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1. Introduction

Eisenstein series play an important role in arithmetic geometry and number theory. 
Kudla conjectured that the derivatives of Eisenstein series are closely related to arith-
metic intersection numbers on Shimura varieties via a conjectural arithmetic version of 
the Siegel-Weil formula. In [KRY1], Kudla, Rapoport and Yang proved such a formula 
on a division Shimura curve. Kudla and Yang worked out a result on the modular curve 
X0(1) [Ya]. The associated Eisenstein series is Zagier’s famous Eisenstein series [HZ] of 
weight 3/2. In [BF2], Bruinier and Funke gave another proof of the main formula in [Ya]
via theta lifting. We extended the arithmetic Siegel-Weil formula to the modular curve 
X0(N) with N square free in [DY].

This paper is a sequel to [DY]. We replace the Heegner divisors by twisted Heegner 
divisors, which were studied by Bruinier and Ono in [BO]. Interestingly, the derivative 
aspect of the Eisenstein series disappears in such a case, thanks to some cancellation.

Let N > 0 be a positive integer, and let

V = {w =
( w1 w2

w3 −w1

)
∈ M2(Q) : tr(w) = 0}, (1.1)

with the quadratic form Q(w) = N det w = −Nw2w3 − Nw2
1. Let

L =
{

w =
(

b −a
N

c −b

)
∈ M2(Z) : a, b, c ∈ Z

}
⊂ V, (1.2)

and let L� be its dual lattice. Then SL2 ∼= Spin(V ) acts on V by conjugation, i.e., 
g · w = gwg−1, and Γ0(N) acts on L�/L trivially. Let D be the associated Hermitian 
domain of positive lines in VR, then D is isomorphic to upper half plane H via (2.2) which 
preserves the action of SL2. We identify X0(N) with the standard compactification of 
Γ0(N)\H.

For each μ ∈ L�/L, let Lμ = μ + L and

Lμ[n] = {w ∈ Lμ : Q(w) = n}.

Let Δ ∈ Z be a fundamental discriminant which is a square modulo 4N . Let LΔ = ΔL

with quadratic form QΔ(x) = Q(x)
|Δ| , then its dual lattice is LΔ,� = L�. Associated to Δ

is a generalized ‘genus character’ χΔ : L�/LΔ → {±1}, (see Section 2.2 for details). 
For an integer r with Δ = r2 mod (4N), μ ∈ L�/L, and a positive rational number 
n ∈ sgn(Δ)Q(μ) + Z, we define a twisted Heegner divisor

ZΔ,r(n, μ) =
∑

w∈Γ0(N)\Lrμ[|Δ|n]

χΔ(w)Z(w) ∈ Div(X0(N))Q, (1.3)

which is defined over Q(
√

Δ). Here Z(w) = Rw is the point on X0(N) given by the 
positive line Rw. This divisor depends only on the congruence class (r mod 2N).
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We will construct twisted Kudla’s Green function ΞΔ,r(n, μ, v) for ZΔ,r(n, μ) in Sec-
tion 4. All these functions are smooth at the cusps and are different from the Green 
functions Ξ(n, μ, v) in [DY]. These functions are well-defined and smooth when n ≤ 0.

Now assume that N is square free. Let X0(N) be the canonical integral model over Z
of X0(N) as defined in [KM] (see Section 5). It is regular over Z and smooth over Z[ 1

N ]. 
We define twisted arithmetic divisors in the arithmetic Chow group ĈH

1
R(X0(N)) by

ẐΔ,r(n, μ, v) =
{

(ZΔ,r(n, μ), ΞΔ,r(n, μ, v)) if n > 0,

(0, ΞΔ,r(n, μ, v)) otherwise,
(1.4)

where ZΔ,r(n, μ) is the Zariski closure of ZΔ,r(n, μ) in X0(N).

Definition 1.1. Define the formal generating series (twisted arithmetic theta function)

φ̂Δ,r(τ) =
∑

n≡sgn(Δ)Q(μ) (mod Z)
μ∈L�/L

ẐΔ,r(n, μ, v)qneμ, (1.5)

which belongs to ĈH
1
R(X0(N)) ⊗ C[L�/L][[q, q−1]]. Here q = e2πiτ and v = 	(τ).

Let Γ′ be the metaplectic cover of SL2(Z) which acts on C[L�/L] via the Weil rep-
resentation ρL via (2.3), and let {eμ : μ ∈ L�/L} be the standard basis of C[L�/L]. 
Then

EL(τ, s) =
∑

γ′∈Γ′
∞�Γ′

(
v

s−1
2 e0

)
|3/2,ρ̃L

γ′

is a vector valued Eisenstein series of weight 3/2. Here the Petersson slash operator is 
defined on functions f : H → C[L�/L] by(

f |3/2,ρ̃L
γ′)(τ) = φ(τ)−3ρ̃−1

L (γ′)f(γτ),

and γ′ = (γ, φ) ∈ Γ′. Define the normalized Eisenstein series [DY, equation (1.5)]

EL(τ, s) = −s

4π−s−1Γ(s)ζ(N)(2s)N 1
2 + 3

2 sEL(τ, s), (1.6)

where

ζ(N)(s) = ζ(s)
∏
p|N

(1 − p−s).

Let ωN be the Hodge bundle on X0(N), which we identify with the line bundle 
M1(Γ0(N)) of modular forms of weight 1. For a modular form f of weight k, we define 
its normalized Petersson norm
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‖f(z)‖ = |f(z)(4πe−Cy) k
2 | (1.7)

where C = log 4π+γ
2 . This induces a metrized Hodge bundle ω̂N with ω̂k

N
∼= M̂k(Γ0(N)). 

These line bundles have log singularities as explained in Section 5.1, where we also explain 
the arithmetic intersection and degree used in the following theorem.

Theorem 1.2. Let Δ �= 1 be a fundamental discriminant, then

deg φ̂Δ,r(τ) = 0 (1.8)

and

〈φ̂Δ,r(τ), ω̂N 〉 =
{

1
ϕ(N) log(uΔ)h(Δ)EL(τ, 1) if Δ > 1,

0, if Δ < 0.
(1.9)

Here deg is defined by (5.6) and 〈 , 〉 is the arithmetic intersection in the sense of 
Gillet-Soulé.

It is interesting to compare it with the main result in [DY], which we state here for 
convenience.

Theorem 1.3. [DY, Theorem 1.3] When Δ = 1,

deg φ̂Δ,r(τ) = 2
ϕ(N)EL(τ, 1),

and

〈φ̂Δ,r(τ), ω̂N 〉 = 1
ϕ(N)

(
E ′

L(τ, 1) −
∑
p|N

p

p − 1EL(τ, 1) log p

)
.

Here is the basic idea in the proof of Theorem 1.2. For any Γ0(N) invariant function 
f , we define the twisted theta lift

IΔ,r(τ, f) =
∫

X0(N)

f(z)ΘΔ,r(τ, z), (1.10)

when the integral is convergent. Here ΘΔ,r(τ, z) is the twisted Kudla-Millson theta kernel 
defined by (2.13), following [AE, Section 4].

Define the normalized Eisenstein series of weight 0 as in [DY] by

E(N, z, s) = N2sπ−sΓ(s)ζ(N)(2s)
∑

γ∈Γ∞\Γ0(N)

(	(γz))s.

We prove the following theorem in Section 3.
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Theorem 1.4. When Δ is a fundamental discriminant,

IΔ,r(τ, E(N, z, s)) =
{

Δ s
2 Λ(εΔ, s)EL(τ, s), if Δ > 0,

0, if Δ < 0,
(1.11)

where Λ(εΔ, s) = L(εΔ, s)Γ( s
2 )π− s

2 is the completed L-series associated to the character 
εΔ(n) =

( Δ
n

)
.

Alfes and Ehlen studied the case when N = 1 in [AE, Theorem 6.1].
Taking the residues of both sides, we obtain the first identity in Theorem 1.2.
Combining the above theorem with the Kronecker limit formula for Γ0(N) [DY, Theo-

rem 1.5], we obtain the following result, which is also the generalization of [AE, Theorem 
6.2].

Theorem 1.5.

− 1
12IΔ,r(τ, log ‖ΔN ‖) =

⎧⎪⎪⎨⎪⎪⎩
E ′

L(τ, 1) if Δ = 1,

log(uΔ)h(Δ)EL(τ, 1) if Δ > 1,

0, if Δ < 0,

(1.12)

where uΔ > 1 is the fundamental unit and h(Δ) is the class number of the real quadratic 
field Q(

√
Δ).

The final step to prove Theorem 1.2 is to identify the metrized line bundle ω̂N
k (with 

log singularity) with the explicit arithmetic divisor D̂iv(ΔN ) (with log-log singularity). 
That way, we can compute the arithmetic intersection, and relate it with the twisted 
theta lifting IΔ,r(log ‖ΔN ‖). This, combined with Theorem 1.5, proves Theorem 1.2. 
Finally, the same argument as in [DY, Section 8] using Theorem 1.2, gives the following 
modularity result.

Theorem 1.6. φ̂Δ,r(τ) is a vector valued modular form for Γ′ of weight 3
2 , valued in 

C[L�/L] ⊗ ĈH
1
R(X0(N)).

In [BO, Section 6], Bruinier and Ono proved that

AΔ,r(τ) =
∑

μ∈L�/L

∑
n>0

ZΔ,r(n, μ)qneμ

is a cusp form valued in S 3
2 ,ρ̃L

⊗
J(Q(

√
Δ)), where J is the Jacobian of X0(N) and 

q = e2πiτ . Notice AΔ,r(τ) is the generic component of φ̂Δ,r(τ). So modularity of φ̂Δ,r(τ)
(Theorem 1.6) is an integral version of their result.

This paper is organized as follows. We will introduce some notation and introduce 
the twisted Kudla-Millson theta function in Section 2. We will introduce the twisted 
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theta lifting and use it to prove the Theorems 1.4 and 1.5 in Section 3. In Section 4, we 
define twisted Kudla’s Green functions, and show these functions are smooth at cusps. 
In Section 5, we will define the arithmetic theta functions and prove Theorem 1.2 and 
Theorem 1.6.

Acknowledgments. We thank the referee for their careful reading of this paper and their 
valuable comments and suggestions. In particular, their question on why only Δ > 0 in 
the first draft inspired us to work out carefully the case Δ < 0, and makes the paper 
better. We also thank Stephan Ehlen for his help.

2. Basic set-up and theta lifting

Let V (resp. L) be the quadratic space (resp. even integral lattice) defined in the 
introduction. Then SL2 ∼= Spin(V ) acts on V by conjugation, i.e., g · w = gwg−1. Notice 
that Γ0(N) acts on L�/L trivially. Let D be the Hermitian domain of positive real lines 
in VR:

D = {z ⊂ VR : dim z = 1 and ( , ) |z> 0}.

The isomorphism between H and D is given by the map

z = x + iy �→ w(z) = 1√
Ny

(
−x zz

−1 x

)
. (2.1)

The inverse is

w =
(

a b
c −a

)
�→ z(w) = 2aN +

√
D

2cN
, D = −4NQ(w). (2.2)

This isomorphism is SL2(R)-compatible and induces an isomorphism between Y0(N) =
Γ0(N)\H and Γ0(N)\D. Let X0(N) be the standard compactification of Y0(N).

For w ∈ V (Q) with Q(w) > 0, the Heegner point Z(w) is the image of z(w) in X0(N). 
When Q(w) ≤ 0, set z(w) = 0.

2.1. The Weil representation

Let Mp2,R be the metaplectic double cover of SL2(R), which can be realized as pairs 
(g, φ(g, τ)), where g =

(
a b
c d

)
∈ SL2(R), φ(g, τ) is a holomorphic function of τ ∈ H such 

that φ(g, τ)2 = j(g, τ) = cτ + d. Let Γ′ be the preimage of SL2(Z) in Mp2,R with two 
generators

S =
(( 0 −1 )

,
√

τ
)

T =
(( 1 1 )

, 1
)

.
1 0 0 1
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We denote the standard basis of C[L�/L] by {eμ = Lμ : μ ∈ L�/L}. Then there is a 
Weil representation ρL of Γ′ on C[L�/L] given by [Bor]

ρL(T )eμ = e(Q(μ))eμ, (2.3)

ρL(S)eμ =
e( 1

8 )√
|L�/L|

∑
μ′∈L�/L

e(−(μ, μ′))eμ′ .

This Weil representation ρL is closely related to the Weil representation ω of Mp2,A on 
S(VA) (see [BHY]).

2.2. Twisted Heegner divisors

Let Δ ∈ Z be a fundamental discriminant which is a square modulo 4N , and let 
LΔ = ΔL with renormalized quadratic form QΔ(w) = Q(w)

|Δ| . Then it is easy to check 

LΔ,� = L�. Let ΓΔ be the subgroup of Γ0(N) which acts on LΔ,�/LΔ trivially. It is not 
hard to check that the map

χΔ(
(

b
2N

−a
N

c − b
2N

)
) =

⎧⎪⎪⎨⎪⎪⎩
(Δ

n ), if Δ | b2 − 4Nac and b2−4Nac
Δ is a

square modulo 4N and (a, b, c, Δ) = 1,

0, otherwise,

(2.4)

gives a well-defined map

χΔ : LΔ,�/LΔ → {±1},

where n is any integer prime to Δ represented by one of the quadratic forms [N1a, b, N2c]
with N1N2 = N , N1, N2 > 0. Here we denote [a, b, Nc] = ax2 + bxy + Ncy2. Indeed, 
χΔ(w) = χΔ([a, b, Nc]) is the generalized genus character defined in [GKZ, Section 1]
(see also [BO, Section 4]). We leave it to the reader to check that χ(w +LΔ) = χ(w) and 
so χΔ induces a map on LΔ,�/LΔ. It is known [GKZ] that the map is invariant under 
the action of Γ0(N) and the action of all Atkin-Lehner involutions, i.e.,

χΔ(γwγ−1) = χΔ(w) and χΔ(wM ww−1
M ) = χΔ(w), (2.5)

where γ ∈ Γ0(N) and wM is the Atkin-Lehner involution with M‖N .
Choose and fix r ∈ Z with r2 ≡ Δ mod 4N . For any μ ∈ L�/L and a positive rational 

number n ∈ sgn(Δ)Q(μ) + Z, we define the twisted Heegner divisor by

ZΔ,r(n, μ) :=
∑

χΔ(w)Z(w) ∈ Div(X0(N))Q, (2.6)

w∈Γ0(N)\Lrμ[n|Δ|]
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which is defined over Q(
√

Δ). Notice that we count each point Z(w) = Rw with mul-
tiplicity 2

|Γw| in the orbifold X0(N), where Γw is the stabilizer of w in Γ0(N). So our 
definition is the same as that in [AE, Section 5] and [BO, Section 5].

Now define for δ ∈ LΔ,�/LΔ

ZΔ(n, δ) :=
∑

w∈ΓΔ\LΔ
δ [n]

Z(w) ∈ Div(XΓΔ). (2.7)

Recall the natural map

πΓΔ : XΓΔ −→ X0(N)

is a covering map with the degree [Γ0(N) : ΓΔ], where XΓΔ is the modular curve ΓΔ\H∗, 
and Γ̄ = Γ/(Γ ∩ {±1}).

Lemma 2.1. Let n ≡ sgn(Δ)Q(μ)( mod Z) be a positive number, then∑
δ∈LΔ,�/LΔ

δ≡rμ(L)

χΔ(δ)ZΔ(n, δ) = π∗
ΓΔ

(ZΔ,r(n, μ)), (2.8)

where π∗
ΓΔ

is the pullback

π∗
ΓΔ

: Z1(X0(N)) −→ Z1(XΓΔ).

Proof. Write Γ = Γ0(N). For w ∈ Γ \ Lrμ[|Δ|n], we have

π−1
ΓΔ

(Z(w)) = {Z(w1), ..., Z(wg)},

and then

π∗
ΓΔ

(Z(w)) = Z(w1) + ... + Z(wg).

So we have

π∗
ΓΔ

(ZΔ,r(n, μ)) =
∑

w∈Γ\Lrμ[|Δ|n]

χΔ(w)π∗
ΓΔ

(Z(w))

=
∑

δ∈L�/LΔ

δ≡rμ(L)

χΔ(δ)
∑

w∈ΓΔ\LΔ
δ [n]

Z(w)

=
∑

δ∈L�/LΔ

δ≡rμ(L)

χΔ(δ)ZΔ(n, δ).

This proves the lemma. �
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2.3. Twisted Kudla-Millson theta function

For z = x + iy ∈ H, recall w(z) ∈ VR via (2.1). Let w(z)⊥ be the orthogonal comple-
ment of Rw(z) with the following orthogonal decomposition

VR = Rw(z) ⊕ w(z)⊥,

w = wz + wz⊥ .

Following Kudla and Millson ([KMi], [BF2, Section 3]), define for w ∈ VR

R(w, z)Δ = −(wz⊥ , wz⊥)Δ,

and the majorant

(w, w)Δ,z = (wz, wz)Δ + R(w, z)Δ,

where (, )Δ = ( , )
|Δ| is the bilinear form associated to the quadratic form QΔ. One has

R(w, z)Δ = 1
2(w, w(z))2

Δ − (w, w)Δ. (2.9)

For w =
( w1 w2

w3 −w1

)
∈ VR, we have

(w, w(z))Δ = −
√

N

y
√

|Δ|
(w3zz − w1(z + z) − w2). (2.10)

Let

ϕ0
Δ(w, z) =

(
(w, w(z))2

Δ − 1
2π

)
e−2πR(w,z)Δμ(z)

and

ϕΔ(w, τ, z) = e(QΔ(w)τ)ϕ0
Δ(

√
vw, z),

be the differential forms on VR valued in Ω1,1(D), where μ(z) = dx dy
y2 .

For any δ ∈ LΔ,�/LΔ, define

Θδ(τ, z) =
∑

w∈LΔ
δ

ϕΔ(w, τ, z), (2.11)

where LΔ
δ = δ + LΔ. Then

ΘLΔ(τ, z) =
∑
Δ,� Δ

Θδ(τ, z)eδ (2.12)

δ∈L /L
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is a vector valued Kudla-Millson theta function, which is a non-holomorphic modular 
form of weight 3/2 of (Γ′, ρLΔ) with respect to the variable τ with values in Ω1,1(XΓΔ).

Following Bruinier and Ono’s work [BO], Alfes and Ehlen constructed a C[L�/L]−
valued twisted theta function [AE, Section 4]

ΘΔ,r(τ, z) :=
∑

μ

ΘΔ,r,μ(τ, z)eμ, (2.13)

where (L� = LΔ,�)

ΘΔ,r,μ(τ, z) =
∑

δ∈L�/LΔ

δ≡rμ(L)
QΔ(δ)≡sgn(Δ)Q(μ) (mod Z)

χΔ(δ)Θδ(τ, z).

This twisted theta function has good transformation properties just like the classical 
Kudla-Millson theta functions.

Proposition 2.2. [AE, Proposition 4.1] The theta function ΘΔ,r(τ, z) is a non-holo-
morphic C[L�/L]-valued modular form of weight 3/2 for the representation ρ̃L in the 
variable τ . Furthermore, it is a non-holomorphic automorphic form of weight 0 for Γ0(N)
in the variable z ∈ D. Here

ρ̃L =
{

ρL if Δ > 0,

ρ̄L if Δ < 0.
(2.14)

3. Twisted theta lift

Following Alfes and Ehlen [AE], we consider the twisted theta lifting: for any 
Γ0(N)-invariant function f(z), the lifting is given by

IΔ,r(τ, f) :=
∫

X0(N)

f(z)ΘΔ,r(τ, z) =
∑

μ∈L�/L

∫
X0(N)

f(z)ΘΔ,r,μ(τ, z)eμ, (3.1)

if the integral is convergent. Recall from [BF2, Proposition 4.1] that the theta series 
ΘΔ,r(τ, z) decays like e−Cy2 as y goes to the infinity (for some C > 0), and behaves 
similarly at other cusps. In particular, the twisted theta lifts of Eisenstein series E(N, z, s)
and Petersson norm log ‖ΔN ‖ are well-defined. We first recall a result of Alfes and Ehlen.

Proposition 3.1. ([Al, Proposition 3.1], [Eh]) Let K = Z with the quadratic form Q(x) =
−Nx2. Then K�/K ∼= L�/L as quadratic modules, and
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ΘΔ,r(τ, z) = −ε̄y
N3/2

|Δ|

∞∑
n=1

n2(Δ
n

)
∑

γ∈Γ′
∞�Γ′

×
[
exp(−π

y2Nn2

v|Δ| )v−3/2
∑

λ∈K�

e(|Δ|Q(λ)τ − 2Nλnx)erλ

]∣∣
3/2,ρ̃K

γdxdy.

Here ε = 1 is Δ > 0 and ε = i if Δ < 0.

Now we are ready to prove Theorem 1.4 which we restate here for convenience. We 
follow the idea in the proof of [AE, Theorem 6.1], where the case N = 1 is considered.

Theorem 3.2. When Δ is a fundamental discriminant,

IΔ,r(τ, E(N, z, s)) =
{

Δ s
2 Λ(εΔ, s)EL(τ, s), if Δ > 0,

0, if Δ < 0,
(3.2)

where Λ(εΔ, s) = L(εΔ, s)Γ( s
2 )π− s

2 is the completed L-series associated to the character 
εΔ(n) =

( Δ
n

)
.

Proof. One has by Proposition 3.1,

ΘΔ,r(τ, z)

= −ε̄y
N3/2

|Δ|

∞∑
n=1

∑
γ∈Γ′

∞�Γ′

n2(Δ
n

)
exp(−π

y2Nn2 | cτ + d |2
v|Δ| )v−3/2 | cτ + d |3

×(cτ + d)−3/2
∑

λ∈K�

e(|Δ|Q(λ)γτ − 2Nλnx)ρ̃−1
K (γ)erλdxdy

= −ε̄
yN3/2

v3/2|Δ|

∞∑
n=1

∑
γ∈Γ′

∞�Γ′

n2(Δ
n

)
exp(−πy2Nn2 | cτ + d |2

v|Δ| )

×(cτ + d)3/2
∑

λ∈K�

e(|Δ|Q(λ)γτ − 2Nλnx)ρ̃−1
K (γ)erλdxdy.

Here we used that fact that for every coprime pair (c, d), there is unique γ =
( ∗ ∗

c d

)
∈

Γ′
∞�Γ′ associated to it.

Unfolding the twisted theta lifting integral, for �(s) > 1, we have

IΔ,r(τ, E(N, z, s))

=
∫

Γ∞�H

ΘΔ,r(τ, z)ys

= −ε̄
N

3
2

v
3
2 |Δ|

∞∑
n=1

n2(Δ
n

) ∑
′ ′

(cτ + d)3/2
∞∫

e
(
− πNy2n2

|Δ|v |cτ+d|2)
ys+1dy
γ∈Γ∞�Γ 0
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×ρ̃−1
K (γ)

1∫
0

∑
λ∈K�

e(|Δ|Q(λ)γτ − 2Nλnx)erλdx.

Notice that

1∫
0

∑
λ∈K�

e(|Δ|Q(λ)γτ − 2Nλnx)erλdx = e0.

So we have

IΔ,r(τ, E(N, z, s))

= − N
3
2 ε̄

2v
3
2 |Δ|

∞∑
n=1

n2(Δ
n

) ∑
γ∈Γ′

∞�Γ′

v
s+2

2 |Δ| s+2
2 (cτ + d)3/2Γ

(
s
2 + 1

)
π

s+2
2 | cτ + d |s+2 N

s+2
2 ns+2

ρ̃−1
K (γ)e0

= −
ε̄|Δ| s

2 L(εΔ, s)Γ
(

s
2 + 1

)
2N

s−1
2 π

s+2
2

∑
γ∈Γ′

∞�Γ′

v
s−1

2 (cτ + d)3/2

| cτ + d |s+2 ρ̃−1
K (γ)e0

= −
ε̄|Δ| s

2 L(εΔ, s)Γ
(

s
2 + 1

)
2N

s−1
2 π

s+2
2

EL(τ, s).

Here

EL(τ, s) =
∑

γ′∈Γ′
∞�Γ′

(
v

s−1
2 e0

)
|3/2,ρ̃L

γ′,

is the Eisenstein series defined in the introduction. When Δ > 0, we obtain

IΔ,r(τ, E(N, z, s)) = Δ s
2 Λ(εΔ, s)EL(τ, s).

When Δ < 0, a simple calculation gives

EL(τ, s) | 3
2 ,ρ̄L

Z = −EL(τ, s),

for Z =
( (

−1
−1

)
, i). On the other hand, the modularity of Eisenstein series implies

EL(τ, s) | 3
2 ,ρ̄L

Z = EL(τ, s).

So EL(τ, s) = 0. �
Taking residue of both sides of the equation (3.2) at s = 1, we have the following 

result.
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Corollary 3.3.

IΔ,r(τ, 1) =
{

2
ϕ(N)EL(τ, 1) if Δ = 1,

0 if Δ �= 1.
(3.3)

Recall the modular form ΔN (z) of weight k = 12ϕ(N) for Γ0(N) defined in [DY, 
(1.6)]:

ΔN (z) =
∏
t|N

Δ(tz)a(t) (3.4)

with

a(t) =
∑
r|t

μ( t

r
)μ(N

r
)ϕ(N)
ϕ( N

r )
,

where μ(n) is the Möbius function and ϕ(N) is the Euler function.
For a modular form f of weight k and level N , recall its normalized Petersson metric

‖f(z)‖ = |f(z)(4πe−Cy) k
2 | (3.5)

where C = log 4π+γ
2 with Euler constant γ.

Theorem 3.4. Let the notation be as above, one has

− 1
12IΔ,r(τ, log ‖ΔN ‖) =

⎧⎪⎪⎨⎪⎪⎩
E ′

L(τ, 1) if Δ = 1,

log(uΔ)h(Δ)EL(τ, 1) if Δ > 1,

0, if Δ < 0,

(3.6)

where uΔ is the fundamental unit and h(Δ) is the class number of the real quadratic field 
Q(

√
Δ).

Proof. By the Kronecker limit formula for Γ0(N) [DY, Theorem 1.5]

lim
s→1

(
E(N, z, s) − ϕ(N)ζ∗(2s − 1)

)
= − 1

12 log
(
y6ϕ(N) | ΔN (z) |

)
,

we have

− 1
12 IΔ,r(τ, log | ΔN (z)y6ϕ(N) |)

= lim
s→1

(
IΔ,r(τ, E(N, z, s)) − ϕ(N)ζ∗(2s − 1)IΔ,r(τ, 1)

)
.

Here ζ∗(s) = π− s
2 Γ( s

2 )ζ(s). Now the theorem follows from Theorem 3.2, Corollary 3.3, 
and the class number formula. �



108 T. Du, T. Yang / Journal of Number Theory 203 (2019) 95–117
4. Twisted Kudla’s Green function

Following Kudla’s methods in [Ku1], we construct a twisted Kudla’s Green function 
for ZΔ,r(n, μ) and study its properties in this section.

For r > 0 and s ∈ R, let

βs(r) =
∞∫

1

e−rtt−sdt, (4.1)

and

ξΔ(w, z) = β1(2πR(w, z)Δ). (4.2)

Definition 4.1 (Twisted Kudla’s Green functions). For n ∈ sgn(Δ)Q(μ) + Z, define

ΞΔ,r(n, μ, v)(z) =
∑

δ∈L�/LΔ

δ≡rμ(L)
QΔ(δ)=n

χΔ(δ)ΞLΔ
(
n, δ, v

)
(z), (4.3)

where ΞLΔ
(
n, δ, v

)
(z) is Kudla’s Green function associated to the lattice LΔ with 

quadratic form QΔ given by

ΞLΔ
(
n, δ, v

)
(z) =

∑
0	=w∈LΔ

δ [n]

ξΔ(
√

vw, z). (4.4)

So one has

ΞΔ,r(n, μ, v)(z) =
∑

0	=w∈Lrμ[n|Δ|]
χΔ(w)ξΔ(

√
vw, z), (4.5)

which is clearly invariant under Γ0(N). Recall from Lemma 2.1∑
δ∈L�/LΔ

δ≡rμ(L)

χΔ(δ)ZΔ(n, δ) = π∗
ΓΔ

(ZΔ,r(n, μ)).

Since ΞLΔ(n, δ, v) is a Green function for ZΔ(n, δ) on XΓΔ = ΓΔ\H by [Ku1, Section 
12], we have the following lemma.

Lemma 4.2. When n > 0, ΞΔ,r(n, μ, v)(z) is a Green function for ZΔ,r(n, μ) on Y0(N) =
Γ0(N)\H, and satisfies the following current equation,

ddc[ΞΔ,r(n, μ, v)(z)] + δZΔ,r(n,μ) = [ωΔ,r(n, μ, v)], (4.6)

where ωΔ,r(n, μ, v) is the differential form
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ωΔ,r(n, μ, v) =
∑

w∈Lμ[n|Δ|]
χΔ(w)ϕ0

Δ(w, z). (4.7)

In particular, when n ≤ 0, ΞΔ,r(n, μ, v)(z) is smooth on Y0(N).

Now we consider the behavior of these Green functions at the cusps. When D =
−4N |Δ|n is not a square, the Green function ΞΔ,r(n, μ, v)(z) is smooth at the cusps 
by [DY, Theorem 5.1]. For the rest of this section, we assume that D = −4N |Δ|n is a 
square.

Let Iso(V ) be the set of isotropic lines � = Qw of V . Two isotropic lines �1 and �2 are 
equivalent if there is some γ ∈ Γ0(N) with γ�1 = �2. Given � = Q 

(
a b
c d

)
∈ Iso(V ), let 

P
 = a
c be the associated cusp, which depends only on the equivalence class of isotropic 

line �.
Let �∞ = Q 

( 0 1
0 0

)
∈ Iso(V ), and P∞ = ∞ be the associated cusp. In general, for an 

isotropic line �, there exists σ
 ∈ SL2(Z) such that �∞ = σ
 · �. Then

σ
Γ
σ
−1

 = {±

( 1 mκ�

0 1

)
; m ∈ Z},

where Γ
 ⊆ Γ0(N) is the stabilizer of � and κ
 > 0 is the classical width of the associated 
cusp P
. On the other hand, there is another positive number β
 > 0, depending on L and 
the cusp P
, such that 

( 0 β�

0 0

)
is a primitive element in �∞

⋂
σ
 · L. We call ε
 = κ�

β�
the 

Funke constant at cusp P
, which is defined in [Fu, Section 3]. We will denote κ = κ∞.
For w ∈ L�, w⊥ is a split space if and only if −4N |Δ|QΔ(w) is square. For any 

� ∈ Iso(V ), let δw,
 be the number of isotropic lines �w ∈ Iso(V ) which are perpendicular 
to w and equivalent to �. We often drop the index � when � = �∞.

Lemma 4.3. Let D = −4Nn|Δ| > 0 be a square integer, then one has∑
w∈Γ0(N)\Lμ[n|Δ|]

δwχΔ(w) = 0. (4.8)

Proof. For any w ∈ Lμ[n|Δ|] with (w, �∞) = 0, one has

w = w(a, b) =
(

a
2N

b
N

− a
2N

)
, a2 = D and a ≡ r0 mod (2N), (4.9)

where μ =
( r0

2N

− r0
2N

)
. It is known that w(a, b) is Γ0(N) equivalent to w(a, b′) if and 

only if b ≡ b′ mod a.
When 2μ /∈ L, let a be the unique square root of D satisfying a ≡ r0 mod (2N). By 

[DY, Lemma 6.2], the representatives for Γ0(N) \ Lμ[n|Δ|] are given by{ (
a

2N
b
N

− a
2N

)
| 0 ≤ b <

√
D

}
,

and δw(a,b) = 1. Since −b is represented by the quadratic form −bx2 + axy, we have
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χΔ

( (
a

2N
b
N

− a
2N

) )
=

( Δ
−b

)
.

So

∑
w∈Γ0(N)\Lμ[n|Δ|]

δwχΔ(w) =

√
D−1∑
b=0

(
Δ
−b

)
= 0.

When 2μ ∈ L, the equation (4.9) has two solutions a = ±
√

D. The set of representa-
tives is a subset of

S :=
{ (

±
√

D
2N

b
N

∓
√

D
2N

)
| 0 ≤ b <

√
D

}
.

[DY, Lemma 6.2] asserts that

w(a, b) is Γ0(N) equivalent to w(−a, b′) ⇐⇒ δw(a,b) = δw(−a,b′) = 2.

Moreover, there is the unique one w(−a, b′) ∈ S equivalent to w(a, b) when δw(a,b) = 2. 
So

R : =
{

w(
√

D, b) | 0 ≤ b <
√

D
}

∪
{

w(−
√

D, b′) | δw(−
√

D,b′) = 1, 0 ≤ b′ <
√

D
}

, (4.10)

is a set of representatives for Γ0(N) \ Lμ[n|Δ|]. Clearly, one has S = R ∪ B with

B =
{

w(−
√

D, b′) | δw(−
√

D,b′) = 2, 0 ≤ b′ <
√

D
}

.

So we have ∑
w∈Γ0(N)\Lμ[n|Δ|]

δwχΔ(w) =
∑
w∈R

δwχΔ(w)

=
∑
w∈R
δw=2

2χΔ(w) +
∑
w∈R
δw=1

χΔ(w)

=
∑
w∈R
δw=2

χΔ(w) +
∑
w∈B
δw=2

χΔ(w) +
∑
w∈R
δw=1

χΔ(w)

=
∑
w∈S

χΔ(w) = 2

√
D−1∑
b=0

(
Δ
−b

)
= 0.

This proves the lemma. �
The main purpose of this section is to prove the following result.
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Theorem 4.4. Let the notation be as above and n ∈ sgn(Δ)Q(μ) +Z, and assume that N
is square free. Then ΞΔ,r(n, μ, v)(z) is smooth and vanishes at the cusps:

lim
q�→0

ΞΔ,r(n, μ, v)(z) = 0,

where q
 is a local parameter at the cusp P
 associated to � ∈ Iso(V ).

Proof. Let D = −4N |Δ|n and we split the proof into three cases: D is not a square, 
D > 0 is a square and D = 0.

Case 1: We first assume that D is not a square. This case follows directly from the result 
[DY, Theorem 5.1].

Case 2: Next we assume that D > 0 is a square. We first work on XΓΔ as ΞLΔ(n, δ, v)
is defined over XΓΔ . Let P
 be the cusp associated to an isotropic line � ∈ Iso(V ). We 
have, near the cusp P
, by [DY, Theorem 5.1] and equation (4.3)

ΞΔ,r(n, μ, v)(z) = −gΔ,r(n, μ, v, P
) log | q
 |2 −2ψΔ(n, μ, v; q
), (4.11)

where ψΔ(n, μ, v; q
) is a smooth function of q
 (as a function of two real variables q


and q̄
) and

lim
q�→0

ψΔ(n, μ, v; q
) = 0.

Here

gΔ,r(n, μ, v, P
) = 1
8π

√
−nv

β3/2(−4πnv)αΔ,r(n, μ, P
),

αΔ,r(n, μ, P
) =
∑

w∈Γ0(N)\Lrμ[n|Δ|]
χΔ(w)δw,


and 0 ≤ δw,
 ≤ 2 is the number of isotropic lines �w ∈ Iso(V ) which are perpendicular 
to w and belong to the same cusp as �. Notice that all terms in (4.11) can be descended 
to the modular curve X0(N).

Since N is square-free, the Atkin-Lehner involutions act on the cusps of X0(N) tran-
sitively. It is known that χΔ is invariant under the Atkin-Lehner involutions. So

αΔ,r(n, μ, P
) =
∑

w∈Γ0(N)\Lrμ[n|Δ|]
χΔ(w)δw,


=
∑

w∈Γ0(N)\Lrσ�·μ[n|Δ|]
χΔ(w)δw,
∞ ,

which is zero by Lemma 4.3. Here σ
 ∈ SL2(Z) is an Atkin-Lehner operator such that 
σ
 · � = �∞ and Lrσ�·μ = L + rσ
 · μ.
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Case 3: We finally assume D = 0, i.e., n = 0. In this case, only the terms with rμ = 0
contribute. We have around the cusp P
, by [DY, Theorem 5.1],

ΞΔ,r(0, μ, v) (4.12)

= −
∑

δ∈L/LΔ


∩LΔ
δ 	=φ

χΔ(δ)
(

ε


2π
√

vN
(log |q
|2) + 2 log(− log |q
|2)

)

−2
∑

δ∈L/LΔ


∩LΔ
δ 	=φ

χΔ(δ)ψ
(0, δ, v; q
).

Here ε
 is the Funke constant at � and ψ
(0, δ, v; q
) is a smooth function of q
, and

lim
q�→0

ψ
(0, δ, v; q
) =
{

a
 if δ ∈ LΔ

b
 if δ /∈ LΔ
(4.13)

for some constant a
 and b
. When δ ∈ LΔ, χΔ(δ) = 0, so we have

lim
q�→0

∑
δ∈L/LΔ


∩LΔ
δ 	=φ

χΔ(δ)ψ
(0, δ, v; q
) =
∑

δ∈L/LΔ


∩LΔ
δ 	=φ

χΔ(δ)b
. (4.14)

Combining it with equation (4.12), it suffices to show

∑
δ∈L/LΔ


∩LΔ
δ 	=φ

χΔ(δ) = 0. (4.15)

We assume that � ∩L = Zλ
. Then the representatives for all δ ∈ L/LΔ with � ∩LΔ
δ �= φ

are given by

{mλ
 | m = 0, 1, ..., Δ − 1}.

One has

∑
δ∈L/LΔ


∩LΔ
δ 	=φ

χΔ(δ) =
Δ−1∑
m=0

χΔ(mλ
) = 0.

This proves that ΞΔ,r(0, μ, v) is smooth around all cusps P
 and goes to zero when 
q
 → 0. �
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Let

ZΔ,r(n, μ) =
{

ZΔ,r(n, μ) if n > 0,

0 if otherwise.

Corollary 4.5. Let the notation and assumption be as in Theorem 4.4. Then ΞΔ,r(n, μ, v)
is a Green function for ZΔ,r(n, μ) on X0(N) in the usual Gillet-Soulé sense, i.e.,

ddc[ΞΔ,r(n, μ, v)] + δZΔ,r(n,μ) = [ωΔ,r(n, μ, v)].

5. Twisted arithmetic theta function

In this section, we assume that N is square free. Following [KM], let Y0(N) (X0(N))
be the moduli stack over Z of cyclic isogenies of degree N of elliptic curves (generalized 
elliptic curves) π : E → E′, such that ker π meets every irreducible component of each 
geometric fiber. The stack X0(N) is regular, proper, and flat over Z and X0(N)(C) =
X0(N). It is a DM-stack. It is smooth over Z[ 1

N ].
When p|N , the special fiber X0(N) (mod p) has two irreducible components X ∞

p and 
X 0

p . Let X ∞
p (X 0

p ) be the component which contains the cusp P∞ (mod p)(P0 (mod p)). 
Here P∞ and P0 are the Zariski closure of the cusps infinity and zero. Let ZΔ,r(n, μ) be 
the Zariski closure of ZΔ,r(n, μ).

We define an arithmetic divisor in ĈH
1
R(X0(N)) in the sense of Gillet-Soulé by

ẐΔ,r(n, μ, v) = (ZΔ,r(n, μ), ΞΔ,r(n, μ, v)). (5.1)

The twisted arithmetic theta function (q = e2πiτ ) is defined to be

φ̂Δ,r(τ) =
∑

n≡sgn(Δ)Q(μ) (mod Z)
μ∈L�/L

ẐΔ,r(n, μ, v)qneμ. (5.2)

5.1. The metrized Hodge bundle

Let ωN be the Hodge bundle (see [KM]) and Mk(Γ0(N)) be the line bundle of weight 
k modular form on X0(N). It is known that ω2

N
∼= ΩX0(N)/Z(−S) ∼= M2(Γ0(N)), where 

S is the set of the cusps. The normalized Petersson metric for modular forms given in 
(1.7) induces a metrized line bundle ω̂k

N
∼= M̂k(Γ0(N)) with ‘log singularity’ along cusps. 

Indeed, let k = 12ϕ(N), the modular form ΔN (z) of weight k, given by (3.4), is a section 
of Mk(Γ0(N)), and has log singularity at all cusps with index α = k/2 in the following 
sense. For example at cusp P∞, q = e(z) is a local parameter, and we have

‖ΔN (z)‖ = (− log |qz|2) k
2 |qz| r

12 kϕ(qz),
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with (here C is the normalization constant in (1.7))

ϕ(qz) = e− kC
2

∞∏
n=1

|(1 − qz)24CN (n)|.

In the notation of [Kü1] (see also [DY, Part II]), one has only ω̂N ∈ ĈH
1
R(X0(N), S). We 

recall the following fact from [DY, Section 6].

Lemma 5.1. Let k = 12ϕ(N). Under the isomorphism P̂icR(X0(N),S) ∼= ĈH
1
R(X0(N),S), 

one has ω̂N
k ∼= D̂iv(ΔN ) = (Div ΔN , − log ‖ΔN ‖2) with

Div ΔN = rk

12P∞ − k
∑
p|N

p

p − 1X 0
p , (5.3)

and

r = N
∏
p|N

(1 + p−1) = [SL2(Z) : Γ0(N)].

Here P∞ is the Zariski closure of the cusp ∞.

5.2. Proof of Theorems 1.2 and 1.6

The arithmetic intersection theory of Gillet-Soulé has been extended to the case 
of arithmetic divisors with ‘log-log’ singularities and metrized line bundles with ‘log’-
singularities, see ([BKK], [Kü1], [Kü2]), in particular [Kü1, Proposition 1.4]). In par-
ticular, if Ẑ1 = (Z1, g1) ∈ ĈH

1
R(X0(N)) and Ẑ2 = (Z2, g2) ∈ ĈH

1
R(X0(N), S) intersect 

properly, we have

〈Ẑ1, Ẑ2〉 = (Z1.Z2)fin + 1
2g1 ∗ g2, (5.4)

with

g1 ∗ g2 = g1(Z2) +
∫

X0(N)

g2ω1. (5.5)

Here ω1 is a smooth (1, 1) form satisfying the current equation

ddcg1 + δZ1 = [ω1].

We define

deg Ẑ = 〈Ẑ, (0, 2))〉 =
∫

ω (5.6)

X0(N)
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to be the degree of Ẑ. When Ẑ ∈ ĈH
1
R(X0(N)), the degree of Ẑ is just the degree of its 

generic fiber Z(C).
Firstly, we prove the following proposition which is an analogue of [DY, Proposition 

6.7], although the proof is more involved.

Proposition 5.2. Let Δ �= 1 be a fundamental discriminant, for every prime p|N , one has

〈φ̂Δ,r(τ), X 0
p 〉 = 〈φ̂Δ,r(τ), X ∞

p 〉 = 0.

Proof. The proof for Δ > 0 is similar to that of [DY, Proposition 6.8] and is left to the 
reader.

We now assume Δ < 0. First notice that

χΔ(−w) = sgn(Δ)χΔ(w) and w∗
N (φ̂Δ,r(τ)) = sgn(Δ)φ̂Δ,r(τ).

It is known that w∗
N X 0

p = X ∞
p with wN =

( 0 −1
N 0

)
. Since wN is an isomorphism, we have

〈φ̂Δ,r(τ), X 0
p 〉 = −〈φ̂Δ,r(τ), X ∞

p 〉.

So

〈ZΔ,r(n, μ), X 0
p 〉p = −〈ZΔ,r(n, μ), X ∞

p 〉p. (5.7)

Let μ = diag(r0/2N, −r0/2N) and D = −4Nn|Δ|, then D ≡ (rr0)2 mod (4N). Let 
n = [N, rr0+

√
D

2 ], which is a proper ideal of the order OD and has norm N .
For w =

( b
2N − a

N

c − b
2N

)
∈ Lrμ(|Δ|n), the associated CM point Rw corresponds to [w] =

(E, G) in the moduli interpretation of X0(N), where E = C/a over C with a = [a, b+
√

D
2 ]

and G ∼= n−1a/a ∼= OD/n being a cyclic subgroup scheme of E of order N . By the theory 
of complex multiplication, [w] is actually defined over OH , where H is the ring class field 
of OD. It is the Zariski closure of Rw in X0(N). We refer to [GZ] for detail on modular 
curves and CM points.

First assume p � D, then p is split in Q(
√

D) (as D ≡ (rr0)2 mod (4N)). Let q be a 
prime of H above p, and p = q ∩OD. Look at the reduction at q, and denote Fq = OH/q. 
Then (E, G)(F̄q) ∈ X 0

p (N)(F̄q) if and only if G(F̄q) ∼= μp×(Z/(N/p)), which is equivalent 
to p � n (as G ∼= OD/n). Therefore, when p|n, ZΔ,r(n, μ)(F̄q) lies in X ∞

p , and we have

〈ZΔ,r(n, μ), X 0
p 〉q = 0.

When p � n, we have

〈ZΔ,r(n, μ), X 0
p 〉q = −〈ZΔ,r(n, μ), X ∞

p 〉q = 0.



116 T. Du, T. Yang / Journal of Number Theory 203 (2019) 95–117
Adding all q over p together, we see

〈ZΔ,r(n, μ), X 0
p 〉p = 0

Next we assume p|D. Since N is square-free, we have p‖D, and that p is ramified in 
Q(

√
D). In this case, all the CM points in the support of ZΔ,r(n, μ) in F̄p are supersin-

gular and are all in the intersection X 0
p ∩ X ∞

p . This implies

〈ZΔ,r(n, μ), X 0
p 〉p = 〈ZΔ,r(n, μ), X ∞

p 〉p.

Combining this with equation (5.7), we see again

〈ZΔ,r(n, μ), X 0
p 〉p = 0.

This proves the proposition. �
Proof of Theorem 1.2. First, we have

deg φ̂Δ,r(τ) =
∫

X0(N)

ΘΔ,r(τ, z) = IΔ,r(1) = 0

by Corollary 3.3. Next, denote

Δ̂N = (rk

12P∞, − log ‖ΔN (z)‖2). (5.8)

Then we have by Proposition 5.2

D̂iv(ΔN ) = Δ̂N − k
∑
p|N

p

p − 1X 0
p ,

and

〈φ̂Δ,r(τ), D̂iv(ΔN )〉 = 〈φ̂Δ,r(τ), Δ̂N 〉.

Since CM points never become cusps in the specialization, we have by (5.4)

〈φ̂Δ,r, Δ̂N 〉

= rk

12
∑
n>0

(ZΔ,r(n, μ), P∞)finqneμ −
∫

X0(N)

log ‖ΔN ‖ΘΔ,r(τ, z)

= −IΔ,r(log ‖ΔN ‖).

From Theorem 1.5, we prove the second formula of Theorem 1.2.
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Proof of Theorem 1.6. Now the proof of Theorem 1.6 is exactly the same as proof of 
[DY, Theorem 8.4], and we refer to [DY] for details.
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