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1. Introduction

Eisenstein series play an important role in arithmetic geometry and number theory.
Kudla conjectured that the derivatives of Eisenstein series are closely related to arith-
metic intersection numbers on Shimura varieties via a conjectural arithmetic version of
the Siegel-Weil formula. In [KRY1], Kudla, Rapoport and Yang proved such a formula
on a division Shimura curve. Kudla and Yang worked out a result on the modular curve
Xo(1) [Ya]. The associated Eisenstein series is Zagier’s famous Eisenstein series [HZ] of
weight 3/2. In [BF2], Bruinier and Funke gave another proof of the main formula in [Ya]
via theta lifting. We extended the arithmetic Siegel-Weil formula to the modular curve
Xo(N) with N square free in [DY].

This paper is a sequel to [DY]. We replace the Heegner divisors by twisted Heegner
divisors, which were studied by Bruinier and Ono in [BO]. Interestingly, the derivative
aspect of the Eisenstein series disappears in such a case, thanks to some cancellation.

Let N > 0 be a positive integer, and let

V=A{w=(, 25 )€ MQ):tr(w) =0}, (1.1)

with the quadratic form Q(w) = N det w = —Nwowz — Nw?. Let
L:{w:(ﬁﬁ)eMg(Z):a,b,ceZ}CV, (1.2)

and let LF be its dual lattice. Then SLy = Spin(V) acts on V by conjugation, i.e.,
g-w = gwg™!, and To(N) acts on L*/L trivially. Let D be the associated Hermitian
domain of positive lines in Vg, then D is isomorphic to upper half plane H via (2.2) which
preserves the action of SLy. We identify X((IN) with the standard compactification of
Lo(N)\H.

For each y € L*/L, let L, = u+ L and

L,n|={weL,: Qw)=n}

Let A € Z be a fundamental discriminant which is a square modulo 4N. Let L» = AL

with quadratic form Qa(z) = QI(AII)’ then its dual lattice is L = L*. Associated to A

is a generalized ‘genus character’ xa : L!/L® — {41}, (see Section 2.2 for details).
2

For an integer 7 with A = 72 mod (4N), p € L*/L, and a positive rational number

n € sgn(A)Q(u) + Z, we define a twisted Heegner divisor

ZA,r(na p,) = Z XA(’U})Z(U)) € DiV(XO(N))Qv (13)
weLo(N)\Lrpu[|Aln]

which is defined over Q(v/A). Here Z(w) = Rw is the point on Xo(N) given by the
positive line Rw. This divisor depends only on the congruence class (r mod 2N).
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We will construct twisted Kudla’s Green function Za ,.(n, u, v) for Za ,(n, u) in Sec-
tion 4. All these functions are smooth at the cusps and are different from the Green
functions Z(n, 4, v) in [DY]. These functions are well-defined and smooth when n < 0.

Now assume that N is square free. Let Xy(N) be the canonical integral model over Z
of Xo(N) as defined in [KM] (see Section 5). It is regular over Z and smooth over Z[+].

1
We define twisted arithmetic divisors in the arithmetic Chow group CHg (Xy(N)) by

(Zar(n, 1), Ear(n,u,v)) ifn>0,

1.4
(0,2 (1, pt,v)) otherwise, (14

QA,T(TI’? My U) = {

where Za (n, p) is the Zariski closure of Za ,(n,p) in Xo(N).

Definition 1.1. Define the formal generating series (twisted arithmetic theta function)

aA,r(T) = Z 2A,r<nau7v)qneu7 (15)

n=sgn(A)Q() (mod Z)
nwel?/L

which belongs to éﬁ%(Xo(N)) ® C[L*/L][[q,q~"]]. Here ¢ = €™ and v = 3(7).

Let T be the metaplectic cover of SLy(Z) which acts on C[L*/L] via the Weil rep-
resentation pz via (2.3), and let {e, : u € L*/L} be the standard basis of C[L#/L)].
Then

EL(Ta S) = Z (U%e(J) |3/2,ﬁL 7/
VETLNT

is a vector valued Eisenstein series of weight 3/2. Here the Petersson slash operator is
defined on functions f : H — C[LF/L] by

(f ls/2,5. ) (1) = &(1) 251 (4 F (97,
and v = (v, ¢) € I". Define the normalized Eisenstein series [DY, equation (1.5)]
Eu(rys) = —7n TNV @s)N I B, 5), (1.6)
where

(M) =) [Ta—-»).

p|N

Let wy be the Hodge bundle on Xy(N), which we identify with the line bundle
M1(Ty(N)) of modular forms of weight 1. For a modular form f of weight k, we define
its normalized Petersson norm
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1£ ()]l = 1 f(2)(4meCy) | (1.7)

where C' = bg‘%”. This induces a metrized Hodge bundle &y with &% = M, (To(N)).
These line bundles have log singularities as explained in Section 5.1, where we also explain
the arithmetic intersection and degree used in the following theorem.

Theorem 1.2. Let A # 1 be a fundamental discriminant, then
deg ¢a,r () = 0 (1.8)
and

<(ZA5A7T(T),@N> = {ﬁ log(ua)h(A)EL(T,1) if A >1,

1.9
0, if A < 0. (1.9)

Here deg is defined by (5.6) and { , ) is the arithmetic intersection in the sense of
Gillet-Soulé.

It is interesting to compare it with the main result in [DY], which we state here for
convenience.

Theorem 1.3. [DY, Theorem 1.3] When A =1,

deg pa (1) = ——
gA,() 0

and

- ~ 1 ’ p
(Bar(0).0w) = 5 (E8(m1) - > e iog ).

Here is the basic idea in the proof of Theorem 1.2. For any I'g(IN) invariant function
f, we define the twisted theta lift

Inp(r f) = / F(2)0an(r 2), (1.10)
Xo(N)

when the integral is convergent. Here ©a (7, 2) is the twisted Kudla-Millson theta kernel
defined by (2.13), following [AE, Section 4].
Define the normalized Eisenstein series of weight 0 as in [DY] by

E(N,z s) = N277I(s)¢ ™) (25) Z (S(v2))°.
YEL o \T'0 (V)

We prove the following theorem in Section 3.
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Theorem 1.4. When A is a fundamental discriminant,

A%A(EA,S)SL(T,S), 'LfA >0,

(1.11)
0, if A <0,

In+(1,E(N,2,8)) = {

where A(ea, s) = L(ea, s)T'($)7~2 is the completed L-series associated to the character

ea(n) = (%)

Alfes and Ehlen studied the case when N =1 in [AE, Theorem 6.1].
Taking the residues of both sides, we obtain the first identity in Theorem 1.2.
Combining the above theorem with the Kronecker limit formula for I'g(N) [DY, Theo-

rem 1.5], we obtain the following result, which is also the generalization of [AE, Theorem
6.2].

Theorem 1.5.

) & (r,1) if A =1,
*EIA,T(T, log [An]l) = { log(ua)h(A)EL(,1) if A>1, (1.12)
0, if A <0,

where up > 1 is the fundamental unit and h(A) is the class number of the real quadratic

field Q(VA).

The final step to prove Theorem 1.2 is to identify the metrized line bundle (EI\Vk (with
log singularity) with the explicit arithmetic divisor ]S;z(A ~) (with log-log singularity).
That way, we can compute the arithmetic intersection, and relate it with the twisted
theta lifting Ia ,(log||An]|). This, combined with Theorem 1.5, proves Theorem 1.2.
Finally, the same argument as in [DY, Section 8] using Theorem 1.2, gives the following
modularity result.

Theorem 1.6. $A7T(T) is a wector valued modular form for I of weight %, valued in
1
C[L*/L] ® CHg(Xo(N)).

In [BO, Section 6], Bruinier and Ono proved that

Ap (1) = Z ZZA,T(n,u)q"eu

HEL! /L n>0
is a cusp form valued in Ss 5, & J(Q(VA)), where J is the Jacobian of Xo(N) and
q = €™, Notice An ,(7) is the generic component of QEA’T(T). So modularity of (EA,T(T)
(Theorem 1.6) is an integral version of their result.
This paper is organized as follows. We will introduce some notation and introduce
the twisted Kudla-Millson theta function in Section 2. We will introduce the twisted
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theta lifting and use it to prove the Theorems 1.4 and 1.5 in Section 3. In Section 4, we
define twisted Kudla’s Green functions, and show these functions are smooth at cusps.
In Section 5, we will define the arithmetic theta functions and prove Theorem 1.2 and
Theorem 1.6.

Acknowledgments. We thank the referee for their careful reading of this paper and their
valuable comments and suggestions. In particular, their question on why only A > 0 in
the first draft inspired us to work out carefully the case A < 0, and makes the paper
better. We also thank Stephan Ehlen for his help.

2. Basic set-up and theta lifting

Let V' (resp. L) be the quadratic space (resp. even integral lattice) defined in the
introduction. Then SLy 2 Spin(V) acts on V by conjugation, i.e., g-w = gwg~*. Notice
that ['o(V) acts on Lf/L trivially. Let D be the Hermitian domain of positive real lines
in VR:

D={:CVg:dimz=1and (,)|,>0}.

The isomorphism between H and D is given by the map

z:x—i-iy»—)w(z):\/_LNy(:glc Zj) (2.1)

The inverse is

D = —ANQ(w). (2.2)

c —a

w:(a b)Hz(w):%,

This isomorphism is SLs(R)-compatible and induces an isomorphism between Y5(NV) =
To(N)\H and To(N)\D. Let X((N) be the standard compactification of Yo(INV).

For w € V(Q) with Q(w) > 0, the Heegner point Z(w) is the image of z(w) in Xo(N).
When Q(w) <0, set z(w) = 0.

2.1. The Weil representation

Let Mp, g be the metaplectic double cover of SLy(R), which can be realized as pairs
(g,9(g,7)), where g = (‘; 2) € SLy(R), ¢(g,7) is a holomorphic function of 7 € H such
that ¢(g,7)*> = j(g,7) = ¢ 4 d. Let " be the preimage of SLy(Z) in Mp, g with two
generators
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We denote the standard basis of C[L*/L] by {e, = L, : p € L*/L}. Then there is a
Weil representation py, of I” on C[L*/L] given by [Bor]

PL(T>eu = e(Q(N))ew (2.3)

pr(S)e, =

wL /L g;/L o

This Weil representation py, is closely related to the Weil representation w of Mp, 4 on
S(Va) (see [BHY)).

2.2. Twisted Heegner divisors

Let A € Z be a fundamental discriminant which is a square modulo 4N, and let
L? = AL with renormalized quadratic form Qa(w) = %. Then it is easy to check

LA% = Lf. Let T'a be the subgroup of I'g(N) which acts on L2# /LA trivially. It is not
hard to check that the map

(£), if A|b*—4Nac and b?—4Nac —ANac jg 5

b —a
XA(( o J;N )) = square modulo 4N and (a, b,c,A) =1, (2.4)

0, otherwise,

gives a well-defined map
Xa 1 LA/LA — {£1},

where n is any integer prime to A represented by one of the quadratic forms [Nya, b, Nac]
with Ny Ny = N, Ny, Ny > 0. Here we denote [a,b, Nc] = ax? + bxy + Ncy?. Indeed,
xa(w) = xa([a,b, N¢]) is the generalized genus character defined in [GKZ, Section 1]
(see also [BO, Section 4]). We leave it to the reader to check that y(w+ L?) = x(w) and
S0 xa induces a map on LA#/LA. It is known [GKZ] that the map is invariant under
the action of T'g(/V) and the action of all Atkin-Lehner involutions, i.e.,

xa(ywy™") = xa(w) and xa(wywwy,) = xa(w), (2.5)

where v € T'g(N) and wyy is the Atkin-Lehner involution with M||N.
Choose and fix r € Z with 72 = A mod 4N. For any p € L¥/L and a positive rational
number n € sgn(A)Q(u) + Z, we define the twisted Heegner divisor by

Zaom = 3. xa(w)Z(w) € Div(Xo(N))g, (2.6)
weTo(N)\Lrp[n|Al]
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which is defined over Q(v/A). Notice that we count each point Z(w) = Rw with mul-
tiplicity ﬁ in the orbifold X¢(N), where Ty, is the stabilizer of w in I'g(N). So our

definition is the same as that in [AE, Section 5] and [BO, Section 5].
Now define for § € LA#/LA

Za(n,8):= Y Z(w) € Div(Xr,).
wEFA\LSA[n]

Recall the natural map

SN :XFA — Xo(N)

(2.7)

is a covering map with the degree [['o(V) : Tal, where Xt is the modular curve T'a\H*,

and T =T/(T N {=£1}).
Lemma 2.1. Let n = sgn(A)Q(r)( mod Z) be a positive number, then

Y xa®Za(n,0) =t (Zar(n, ),

serL™¥ LA
d=ru(L)

where . is the pullback
Tt ZH(Xo(N)) — Z1(Xr,)-
Proof. Write I' = I'g(V). For w € I' \ L,,[|A|n], we have
mr, (Z(w)) = {Z(w1), ... Z(wy)},
and then
mr, (Z(w)) = Z(wr) + ... + Z(wy).
So we have

T (Zarnm) = Y xa(wp, (Z(w))
wer\L [ Aln]

= > xal®) D> Z(w)

seLf/LA wEl A\ L5 [n]
o=ru(L)

= Z XA<5)ZA(H76).
sert/L?
o=ru(L)

This proves the lemma. 0O



T. Du, T. Yang / Journal of Number Theory 203 (2019) 95-117 103

2.3. Twisted Kudla-Millson theta function

For z = x + iy € H, recall w(z) € Vg via (2.1). Let w(z)* be the orthogonal comple-
ment of Rw(z) with the following orthogonal decomposition

Ve = Rw(z) @ w(z)*,

W= W, +W,L.
Following Kudla and Millson ([KMi], [BF2, Section 3]), define for w € Vg
R(w,z)a = —(w 1, w,1)A,
and the majorant
(w, W),z = (W, wz)a + R(w, 2) A,

where (,)a = H is the bilinear form associated to the quadratic form Qa. One has

R(w,2)a = 5(w,w(2)i — (w,w)a. (29)
For w = (. ‘) € Vg, we have
(w,w(z))a = — VN (wszZ — w1 (z +Z) — wa). (2.10)
VAT

Let
0 2 1 —21R(w,2)a
palw,z) = | (w,w(z))a -5 Je A pu(z)
and

pa(w,7,2) = e(Qa(w)T)pa (Vow, 2),

be the differential forms on Vg valued in Q"1(D), where u(z) = —d"f/ du,
For any 6 € L~*%/L?, define
O5(1,2) = Y pa(w,T,2), (2.11)
welL§
where L& = § + L?. Then
Opa(r,2) = Y., Os(r2)es (2.12)

SeLA/LA
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is a vector valued Kudla-Millson theta function, which is a non-holomorphic modular
form of weight 3/2 of (I, pya) with respect to the variable 7 with values in Q! (Xt ).

Following Bruinier and Ono’s work [BO], Alfes and Ehlen constructed a C[L!/L]—
valued twisted theta function [AE, Section 4]

O (1,2) ZGAruT'zem (2.13)
where (L# = LAF)
Onru(r,2) = > Xa(6)85(7, ).
seLf/ LA
6=ru(L)

Qa(8)=sgn(A)Q(p) (mod Z)

This twisted theta function has good transformation properties just like the classical
Kudla-Millson theta functions.

Proposition 2.2. [AE, Proposition 4.1] The theta function ©a ,(T,z) is a non-holo-
morphic C[L*/L)-valued modular form of weight 3/2 for the representation pr in the
variable T. Furthermore, it is a non-holomorphic automorphic form of weight 0 for T'o(N)
in the variable z € D. Here

~ {PL ZfA > Oa (214)

L =
oL if A<O.
3. Twisted theta lift

Following Alfes and Ehlen [AE], we consider the twisted theta lifting: for any
To(N)-invariant function f(z), the lifting is given by

IA r\T, f / f @A r 7- Z) Z / f(z)@A,nu(T: Z)eu’ (31)

Xo(N) nEL? /Ly (N)

if the integral is convergent. Recall from [BF2, Proposition 4.1] that the theta series
Oa (7, 2) decays like e~CY" as y goes to the infinity (for some C' > 0), and behaves
similarly at other cusps. In particular, the twisted theta lifts of Eisenstein series £(N, z, s)
and Petersson norm log || Ay || are well-defined. We first recall a result of Alfes and Ehlen.

Proposition 3.1. ([Al, Proposition 3.1], [Eh]) Let K = Z with the quadratic form Q(z) =
—Nxz2. Then K*/K = L*/L as quadratic modules, and
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O (1,2) = ey \A| Zn Z

wergo\r'

~ydxzdy.

2Nn?
X e:rp(—ﬁy n 73/2 Z (JA|Q(M)T — 2N Anx em]|3/2~

v|A| Nt
Heree=1is A >0 ande=1 if A <O.

Now we are ready to prove Theorem 1.4 which we restate here for convenience. We
follow the idea in the proof of [AE, Theorem 6.1], where the case N =1 is considered.

Theorem 3.2. When A is a fundamental discriminant,

A5 Aea, )EL(T,5), if A >0,
In (1, E(N, z,5)) = (Ea,8)Er(ms), i (3.2)
0, if A <O,

where A(ea, s) = L(ea, s)I'(5)7
5A(n) = (%)

5 is the completed L-series associated to the character

Proof. One has by Proposition 3.1,

Oa (T, 2)

N3/2i Z y2Nn? | cr +d |?

-
n=1~yel’/ _\TI"

x(cr +d)~3/? Z e(|AIQNFT — 2N Anz) it (7)eradrdy
AeKH

YN & 7y Nn? | cr +d |?
= €v3/2|A|Z >0 eXp( | Al )

n=1 fyef" AN

(e +d)*? Y7 e(|AIQINAT — 2NMna) i (7)eraderdy.
AeKH

Here we used that fact that for every coprime pair (c,d), there is unique v = (Z 2) €
I _\I" associated to it.
Unfolding the twisted theta lifting integral, for R(s) > 1, we have

In (1, E(N, 2, 8))

/ Oa (T, 2)y

(o)
Ni &, A N y2n? >
=—é—5— Y n*(= T+d 3/2/6(7W'”+d‘ Jystia

V2
n=1 ~EDL N\T 0



106 T. Du, T. Yang / Journal of Number Theory 203 (2019) 95-117
xpr (v / Z (JA|Q(NAFT — 2N Anx)e,pdx.
AEKH
Notice that
1
/ e(JA|Q(AN)FT — 2N Anx)e,rdz = ep.
0 MK Kt

So we have

In (1, E(N,2,5))

Nie &, A +2|A|ﬁ(c?+d)3/21"(s +1)
=T, 3 Zﬂ (_) Z st2 2 s12 o2 PK (’7)60
2U2|A‘ n=1 n ~yETL_\TI" I CT +d | +2 N2 +
A ) s e R O
= -1 s+2 12 K
IN T et |er+d|®
E\A|5L(€A,S)F(§ + 1)
= — p 5 EL T,S).
2N 217-[- ;2 < )

Here

EL(T75) = Z (’U%Bo) |3/2,ﬁL ,-}/’

SN

is the Eisenstein series defined in the introduction. When A > 0, we obtain
In - (T,E(N, 2,8)) = A%A(EA,S)SL(T,S).
When A < 0, a simple calculation gives

EL(r,s) |3 5. Z =—FEr(r,s),

for Z = ( <_1 _1) ,1). On the other hand, the modularity of Eisenstein series implies

So Er(r,s)=0. O

Taking residue of both sides of the equation (3.2) at s = 1, we have the following
result.
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Corollary 3.3.

e 1) if A=1,

Mmhﬂ):{¢m> (3.3)

0 if A1

Recall the modular form Ap(z) of weight k& = 12p(N) for I'o(N) defined in [DY,
(1.6)]:

An(z) =[] At2)"® (3.4)
t|N
with
o) = AN
(t) g;mng>ﬂ¥y

where p(n) is the Mobius function and ¢(N) is the Euler function.
For a modular form f of weight k and level N, recall its normalized Petersson metric

_C N\ E
1F () = 1f(2)(4me™“y) 2| (3.5)
where C' = 1°g4++7 with Euler constant .

Theorem 3.4. Let the notation be as above, one has

. Er(r,1) if A=1,
—;yﬁwﬂmmmNmz log(ua)h(A)EL(r,1) if A>1, (3.6)
0, if A <O,

where ua is the fundamental unit and h(A) is the class number of the real quadratic field

Q(VA).

Proof. By the Kronecker limit formula for T'g(N) [DY, Theorem 1.5]

iy (£V.2,5) = (V)" (25~ 1)) = — 5 10w (P | Aw) )

s—1
we have
1
—EIAW(T, log | AN(z)yG‘P(N) 1)

= 11_}1% (In (7, E(N, 2, 8)) — @(N)C* (25 — 1) I (7, 1)).

Here (*(s) = n~2'(£)((s). Now the theorem follows from Theorem 3.2, Corollary 3.3,
and the class number formula. O
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4. Twisted Kudla’s Green function

Following Kudla’s methods in [Kul], we construct a twisted Kudla’s Green function
for Za »(n, ) and study its properties in this section.
For r > 0 and s € R, let

o0

Bs(r) = /e_”t_sdt, (4.1)

1

and
n(w, z) = f1(27R(w, z)A). (4.2)

Definition 4.1 (Twisted Kudla’s Green functions). For n € sgn(A)Q(p) + Z, define

Ear(n, po)(z) = Z XA(é)ELA(n,d,v)(z), (4.3)

seL¥/L?
6=ru(L)
Qa(d)=n

where Z;a(n,6,v)(z) is Kudla’s Green function associated to the lattice L2 with
quadratic form Qa given by

Epa(n,é,v)(z) = Z En(Vvw, 2). (4.4)

0£weL% [n]

So one has

EA,r(naﬂav)(z) = Z XA('lU)fA(\/Bw,Z), (45)

0AWE Ly [n|A]

which is clearly invariant under I'o(N). Recall from Lemma 2.1

> xa(0)Za(n,8) = 71 (Za,r(n, 1))
seLf/ LA
6=ru(L)

Since Epa(n,d,v) is a Green function for Za(n,0) on Xr, = T'a\H by [Kul, Section
12], we have the following lemma.

Lemma 4.2. Whenn > 0, Ea ,(n, 1, v)(2) is a Green function for Za .(n, p) on Yo(N) =
Do(N)\H, and satisfies the following current equation,

ddC[EA,T(na Hy v) (Z)] + 5ZA,T(7L,/L) = [WA,T(nv 1y U)]’ (4'6)

where wa (N, p,v) s the differential form
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wA,T(na M, U) = Z XA (w)@OA (w, Z) (47)
weLy[n|Al]

In particular, when n <0, Ea »(n, @, v)(2) is smooth on Yy(N).

Now we consider the behavior of these Green functions at the cusps. When D =
—4N|A|n is not a square, the Green function ZEa ,(n,p,v)(z) is smooth at the cusps
by [DY, Theorem 5.1]. For the rest of this section, we assume that D = —4N|A|n is a
square.

Let Iso(V') be the set of isotropic lines £ = Qw of V. Two isotropic lines ¢; and {5 are
equivalent if there is some v € T'o(N) with v¢; = f5. Given £ = Q (z g) € Iso(V), let
P, = 2 be the associated cusp, which depends only on the equivalence class of isotropic
line ¢.

Let {oo = Q (8 (1)) € Iso(V), and P», = oo be the associated cusp. In general, for an
isotropic line ¢, there exists oy € SLa(Z) such that £o, = oy - £. Then

oLeo, b ={£ (™) ;m e L},

1
01
where I'y C Ty(N) is the stabilizer of £ and ¢ > 0 is the classical width of the associated
cusp P;. On the other hand, there is another positive number 5, > 0, depending on L and
the cusp P, such that (8 %’f) is a primitive element in log (o - L. We call e, = 5 the
Funke constant at cusp Py, which is defined in [Fu, Section 3]. We will denote k = Koo.

For w € L* w' is a split space if and only if —4N|A|Qa(w) is square. For any
¢ € Iso(V), let 6,0 be the number of isotropic lines £,, € Iso(V') which are perpendicular
to w and equivalent to ¢. We often drop the index ¢ when ¢ = .

Lemma 4.3. Let D = —4Nn|A| > 0 be a square integer, then one has

> dwxa(w) =0. (4.8)

welo(N)\Ly[n|Al]

Proof. For any w € L,[n|A|] with (w,{s) = 0, one has

w:w(a,b)z(ﬁ %a ),aQZDandaEro mod (2N), (4.9)

T 2N

where p = (2% 7LO). It is known that w(a,b) is T'o(N) equivalent to w(a,b’) if and
2N
only if b= b mod a.
When 2 ¢ L, let a be the unique square root of D satisfying a = ro mod (2N). By

[DY, Lemma 6.2], the representatives for I'o(N) \ L, [n|Al] are given by
{(# &) w=o<vl.
2N

and dy,(q,p) = 1. Since —b is represented by the quadratic form —bz? 4 axy, we have
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XA((;]LV x )) :(—éb)

T 2N

So
RIRRRER O

wEFo(N)\Lu[nIAH
When 2/ € L, the equation (4.9) has two solutions a = ++v/D. The set of representa-

tives is a subset of

=S

>|O§b<\/5}.

|

+ff %
Sz:{< 1

[DY, Lemma 6.2] asserts that
(a,b) is To(NN) equivalent to w(—a,b’) <= bu(a,p) = Ow(—ap) = 2
=2

Moreover, there is the unique one w(—a,b’) € S equivalent to w(a,b) when dy 4.5

So
(4.10)

R:={w(VD,b)|0<b< D)}
U{w(=VD,¥) |6, ypuy =1, 0<V <VD},
)\ L,[n|A]]. Clearly, one has S = RU B with

is a set of representatives for I'g(

B = {w(~vVD,¥) | 6, _ypy,=20<b <VD}.

So we have
> Swxa(w) = duxa(w
wel(N)\Ly[n|Al] weR
= > 2xa(w)+ Y xa(w)
weR weR
Sw=2 Sw=1
=Y xaw)+ > xaw)+ Y xalw
wER weB wER
Suw=2 Suw=2 Sw=1
vD-1 A
:ZXA(w):2 = =0.
weS b=0
O

This proves the lemma
The main purpose of this section is to prove the following result
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Theorem 4.4. Let the notation be as above and n € sgn(A)Q(u) +Z, and assume that N
is square free. Then Za ,(n, p,v)(z) is smooth and vanishes at the cusps:

qlglgo :‘A,T(na Hy U) (Z) =0,

where qp is a local parameter at the cusp Py associated to ¢ € Iso(V).

Proof. Let D = —4N|Aln and we split the proof into three cases: D is not a square,
D > 0 is a square and D = 0.

Case 1: We first assume that D is not a square. This case follows directly from the result
[DY, Theorem 5.1].

Case 2: Next we assume that D > 0 is a square. We first work on X1, as Epa(n,d,v)
is defined over Xr,. Let P; be the cusp associated to an isotropic line £ € Iso(V'). We
have, near the cusp Py, by [DY, Theorem 5.1] and equation (4.3)

EA,T(na ‘LL,’U)(Z) = 79A,r(n7p’a U7P€) IOg | qe |2 721/}A(n7/1’3 v; q@)v (411)

where ¥a(n, i, v;q¢) is a smooth function of gy (as a function of two real variables gy
and ¢y) and

1. N —_ .
qunO /(/)A (”a M, U3 QZ) 0
Here
r(n, ,'U,] /3 4dmnv)a r{n, ,1 ,
gn, M [4 S o 3/2 A, My L

O‘A,’r’(nnuﬂpf) = Z XA(w)(Sw,E
UJGFO(N)\LU/.["‘AH

and 0 < §,, ¢ < 2 is the number of isotropic lines ¢,, € Iso(V) which are perpendicular
to w and belong to the same cusp as £. Notice that all terms in (4.11) can be descended
to the modular curve Xo (V).

Since N is square-free, the Atkin-Lehner involutions act on the cusps of X((N) tran-
sitively. It is known that xa is invariant under the Atkin-Lehner involutions. So

an,-(n, p, Pe) = > Xa(W)du,e
w€FO(N)\Lr;L [nlAl]

= Z XA(w)(Sw,ZOC7

wEFO(N)\LTag'u[nlA”

which is zero by Lemma 4.3. Here oy € SLy(Z) is an Atkin-Lehner operator such that
op- =10 and L,s,.,, = L +10¢ - 1.
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Case 3: We finally assume D = 0, i.e., n = 0. In this case, only the terms with ru = 0
contribute. We have around the cusp P, by [DY, Theorem 5.1],

Ea-(0, 1, v) (4.12)

Er 2 2
_ xm)( (10g ge[?) + 2 log(— log || ))
6ELZ/LA 2mvVuoN

eNLE#¢

—2 Y xal(8)1e(0,6,v;q0).
seL/LA
eNLE#¢

Here ¢, is the Funke constant at £ and (0, d, v; g¢) is a smooth function of g, and

ag ifd e LA
lim ¥¢(0,0,v;q¢) = 4.13
2e—0 ( ) by ifs¢ LA ( )
for some constant a, and by. When 6 € L, ya(6) = 0, so we have
lim Xa(®)ve(0,8,0:9) = Y xald)be. (4.14)
qg~>0
seL/LA seL/L”
INLG#¢ eNLE#$
Combining it with equation (4.12), it suffices to show
> xa®=o. (4.15)
seL/L”
LS #6

We assume that /ML = Z\,. Then the representatives for all § € L/L? with (NL5 # ¢
are given by

{mA¢ |m=0,1,...,A—1}.

One has
A-1
> xal®) = xalmi) =0.
seL/L? m=0

eNLE#¢

This proves that Za (0, ¢, v) is smooth around all cusps P, and goes to zero when
q—0. 0O
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Let

ZA,T(na ,U) ifn> 07
ZAJ‘ (’I’L, :U') = . .

0 if otherwise.
Corollary 4.5. Let the notation and assumption be as in Theorem 4.4. Then Za »(n, i, v)
is a Green function for Za ,»(n,un) on Xo(N) in the usual Gillet-Soulé sense, i.e.,

dd°[Za (1, V)] + 025, (nop) = [War (0 11, 0)].
5. Twisted arithmetic theta function

In this section, we assume that N is square free. Following [KM], let Yo(N) (Xo(N))
be the moduli stack over Z of cyclic isogenies of degree N of elliptic curves (generalized
elliptic curves) 7 : E — F’, such that ker 7 meets every irreducible component of each
geometric fiber. The stack Xp(NV) is regular, proper, and flat over Z and Xp(N)(C) =
Xo(N). It is a DM-stack. It is smooth over Z[+].

When p|N, the special fiber Xy(N) (mod p) has two irreducible components X5° and
XD, Let X3°(X0) be the component which contains the cusp Ps (mod p)(Py (mod p)).
Here Po, and Py are the Zariski closure of the cusps infinity and zero. Let Za ,(n, 1) be
the Zariski closure of Za ,.(n, u).

1
We define an arithmetic divisor in CHg (Xo(V)) in the sense of Gillet-Soulé by

QA,T(TL’,UHU) = (ZA,T(naM)vEA,T(n’/J/7U))' (51)

The twisted arithmetic theta function (¢ = €2™7) is defined to be

QEA,T(T) = Z é\A,'r(ny 122 U)qne/t- (52)
n=sgn(A)Q(x) (mod Z)
peEL! /L

5.1. The metrized Hodge bundle

Let wy be the Hodge bundle (see [KM]) and My(I'o(N)) be the line bundle of weight
k modular form on Xy(N). It is known that w3, = Qx,(ny/z(—5) = Ma(Tg(N)), where
S is the set of the cusps. The normalized Petersson metric for modular forms given in
(1.7) induces a metrized line bundle &%, = M, (To(N)) with ‘log singularity’ along cusps.
Indeed, let k£ = 12¢p(N), the modular form Ay (z) of weight k, given by (3.4), is a section
of My(T'o(N)), and has log singularity at all cusps with index oo = k/2 in the following

sense. For example at cusp Pao, ¢ = e(2) is a local parameter, and we have

k o
AN ()l = (= loga:I*) 2 la=| 2" p(q2),
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with (here C' is the normalization constant in (1.7))

_kC
p(q:) =e 2 H (11— qz)24CN(n)|'

1
In the notation of [Kiil] (see also [DY, Part II]), one has only @y € CHgi (Xo(N),S). We

recall the following fact from [DY, Section 6.

_ ——1
Lemma 5.1. Let k = 12¢(N). Under the isomorphism Picg (Xo(N),S) = CHg (X (NV),S),

one has on" = ﬁ/(AN) = (DivAy, —log||Ax|?) with

. rk P 0
DIVAN = EPOO - kZEXp7
p|N

and

r=N]J(+p™") =[SLa(Z) : To(N)].
pIN

Here Py, is the Zariski closure of the cusp oo.

5.2. Proof of Theorems 1.2 and 1.6

(5.3)

The arithmetic intersection theory of Gillet-Soulé has been extended to the case

of arithmetic divisors with ‘log-log’ singularities and metrized line bundles with ‘log’-

singularities, see ([BKK], [Kiil], [Kii2]), in particular [Kiil, Proposition 1.4]). In par-
— —1 — —1

ticular, if Z2; = (Zl,g]_) S CHR(X()(N)) and Z; = (Zg,gg) € CHR(X(J(N),S) intersect

properly, we have

o~ 1
(21, 22) = (21.22) pin + 291 % 92,
with

g1 %92 = g1(Z2) + / gawn.
Xo(N)

Here wy is a smooth (1,1) form satisfying the current equation
ddcgl + 521 = [wl].
We define

deg Z = (Z,(0,2))) = / w

Xo(N)
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to be the degree of Z. When Z € éﬁ];(éfo (N)), the degree of Z is just the degree of its
generic fiber Z(C).

Firstly, we prove the following proposition which is an analogue of [DY, Proposition
6.7], although the proof is more involved.

Proposition 5.2. Let A # 1 be a fundamental discriminant, for every prime p|N, one has

@A,r(T)aX;?) = <$A,T(T),X§°> =0.

Proof. The proof for A > 0 is similar to that of [DY, Proposition 6.8] and is left to the
reader.
We now assume A < 0. First notice that

o~

Xa(=w) = sgn(A)xa(w) and wi ($a,,(7)) = sgn(A)da, (7).

It is known that w}"vé’c’g = X° with wy = (J(\), _01 ) Since wy is an isomorphism, we have

<$A,T(T)7 X}?> = _<$A,T(T)? Xpoo>

So

<ZAJ’(”7N)7 X;g)p = —(Zar(n, ), X;O>p~ (5.7)

Let u = diag(ro/2N, —19/2N) and D = —4Nn|A|, then D = (r79)?> mod (4N). Let

n =[N, M}, which is a proper ideal of the order Op and has norm N.

b _a
For w = ( oy ) € L,,(J]Aln), the associated CM point Rw corresponds to [w] =
~ 2N

(E, G) in the moduli interpretation of Xy(N), where E = C/a over C with a = [a, @]
and G = n~'a/a = Op/n being a cyclic subgroup scheme of E of order N. By the theory
of complex multiplication, [w] is actually defined over O, where H is the ring class field
of Op. It is the Zariski closure of Rw in Xy(NN). We refer to [GZ] for detail on modular
curves and CM points.

First assume p { D, then p is split in Q(v/D) (as D = (rrg)?> mod (4N)). Let q be a
prime of H above p, and p = qNOp. Look at the reduction at q, and denote Fq = Op/q.
Then (E, G)(Fq) € X2(N)(F,) if and only if G(Fq) & pp, x (Z/(N/p)), which is equivalent

topfn (as G = Op/n). Therefore, when p[n, Za (n, p)(Fy) lies in Ap°, and we have
<ZA,T (na ,U,), X[?>CI =0.
When p t n, we have

<ZA,r(naM)7X1?>C[ = _<ZA,T(n7M)’X;O>CI =0.
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Adding all g over p together, we see

(Zar(n,p), X)), =0
Next we assume p|D. Since N is square-free, we have p||D, and that p is ramified in

Q(v/D). In this case, all the CM points in the support of Za r(n,p) in F,, are supersin-
gular and are all in the intersection Xg N &A;°. This implies

<ZA7T(n,,u), X£>p = <ZA,r(na 1), X;O>p'

Combining this with equation (5.7), we see again

<ZA7r(nv ,u)v X;?>[) =0.
This proves the proposition. O

Proof of Theorem 1.2. First, we have

deg ;b\A,T(T) = / @A,T(T? Z) = IA,T(I) =0

Xo(N)
by Corollary 3.3. Next, denote
~ rk 9
AN = (15 P ~log [An(2)[). (5.8)

Then we have by Proposition 5.2

= R p 0
DIV(AN) = AN — kZNmXp,
P

and

~

(¢a.(7), DIV(AN)) = (par(7), A).

Since CM points never become cusps in the specialization, we have by (5.4)

<$A,r7£N>

rk
S Zarn) Pudsind"e — [ 1ol An]0as(r.)

n>0 Xo(N)

= —Ia (log |AN])-

From Theorem 1.5, we prove the second formula of Theorem 1.2.
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Proof of Theorem 1.6. Now the proof of Theorem 1.6 is exactly the same as proof of
[DY, Theorem 8.4], and we refer to [DY] for details.
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