject to the power constraint in (1) results in
the so-called WF precoder [15], where the precoding matrix is
given by PV = 5 QWF with

QY = (HH + xVF1) HY, 3)
WF\H QWF
GWE U]]DVO’ and BVF — \/tr ((Q )PQ )Es' @

Itis important to realize that the matrix Q"¥ in (3) corresponds
to the solution of the matrix least-squares problem

QY = arg min Iy —HQE +x™[QlE. ()
QGCBXU
We can also obtain the columns " € CB ,u=1,...,U, of
the matrix QVF by solving
q," = arg min [, — Hq|j3 + &""[q]3. (6)
qech
By applying Woodbury identity [16] to (3), we also have
QY = HY (HHY + V1), 7

which is the solution to the following optimization problem:

QY = arg min Iz — QH|% +x™QIE. ()
QeCBxU
Thus, the rows ", b = 1,..., B, of Q" (where the super-
script r denotes a row vector) can be computed as
a;"" = arg min [leg’ — GH|Z + V|3 ©)

qre(cl X
The alternative optimization problems in (6) and (9) to compute
the matrix Q¥ will become useful in the next section.

III. FINITE-ALPHABET WF PRECODING (FAWP)

WF precoding computes x = PYFs = (pWF)~1QVFs
for each transmitted vector s. Unfortunately, digital precoding
circuitry will be power hungry and large as mmWave MU-MIMO
systems operate with high-dimensional data and extremely high
sampling rates. As a remedy, FAWP proposes to represent the
matrix QWVF using coarsely quantized numbers, with the objective
of reducing the hardware complexity of the matrix-vector product
Q"Fs. Unfortunately, a direct quantization of the matrix QW
typically leads to a significant error-rate degradation.

In order to design low-resolution matrices that closely mimic
the infinite-precision WF-precoding matrix Q“F, we propose
to use the so-called finite-alphabet matrices, initially proposed
in [11] for spatial equalization in the mmWave MU-MIMO
uplink. Since we will apply such finite-alphabet matrices to
imitate the WF-precoding matrix Q"¥, we will refer to them as
FAWP matrices. FAWP matrices introduce a few high-resolution
scaling factors that help to bring a low-resolution matrix to the
right scale. While the work in [11] studied one form of finite-
alphabet matrices, we will now consider two distinct FAWP
matrix structures: Pre-FAWP and post-FAWP.

A. Pre-FAWP Matrix
Definition 1. We define a pre-FAWP matrix as a B x U matrix
with the structure

Q = A diag(a”®), (10)

where A € XB*U s q low-resolution matrix with entries taken
from the finite alphabet X and o« € CY is a vector with per-UE
scaling factors.

By using a pre-FAWP matrix, the matrix-vector product Qs
becomes A (diag(a*)s). We call such matrix pre-FAWP as the U



entries of the transmitted symbol vector s are scaled by the entries
of a* before getting multiplied with the matrix A. Pre-FAWP
reduces the hardware complexity of Qs since the matrix A has
low-resolution entries. As an example, consider the extreme case
in which the entries of A come from the 1-bit finite-alphabet
X = {£1+}. For this example, multiplying the matrix A with
the vector diag(a*)s does not require hardware multipliers—
only adders and subtractors.

To calculate pre-FAWP matrices that best mimic QWF, we
solve the problem in (6) by assuming that Q has the form given
by (10). By doing so, we arrive at the following procedure:

Lemma 1. The problem in (5) is equivalent to solving the

following optimization problem for each UE w =1,...,U:

[Ha|3 + «""]ja|3
h7a[?

(1)

a, = arg min
acxB

Here, a,, is the uth column of A, hl, is the uth row of H, and

the associated optimal scaling factor is given by
h! a,

[Hay |3 + £ |ay 3

ay(a,) = (12)
Lemma 1 can be established by first plugging (10) into (6).
Then, we obtain (12) by taking the Wirtinger derivative with
respect to a,,. Substituting (12) in (6) gives (11); the proof is
analogous to that in [11] for finite-alphabet equalizers.

B. Post-FAWP Matrix

Definition 2. We define a post-FAWP matrix as a B x U matrix
with the structure

Q = diag(¢) 27,

where Z € XU* B is a low-resolution matrix with entries taken
from the finite alphabet X and ¢ € CP is a vector with per-BS-
antenna scaling factors.

13)

By using a post-FAWP matrix, the matrix-vector product Qs
becomes diag(¢)(Z*s). We call such matrix post-FAWP as
the B scaling factors in ¢ are applied after multiplying the
matrix Z with the transmitted symbol vector s. Post-FAWP
reduces the hardware complexity of Qs since the B x U matrix-
vector product Z's can be implemented using exclusively low-
resolution arithmetic units. The results of Z*’s are then entry-
wise scaled by ¢, which requires only B high-resolution scalar
multiplications.

Akin to the case of pre-FAWP matrices, post-FAWP matrices
that best mimic Q"F by solving the problem in (9) can be
calculated with the following procedure:

Lemma 2. The problem in (8) is equivalent to solving the fol-

lowing optimization problem for each BS antennab =1, ..., B:

=23 + ""|]3
hy72Z?

(14)

Zp = arg min
zeXxV

Here, zy, is the bth column of Z, hy, is the bth column of H, and
the associated optimal scaling factor is given by

hfzb
[ 23 + 177|213

The proof of Lemma 2 parallels that of Lemma 1.

In summary, both pre-FAWP and post-FAWP matrices are
composed by a low-resolution matrix and a set of scaling factors.
The difference is that a pre-FAWP matrix applies its U scaling
factors before the multiplication with the low-resolution matrix,
whereas a post-FAWP matrix applies its B scaling factors after
matrix multiplication. As B >> U in typical massive MU-MIMO
systems, a pre-FAWP matrix performs fewer high-resolution
scaling operations than a post-FAWP matrix. However, the
matrix-vector product is simpler with a post-FAWP matrix than
with a pre-FAWP matrix, since the vector has a lower resolution
as the symbols in s are not scaled yet. Thus, neither pre-FAWP
nor post-FAWP matrices have a clear advantage over the other
in terms of hardware complexity.! Nonetheless, both FAWP
matrix structures are expected to reduce hardware complexity
when compared to traditional precoding, as the low-resolution
matrices in both structures have coarsely quantized entries.

Co(zp) = 15)

IV. CoMPUTING FAWP MATRICES

We now propose different methods to compute pre-FAWP and
post-FAWP matrices defined in (10) and (13), respectively. We
also discuss means to estimate the precoding factor 3.

A. FAWP by Quantizing the WF-Precoding Matrix

For pre-FAWP and post-FAWP matrices, the scaling factors
are computed by means of (12) and (15), respectively, regardless
of how the low-resolution matrix (A for pre-FAWP and Z for
post-FAWP) is computed. Instead of solving the problems in
(11) or (14), a simple approach is to directly quantize the infinite-
precision matrix QVF. We call this approach FAWP-WF; more
specifically, pre-FAWP-WF and post-FAWP-WF when applied
to pre-FAWP and post-FAWP matrices, respectively.

We quantize QY following the method put forward in [11].
For pre-FAWP-WE, we first find the maximum value wp,x of
[[R{aVF}; |S{qVF}|] for each column q)'F of QWF. We then
divide the range [—wmax, Wmax) into uniform-width bins, where
each bin is represented by its centroid value. The centroid values
are scaled by the same factor so that they are integer numbers,
which preserves the objective value in (11) and results in the
low-resolution entries of the column a,,. For post-FAWP-WEF,
we apply the same procedure on a per-row basis: each quantized
row of QWVF corresponds to one row of Z .

Since the problems in (11) and (14) are NP-hard, FAWP-
WEF significantly reduces complexity. Concretely, FAWP-WF
requires the same complexity of O(BU?) as computing the
infinite-precision Q™F in (7). As a result, we will use FAWP-
WF as a baseline to evaluate the performance of the algorithm
proposed next, which tackles the problems in (11) and (14).

'In contrast, for the uplink considered in [11], post-equalization scaling
requires fewer scaling factors and does not increase the resolution of the received
vector.



B. FAWP via Forward-Backward Splitting (FBS)

Similar to finite-alphabet equalization matrices in [11], we can
also approximately solve the FAWP problems in (11) and (14)
using forward-backward splitting (FBS), an approach dubbed
FAWP-FBS. In what follows, we will present pre-FAWP-FBS—
an algorithm for computing the low-resolution part of a pre-
FAWP matrix starting from the problemin (11). The algorithm for
post-FAWP matrices, dubbed post-FAWP-FBS, can be derived
in a similar way starting from (14).

As in [11], we assume that the optimal objective value ~,, of
(11),w =1,...,U, is known. Then, solving the problem in (11)
is equivalent to solving the following problem:

WE
. = arg min J[Ha&3 + a3 - Zial. a6
acxb
As 7, is unknown, we will use it as a parameter that can be tuned
to empirically improve the performance of our algorithm.

We next relax the finite-alphabet constraint a € X B in (16) to
a € BB, where B represents the convex hull of X'. By doing so,
the all-zeros vector 05«1 becomes a trivial solution. To avoid
this solution, we follow the approach in [17] and include in (16)
the term —3 /a3, with § > 0, to encourage large entries in the
vector a. The resulting optimization problem is
KWVE —§

lall3. 7

a, = arg mianHéHg _Ju h'a? +
acBB 2 2

We are ready to apply FBS [18], [19]. FBS is an efficient

procedure for solving convex problems of the form a =

arg miny f(a)+ g(a), where both functions f and g are convex,

but f is smooth and g is not necessarily smooth or bounded.

FBS is an iterative method that runs for ¢, iterations or until
convergence [19]. In each iteration ¢, FBS computes

D — 50 _ T(t)Vf(é(t)),

a"* = prox, (\7(”1);7(”),

(18)
19)

where V f(a(")) is the gradient of the function f and {7(*) > 0}
is a sequence of step sizes. The proximal operator of the function
g is defined as prox,, (v; 7) = arg ming {rg(a) + illa—v|3}
[20].

Since the problem in (17) is non-convex, FBS is not guaranteed
to converge to an optimal solution. Nevertheless, we use FBS
to approximately solve (17) by setting f(a) = 0.5 Ha|3 —
0.5, |h,a|? and g(a) = Izs(a) + 0.5(x™F — §)||a||3, where
I35 (a) is the indicator function, which is zero if a € B” and
infinity otherwise. We use the indicator function to incorporate
the convex constraint a € B% in (17) into the function g(a).
These choices for f(a) and g(a) result in:

Vf(@) = H"Ha - v,(h})"h},a
prox, (7) = sgn(R{5}) min {u(ﬂ IR{T}, 1}
+ 7 sgn(3{5}) min {u<t>|%{ﬁ}\, 1} . @D

where () = (1471 (kVF —§))~! and (21) is applied element-
wise to v. Pre-FAWP-FBS can be summarized as follows:

(20)

Algorithm 1 (Pre-FAWP-FBS). Initialize a™V) with either
the maximum-ratio transmission (MRT) solution (h%,)H or
the pre-FAWP-WF solution a", and fix the sets of param-
eters {7}, {vW}, and {vD}. Then, for each iteration
t=1,2,..., tma, compute

S+ _ (IB _ORfr, - ,y(t)euef)H> a2
a0 = prox, (v(H), (23)

The result a't=+1) is projected onto the finite alphabet X
to obtain a,,. The optimal scalar «,, is computed using (12).
This procedure is repeated for each UEuw =1,...,U.

To tune the algorithm parameters {7}, {#(M}, and {v,},
we use a neural-network-based approach as put forward in [21].
Note that we have replaced 7, with () in Algorithm 2 in order
to (i) keep the algorithm general for different user locations and
(ii) to increase flexibility during optimization.

We now summarize post-FAWP-FBS, which can be derived
following similar steps as for the derivation of pre-FAWP-FBS.

Algorithm 2 (Post-FAWP-FBS). Initialize z") with either
the maximum-ratio transmission (MRT) solution hy, or the
post-FAWP-WF solution z)'*, and fix the sets of parameters
{r®Y, {v D}, and {yD}. Then, for each iteration t =
1,2,... tar, compute

g+ = (IU — rOH(Ip — yWeyel! )HH) 20 (24)
2T = prox, (v(Y), (25)

The result (1) is projected onto the finite alphabet X
to obtain zy,. The optimal scale (,, is computed with (12).
This procedure is done for each BS antennab =1, ..., B.

We note that both FAWP-FBS algorithms have the same
complexity of O(BU?) as WF and FAWP-WF.

C. Estimating the Precoding Factor

While the BS is able to compute the precoding factor /3
via (4) with a FAWP matrix Q instead of Q™F, the UEs need
to estimate such precoding factor in order to correctly estimate
the transmitted symbols in s. As shown in [13], estimation can
be achieved in a block-fading scenario by transmitting a pilot
symbol that is known at the UE side. Specifically, the BS will
transmit the pilot s, = v/E,, w = 1,...,U. Then, the uth UE
will receive y,, = ’1hﬁlqusu + é, + n,, where €, represents
residual interference from the other UEs. The objective now is for
the UE to estimate a 3, € R such that it generates an unbiased
estimate §,, of s, 1.e., §, = Buyu ~ s,. By taking into account
that the transmitted pilot symbol s,, is known to be v/E; and by
assuming that €, + n,, is zero-mean Gaussian distributed and
independent of s,,, the UE can compute a maximum likelihood
estimate (MLE) of Bu as [13]:

AME = R{V/E, /y.} (26)



100 100

iid. Rayleigh —— WF iid. Rayleigh —— WF
channel =@ Pre-FAWP-WF channel =@ Pre-FAWP-WF
Perfect 8 - A PostFAWP-WF Estimated § =4 Post:FAWP-WF
PR (1-bit FAWP) --@-- Pre-FAWP-FBS PR (1-bit FAWP) --@-- Pre-FAWP-FBS
® 107y - 4 PostFAWP-FBS & 107" H- - 4 PostFAWP-FBS
=) 8 e
Fi s g P -
= . 3 X C
“Wony e
—2 *s .
£ Forgery F 10 LR
E E
= = 3
z E L}
=} % =] *
S % S ",
g ‘-‘. g 10 %
X 8
| | 10-4 | | kX
8 12 16 0 4 8 12 16

normalized transmit power [dB] normalized transmit power [dB]

(a) Perfect knowledge of 3. (b) Estimated S using one pilot.

Fig. 1. Uncoded bit-error rate (BER) for a B = 256 BS-antenna, U = 16
UE, 16-QAM system operating in an i.i.d. Rayleigh fading channel. All the
FAWP-based approaches use 1-bit FAWP matrices. Pre- and post-FAWP-FBS
run for tmax = 10 iterations starting from the MRT solution H ,

While more pilots could be transmitted to form a better estimate
BMLE our results in Section V show that one pilot is sufficient
to achieve reliable downlink communication.

V. NUMERICAL RESULTS

We now present simulation results for both pre-FAWP and
post-FAWP matrices generated by either FAWP-WF or FAWP-
FBS. We perform a comparison in terms of BER and EVM
versus normalized transmit power, which we define as P/Nj.
For simplicity, we restrict our evaluation on a mmWave system
with B = 256 BS antennas serving U = 16 UEs.

A. 1-bit FAWP BER Performance and (3-Estimation

Fig. 1 shows the uncoded BER for the considered system
when using 16-QAM in an i.i.d. Rayleigh fading channel. For
the FAWP-based approaches, we use a 1-bit finite alphabet. In
Fig. 1(a), we consider the case where the UEs have genie-aided
access to the exact Bu precoding scaling factor. Here, we can
see that both FAWP-WF approaches result in an error floor. In
fact, FAWP-WF precoders are significantly outperformed by
pre-FAWP-FBS, which uses pre-FAWP matrices that minimize
the MSE in (2). However, post-FAWP-FBS is unable to perform
better than post-FAWP-WE, a surprising behavior that we observe
consistently across all our experiments. Hence, we exclude post-
FAWP-FBS in the ensuing discussion.

In Fig. 1(b), we consider the same scenario as before, but this
time Bu is estimated from a single pilot transmission as described
in Section I'V-C. We can see that all precoders (including the
infinite-precision WF) suffer from roughly a 2 dB loss. In what
follows, we assume that Bu is estimated using a single pilot.

B. Multi-Bit FAWP EVM Performance

Fig. 2 shows the EVM performance for the different FAWP
precoders and {1, 2, 3}-bit finite alphabets. The red dashed lines
represent the per-modulation EVM requirements as specified
by the 3GPP 5G NR standard [22]. Fig. 2(a) confirms what
we previously observed in Fig. 1: While FAWP-WF suffers
a high error-floor that prevents such approach from reaching
the EVM requirement even for QPSK, pre-FAWP-FBS almost

meets the EVM requirements for 64-QAM. By increasing the
number of bits used for the finite alphabet, the gap between the
FAWP approaches and the infinite-precision WF decreases—to
the point shown in Fig. 2(c) where all FAWP approaches meet the
64-QAM EVM requirement when using a 3-bit finite alphabet.
It is interesting to observe that post-FAWP-WF outperforms
pre-FAWP-WF when using more than 1-bit finite alphabets.
Nonetheless, post-FAWP-WF is unable to outperform pre-FAWP-
FBS.

C. Performance Under Realistic Propagation Conditions

We now evaluate FAWP under more realistic mmWave propa-
gation conditions. We use the QuaDRiGa channel model [23]
to simulate communication in the “mmMAGIC_UMi” scenario
when using a 60 GHz carrier frequency for both non-LoS and
LoS propagation conditions. We assume perfect power control,
i.e., all the users receive the same signal power. Our simulation
results are shown in Fig. 3. The trends we observed in the i.i.d.
Rayleigh fading scenario are confirmed: Pre-FAWP-FBS is able
to outperform both FAWP-WF precoders, although the gains
of the former (as well as the gap to the WF precoder) reduce
when using more bits for the finite alphabet. An interesting
observation is that, for the LoS scenario illustrated in Fig. 3(b),
the performance of pre-FAWP-WF is on par with that of post-
FAWP-WF, which was not the case for the non-LoS and i.i.d.
Rayleigh fading scenarios. Regardless, the results in Fig. 3
demonstrate that FAWP is useful in realistic mmWave channels,
which holds the promise of FAWP enabling efficient precoding
circuitry.

VI. CONCLUSIONS

To enable energy- and area-efficient circuitry, we have pro-
posed FAWP, an approach that replaces part of the linear WF
precoder with a low-resolution matrix. We have developed two
structures for FAWP matrices, pre-FAWP and post-FAWP, as
well as two methods to craft such matrices. Our simulation results
have shown that the sophisticated pre-FAWP-FBS algorithm is
able to significantly outperform a simple quantization of the
WE-precoding matrix, especially when using low-resolution
alphabets, and that it approaches the performance of the infinite-
precision WF precoder with as few as 3 bits of resolution. Pre-
FAWP-FBS accomplishes such feats while exhibiting the same
asymptotical complexity as the WF precoder. As for post-FAWP
matrices, our simulation results have shown that post-FAWP-FBS
does not outperform the simple quantization of the WF precoder.
We verified these results under realistic conditions, such as LoS
and non-LoS mmWave channels, as well as with estimation of
the precoding factor 5. Thus, FAWP matrices are a promising
approach to reduce the hardware complexity of precoding in
mmWave MU-MIMO systems. However, a hardware evaluation
is required, in order to quantify those reductions. Since our FAWP
approach operates with coarsely quantized numbers, such hard-
ware implementations could benefit from emerging processing-
in-memory architectures like the one proposed in [24].
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represent the EVM requirements established by the 3GPP 5G NR technical specification [22]. We consider FAWP using {1, 2, 3}-bit finite alphabets. For {2, 3}-bit
FAWP, pre-FAWP-FBS is initialized with H*H and runs for tmax = 5 iterations. The details for 1-bit pre-FAWP-FBS are given in Fig. 1.
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Fig. 3. Uncoded bit-error rate (BER) for a B = 256 BS-antenna, U = 16
UE, 16-QAM system operating in realistic mmWave channel models. 1-bit pre-
FAWP-FBS runs tmax = 10 iterations; {2, 3}-bit pre-FAWP-FBS run no more
than tmax = 5 iterations. Pre-FAWP-FBS is initialized with H¥ for all cases
but the {2, 3}-bit LoS ones, which use AVF from pre-FAWP-WF.
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