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Abstract—Massive multi-antenna millimeter wave (mmWave)
and terahertz wireless systems promise high-bandwidth commu-
nication to multiple user equipments in the same time-frequency
resource. The high path loss of wave propagation at such
frequencies and the fine-grained nature of beamforming with
massive antenna arrays necessitates accurate channel estimation
to fully exploit the advantages of such systems. In this paper,
we propose BEAmspace CHannel EStimation (BEACHES), a
low-complexity channel estimation algorithm for multi-antenna
mmWave systems and beyond. BEACHES leverages the fact
that wave propagation at high frequencies is directional, which
enables us to denoise the (approximately) sparse channel state
information in the beamspace domain. To avoid tedious param-
eter selection, BEACHES includes a computationally-efficient
tuning stage that provably minimizes the mean-square error of
the channel estimate in the large-antenna limit. To demonstrate
the efficacy of BEACHES, we provide simulation results for line-
of-sight (LoS) and non-LoS mmWave channel models.

I. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output

(MIMO) [1] and millimeter-wave (mmWave) communica-

tion [2], [3] are among the key technologies of next-generation

wireless systems. The high path loss of wave propagation

at mmWave or terahertz (THz) frequencies and the fact

that massive MU-MIMO enables fine-grained beamforming,

requires the basestations (BSs) to acquire accurate channel

state information (CSI) [4], [5]. In addition, the trend towards

low-precision data converters in all-digital massive MU-MIMO

BSs to reduce power, interconnect bandwidth, and costs [6]

renders accurate channel estimation increasingly important.

At mmWave or terahertz frequencies, wave propagation is

highly directional and real-world channels typically comprise

only a small number of dominant propagation paths [2], [3].

These unique properties enable the deployment of channel

estimation algorithms that effectively suppress noise [7]–[9].

As a consequence, compressive sensing (CS)-based methods

have been proposed for mmWave channel estimation in [10],

[11]. Most of such methods use a discretization procedure

of the number of propagation paths that can be resolved in

the beamspace domain [12], resulting in the well-known

basis mismatch problem [13]. Methods that perform off-

grid CS, such as atomic norm minimization (ANM) [14]

or Newtonized orthogonal matching pursuit (NOMP) [15],
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Fig. 1. Massive MU-MIMO mmWave uplink system: U UEs transmit pilots
over a mmWave/THz wireless channel, which are used to estimate the channel
vectors associated to each UE at the B-antenna basestation.

avoid this basis mismatch problem. These methods, however,

exhibit excessively high complexity, which renders the design

of corresponding hardware designs challenging.

A. Contributions

We propose a new channel estimation algorithm for massive

MU-MIMO mmWave/terahertz communication systems that re-

lies on Stein’s unbiased risk estimator (SURE). Our algorithm,

called BEAmspace CHannel EStimation (BEACHES), exploits

sparsity of mmWave/terahertz channels in the beamspace

domain and adaptively denoises the channel vectors at low

complexity. We prove that BEACHES minimizes the mean

square error (MSE) of the channel estimate in the large-antenna

limit. We evaluate BEACHES for LoS and non-LoS mmWave

channels and demonstrate that it performs on par with ANM

and NOMP but at orders-of-magnitude lower complexity.

B. Notation

Lowercase and uppercase boldface letters designate column

vectors and matrices, respectively. For a vector a, the kth entry

is [a]k = ak; the real and imaginary parts are [a]R = aR and

[a]I = aI , respectively. The transpose and conjugate transpose

of matrix A are AT and AH, respectively. A complex Gaussian

vector a with mean vector m and covariance matrix K is

written as a ∼ CN (m,K) and its probability density function

(PDF) as fCN (a;m,K). A real Gaussian vector a with mean

vector m and covariance matrix K is written as a ∼ N (m,K)
and its PDF as fN (a;m,K). The expectation operator is E[·].

II. SYSTEM MODEL AND BEAMSPACE REPRESENTATION

A. System Model

We consider an all-digital mmWave/THz massive MU-

MIMO uplink system as illustrated in Fig. 1. The BS is

equipped with a B-antenna uniform linear array (ULA) and



communicates with U single-antenna user equipments (UEs) in

the same time-frequency resource. For simplicity, we focus on

pilot-based channel estimation for flat-fading channels, where

the BS estimates the B-dimensional complex channel vector

h ∈ C
B for each UE. By assuming that (i) wave propagation

is predominantly directional [4], [16], and (ii) the distance

between UEs and BS is sufficiently large, the channel vectors

in the antenna domain can be modeled as follows [17]:

h =
L−1
∑

ℓ=0

αℓa(Ωℓ), a(Ω)=
[

ej0Ω, ej1Ω, . . . , ej(B−1)Ω
]T
. (1)

Here, L refers to the total number of paths arriving at the

antenna array (including a potential LoS path), αℓ ∈ C is

the complex-valued channel gain of the ℓth path, and a(Ωℓ)
represents a complex-valued sinusoid containing the relative

phases between BS antennas, where Ωℓ ∈ [0, 2π) is determined

by the incident angle of the ℓth path to the antenna array. We

model the estimated channel vector in the antenna domain as

y = h+ e, where e ∼ CN (0B×1, E0IB) represents channel

estimation error with variance E0 per complex entry.

B. Beamspace Channel Vector Denoising

The channel vectors h as modeled in (1) are a superposition

of L complex-valued sinusoids. Hence, it is useful to transform

the vector h into the discrete Fourier transform (DFT) domain,

also known as the beamspace domain, ĥ = Fh, where F is

the B×B unitary DFT matrix. In the beamspace domain, each

entry of ĥ is associated to a specific incident angle with respect

to the BS antenna array [12]. If the number of paths L is

smaller than the number of BS antennas B, then the beamspace

channel vector ĥ will be (approximately) sparse [8]. This

key property enables the use of denoising algorithms. More

specifically, by transforming y into the beamspace domain

ŷ = Fy = ĥ+ ê, where ê = Fe has the same statistics as e,

one can suppress noise while preserving the strong beamspace

components. Prominent methods for beamspace denoising are

ANM [14] and NOMP [15], which require high complexity.

III. BEACHES: BEAMSPACE CHANNEL ESTIMATION

A. Channel Vector Denoising via Soft-Thresholding

A widely-used sparsity-based denoising method is the least

absolute shrinkage and selection operator (LASSO) [18], [19],

which corresponds to the following optimization problem:

ĥ⋆ = arg min
ĥ′∈CB

1
2‖ŷ − ĥ′‖22 + τ‖ĥ′‖1. (2)

Here, τ ∈ R+ is a suitably-chosen denoising parameter. The

solution to (2) in the complex case is the well-known soft-

thresholding operator η(ŷ, τ) defined as [20, App. A]

[η(ŷ, τ)]b =
ŷb
|ŷb|

max {|ŷb| − τ, 0}, b = 1, . . . , B, (3)

where we define y/|y| = 0 for y = 0. For sparsity-based

denoising via soft-thresholding, the performance strongly

depends on the choice of the denoising parameter τ [18],

[21]. In wireless systems, it is particularly important to design

robust methods to select this parameter, as many factors such

as the propagation conditions, the number of arriving paths,

and the signal power can vary widely over time.

B. Computing the Optimal Denoising Parameter

In what follows, we are interested in the optimal parame-

ter τ⋆ that minimizes the estimation MSE defined as

MSE =
1

B
E

[

‖ĥ⋆ − ĥ‖22
]

, (4)

where ĥ⋆ = η(ŷ, τ⋆) is the associated denoised beamspace

vector. Determining the optimal parameter τ⋆ requires knowl-

edge of the noiseless beamspace vector ĥ, which is unknown.

To avoid the need for knowing the ground truth ĥ, we propose

to use Stein’s unbiased risk estimate (SURE) [18] as a proxy

for the MSE function. The following result provides SURE in

the complex domain and shows that it is an unbiased estimator

for the MSE. The proof is given in Appendix A.

Theorem 1. Let ĥ ∈ C
B be an unknown vector and ŷ ∈ C

B a

noisy observation vector distributed as ŷ ∼ CN (ĥ, E0IB). Let

µ(ŷ) be an estimator of ĥ from ŷ that is weakly differentiable

and operates element-wise on vectors. Then,

SURE =
1

B
‖µ(ŷ)− ŷ‖22 + E0

+
1

B
E0

B
∑

b=1

(

∂[µR(ŷ)]b
∂[ŷR]b

+
∂[µI(ŷ)]b
∂[ŷI ]b

− 2

)

(5)

is an unbiased estimate of the MSE, i.e., E[SURE] = MSE.

The following theorem shows that SURE for the soft-

thresholding operator η(ŷ, τ) converges to the MSE in the

large-antenna limit B → ∞. The proof is given in Appendix B.

Theorem 2. For the soft-thresholding function µ(ŷ) = η(ŷ, τ)
in (3), SURE in (5) is given by1

SUREτ =
1

B

∑

b:|ŷb|<τ

|ŷb|2 +
1

B

∑

b:|ŷb|>τ

τ2 + E0

− E0

B
τ

∑

b:|ŷb|>τ

1

|ŷb|
− 2

E0

B

∑

b:|ŷb|<τ

1, (6)

which, in the limit B → ∞ converges to the MSE, i.e.,

lim
B→∞

SUREτ = MSE. (7)

SURE in (6) is independent of the true beamspace channel

vector ĥ. The expression (6) only depends on the magnitudes

of the observed beamspace channel vector ŷ, the channel

estimation error variance E0, the number of BS antennas B,

and the denoising parameter τ . Thanks to (7) and the fact

that B is large in massive MU-MIMO systems, we can use

SURE as a surrogate to minimize the MSE and to determine the

optimal denoising parameter. While no closed-form expression

for the minimum of (6) is known, reference [21] proposes

a bisection procedure to approximate the optimal value of a

similar expression for sparse recovery. We next propose an

efficient algorithm that computes the optimal parameter τ⋆

using a deterministic procedure with complexity O(B log(B)).

1As discussed in Appendix B, the value of SURE is undefined for τ = ŷb,
b = 1, . . . , B, due to the non-differentiability of the function η.



Algorithm 1 BEACHES: BEAmspace CHannel EStimation

1: input ŷ = FFT(y) and E0

2: S = 0 and SUREmin = ∞
3: ŷs = sort{|ŷ|, ‘ascend’}
4: V =

∑B
k=1 (|ŷsk|)−1, ŷs0 = 0, and ŷsB+1 = ∞

5: for k = 1, . . . , B + 1 do

6: τ = max{ŷsk−1,min{ŷsk, E0

2(B−k+1)V }}.
7: SUREτ = S

B
+ (B−k+1)

B
τ2+E0− E0

B
τV −2E0

B
(k−1)

8: if SUREτ < SUREmin then

9: SUREmin = SUREτ

10: τ⋆ = τ
11: end if

12: S = S + (ŷsk)
2 and V = V − (ŷsk)

−1

13: end for

14: [ĥ⋆]k = ŷk

|ŷk|
max {|ŷk| − τ⋆, 0}, k = 1, . . . , B

15: return h⋆ = IFFT(ĥ⋆)

C. The BEACHES Algorithm

Reference [18] outlines an efficient procedure to minimize

SURE for real-valued wavelet denoising. We propose a similar

strategy to minimize (6) for the complex-valued case with soft-

thresholding. Instead of continuously sweeping the denoising

parameter τ in the interval [0,∞), we first sort the absolute

values of the vector ŷ in ascending order which we call ŷs.

We then search for the optimal denoising parameter τ only

between each pair of consecutive elements of the sorted vector,

i.e., τ ∈
(

ŷsk−1, ŷ
s
k

)

for k = 1, . . . , B+1. In each such interval,

SURE is a quadratic function in τ given by

SUREτ =

k−1
∑

b=0

(ŷsb)
2

B
+

(B − k + 1)

B
τ2 + E0

− E0

B
τ

B+1
∑

b=k

(ŷsb)
−1 − 2

E0

B
(k − 1), (8)

where we define ŷs0 = 0 and ŷsB+1 = ∞ to account for the first

(0, ŷs1) and last interval (ŷsB ,∞). For each k ∈ {1, . . . , B+1},

we compute the optimal value of τ that minimizes SURE in

each interval τ ∈
(

ŷsk−1, ŷ
s
k

)

. Since there is a discontinuity

in the SURE expression when progressing from one interval

to the next, the minimal value in each interval is either the

minimum of the quadratic function (8) or one of the boundaries

of the interval ŷsk−1 and ŷsk.2 The minimum value of (8) is

given by τQk = E0

2(B−k+1)

∑B+1
b=k (ŷsb)

−1. Since the function

SUREτ is convex, we can identify the optimal parameter τ
in the interval

(

ŷsk−1, ŷ
s
k

)

indexed by k by knowing the value

of τQk with respect to the interval boundaries ŷsk−1 and ŷsk. Put

simply, the optimal denoising parameter τ⋆k in each interval

k = 1, . . . , B + 1 is given by

τ⋆k =







τQk ŷsk−1 < τQk < ŷsk
ŷsk−1 τQk < ŷsk−1

ŷsk τQk > ŷsk,

2Note that SURE is not defined for τ = ŷs
k−1

and τ = ŷs
k

. Instead, we
compute SUREτ for two values arbitrarily close to these boundaries, i.e.,
τ = ŷs

k−1
+ ǫ and τ = ŷs

k
− ǫ, where ǫ > 0 is small compared to τ .
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Fig. 2. Uncoded bit error-rate (BER) of various channel denoising methods
for LoS and non-LoS channels. We see that BEACHES performs on par with
atomic norm minimization (ANM) and Newtonized OMP, and provides 2 dB
to 3 dB SNR improvements over ML channel estimation at BER = 10−2.

or simply τ⋆k = max{ŷsk−1,min{ŷsk, τQk }}. By knowing the

optimal value of τ in each interval, we only need to find the

minimal value of SUREτ⋆
k

for k = 1, . . . , B+1. It is now key

to realize that we do not need to recalculate SURE in (8) from

scratch while searching through k = 1, . . . , B + 1. Instead,

we can sequentially update the quantities S =
∑k−1

b=0 (ŷsb)
2

and V =
∑B+1

b=k (ŷsb)
−1, thanks to sorting the magnitudes of

the vector ŷ. The resulting procedure, called BEACHES, is

summarized in Algorithm 1. The computational complexity of

BEACHES is only O(B log(B)), which is caused by the FFT,

sorting, and IFFT operations—the remaining computations in

the for-loop (lines 5–13) are simple scalar operations.

IV. PERFORMANCE AND RUNTIME OF BEACHES

A. Bit Error-Rate Performance

To assess the performance of BEACHES, we consider an

all-digital massive MU-MIMO system in which U = 16 UEs

communicate with a B = 256 antenna BS. We focus on the

situation in which the UEs first send orthogonal pilots, which

are used to acquire maximum-likelihood channel estimates yu

for each UE u = 1, . . . , U . The channel matrices are generated

for both LoS and non-LoS conditions using the QuaDRiGa



TABLE I
MATLAB RUNTIMES IN MILLISECONDS (AND NORMALIZED RUNTIMES).

Scenario BEACHES NOMP ANM

LoS 1.64 (1×) 199.9 (120×) 47 968 (29 000×)

non-LoS 1.45 (1×) 2 204 (1 500×) 83 750 (58 000×)

mmMAGIC UMi model [22] at a carrier frequency of 60 GHz

with a ULA using λ/2 antenna spacing. The UEs are placed

randomly within a 120◦ circular sector with minimum and

maximum distance of 10 and 110 meters from the BS antenna

array, respectively. We enforce UE separation of at least 1◦

(relative to the BS antenna array) and assume optimal UE

power control. We then use different channel vector denoising

methods, including (i) ANM-based denoising, where we use

the debiased output of the code provided in [14], (ii) NOMP

with a (manually tuned) false alarm rate of Pfa = 0.5 using

the code provided in [15], and (iii) “perfect CSI,” which is a

baseline that uses the noiseless channel vectors. Finally, we

transmit 16-QAM symbols and perform linear minimum MSE

(L-MMSE) equalization with the denoised matrix to detect the

transmitted bits. The resulting uncoded bit error-rate (BER) is

used to assess the performance of various denoising methods.

Figure 2 shows that channel vector denoising in the

beamspace domain provides 2 dB to 3 dB SNR performance

improvements at BER = 10−2 compared to conventional

ML channel estimation. The achieved performance gains are

more pronounced under LoS conditions. Quite surprisingly,

we observe that BEACHES performs on par to ANM and

NOMP. This observation indicates that off-the-grid denoising

methods, such as ANM and NOMP, do not provide a critical

performance advantage over BEACHES (in terms of BER).

B. Runtime Comparison

While the BER performance of BEACHES is comparable

to ANM and NOMP, it exhibits significantly lower complexity.

To support this claim, we measured their MATLAB runtimes in

milliseconds on an Intel core i5-7400 CPU with 16 GB RAM

at an SNR of 5 dB. Table I demonstrates that the runtime of

BEACHES is orders of magnitude lower than that of NOMP

(up to 1 500×) and ANM (up to 58 000×), while the speedup

is more pronounced for the non-LoS scenario.

V. CONCLUSIONS

We have proposed a new channel denoising algorithm for

massive MU-MIMO mmWave and terahertz communication

systems called BEAmspace CHannel EStimation (BEACHES).

BEACHES exploits sparsity of mmWave/terahertz channels in

the beamspace domain to perform adaptive soft-thresholding

via Stein’s unbiased risk estimate (SURE). We have shown

that BEACHES minimizes the mean square error in the large-

antenna limit and performs on par with sophisticated channel

estimation algorithms for realistic LoS and non-LoS channel

models but at orders-of-magnitude lower complexity. There

are many avenues for future work. An extension of BEACHES

to systems with low-precision quantizers and single-carrier

transmission is an open research problem.

APPENDIX A

PROOF OF THEOREM 1

The MSE for ĥ⋆ = µ(ŷ) is defined as

MSE = E

[

1
B
‖ĥ⋆ − ĥ‖22

]

= E

[

1
B
‖µ(ŷ)− ĥ‖22

]

,

where we decompose the complex-valued vector ŷ into the

real part ŷR ∼ N (hR, E0

2 IB) and imaginary part ŷI ∼
N (hI ,

E0

2 IB). Note that expectation is with respect to the

noisy observation ŷ. Define g(ŷ) = µ(ŷ)− ŷ. Hence,

MSE = 1
B
E

[

‖g(ŷ) + ŷ − ĥ‖22
]

= E
[

1
B
‖g(ŷ)‖22

]

+ E

[

1
B
‖ŷ − ĥ‖22

]

+ E

[

2
B

[

g(ŷ)H(ŷ − ĥ)
]

R

]

. (9)

The last term can be simplified as

2
B
E

[[

g(ŷ)H(ŷ−ĥ)
]

R

]

= 2
B
E

[

gR(ŷ)T(ŷR−ĥR)
]

+ 2
B
E

[

gI(ŷ)
T(ŷI−ĥI)

]

.

We can now expand 2
B
E

[

gR(ŷ)T(ŷR − ĥR)
]

which yields

2
B
E

[

gR(ŷ)T(ŷR − ĥR)
]

(10)

(a)
= 2

B

∫

ŷI

fN
(

ŷI ; ĥI ,
E0

2 IB

)

∑B
b=1

∫

ŷR

1

(2πE0

2 )
B/2×

exp

(

−‖ŷR−ĥR‖2

2
E0

2

)

E0

2
∂[gR(ŷ)]b
∂[ŷR]b

dŷRdŷI (11)

= E0

B
E

[

∑B
b=1

(

∂[µR(ŷ)]b
∂[ŷR]b

− 1
)]

, (12)

where (a) follows from integration by parts. Similarly, we have

2
B
E

[

gI(ŷ)
T(ŷI−ĥI)

]

= E0

B
E

[

∑B
b=1

(

∂[gI(ŷ)]b
∂[ŷI ]b

−1
)]

. (13)

Recall that g(ŷ) = µ(ŷ)− ŷ and replace (12) and (13) in the

original MSE expression in (9). This leads to

MSE = E
[

1
B
‖µ(ŷ)− ŷ‖22

]

+ E

[

1
B
‖ŷ − ĥ‖22

]

+ E0

B
E

[

∑B
b=1

(

∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)]

.

The second term in the MSE expression above equals E0. For

the first and third term we remove their expectations to arrive

at the following SURE expression:

SURE = 1
B
‖µ(ŷ)− ŷ‖22 + E0

+ E0

B

∑B
b=1

(

∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)

,

which establishes the fact that E[SURE] = MSE.

APPENDIX B

PROOF OF THEOREM 2

SURE in (5) for µ(ŷ) = η(ŷ, τ) is derived as follows. The

only unknowns in the expression of SURE are its derivative

of real and imaginary parts. For |ŷb| < τ , we have

∂[ηR(ŷ,τ)]b
∂[ŷR]b

= ∂[ηI(ŷ,τ)]b
∂[ŷI ]b

= 0.



For |ŷb| > τ , we have

∂[ηR(ŷ,τ)]b
∂[ŷR]b

= ∂
∂[ŷR]b

(

[ŷR]b − [ŷR]bτ√
[ŷR]2b+[ŷI ]2b

)

=1− τ
[ŷI ]

2

b

([ŷR]2b+[ŷI ]2b)
3/2

and

∂[ηI(ŷ,τ)]b
∂[ŷI ]b

=1− τ
[ŷR]2b

([ŷR]2b+[ŷI ]2b)
3/2 .

Note that at |ŷb| = τ , there is a discontinuity and thus the

derivative and consequently SURE are not defined for this

value. The complex-valued SURE expression reduces to

SUREτ = 1
B

∑B
b=1 min{|ŷb|, τ}2 + E0

+ E0

B

∑

b:|ŷb|>τ

(

2− τ 1√
[ŷR]2b+[ŷI ]2b

− 2
)

+ E0

B

∑

b:|ŷb|<τ (0− 2).

We now prove the convergence of SURE in (7). In [23,

Lemma 4.3.], the authors prove convergence of SURE to

MSE in the real domain for the soft-thresholding function. We

follow the same procedure for the complex domain. Using [20,

Thm. III.15 & III.16], we have that for any pseudo-Lipschitz

function γ : C → R the following equality holds:

lim
B→∞

1
B

∑B
b=1 γ(η(ŷb, τ), ĥb)

= E
[

γ(η(H +
√
E0Z, τ), H)

]

. (14)

Here, Z ∼ CN (0, 1) and H is a random variable with the

sparse distribution of the channel vector in the beamspace

domain ĥb. Using (14), we have the following result

lim
B→∞

1
B

∑B
b=1 |η(ŷb, τ)− ŷb|2 = Eŷb̃

[

|η(ŷb̃, τ)− ŷb̃|2
]

,

where, ŷb̃ is any element of the random vector ŷ. The

expression above can be rewritten as

lim
B→∞

1
B
‖η(ŷb, τ)− ŷb‖22 = Eŷ

[

1
B
‖η(ŷ, τ)− ŷ‖22

]

. (15)

Now, since
∂[ηR(ŷ,τ)]b

∂[ŷR]b
+ ∂[ηI(ŷ,τ)]b

∂[ŷI ]b
is bounded, it is pseudo-

Lipschitz and, hence, we can use (14) to obtain the following

convergence result:

lim
B→∞

1
B

∑B
b=1

(

∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)

= 1
B
E

[

∑B
b=1

(

∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)]

. (16)

By summing (15) and (16) and E

[

1
B
‖ŷ − ĥ‖22

]

= E0, we

have established that limB→∞ SUREτ = MSE.
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