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We investigate separation properties of N-point configurations that minimize discrete

Riesz s-energy on a compact set A ⊂ R
p. When A is a smooth (p− 1)-dimensional man-

ifold without boundary and s ∈ [p − 2,p − 1), we prove that the order of separation (as

N → ∞) is the best possible. The same conclusions hold for the points that are a fixed

positive distance from the boundary of A whenever A is any p-dimensional set. These

estimates extend a result of Dahlberg for certain smooth (p − 1)-dimensional surfaces

when s = p−2 (the harmonic case). Furthermore, we obtain the same separation results

for “greedy” s-energy points. We deduce our results from an upper regularity prop-

erty of the s-equilibrium measure (i.e., the measure that solves the continuous minimal

Riesz s-energy problem), andwe show that this property holds under a local smoothness

assumption on the set A.

1 Introduction

In this article we study, respectively, the properties of separation and regularity for

minimal discrete and for continuous Riesz energy. For a measure μ supported on a

compact set A in Euclidean space and s > 0, its Riesz s-potential and Riesz s-energy are
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defined by

Uμ
s (x) :=

∫
A

dμ(y)

|x − y|s , Is[μ] :=
∫
A
Uμ
s (x)dμ(x), (1.1)

and its Riesz log-potential and Riesz log-energy by

Uμ

log(x) :=
∫
A
log

1

|x − y|dμ(y), Ilog[μ] :=
∫
A
Uμ

log(x)dμ(x).

The constantWs(A) := inf Is[μ], where the infimum is taken over all probabilitymeasures

μ supported on A, is called the s-Wiener constant of the set A, and the s-capacity of A

is given by

caps(A) := 1

Ws(A)
, s > 0, caplog(A) := exp(−Wlog(A)).

IfWs(A) < ∞, it is known that there exists a unique probability measure μs that attains

Ws(A) and we call μs the s-equilibrium measure for A (see [16]).

The problem of minimizing Is[μ] has a discrete analogue. Namely, for an integer

N � 2 we set

Es(A,N) := min
ωN⊂A Es(ωN),

where the infimum is taken over all N-point configurations ωN = {x1, . . . , xN} ⊂ A and

Es(ωN) :=
∑
i �=j

1

|xi − xj|s .

By ω∗
N = ω∗

N ,s = {x∗
1, . . . , x

∗
N} we denote any optimal N-point s-energy configuration; i.e.,

a configuration that attains Es(A,N). It is known that if Ws(A) < ∞, then

1

N

N∑
j=1

δx∗
j

∗→ μs,

where δx denotes the unit point mass at x, and the convergence is in the weak∗ topology.

Thus, for sets of positive s-capacity, by solving the discrete minimization problem, we

“discretize” the measure μs that solves the continuous problem.

We shall study properties of ω∗
N , especially its separation distance given by

δ(ω∗
N) := min

i �=j
|x∗

i − x∗
j |. (1.2)
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In the theory of approximation and interpolation, the separation distance is often asso-

ciated with some measure of stability of the approximation. In [6] Dahlberg proved that

for a C1+ε-smooth d-dimensional manifold A ⊂ R
d+1 without boundary and s = d − 1

(the harmonic case), there exists a constant c > 0 such that

δ(ω∗
N) � cN−1/d, ∀ N � 2. (1.3)

For such a setA, the orderN−1/d for separation ofN-point configurations is best possible.

(More generally, this is true for any set A that is lower d-regular with respect to some

finite measure μ, see Definition 2.1.) For the special case A = S
d := {x ∈ R

d+1 : |x| = 1},
Kuijlaars, Saff, and Sun [15] extended Dahlberg’s result by proving (1.3) for s ∈ [d− 1,d)

and in [4], Brauchart, Dragnev, and Saff extended the range of s to s ∈ (d − 2,d) with

explicit values for the constant c. Our first goal is to extend the results from [6] and [15]

to all C∞-smooth d-dimensional manifolds for s ∈ [d− 1,d) and to interior points of d-

dimensional bodies for s ∈ (d−2,d). More generally, we show that (1.3) holds whenever

the s-equilibrium measure of the manifold is upper regular (see Theorem 2.3).

Since the problem of determining the minimum Es(A,N) requires solving an

extremal problem in N variables, it is natural to consider a somewhat simpler dis-

cretization method, namely, the computation of greedy s-energy points defined below

which involves minimization in only a single variable. For the logarithmic kernel on

A×A where A ⊂ C, such points were introduced by Edrei [10] and extensively explored

by Leja [17] and his students. For general kernels they were investigated by López and

Saff [18].

Definition 1.1. A sequence ω∗
∞ = {a∗

j }∞
j=1 ⊂ A is called a sequence of greedy s-energy

points if a∗
1 ∈ A and for every N > 1 we have

N−1∑
j=1

1

|a∗
N − a∗

j |s
= inf

y∈A

N−1∑
j=1

1

|y − a∗
j |s

. �

Notice that if ωN−1 := {a∗
1, . . . ,a

∗
N−1} is already determined, then a∗

N is chosen to

minimize Es(ωN−1 ∪{y}) over all y ∈ A. It is known [18] that ifWs(A) < ∞ and ω∗
∞ = {a∗

j }∞
j=1

is a sequence of greedy s-energy points, then

1

N

N∑
j=1

δa∗
j

∗→ μs.

Some computational aspects of using the greedy s-energy points for numerical inte-

gration can be found in [11]. Our second goal, which is achieved in Theorem 2.4 and
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Corollary 3.2, is to prove that for a smooth d-dimensional manifold A and s ∈ (d− 1,d)

or s > d, there exists a constant c > 0 such that, for every i < j, we have

|a∗
i − a∗

j | � cj−1/d.

In particular, this implies that δ({a∗
1, . . . ,a

∗
N}) � cN−1/d. Moreover, when s > d we also

prove that for some constant C > 0 the covering radius η for such points satisfies

η({a∗
1, . . . ,a

∗
N},A) := max

y∈A min
j=1,...,N

|y − a∗
j | � CN−1/d.

For configurations that attain the minimal discrete energy Es(A,N), this was done in [13]

for s > d and in [6] for s = d− 1.

Since the method of proof for the above results utilizes the regularity properties

of the measure μs (see Definition 2.1), our third goal is to obtain sufficient conditions for

this regularity. As we show in Theorem 2.7, compact C∞-smooth d-dimensional mani-

folds A ⊂ R
d+1 without boundary satisfy our conditions (we anticipate, however, that

the same result holds for C2-smooth manifolds). In the case s = d − 1, such a result is

proved in [20]. Another result of this type was proved in [24] under an assumption that

the potential Uμ
s of the measure μ satisfies an appropriate Hölder condition in the whole

space R
d+1. We derive our result, Theorem 2.7, using only smoothness of the manifold

A by applying the theory of pseudo-differential operators.

The article is organized as follows. Themain results in the integrable case,which

include separation properties of minimal energy and greedy energy points, are stated

in Section 2 and proved in Sections 5 and 7. In Section 3 we state the separation and

covering properties of greedy energy points in the non-integrable case, which are proved

in Subsections 5.2 and 5.3. In Section 4we cite some known results from potential theory

that we need to prove our main results, and in Section 6 we give a short introduction to

the theory of pseudo-differential operators, which we need for the proof of Theorem 2.7

in Section 7.

2 Main Results in the Integrable Case

In this section, we state and discuss our main results for integrable Riesz kernels. Their

proofs are given in Sections 5 and 7. We shall work primarily with a class of �-regular

sets, which are defined as follows.
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Definition 2.1. A compact set A is called �-regular, � > 0, if for some measure λ sup-

ported on A there exists a positive constant C such that for any x ∈ A and r < diam(A)

we have

C−1r� � λ(B(x, r)) � Cr�,

where B(x, r) denotes the open ball B(x, r) := {y ∈ R
p : |y − x| < r}. The set A is called

�-regular at x ∈ A if for some positive number r1, the set A ∩ B(x, r1) is �-regular.

Further, we call a measure μ upper d-regular at x if for some constant c(x) and

any r > 0 we have

μ(B(x, r)) � c(x)rd. (2.1)

�

As the next example shows, a set A can be �-regular with � ∈ N, but its

s-equilibrium measure μs can be d-regular with d < �.

Example 2.2. For the closed unit ball B
� := {x ∈ R

� : |x| � 1}, which is �-regular, and

s ∈ (� − 2, �) the s-equilibrium measure is given by (see, e.g., [16] or [3])

dμs = M(1 − |x|2)(s−�)/2dx, M = �(1 + s/2)

π�/2�(1 + (s− �)/2)
.

We notice thatμs is �-regular at every interior point ofB
�. However, for x on the boundary

∂B
� = S

�−1, the measure μs satisfies

C−1r(�+s)/2 � μs(B(x, r)) � Cr(�+s)/2,

so that μs is not �-regular at x ∈ ∂B
�. �

We now present our main results which include the possibility of different reg-

ularities for the set A and the measure μs. Although stated only for s > 0, they remain

valid for � = 1 and s = log.

Theorem 2.3. Let A ⊂ R
p be a compact set of positive s-capacity, 0 � p − 2 < s <

d � � � p, and μs be the s-equilibrium measure on A. Assume A′ ⊂ A is such that A is �-

regular at every x ∈ A′ ⊂ A and μs is upper d-regular at every x ∈ A′ with supx∈A′ c(x) � c

for some c > 0. Then there exists a positive constant C such that for any optimalN-point
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s-energy configuration ω∗
N = {x∗

1, . . . , x
∗
N}, any x∗

j ∈ A′ and any x∗
k ∈ A with k �= j we have

|x∗
j − x∗

k| > CN−1/d. (2.2)

�

In particular, (2.2) holds in the following cases (see Corollaries 2.8 and 2.9 and

Example 2.2):

• A ⊂ R
�+1 is a compact �-regular C∞-smooth manifold without boundary,

s ∈ [� − 1, �), and A′ = A with d = �;

• A ⊂ R
� is compact, s ∈ (� − 2, �), and A′ = {x ∈ A : dist(x, ∂A) � ε} with ε > 0

and d = �;

• A = B
�, s ∈ (� − 2, �), and A′ = {x ∈ R

� : |x| � 1 − ε} with ε ∈ (0, 1) and d = �;

• A = B
�, s ∈ (� − 2, �), and A′ = ∂B

� with d = (s+ �)/2.

Remark. In the case � = 1 and s = log, our results imply the sharp estimate that when

x∗
j = ±1 and x∗

k �= x∗
j ,

|x∗
k − x∗

j | � cN−2. (2.3)

Indeed, in this case the optimal log-energy configurations ω∗
N consist of Fekete points;

i.e., the roots of (1 − x2)P ′
N−1(x), where PN is the Nth degree Legendre polynomial (see

e.g., [21]), for which it is known that (2.3) cannot be improved for x∗
k near ±1. �

The next theorem concerns greedy energy points defined in Definition 1.1.

Theorem 2.4. Let A ⊂ R
�+1 be a compact C∞-smooth �-dimensional manifold without

boundary, � − 1 � s < �. If ω∗
∞ = {a∗

j }∞
j=1 is a sequence of greedy s-energy points on A,

then there exists a positive constant c(A, s) such that, for any i < j,

|a∗
i − a∗

j | � c(A, s)j−1/�. �

Theorems 2.3 and 2.4 are immediate consequences of Theorem 2.5 stated below

and the following trivial observation: if ω∗
N = {x∗

1, . . . , x
∗
N} is an optimal N-point s-energy

configuration, then for any k = 1, . . . ,N we have

∑
j �=k

1

|x∗
k − x∗

j |s
= inf

y∈A

∑
j �=k

1

|y − x∗
j |s

.
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Theorem 2.5. Let A ⊂ R
p be a compact set of positive s-capacity and μs be the

s-equilibrium measure on A. Let ωN = {x1, . . . , xN} be any N-point configuration in A,

and y∗ ∈ A satisfy (The right-hand side of (2.4) is called the s-polarization (see, e.g., [1])

of ωN .)

N∑
j=1

1

|y∗ − xj|s = inf
y∈A

N∑
j=1

1

|y − xj|s . (2.4)

If 0 � p − 2 < s < d � � � p, A is �-regular at y∗ and μs is upper d-regular at y∗, then

for every j = 1, . . . ,N

|y∗ − xj| � (c1c(y
∗) + 1)−1/s · N−1/d, (2.5)

where the constant c(y∗) is from (2.1) and the positive constant c1 depends only on A

and s. �

Our next goal is to present a sufficient condition for Theorem 2.5 to hold. We

begin with the following definition.

Definition 2.6. Let A ⊂ R
p be a compact set d-regular at a point x0 ∈ A. We say that A

is (d,C∞)-smooth at x0 if there exists a positive number r0 and a C∞-smooth invertible

function ϕ : B(x0, r0) ∩ A → R
d such that ϕ(B(x0, r0) ∩ A) is open in R

d and ϕ−1 is also

C∞-smooth. �

Our next theorem is a local result showing that if a manifold is C∞-smooth at a

point, then the s-equilibrium measure is upper d-regular at this point.

Theorem 2.7. Let A ⊂ R
p be a compact set of positive s-capacity, where p ∈ {d,d + 1}

and s ∈ [p− 2,d), and μs be the s-equilibrium measure on A. If A is (d,C∞)-smooth at a

point x0 ∈ A, then μs is upper d-regular at x0; i.e., inequality (2.1) holds for any r > 0. �

Example 2.2 illustrates the sharpness of this theorem. We note that if y∗ is as in

(2.4) and the assumptions of Theorem 2.7 holdwith x0 replaced by y∗, then the conclusion

of Theorem 2.5 follows.

The next corollary follows from Theorem 2.7 and the fact that, if p = d, then A

is (p,C∞)-smooth at x0 ∈ A if and only if x0 is an interior point of A.

Corollary 2.8. Let A ⊂ R
d be compact, s ∈ [d− 2,d) and x0 be an interior point of A. If

μs is the s-equilibrium measure on A, then μs is upper d-regular at x0. �
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Obviously, a C∞-smooth manifold without boundary satisfies the conditions of

Theorem 2.7; therefore, we have the following consequence.

Corollary 2.9. Let A ⊂ R
d+1 be a compact C∞-smooth d-dimensional manifold without

boundary, d−1 � s < d and μs be the s-equilibrium measure on A. Then μs is uniformly

upper d-regular on A. �

3 Main Results in the Non-Integrable Case

In this section, we state an analogue of Theorem 2.5 for the case s > d under very

weak assumptions on the set A. As a consequence, we deduce separation and covering

properties of greedy energy points in this case. These properties are proved in Section 5.

Below Hd denotes the d-dimensional Hausdorff measure normalized by Hd([0, 1]d) = 1.

By Md we denote the upper d-dimensional Minkowskii content; i.e., for a compact set

A ⊂ R
p, set

Md(A) := lim sup
ε→0+

Lp ({x ∈ R
p : dist(x,A) < ε})
βp−dεp−d , (3.1)

where Lp is the Lebesgue measure on R
p and βp−d is the volume of a (p−d)-dimensional

unit ball (for p = d, we set β0:=1).

Proposition 3.1. If A ⊂ R
p is a compact set with Hd(A) > 0 (d � p) and s > d, then there

exists a constant c > 0 such that for any N-point configuration ωN = {x1, . . . , xN} ⊂ A

and y∗ ∈ A satisfying

N∑
j=1

1

|y∗ − xj|s = inf
y∈A

N∑
j=1

1

|y − xj|s ,

we have, for every j = 1, . . . ,N ,

|y∗ − xj| � c · N−1/d. (3.2)

�

Corollary 3.2. With the assumptions of Theorem 3.1, there exists a constant c > 0 such

that for any sequence ω∗
∞ = {a∗

j }∞
j=1 of greedy energy points and any i < j, we have

|a∗
i − a∗

j | � cj−1/d. (3.3)
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If, in addition, A ⊂ Ã for a d-regular set Ã and Md(A) < ∞, then for some c > 0 and

every N � 2, the covering radius of ω∗
N := {a∗

1, . . . ,a
∗
N} ⊂ ω∗

∞ satisfies

η(ω∗
N ,A) = max

y∈A min
j=1,...,N

|y − a∗
j | � cN−1/d. (3.4)

�

4 Some Facts from Potential Theory

For the convenience of the reader, we state several known results from potential theory

that will be used in the proofs of the above formulated theorems. The following theorem

can be found, for example, in [16, p. 136] or [3, Theorems 4.2.15 and 4.5.11].

Theorem 4.1. If A ⊂ R
p is a compact set of positive s-capacity, then the s-equilibrium

measure μs is unique. Moreover, the inequality Uμs
s (x) � Ws(A) holds μs-a.e. and the

inequality Uμs
s (x) � Ws(A) holds s-quasi-everywhere; i.e., if F ⊂ {x ∈ A : Uμ

s (x) < Ws(A)}
is compact, thenWs(F) = ∞. Furthermore, if s ∈ [p−2,p), then Uμs

s (x) � Ws(A) for every

x ∈ R
p. �

The following theorem is a special case of [19, Theorem 2.5].

Theorem 4.2. Let s < d and μ be a measure supported on A ⊂ R
p, where A is d-regular.

If for some constant M the inequality Uμ
s (x) � M holds s-quasi-everywhere on A, then

it holds everywhere on A. �

We conclude this section with two results from the theory of non-integrable

Riesz potentials. The first result can be found in [12, Theorem 2.4] and [2, Proposition

2.5], while the second is a consequence of the proof of [13, Theorem 3].

Theorem 4.3. Assume A ⊂ R
p, Hd(A) > 0 and s > d. Then there exists two positive

constants c1(s) and c2(s) such that for any N-point configuration ωN = {x1, . . . , xN} ⊂ A

we have

inf
y∈A

N∑
j=1

1

|y − xj|s � c1(s)N
s/d

and

Es(ωN) =
∑
i �=j

1

|xi − xj|s � c2(s)Md(A)−s/dN1+s/d. �
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Theorem 4.4. Suppose the compact set A ⊂ R
p with Hd(A) > 0 is contained in some d-

regular compact set Ã and s > d. If ωN = {x1, . . . , xN} ⊂ A is anN-point configurationwith

separation distance δ(ωN) � τN−1/d for some τ > 0, then for some constant R(s, τ ,ps),

η(ωN ,A) := max
y∈A min

j=1,...,N
|y − xj| � R(s, τ ,ps)N

−1/d, (4.1)

where ps is any positive constant such that

inf
y∈A

N∑
j=1

1

|y − xj|s � psN
s/d. (4.2)

�

5 Proofs of Theorem 2.5 and Proposition 3.1

For x = (x(1), . . . , x(p)) ∈ A, set xr := (x(1), . . . , x(p), r) ∈ R
p+1 and consider A as a subset

of R
p+1 with x = x0; i.e., x(p+ 1) = 0.

The next lemma is related to results of Carleson [5] for s ∈ [d − 1,d) and

Wallin [24].

Lemma 5.1. Assume the measure μ on A is upper d-regular at x ∈ A. If d− 2 < s < d,

then there exists a constant c1 that depends only on s and d such that

Uμ
s (xr) � Uμ

s (x) − c1 · c(x) · rd−s,

where c(x) is a constant from (2.1). �

Proof. We first notice that for x, y ∈ A we have |y − xr|2 = |y − x|2 + r2. Therefore,

Uμ
s (x) − Uμ

s (xr) =
∫
A

(|y − x|2 + r2)s/2 − |y − x|s
(|y − x|2 + r2)s/2 · |y − x|s dμ(y)

=
∫

|y−x|�2r

(|y − x|2 + r2)s/2 − |y − x|s
(|y − x|2 + r2)s/2 · |y − x|s dμ(y)

+
∫

|y−x|>2r

(|y − x|2 + r2)s/2 − |y − x|s
(|y − x|2 + r2)s/2 · |y − x|s dμ(y) =: I1 + I2. (5.1)

We have

I1 �
∫

|y−x|�2r

dμ(y)

|y − x|s =
∫ ∞

0
μ{y : |y − x| � 2r, |y − x|−s > t}dt
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=
∫ (2r)−s

0
μ{y : |y − x| � 2r}dt +

∫ ∞

(2r)−s
μ{y : |y − x| < t−1/s}dt

� c(x)(2r)d−s + c(x)
s

d− s
(2r)d−s = 2d−s · d

d− s
· c(x) · rd−s = c2 · c(x) · rd−s, (5.2)

where the constant c1 depends only on s and d.

To estimate I2 we need the following inequality. For every positive t there exists

a constant c, such that for every 0 < ε < 1/4 we have

(1 + ε)t � 1 + cε. (5.3)

This estimate is trivial since the function ε �→ ((1+ε)t −1)/ε is continuous on the closed

interval [0, 1/4]. Using (5.3) with ε = r2/|x − y|2 and t = s/2, we get

I2 =
∫

|y−x|>2r

(|y − x|2 + r2)s/2 − |y − x|s
(|y − x|2 + r2)s/2 · |y − x|s dμ(y)

� cr2
∫

|y−x|>2r

dμ(y)

|y − x|s+2
� cr2

(2r)−s−2∫
0

μ{y : |y − x| < t−1/(s+2)}dt

� c3 · c(x) · r2
(2r)−s−2∫

0

t−d/(s+2)dt = c4 · c(x) · rd−s. (5.4)

Equality (5.1) combined with estimates (5.2) and (5.4) imply the lemma. �

5.1 Proof of Theorem 2.5

Set

γN :=
N∑
j=1

1

|y∗ − xj|s = inf
y∈A

N∑
j=1

1

|y − xj|s .

Since by Theorem 4.1 we have Uμs
s (x) � Ws(A) for every x ∈ R

p, we deduce that

γN � Ws(A)N . (5.5)

Setting ν(ωN) := 1
N

∑N
j=1 δxj , we obtain for y ∈ A that

U ν(ωN )
s (y) � 1

N

γN

Ws(A)
Ws(A) � 1

N

γN

Ws(A)
Uμs
s (y),
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which by the domination principle for potentials (see [14]) and Lemma 5.1 implies for

r := N−1/d that

U ν(ωN )
s (y∗

r ) � 1

N

γN

Ws(A)
Uμs
s (y∗

r ) � 1

N

γN

Ws(A)

(
Uμs
s (y∗) − c1 · c(y∗)N−1+s/d). (5.6)

Since A is �-regular at y∗, for a small positive number r the set A ∩ B(y∗, r) is �-regular;

applying Theorem 4.2 to this set, we obtain Uμs
s (y∗) � Ws(A); thus, it follows from (5.5)

and (5.6) that

U ν(ωN )
s (y∗

r ) � γN

N
− c1 · c(y∗)N−1+s/d,

or

N∑
j=1

1

|y∗
r − xj|s � γN − c1 · c(y∗)Ns/d.

Without loss of generality, we prove (2.5) for j = 1. Since |y∗
r − x1| � r = N−1/d and

|y∗
r − x| � |y∗ − x| for every x ∈ A, we have

γN − c1 · c(y∗)Ns/d �
N∑
j=1

1

|y∗
r − xj|s =

N∑
j=2

1

|y∗
r − xj|s + 1

|y∗
r − x1|s

�
N∑
j=2

1

|y∗ − xj|s + Ns/d =
N∑
j=1

1

|y∗ − xj|s − 1

|y∗ − x1|s + Ns/d

= γN − 1

|y∗ − x1|s + Ns/d. (5.7)

Therefore,

|y∗ − x1| � (c1c(y
∗) + 1)−1/s · N−1/d. �

5.2 Proof of Proposition 3.1

The proof is immediate. We merely observe that, by Theorem 4.3 we have for every

j = 1, . . . ,N ,

c1(s)N
s/d �

N∑
j=1

1

|y∗ − xj|s � |y∗ − xj|−s;
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therefore,

|y∗ − xj| � c1(s)
−1/sN−1/d. �

5.3 Proof of Corollary 3.2

We notice that the estimate (3.3) follows from Proposition 3.1 and the fact that for every

j we have

j−1∑
i=1

1

|a∗
j − a∗

i |s
= inf

y∈A

j−1∑
i=1

1

|y − a∗
i |s

.

In view of inequality (4.2) in Theorem 4.4, to deduce (3.4) it is enough to show that the

inequality

inf
y∈A

N∑
j=1

1

|y − a∗
j |s

� psN
s/d (5.8)

holds for some positive constant ps independent of N . For this purpose, observe that

Theorem 4.3 implies that for some positive c that does not depend on N we have, for

ωN = {a∗
1, . . . ,a

∗
N},

Es(ωN) � cN1+s/d. (5.9)

Hence, for every j = 1, . . . ,N ,

j−1∑
i=1

1

|a∗
j − a∗

i |s
= inf

y∈A

j−1∑
i=1

1

|y − a∗
i |s

�
j−1∑
i=1

1

|a∗
N − a∗

i |s
�

N−1∑
i=1

1

|a∗
N − a∗

i |s
,

and so

Es(ωN) = 2
N∑
j=2

j−1∑
i=1

1

|a∗
j − a∗

i |s
� 2N

N−1∑
i=1

1

|a∗
N − a∗

i |s
= 2N inf

y∈A

N−1∑
i=1

1

|y − a∗
i |s

.

In view of (5.9), we get

inf
y∈A

N−1∑
i=1

1

|y − a∗
i |s

� c2N
s/d.

Applying this estimate for N instead of N − 1, inequality (5.8) follows with ps = c2. �
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6 Some Facts From the Theory of Pseudo-Differential Operators

In order to prove Theorem 2.7 we need some facts from the theory of pseudo-differential

operators. We give a brief introduction to the results we need in this section.

Let S (Rd) be the class of Schwartz functions on R
d and S ′(Rd) be the set of

tempered distributions. For an open set �, we denote by E ′(�) the class of tempered

distributions with compact support in �. The Fourier transform is denoted by F and

defined on S (Rd) by the formula

F (f )(ξ) :=
∫

Rd

f (x)e−2π ixξdx, f ∈ S (Rd).

We next introduce a class of functions (or symbols) that define standard pseudo-

differential operators.

Definition 6.1. For a numberm ∈ R, we say that a function p(x, ξ) : �×R
d → R belongs

to the class Sm(�) if p ∈ C∞(� × R
d) and for every compact set K ⊂ � and multi-indices

α,β there exists a constant C(K,α,β) such that

|Dα
ξD

β
xp(x, ξ)| � C(K,α,β)|ξ |m−|α|, x ∈ �, |ξ | > 1, (6.1)

where we use the notation

Dα
ξp(x, ξ) := ∂ |α|

∂ξα
p(x, ξ), Dβ

xp(x, ξ) := ∂ |β|

∂xβ
p(x, ξ). �

The Paley–Schwartz–Wiener theorem implies that if f ∈ E ′(Rd), then its Fourier

transform F (f ) is a function with

|F (f )(ξ)| � C(1 + |ξ |)N , ξ ∈ R
d

for some positive constants C and N . If p belongs to Sm(�) and f ∈ E ′(�), then, for a

fixed x, we can view p(x, ξ)F (f )(ξ) as a tempered distribution. We define an operator P

on E ′(�) by

P(f )(x) := F−1(p(x, ·)F (f )(·))(x), x ∈ �. (6.2)

We further set

�m(�) := {P : p ∈ Sm(�)}, �−∞(�) :=
⋂
m∈R

�m(�).
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We continue with the definition of Sobolev spaces. For every s ∈ R and p ∈ (1,∞)

set

Ws,p
0 (�) := { f ∈ E ′(�) : F−1

[
(1 + |ξ |2)s/2 · F (f )(ξ)

] ∈ Lp(Rd)}

and

Ws,p
loc = {f ∈ S ′(Rd) : ϕf ∈ Ws,p

0 (Rd) for any ϕ ∈ C∞
0 (Rd)}.

As with the usual Sobolev spaces (i.e., with integer s), the following embedding property

holds (see, e.g., [7] or [8]).

Theorem 6.2. Assume � is an open set in R
d with smooth boundary. If sp > d and

f ∈ Ws,p
0 (�), then f ∈ L∞(�). �

The following theorem about the action of pseudo-differential operators on

Sobolev spaces can be found in [23, Theorem 2.1] or [22, Theorem 2.1D].

Theorem 6.3. If P ∈ �m(�) and f ∈ Ws,p
0 (�), then P(f ) ∈ Ws−m,p

loc (�). Moreover, if

P ∈ �−∞(�) and f ∈ E ′(�), then P(f ) ∈ C∞(�). �

We further discuss regularity properties of solutions of the equation Pu = f . We

say that the function p : � × R
d → R is elliptic of order m if p ∈ Sm(�) and for every

x ∈ � there are two positive constants c(x) and r(x), such that

|p(x, ξ)| � c(x)|ξ |m, for every ξ with |ξ | > r(x).

The following theorem can be found in [23, Corollary 4.3].

Theorem 6.4. Let p be an elliptic function of order m and P ∈ �m(�) be the corre-

sponding operator defined as in (6.2). Then there exist Q ∈ �−m(�) and R ∈ �−∞(�) such

that

QP = I + R,

where I is the identity operator. �
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7 Proof of Theorem 2.7

Case p = d.

Since A is (d,C∞)-smooth at x0, we conclude that x0 is an interior point of A; Theorem

4.2 applied to a small neighbourhood of x0 implies that Uμs
s (x) = Ws(A) in B(x0, r0) for

sufficiently small r0. We now apply the inversion formula (see e.g., [9]): in the sense of

distributions, for every x ∈ B(x0, r0/2),

dμs(x) = cd,s · p.v.
∫

Rd

Uμs
s (x) − Uμs

s (y)

|x − y|2d−s dy = cd,s · p.v.
∫

Rd

Ws(A) − Uμs
s (y)

|x − y|2d−s dy.

Since Uμs
s (y) = Ws(A) for every y ∈ B(x0, r0), we get

dμs(x) = cd,s ·
∫

Rd\B(x0,r0)

Ws(A) − Uμs
s (y)

|x − y|2d−s dy,

which is a bounded function when x ∈ B(x0, r0/2). Therefore, the density of dμs with

respect to the Lebesgue measure is bounded from above in the ball B(x0, r0/2). �

Case p = d+ 1.

The case s = d−1 is done in [20], thus we focus on the case s > d−1. of Since A ⊂ R
d+1 is

d-regular at x0 and s ∈ (d−1,d), we obtain from Theorem 4.2 that Uμ
s (x) = Ws(A) for any

x ∈ A ∩ B(x0, r1) for some r1 > 0. Since A is C∞-smooth at x0, there exists a C∞-smooth

map ϕ : B(x0, r0) → B̃ such that B̃ ⊂ R
d is open and ψ := ϕ−1 is C∞-smooth in B̃. Without

loss of generality, we assume r0 < r1/2. Set

dμ1 := 1B(x0,r0)dμs, μ2 := μs − μ1, (7.1)

and

ν := μ1 ◦ ψ .

We notice that for x̃ ∈ ψ−1(B(x0, r0/2)) we have

Uμ1

s (ψ(x̃)) = Ws(A) − Uμ2

s (ψ(x̃))

and the right-hand side is a smooth function. Therefore,Uμ1
(ψ(x̃)) ∈ C∞(ψ−1(B(x0, r0/2))).

We further write

Uμ1

s (ψ(x̃)) =
∫

B(x0,r0)

dμ1(y)

|y − ψ(x̃)|s =
∫
B̃

dν(ỹ)

|ψ(ỹ) − ψ(x̃)|s . (7.2)
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Our next goal is to write the Taylor formula for |ψ(ỹ) − ψ(x̃)|−s when ỹ is in the neigh-

bourhood of x̃. Since ψ ∈ C∞, there exists a C∞ matrix a(x̃) and a C∞ vector-valued

function w1(x̃, ỹ) such that

ψ(ỹ) − ψ(x̃) = a(x̃) · (ỹ − x̃) +w1(x̃, ỹ)

and for some constant C and any component

|w1(x̃, ỹ)| � C|x̃ − ỹ|2, ‖∇x̃ w1(x̃, ỹ)‖∞ � C|x̃ − ỹ|,

where ∇x̃w1(x̃, ỹ) is the matrix of gradients of w1 in the first variable, and ‖ · ‖∞ is the

�∞ matrix norm. Therefore,

|ψ(ỹ) − ψ(x̃)|2 = |a(x̃) · (ỹ − x̃)|2 +w2(x̃, ỹ),

where w2 is a real-valued C∞ function with

|w2(x̃, ỹ)| � C|x̃ − ỹ|3, |∇x̃ w2(x̃, ỹ)| � C|x̃ − ỹ|2.

If r0 is small enough and ỹ, x̃ ∈ B(x0, r0/2), then

∣∣∣∣ w2(x̃, ỹ)

|a(x̃) · (ỹ − x̃)|2
∣∣∣∣ � 1/2.

Consequently,

|ψ(ỹ) − ψ(x̃)|−s = |a(x̃) · (ỹ − x̃)|−s ·
(
1 + w2(x̃, ỹ)

|a(x̃) · (ỹ − x̃)|2
)−s/2

. (7.3)

We notice that

w3(x̃, ỹ) := w2(x̃, ỹ)

|a(x̃) · (ỹ − x̃)|2 ∈ C1

with |∇x̃ w3(x̃, ỹ)| bounded. Therefore, (7.3) implies

|ψ(ỹ) − ψ(x̃)|−s = |a(x̃) · (ỹ − x̃)|−s +w4(x̃, ỹ),

where

|w4(x̃, ỹ)| � C1|ỹ − x̃|−s+1, |∇x̃ w4(x̃, ỹ)| � C2|ỹ − x̃|−s.
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We plug this into (7.2) to get

Uμ1
s (ψ(x̃)) =

∫
B̃

dν(ỹ)

|a(x̃) · (ỹ − x̃)|s +
∫
B̃

w4(x̃, ỹ)dν(ỹ).

Since

∫
B̃

|∇x̃w4(x̃, ỹ)|dν(ỹ) � C2

∫
B̃

dν(ỹ)

|ỹ − x̃|s � C3

∫
B(x0,r0)

dμ(y)

|y − x|s � C3Ws(A),

we see that the function x̃ �→ ∫
B̃

w4(x̃, ỹ)dν(ỹ) belongs to W1,∞(ψ−1(B(x0, r0/4))). Let u be

a Schwartz function equal to 1 in ψ−1(B(x0, r0/4)) and to 0 outside of ψ−1(B(x0, r0/2)).

Then

u(x̃)

∫
B̃

dν(ỹ)

|a(x̃) · (ỹ − x̃)|s = u(x̃)Uμ1
s (ψ(x̃)) − u(x̃)

∫
B̃

w4(x̃, ỹ)dν(ỹ) =: w(x̃) ∈ W1,∞
0 (Rd).

(7.4)

We next show that the operator

P : ν �→ u(x̃)

∫
B̃

dν(ỹ)

|a(x̃) · (ỹ − x̃)|s (7.5)

is pseudo-differential. Namely, we use the Plancherel identity to obtain

∫
B̃

dν(ỹ)

|a(x̃) · (ỹ − x̃)|s =
∫

Rd

F (ν)(ξ)Fỹ(|a(x̃) · (ỹ − x̃)|−s)(ξ)dξ . (7.6)

By definition of the Fourier Transform, we have

Fỹ(|a(x̃) · (ỹ − x̃)|−s)(ξ) =
∫

Rd

|a(x̃) · (ỹ − x̃)|−se−2π iỹξdỹ.

Since thematrix a(x̃) is a d×(d+1) matrix of rank d, we observe that the set {a(x̃)·ỹ : ỹ ∈
R
d} is a d-dimensional linear subspace of R

d+1. Take a rotation R that maps this set to

{y = (y(1), . . . , y(d + 1)) ∈ R
d+1 : y(d + 1) = 0} and an operator T that maps the latter

space to R
d by erasing the (d+ 1)’st coordinate. We make a change of variables

z̃ = T · R · a(x̃) · (ỹ − x̃).

By definition of T and R, we have

|z̃| = |T · R · a(x̃) · (ỹ − x̃)| = |a(x̃)(ỹ − x̃)|,
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and therefore, setting b(x̃) := (T · R · a(x̃))−1, we get

Fỹ(|a(x̃) · (ỹ − x̃)|−s)(ξ) =
∫

Rd

|a(x̃) · (ỹ − x̃)|−se−2π iỹξdỹ

= e−2π ix̃ξ

∫

Rd

|z̃|−se−2π i(b(x̃)z̃)ξ |det(b(x̃))|dz̃

= |det(b(x̃))|e−2π ix̃ξF (|z̃|−s)((bt(x̃))ξ)

= |det(b(x̃))|e−2π ix̃ξ |bt(x̃)ξ |s−d. (7.7)

We plug (7.7) into (7.6):

∫
B̃

dν(ỹ)

|a(x̃) · (ỹ − x̃)|s =
∫

Rd

F (ν)(ξ)|det(b(x̃))| · |bt(x̃)ξ |s−de2π ix̃ξdξ (7.8)

= F−1
(
F (ν)(ξ)|det(b(x̃))| · |bt(x̃)ξ |s−d

)
(x̃). (7.9)

Setting

p(x̃, ξ) := u(x̃)|det(b(x̃))| · |bt(x̃)ξ |s−d,

we obtain that the operator P defined in (7.5) is an elliptic pseudo-differential with

symbol p ∈ Ss−d(B̃). We apply Theorem 6.4 to equation (7.4). Since Pν = w, we get

ν + Rν = Qw, Rν ∈ C∞(B̃). (7.10)

Further, since w ∈ W1,∞
0 (B̃), we get from Theorem 6.3 that Qw ∈ W1+s−d,p

loc (B̃) for any

p > 1. By Theorem 6.2, we obtain that Qw ∈ L∞
(
ψ−1(B(x0, r0/4))

)
, and from (7.10) we get

ν ∈ L∞
(
ψ−1(B(x0, r0/4))

)
. Since the measure μ1 defined in (7.1) is an image of ν under a

smooth map ψ−1, we deduce that for r < r0/4

μ(B(x0, r)) = ν(ψ−1(B(x0, r))) � C1Hd(ψ
−1(B(x0, r))) � C2r

d. �
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