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We investigate separation properties of N-point configurations that minimize discrete
Riesz s-energy on a compact set A C R?. When A is a smooth (p — 1)-dimensional man-
ifold without boundary and s € [p — 2,p — 1), we prove that the order of separation (as
N — o0) is the best possible. The same conclusions hold for the points that are a fixed
positive distance from the boundary of A whenever A is any p-dimensional set. These
estimates extend a result of Dahlberg for certain smooth (p — 1)-dimensional surfaces
when s = p — 2 (the harmonic case). Furthermore, we obtain the same separation results
for “greedy” s-energy points. We deduce our results from an upper regularity prop-
erty of the s-equilibrium measure (i.e., the measure that solves the continuous minimal
Riesz s-energy problem), and we show that this property holds under a local smoothness

assumption on the set A.

1 Introduction

In this article we study, respectively, the properties of separation and regularity for
minimal discrete and for continuous Riesz energy. For a measure p supported on a

compact set A in Euclidean space and s > 0, its Riesz s-potential and Riesz s-energy are
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defined by

d
UL x) :=/ﬁ, Llu] :=/U;‘(X)du(X), (1.1)
A - A

and its Riesz log-potential and Riesz log-energy by

1
|x — yl

Ulog (%) 1= f log du(y), Teglul := / Ulog () d ().

A A
The constant W;(A) := inf I;[], where the infimum is taken over all probability measures
u supported on A, is called the s-Wiener constant of the set A, and the s-capacity of A

is given by

cap,(4) := s> 0, caplog(A) 1= exp(—Wyy(4)).

W(A)'

If Wi (A) < o0, it is known that there exists a unique probability measure u, that attains
W,(A) and we call u, the s-equilibrium measure for A (see [16]).

The problem of minimizing L[] has a discrete analogue. Namely, for an integer
N > 2 we set

Es(A,N) := min E;(wy),
wy CA

where the infimum is taken over all N-point configurations wy = {x;,...,xy} C A and

1
Ey(on) =)
ot

By vy = oy, = {x{,..., Xy} we denote any optimal N-point s-energy configuration; i.e.,
a configuration that attains (4, N). It is known that if W;(A) < oo, then

1 N
_28}(," _*) Ms,
N &%

where §, denotes the unit point mass at x, and the convergence is in the weak* topology.
Thus, for sets of positive s-capacity, by solving the discrete minimization problem, we
“discretize” the measure pu; that solves the continuous problem.

We shall study properties of w},, especially its separation distance given by

§(wy) = min |x; — x;|. (1.2)
i£]
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5068 D. P. Hardin et al.

In the theory of approximation and interpolation, the separation distance is often asso-
ciated with some measure of stability of the approximation. In [6] Dahlberg proved that
for a C'**-smooth d-dimensional manifold A ¢ R%"! without boundary and s = d — 1

(the harmonic case), there exists a constant ¢ > 0 such that
8(w) =cNV4, VYN > 2, (1.3)

Forsuch aset A, the order N~'/4 for separation of N-point configurations is best possible.
(More generally, this is true for any set A that is lower d-regular with respect to some
finite measure u, see Definition 2.1.) For the special case A = S? := {x € R%*!: |x| = 1},
Kuijlaars, Saff, and Sun [15] extended Dahlberg’s result by proving (1.3) for s € [d — 1, d)
and in [4], Brauchart, Dragnev, and Saff extended the range of s to s € (d — 2,d) with
explicit values for the constant c. Our first goal is to extend the results from [6] and [15]
to all C*-smooth d-dimensional manifolds for s € [d — 1, d) and to interior points of d-
dimensional bodies for s € (d — 2, d). More generally, we show that (1.3) holds whenever
the s-equilibrium measure of the manifold is upper regular (see Theorem 2.3).

Since the problem of determining the minimum &;(4,N) requires solving an
extremal problem in N variables, it is natural to consider a somewhat simpler dis-
cretization method, namely, the computation of greedy s-energy points defined below
which involves minimization in only a single variable. For the logarithmic kernel on
A x A where A C C, such points were introduced by Edrei [10] and extensively explored
by Leja [17] and his students. For general kernels they were investigated by Lépez and
Saff [18].

Definition 1.1. A sequence o}, = {aj}?2, C A is called a sequence of greedy s-energy

points if a} € A and for every N > 1 we have

N-1 N-

Z -
|aN 7 |s yeA

Jj=1 =1

Notice that if wy_; := {a],...,ay_,} is already determined, then a}, is chosen to
minimize Es(wy-; U{y}) overall y € A. It is known [18] that if W;(A) < oo and v’ = {aj}z,

is a sequence of greedy s-energy points, then
N

Some computational aspects of using the greedy s-energy points for numerical inte-

gration can be found in [11]. Our second goal, which is achieved in Theorem 2.4 and
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Local Properties of Minimal Energy Points 5069

Corollary 3.2, is to prove that for a smooth d-dimensional manifold A and s € (d — 1,d)
or s > d, there exists a constant ¢ > 0 such that, for every i < j, we have

la; —aj] > ¢~/

In particular, this implies that §({aj,...,a}}) > cN~1/4, Moreover, when s > d we also

prove that for some constant C > 0 the covering radius n for such points satisfies

n({aj,...,ay} A) = Igglx]gnnlv ly —ajl < CN~V4,
For configurations that attain the minimal discrete energy (4, N), this was done in [13]
fors > dandin [6] fors=d — 1.

Since the method of proof for the above results utilizes the regularity properties
of the measure u; (see Definition 2.1), our third goal is to obtain sufficient conditions for
this regularity. As we show in Theorem 2.7, compact C*-smooth d-dimensional mani-
folds A c R%! without boundary satisfy our conditions (we anticipate, however, that
the same result holds for C*-smooth manifolds). In the case s = d — 1, such a result is
proved in [20]. Another result of this type was proved in [24] under an assumption that
the potential U# of the measure u satisfies an appropriate Holder condition in the whole
space R4, We derive our result, Theorem 2.7, using only smoothness of the manifold
A by applying the theory of pseudo-differential operators.

The article is organized as follows. The main results in the integrable case, which
include separation properties of minimal energy and greedy energy points, are stated
in Section 2 and proved in Sections 5 and 7. In Section 3 we state the separation and
covering properties of greedy energy points in the non-integrable case, which are proved
in Subsections 5.2 and 5.3. In Section 4 we cite some known results from potential theory
that we need to prove our main results, and in Section 6 we give a short introduction to
the theory of pseudo-differential operators, which we need for the proof of Theorem 2.7

in Section 7.

2 Main Results in the Integrable Case

In this section, we state and discuss our main results for integrable Riesz kernels. Their
proofs are given in Sections 5 and 7. We shall work primarily with a class of £-regular

sets, which are defined as follows.

020z Iudy €0 uo ysenb Aq 6.26.85+/990G/9 /6 | 0Z/A0ESAE-901E/UIWI/WOD dNO"dlWSPede//:sd)y Woiy papeojumod



5070 D. P. Hardin et al.

Definition 2.1. A compact set A is called ¢-regular, ¢ > 0, if for some measure A sup-
ported on A there exists a positive constant C such that for any x € A and r < diam(4)

we have
C'r' <AB(x,r) <Crf,

where B(x,r) denotes the open ball B(x,r) := {y € RP: |y — x| < r}. The set A is called
¢-regular at x € A if for some positive number r;, the set A N B(x,r;) is ¢-regular.
Further, we call a measure u upper d-regular at x if for some constant c(x) and

any r > 0 we have

n(Bx, 1) < cx)rt. (2.1)
O

As the next example shows, a set A can be ¢-regular with ¢ € N, but its

s-equilibrium measure p; can be d-regular with d < ¢.

Example 2.2. For the closed unit ball B* := {x € R’: |x| < 1}, which is ¢-regular, and

s € (£ — 2,¢) the s-equilibrium measure is given by (see, e.g., [16] or [3])

I'(1+s/2)

s=M(1 — Zys-0/2 ’ M = '
dps = M(1 — |x*)“7""dx 72T (1 + (s — 0)/2)

We notice that u, is £-regular at every interior point of B¢. However, for x on the boundary

B’ = S*~!, the measure u, satisfies

C'r” L pug(B(x, 1)) < Crio?,

so that us is not £-regular at x € dB’. O

We now present our main results which include the possibility of different reg-
ularities for the set A and the measure u;. Although stated only for s > 0, they remain

valid for ¢ = 1 and s = log.

Theorem 2.3. Let A C RP be a compact set of positive s-capacity, 0 < p—2 < s <
d < ¢ < p, and us be the s-equilibrium measure on A. Assume A’ C A is such that A is ¢-
regular at every x € A’ C A and u, is upper d-regular at every x € A’ with sup,_, c(x) < ¢

for some ¢ > 0. Then there exists a positive constant C such that for any optimal N-point
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Local Properties of Minimal Energy Points 5071

s-energy configuration wy, = {x7,..., x5}, any xi €A and any x; € A with k # j we have
X — x| > CN~V9, (2.2)
O

In particular, (2.2) holds in the following cases (see Corollaries 2.8 and 2.9 and

Example 2.2):

e A C R*!is a compact £-regular C*°-smooth manifold without boundary,
sel—1,0),and A’ = A withd = ¢;

« ACR‘iscompact,sec ({ —2,¢),and A’ = {x € A: dist(x,04) > ¢} withe > 0
and d = ¢;

e A=B'se(—-2,¢),andA ={xecR" x| <1—¢}withe e (0,1)andd =¢;

e A=DB'sc(—-24¢),and A =90B* withd = (s + £)/2.

Remark. Inthe case ¢ =1 and s = log, our results imply the sharp estimate that when

x; = £1 and x; # x7,
|xp — x| > cN~2, (2.3)

Indeed, in this case the optimal log-energy configurations w} consist of Fekete points;
i.e., the roots of (1 — x?)P;,_,(x), where Py is the Nth degree Legendre polynomial (see

e.g., [21]), for which it is known that (2.3) cannot be improved for x; near +1. O
The next theorem concerns greedy energy points defined in Definition 1.1.

Theorem 2.4, Let A C R*! be a compact C*-smooth ¢-dimensional manifold without
boundary, £ — 1 <s < £ If w}, = {aj}}2, is a sequence of greedy s-energy points on 4,

then there exists a positive constant c(4, s) such that, for any i < j,
la; — aj| > c(4,9);7". B

Theorems 2.3 and 2.4 are immediate consequences of Theorem 2.5 stated below
and the following trivial observation: if wy, = {x7, ..., x)} is an optimal N-point s-energy
configuration, then for any k = 1, ..., N we have

1 , 1
2 X —x 1 IYEEZ

— x*¥|s’
J#k J#k Y % |
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5072 D. P. Hardin et al.

Theorem 2.5. Let A C RP be a compact set of positive s-capacity and us; be the
s-equilibrium measure on A. Let wy = {x,...,xy} be any N-point configuration in A4,
and y* € A satisfy (The right-hand side of (2.4) is called the s-polarization (see, e.g., [1])

Of (UN.)

N

N
1 ) 1
Z —|Y* ~xF = %’relit; —|Y X[ (2.4)
j=1 J j=1 J

IfO<p—-2<s<d<<p, Ais t-regular at y* and us is upper d-regular at y*, then
foreveryj=1,...,N

ly* — x| > (cc(y®) + )7V . N4, (2.5)

where the constant c(y*) is from (2.1) and the positive constant ¢; depends only on A
and s. O

Our next goal is to present a sufficient condition for Theorem 2.5 to hold. We

begin with the following definition.

Definition 2.6. Let A C RP be a compact set d-regular at a point x, € A. We say that A
is (d, C*®)-smooth at x, if there exists a positive number r, and a C*-smooth invertible

1

function ¢: B(xq,79) N A — R? such that ¢(B(xo,70) N A) is open in R? and ¢! is also

C*®-smooth. O

Our next theorem is a local result showing that if a manifold is C*-smooth at a

point, then the s-equilibrium measure is upper d-regular at this point.

Theorem 2.7. Let A C RP be a compact set of positive s-capacity, where p € {d,d + 1}
and s € [p — 2,d), and u; be the s-equilibrium measure on A. If A is (d, C*)-smooth at a

point X, € A, then u, is upper d-regular at xy; i.e., inequality (2.1) holds forany r > 0. O

Example 2.2 illustrates the sharpness of this theorem. We note that if y* is as in
(2.4) and the assumptions of Theorem 2.7 hold with x, replaced by y*, then the conclusion
of Theorem 2.5 follows.

The next corollary follows from Theorem 2.7 and the fact that, if p = d, then A

is (p, C*)-smooth at x € A if and only if x, is an interior point of A.

Corollary 2.8. Let A C R? be compact, s € [d — 2, d) and x, be an interior point of A. If

s is the s-equilibrium measure on A, then u, is upper d-regular at xp. O
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Local Properties of Minimal Energy Points 5073

Obviously, a C*-smooth manifold without boundary satisfies the conditions of

Theorem 2.7; therefore, we have the following consequence.

Corollary 2.9. Let A C R%! be a compact C*-smooth d-dimensional manifold without
boundary, d—1 < s < d and u, be the s-equilibrium measure on A. Then u, is uniformly

upper d-regular on A. O

3 Main Results in the Non-Integrable Case

In this section, we state an analogue of Theorem 2.5 for the case s > d under very
weak assumptions on the set A. As a consequence, we deduce separation and covering
properties of greedy energy points in this case. These properties are proved in Section 5.
Below 3,4 denotes the d-dimensional Hausdorff measure normalized by J4([0, 1]%) = 1.
By My we denote the upper d-dimensional Minkowskii content; i.e., for a compact set
A C RP, set

_ b
Mg(4) := lim sup L, ({x e RP: dist(x,4A) < 8}),

0t ,Bp—dgp_d (31)

where L, is the Lebesgue measure on R? and f,_q is the volume of a (p — d)-dimensional

unit ball (for p = d, we set By:=1).

Proposition 3.1. If A C R?is a compact set with H (A) > 0 (d < p) and s > d, then there
exists a constant ¢ > 0 such that for any N-point configuration wy = {x;,...,xy} C A

and y* € A satisfying

N N
1 1
Z— = inf _—
Sl exl e ly —x0°
we have, foreveryj=1,...,N,
ly* — x| >c- NV (3.2)

O

Corollary 3.2. With the assumptions of Theorem 3.1, there exists a constant ¢ > 0 such

that for any sequence o}, = {a/}72, of greedy energy points and any i < j, we have

* % —1/d
la; —ajl = ¢j . (3.3)
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5074 D. P. Hardin et al.

If, in addition, A C A for a d-regular set A and My(A) < oo, then for some ¢ > 0 and

every N > 2, the covering radius of v} :={a},...,ay} C o}, satisfies
n(wy,A) = max min |y —aj| < cN V4. (3.4)
y€A j=1,..N

4 Some Facts from Potential Theory

For the convenience of the reader, we state several known results from potential theory
that will be used in the proofs of the above formulated theorems. The following theorem

can be found, for example, in [16, p. 136] or [3, Theorems 4.2.15 and 4.5.11].

Theorem 4.1. If A C R? is a compact set of positive s-capacity, then the s-equilibrium
measure pus is unique. Moreover, the inequality U/s(x) < W (A) holds us-a.e. and the
inequality Uls(x) > W,(A) holds s-quasi-everywhere; ie., if F C {x € A: Ukt (x) < W,(4)}
is compact, then W,(F) = oco. Furthermore, if s € [p — 2, p), then U/ (x) < W;(A) for every
x e RP. d

The following theorem is a special case of [19, Theorem 2.5].

Theorem 4.2. Lets < d and u be a measure supported on A C RP, where A is d-regular.
If for some constant M the inequality U*(x) > M holds s-quasi-everywhere on A, then

it holds everywhere on A. O

We conclude this section with two results from the theory of non-integrable
Riesz potentials. The first result can be found in [12, Theorem 2.4] and [2, Proposition

2.5], while the second is a consequence of the proof of [13, Theorem 3].

Theorem 4.3. Assume A C RP, H4(A) > 0 and s > d. Then there exists two positive
constants c;(s) and c,(s) such that for any N-point configuration wy = {x;,...,xy} C A
we have

N

X 1
infY ——— < ¢ (s)N¥/?
yeA = ly — x;l¢

and

1 —
Eg(on) = ) ———— > c()Ma(4) N4, O
|x; — x;°
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Theorem 4.4. Suppose the compact set A ¢ RP with H;(A) > 0 is contained in some d-
regular compact setAands > d.Ifwy = {x1,...,%xy} C AisanN-point configuration with

separation distance §(wy) > tN~V4 for some t > 0, then for some constant R(s, T,Ds),

n(wy,A) := max min |y — x;| < R(s, 7, ps)N /%, 4.1)
yeA j=1,...N

=L

where p; is any positive constant such that

N

1
infS —— > p.neid, (4.2)
yeA — |y — x;|°
j=1 |:|

5 Proofs of Theorem 2.5 and Proposition 3.1

Forx = (x(1),...,x(p)) € A, setx, := (x(1),...,x(p),r) € RP*! and consider A as a subset
of RP*! with x = x¢; i.e., x(p +1) = 0.

The next lemma is related to results of Carleson [5] for s € [d — 1,d) and
Wallin [24].

Lemma 5.1. Assume the measure u on A is upper d-regularatx € A. If d — 2 <s < d,

then there exists a constant ¢; that depends only on s and d such that
Ut (%) 2 Ul (x) — 1 - c(x) - 17,

where c(x) is a constant from (2.1). O

Proof. We first notice that for x,y € A we have |y — x,|* = |y — x|? + r?. Therefore,

(ly —xI?+1r?)¥% — |y —x|°

Ut(x) — Ul (x,) = d
o=V = | S ey, — )
/ (ly — x> +1?)%% — |y — xI°
(ly = x12+1r2)s2 . |y — x|

du(y)
ly—x|<2r

(ly — x> +7r>)%% — |y — x|°

/ (ly —x[2+r?)s2. |y — x|

du(y) =: I, + L. (5.1)

ly—x|>2r

We have

d ]
I < / ﬂ=f ply: ly —x| <2r, [y —x|7° > t}dt
ly —x|* 0

ly—xI<2r
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5076 D. P. Hardin et al.

@n~* S
=/ ply: ly —x| < 2r}dt+f ply: ly — x| < t7'/°)de
0 (

2r)=—S

d-s

<ecx)2r)%s + c(x)%(zr)d—s = 24-s. ex)-rTS=c,-c(x) -4, (5.2)

d—s

where the constant ¢; depends only on s and d.
To estimate I, we need the following inequality. For every positive ¢ there exists

a constant ¢, such that for every 0 < ¢ < 1/4 we have
148" <1 +ces. (5.3)

This estimate is trivial since the function ¢ — ((1+¢)* —1)/e is continuous on the closed
interval [0, 1/4]. Using (5.3) with ¢ = r?/|x — y|? and t = s/2, we get

(ly — x> + 7% — |y — x|°
L= / Y 2 sz Y du(y)
(ly = x4+ 7122 |y —xI°
ly—x|>2r
d (2r)=s—2
g Cr2 / ﬂ < Crz f /‘L{Y |y —X| < t*l/(s+2)}dt
ly — x|+
ly—x|>2r 0
(2r)7572
<c-cx)-r? / VDAt = ¢, - c(x) - 745, (5.4)
0
Equality (5.1) combined with estimates (5.2) and (5.4) imply the lemma. |

5.1 Proof of Theorem 2.5

Set

N N
=§ 14 —x|s ZyeAZ;W X

Since by Theorem 4.1 we have U*s(x) < W;(A) for every x € R?, we deduce that
< W(A)N. (5.5)
Setting v(wy) = & ;V:I 8x, we obtain for y € A that

Tren () >~y > -
NW,A) 77 N WA

U/s(y),
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Local Properties of Minimal Energy Points 5077

which by the domination principle for potentials (see [14]) and Lemma 5.1 implies for
r:= N4 that
1

Uren) () >
¥) > W, ( 7

1y
~ NW,(4)

U (yy) 2 (Uts(y*) — 1 - c(y")N~H¥9)., (5.6)

Since A is ¢-regular at y*, for a small positive number r the set A N B(y*,r) is £-regular;
applying Theorem 4.2 to this set, we obtain U/s(y*) > W(A); thus, it follows from (5.5)
and (5.6) that

Urew (yr) > ?V—” — ¢ - c(y)N I,

or

N
Zyw—C-cy” )Ns/d
X

[

Without loss of generality, we prove (2.5) for j = 1. Since |y} — x;] > r = N~Y¢ and

ly: — x| > |y* — x| for every x € A, we have

ul N
1
yw — €1 - (YN <
' 1 ;' r_XJ|S §| r—XJ|S |y;f_X1|s
N N 1 1
S/d = —_ s/d
Z|*_X|s _Z|*_X‘|S |*—X|3+N
=2 Y j=1 y J y 1
1
T ly* — x5 A (5.7)
— 4l
Therefore,
ly* —x1| = (cic(y™) + 1)—1/s LNV =

5.2 Proof of Proposition 3.1

The proof is immediate. We merely observe that, by Theorem 4.3 we have for every
j=1,...,N,

N

c1(s)N¥/? > Z

* —s.
v* X|S x5l
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5078 D. P. Hardin et al.

therefore,

ly* — x5 > ci(s) SNV, |

5.3 Proof of Corollary 3.2

We notice that the estimate (3.3) follows from Proposition 3.1 and the fact that for every
J we have
j-1 j-1
=inf ) ——.
Ia* —a;jl* yvea—=ly—ajl°

i=1 J i=1

In view of inequality (4.2) in Theorem 4.4, to deduce (3.4) it is enough to show that the

inequality

1
inf Y ——— > p,N¥4 (5.8)
vea = ly — ajl®

holds for some positive constant p, independent of N. For this purpose, observe that

Theorem 4.3 implies that for some positive ¢ that does not depend on N we have, for

oy =1{aj, ..., ay},
Ey(wy) > cN'*s/4, (5.9)
Hence, foreveryj=1,...,N,
-1 —1 -1 —
X 1 1 d 1 = 1
@ —a'|° =inf> y —a'|° @, —a'f @ — '’
i=1 ' i Y i j=1 "N i i=1 N i
and so
N j-1 1 N-1 1 N-1 1
Eyoy)=2) Y ————<2N» ———— =2Ninf) ———.
N * *|s — *|s
j=2 i=1 |af a; i=1 lay — ail veA o v —a;l
In view of (5.9), we get
N-1 1
inf — >N,
ved T ly — ajf*

Applying this estimate for N instead of N — 1, inequality (5.8) follows with ps =c,. B
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6 Some Facts From the Theory of Pseudo-Differential Operators

In order to prove Theorem 2.7 we need some facts from the theory of pseudo-differential
operators. We give a brief introduction to the results we need in this section.

Let .7 (R%) be the class of Schwartz functions on R? and .#/(R%) be the set of
tempered distributions. For an open set 2, we denote by &’(2) the class of tempered
distributions with compact support in Q. The Fourier transform is denoted by .# and
defined on .7 (R?) by the formula

F()E) = / fe ™ dx, fe s RY.
Rd

We next introduce a class of functions (or symbols) that define standard pseudo-

differential operators.

Definition 6.1. For a number m € R, we say that a function p(x,&): 2 x R — R belongs
to the class S™(Q) if p € C*(Q x R?) and for every compact set K C Q and multi-indices
a, B there exists a constant C(K, «, 8) such that

IDgDﬁP(XIE)I <CK,a,plE™™, xeQ, |&]>1, (6.1)
where we use the notation

glel R1G
gg P06, Dip(x,§) i= =—5p(x,§). O

Dip(x,§) :=

The Paley-Schwartz-Wiener theorem implies that if f € & (R?), then its Fourier

transform .% (f) is a function with

| Z(F)(E)] < C+|E)Y, £ eR?

for some positive constants C and N. If p belongs to S™(Q2) and f € &'(R2), then, for a
fixed x, we can view p(x,£).% (f)(&) as a tempered distribution. We define an operator P
on &' () by

PH(x) =7 ' (px, ) FH())Xx), xeQ. (6.2)
We further set

U(Q) :={P: p e SN}, V() := ﬂ Q).

meR
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We continue with the definition of Sobolev spaces. Forevery s € Rand p € (1, c0)

set
WoP(Q) :={f € £(Q): F [A+ 161" F(F)(E)] € IPRD}
and
Wi = {f € ' ®Y: of € Wg?(R?) forany ¢ € C°(RY).

As with the usual Sobolev spaces (i.e., with integer s), the following embedding property
holds (see, e.g., [7] or [8]).

Theorem 6.2. Assume  is an open set in R? with smooth boundary. If sp > d and
f € WiP(Q), then f € L®(Q). O

The following theorem about the action of pseudo-differential operators on

Sobolev spaces can be found in [23, Theorem 2.1] or [22, Theorem 2.1D].

Theorem 6.3. If P € ¥™(Q) and f € W,?(Q), then P(f) € W, "?(Q). Moreover, if

loc

P e U—(Q) and f € &(Q), then P(f) € C¥(Q). O

We further discuss regularity properties of solutions of the equation Pu = f. We
say that the function p: Q x R? — R is elliptic of order m if p € S™(Q2) and for every
x € Q there are two positive constants c(x) and r(x), such that

Ip(x,8)] > c(x)|§|™, for every & with [§| > r(x).

The following theorem can be found in [23, Corollary 4.3].
Theorem 6.4. Let p be an elliptic function of order m and P € ¥™(Q2) be the corre-
sponding operator defined as in (6.2). Then there exist Q € ¥~™(Q) and R € ¥~>°(Q2) such
that

QP =I+R,

where I is the identity operator. |
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7 Proof of Theorem 2.7
Case p = d.

Since A is (d, C*)-smooth at x,, we conclude that x, is an interior point of A; Theorem
4.2 applied to a small neighbourhood of x, implies that U/s(x) = W;(A4) in B(xo, ry) for
sufficiently small r,. We now apply the inversion formula (see e.g., [9]): in the sense of

distributions, for every x € B(xq,19/2),

U0 - U (7) W,4) - U ()
dus(x) =cgs - p.v. s 3 dy =c4,-p.v. 5
i = caep | SRy = anpe. | SR

Since U!s(y) = Ws(A) for every y € B(xo, o), we get

Ws(A) — U (y)

dMS(X) =Cqs - Ix — ylzdfs

RA\B(xq,rg)
which is a bounded function when x € B(xq,1,/2). Therefore, the density of dus with

respect to the Lebesgue measure is bounded from above in the ball B(xy, r9/2). |
Casep=d+1.

The case s = d — 1 is done in [20], thus we focus on the case s > d — 1. of Since A C R%*1 is
d-regular at xo and s € (d—1, d), we obtain from Theorem 4.2 that U*(x) = W,(A) for any
x € AN B(xy, 1) for some r; > 0. Since A is C*-smooth at x, there exists a C*-smooth
map ¢: B(xo, 7o) — B such that B c R? is open and ¢ := ¢! is C*-smooth in B. Without

loss of generality, we assume ry < r;/2. Set

du' == lpgrgdis, 1 = s — 1, (7.1)

and
vi=puloy.
We notice that for X € v ~1(B(xq,70/2)) we have
Ut (¢ (%)) = Wy(4) — U (¥ (X))

and theright-hand side is a smooth function. Therefore, U (W (X)) € C®° (Y~ H(B(x0,70/2))).

We further write

) dp' () dv(y)

U/tl = / o | T et 72

2 @) y—v®r ) e - v@p o
B

B(xg,ro)
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Our next goal is to write the Taylor formula for |y (y) — ¥ (X)|~° when y is in the neigh-

bourhood of x. Since ¢ € C*, there exists a C* matrix a(x) and a C* vector-valued

function w, (X, y) such that
V(@) - yvX =aX) (-3 +wi(x,7)
and for some constant C and any component

w1 (X, P < CIx — 7%, Vi wiX, 7)o < ClX — 71,

where Vyw(X,y) is the matrix of gradients of w; in the first variable, and || - |« is the

£ matrix norm. Therefore,
(@) — v @I =la®) - F - DI* + w2, 7),
where w, is a real-valued C* function with
Wy (X, 7)| < CIX = §1°, |Vz wa(X, 7)| < C1X — 7.

If rg is small enough and y,x € B(xp, 19/2), then

WZ()}II?)

R

Consequently,

h”(f]) - W(i)rs = |a(52) . (f’ _)})l_s . <1 + m

We notice that

S SN . WZ()}:}}) 1
WY = .G —0F <

with |V; wi(X, )| bounded. Therefore, (7.3) implies
(@) — @) =laX) - - F -3 +wax, 7)),
where

|fS+1

wax, I <Cly — X » Vi wax, )| < Coly — X7

w2 (X, §) )‘”2

(7.3)
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We plug this into (7.2) to get

dv(y)

GO = e g -or

B

+ f wa(®, ) dv (7).

Since

dv(y) 3/ du(y) < CWL(A),

V)}W )},~ dl)(~) \
/| W&, 7)dv (7 3T s

B(xg,r0)
we see that the function ¥ — [ w4 (%, 7)dv(y) belongs to W (4 (B(xo,0/4))). Let u be
B

a Schwartz function equal to 1 in ¥ ~1(B(xo,79/4)) and to 0 outside of v ~1(B(xo,70/2)).
Then

d
u(x )/ P v(Y) o u(x )U”l(w(x))—u(X)/W4(X PHAvF) = w&) € WS RD).
B

(7.4)

We next show that the operator

P:vi— u(X)/% (7.5)
lax) - (¥ — %)

is pseudo-differential. Namely, we use the Plancherel identity to obtain

dv(y)

/ Tt —op / F 1)) 73 (ai) - 7 — D) E)ds. (7.6)

RrA
By definition of the Fourier Transform, we have
F2(a@) - (7 — ) )(E) = / a®) - (7 — B~ e dy.
Rrd

Since the matrix a(x) is a d x (d+1) matrix of rank d, we observe that the set {a(X)-y: ¥ €
R%} is a d-dimensional linear subspace of R%*!. Take a rotation R that maps this set to
vy = (y(1),...,y(d + 1)) € R¥!: y(d + 1) = 0} and an operator T that maps the latter

space to R? by erasing the (d + 1)’st coordinate. We make a change of variables
z=T-R-aX) - (J —X).
By definition of T and R, we have

Z|=IT-R-aX) (¥ —%|=la@)({y - X)),
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and therefore, setting b(X) := (T -R - a(X))~!, we get

Fi(a@) - § -0 )E) = / a®) - (7 — D) e dy
RrA
zeiznb}é/|2|7sefzni(b(5()2)$|det(b(f())|d§
rd

= | det(b(®))|e 2™ .7 (1z|~)((b(X))§)

= | det(b(%))|e 2" bl (x)& 52, (7.7)
We plug (7.7) into (7.6):
dv(y) - t o g (5—d p2mi%E
—————— = | F)(®)|det(bX))| - |b*X)EI* e d§ (7.8)
J lax)- (¥ —X)°
B R
= 7 (F0)©)|det®GE) - ') (). (7.9)

Setting
P, &) = u®)|det(b())| - [b* (X",

we obtain that the operator P defined in (7.5) is an elliptic pseudo-differential with
symbol p € S°¢(B). We apply Theorem 6.4 to equation (7.4). Since Pv = w, we get

v+Rv=Qw, RveC®®B). (7.10)

1+s—d,p
T/Vloc

Further, since w € W, (B), we get from Theorem 6.3 that Qw € (B) for any

p > 1. By Theorem 6.2, we obtain that Qw € L*® (w*I(B(Xo, ro/4))>, and from (7.10) we get

v eL® (w‘l(B(XO, r0/4))). Since the measure u; defined in (7.1) is an image of v under a

smooth map !, we deduce that for r < ry/4
1(B(x0,7)) = v(¥ " (B(x0,7))) < CiHa(¥ ' (B(x0,7))) < Cor?. u
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