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ABSTRACT. We revisit the connection between von Nieucr)nann algebra index and relative
entropy. We observe that the Pimsner-Popa index in %onnects to maximal sandwiched
p-Rényi relative entropy for all 1/2 < p < oo, including the Umegaki’s relative entropy
at p = 1. Based on that, we introduce a new notation of maximal relative entropy for
a inclusion of finite von Neumann algebras. These maximal relative entropy generalizes
subfactors index and has application in estimating decoherence time of quantum Markov
semigroup.

1. INTRODUCTION

The index [M : N] for a II; subfactor N' C M was first constructed by Jones %%ﬁe‘s
as the coupling constant of the representation of N' on La(M). Motivated from classical
egordic theory, Connes and Stormer [7] introduced the relative entropy H(M|N') for an
inclusion of finite (dimensional) N' C /\/£ : oThe connection between these two quantities
was first studied by Pimsner and Popa and they proved the general relation

logM : N> HM|N) . (1)

A key concept in their discussion is the following index for an inclusion N' C M of finite
von Neumann algebras,

AM :N) =max{\ | \p < E(p), forallpe M,} (2)

where F : M — N is the trace preserving conditional expectation onto N. It was proved
in E‘f}gtha‘c M N =AM : N)~! for I1; subfactors and log A(M : N)~1 > H(M|N) in
general, from which (E%éfgﬂ%nws. In this paper, we revisit these concepts and connect them
to sandwiched Rényi relative entropies D, recently introduced in quantum information
theory (see Section 2 for definitions). The starting point is the observation that the
quantity A(M : N) is closely related to the sandwiched Rényi relative entropy D, at
p = oco. Based on that, we obtain the following connection between index and p-Rényi
relative entropy for all 1/2 < p < oo, including Umegaki’s relative entropy at p = 1.
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Theorem 1.1. Let N C M be an inclusion of II, factor or hyperfinite von Neumann
algebras. For 1/2 < p < oo,
—log A(M : N) = sup Dy(pll€(p)) = sup inf Dy(pllo), (3)
pES(M) peS(M) 7ESN)
where the supremum takes all density operators p in M and the infimum takes all density
operators o in N .

For a density operator p € M, we define D,(p||N') = inf, D(p||o) where the infimum
takes all density o € M. This notation measures the distance of the state p to the states
of subalgebra N. It unifies several informati%n measure studied in quantum inforerlnation
theory, such as (Rényi) condi’lcnional entropyA , relative entropy of decoherence %ﬁgand
relative entropy asymmetry . Theorem ﬁ.l says that the von Neumann algebra index
can be viewed as the maximal relative entropy to the subalgebra. Motivated from that,
we introduce new notations of relative entropy for an inclusion M C N

Dp(M||IN) := sup Dp(plIN) ; Dp.o(MI|IN) := sup Dy (M (M)|[ My (N))
P n

Such relative entropies differ with Connes-Stormer H(M|A) but are more related to the
index A(M : N) and [M : N]. In particular, for p = 1,00, D4 and D, o satisfies
additivity under tensor product.

One application of D, 4 is to estimate the decoherence time of quantum Markov
semigroup. A quantum Markov semigroup (73); : M — M is an ultra-weak continuous
family of normal unital completely positive maps. When M = B(H), quantum Markov
semigroups are also called GLKS equation in physics literature (see . It models the
evolution of open quantum system that potentially interacts with environment.

Theorem 1.2. Let T, = e~ : M — M be a symmetric quantum Markov semigroup
and N be incoherent subalgebra of Ty. Suppose Da (MI||N) < oo and T, has A-spectral
gap that X\ || x — E(z) ||3< tr(z*Ax). Then for any density p € M,(M), we have
lid @ Ty(p) —id © E(p) [1< € if

1 2
t > X(2 logg + Doy (M||IN)/2)

The incoherent subalgebra is common multiplicative domain of T} for all t > 0. A
semigroup 7} is non-primitive if A is nontrivial. A non-primitive semigroup describes the
a general decoherence process that a quantum state p lose its coherence and convergetho
the incoherent state E(p), where £ is the conditional expectation onto A/. Theorem h.Q
gives an estimate of the decoherence time independent of the dimension of auxiliary system
M,,. In particular, when N is a commutative algebra (classical system), id® E(p) is always
a separable state. Then the above estimates also bounds the entanglement remained in
Ti(p), which gives the entanglement-breaking time of the semigroup.
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The rest of paper is organized as follows. In Section 2, we review definition and
basic properties about sandwiched Rényi relative. The connection befween D,(p||N) and
amalgamated L,-spaces is also mentioned. Section 3 proves Theorem h.l and discuss some
further properties about maximal relative entropy D,(M||N) and D, »(M||N). Section
% is devoted to application of D, 4 (M||N) in the decoherence time and proves Theorem

2

2. RELATIVE ENTROPY

2.1. Sandwiched Rényi relative entropy. Let M be a finite von Neumann algebra
equipped with normal faithful trace state ¢r. For 1 < p < oo, the space L,(M) is

defined as the norm completion with respect to L,-norm ||z ||,= tr(]a:|p)%. In particular,
Loo(M) := M and the predual space M, = L;(M) via the duality

a € Li(M) +— ¢, € M., ¢q(x) =tr(ax) .

We say an element p € L;(M) a density operator if p > 0 and tr(p) = 1. We denote
S(M) for all density operator of M, which correspond to the normal states of M. Let
p€[3,1)U(1,00] and z% + % = 1. For two density p and o, the sandwiched Rényi relative
entropy is defined as

1 1
plog|lo 2 po 2" [|,, ifp<<o
Dy(pllo) = {+ '

0, otherwise.

Here p << o means that the support projection satisfies supp(p) < supp(c). The negative
1

power o 2 can be interpreted as generalized inverse on the support and in most discussion

. . . . L. . . wildel4, mullerid

we can assume o is faithful. This definition was originally introduced in [[29, 20] for matrix

aI%ebras and recently J%eneralized to general von Neumann algebra via different methods
bertal8, Jenvcovald ¥, Jénvcoval,gul

[4,77,7,10]. When p — I, D, recovers the relative entropy

D(p|lo) = tr(plogp — plogo) (4)

. . . Pmegaki62
which was first 1n’511£8c71%1ced by Umegaki I26 and later extended to general von Neumann al-
gebra by Araki [T]. Umegaki’s definition is the noncommutative generalization of Kullback-

Leibler divergence in probablity theory. It is an fundamental quantit, ethﬁtoélave been
intensive studied and widely used in quantum information theory (see %‘%Oﬁra survey).
As relative entropy usually has operational meaning in the asymptotic i.i.d setting (e.g.

, the sandwiched Rényi relativewg?gg(l)gwa has been found useful in proving strong

Jwillelb,wilde16 )
converse theorem and one shot rate [29, IT, I7]. For all 5 < p < 0o, Dy(p||o) is a measure

of difference between p and o. In particular the case p = oo,

11 .
Das(pllo) = log [[072po™> [|oo= loginf{A|p < Ao}

‘relativeentr
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is also called D,,,,, and D1 is essentially the fidelity. We summerise here some important
properties of D,. Let p,o be two densities operator

i) Dy(p|lo) > 0. Moreover, D,(p||loc) =0 if and only if p = o
ii) Dy(pl|o) is non-decreasing over p € [3, 00| and lim,_,; D,(p||o) = D(pl|o).
iii) For a complete positive trace preserving map (CPTP) & : L;(M) — L;(M),

D,(pllo) > D,(®(p)||P(c)). In particular, D,(p||o) is joint convex for p and o.

muller13,wildel4d

i), i) and iii) was proved in [20, 29] for matrix aléebra The discussion_for the case of
, Jencoval8,Jencova?2,gul9

general von Nuemann algebra can be found in \[4 12,13, 10].

2.2. 'Relatlve entropy with respect to a subalgebrgfv%a(ztliv C M be a Subalgebra.
Motivated from the asymmetry measure of group in [I8], we introduced the following
definition of relative entropy with respect to a subalgebra: for a density p € Li(M),

D,(p|IN)= inf D .
p(pIIN) = inf Dylpllo)
where the infimum takes over all densities o € S(AN). This definition connects several
concepts in the literature:

a) Let a : G — Aut(M) be an action of a group G as s-automorphism of M. Let
N = MY .= {x € Mlay(z) = xVg € G} be the invariant subalgebra. Then
D,(p||ME) is a G-asymmetry measure introduced in
b) For M = B(H.) ® B(Hy) and N = Cl @ B(Hg) C B(H & B(H5), Dy(p|V)
gives the sandwiched Rényi relative entropy H,(A|B) in up to a constant
D,(p||IN) = H,(A|B), + log|A|. The constant comes from that the matrix trace
on B(H,) ® B(Hp) differs with B(Hpg) by a factor of |A|.

¢) Let N =17 C M, = M be the diagonal matrices inside the matrix algebra M,,.

D, (p||N) gives the sandwiched Rényi relative entropy of coherence.

We have the basic properties of D,(p||N') parallel to D(p||o).

Proposition 2.1. For 1/2 < p < oo and density p € S(M),
i) Dy(p||IN) > 0. Moreover Dy(p||IN) = 0 if and only if p € S(N)
ii) D,(p||N) is non-decreasing over p € [3, 00| and lim,_,1 D,(p||N') = D(p||N).
iii) Let ® : Li(M) — Li(M) be a CPTP such that ®(Li(N)) C Li(N). Then
D, (p|IN) > D,(®(p)||N). In particular, D,(p||N) is convex for p.
iv) Forp=1,

D(plIN) = D(pl€(p)) = H(E(p)) — H(p)
where H(p) = —tr(plog p) is the von Neumann entropy.
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Proof. 1)-iii) follows from the corresponding properties of D,(p||o) by taking the infimum.
When p = 1, for any density o € S1(N),

D(pllo) = tr(plogp — ploga) = tr(plog p) — 7(E(p)log o)
= tr(plogp — E(p)log E(p)) — tr(E(p)logo — E(p)log E(p))
= D(pl|E(p)) + D(a||E(p)) - (5)

Because D(o||E(p)) > 0 and D(o||E(p)) = 0 implies 0 = E(p), so the infimum attains
uniquely at E(p). Moreover, by the condition expectation property,

D(p||E(p)) = tr(plog p — plog E(p)) = tr(plog p — Ep) log E(p)) = H(E(p)) — H(p) .
this verifies iv). n

Form above properties, we see that D,(p||N) are natural measures of the difference p
is from a density of . Viewing E(p) as the projection of p, D,(p||E(p)) is also a measure
with respect to the subalgebra A and coincides with D,(p||N) at p = 1. We note that for

general p, D, (p||N) # Dy(pll€(p))-

Example 2.2. Let N = lgo be the diagonal matrix in M = M,. For 0 < a < 1, consider
a a(l —a)

th tat =
e pure state p [ o= a) -4

]. One can calculate that for 1 < p < o

_P
2p—1°

Dy(pllN) = Dy(pllo,) = p'log(1 + a’(1 = a)' = + (1 — a)%a’ ),

ad
AT (o) 0]

and ¢ =

O'p:

(1—a)?
O Zraae

Dy(pl|E(p)) = p'log(ar + (1 —a)r) , Bp) = {8 ’ 1

1—a

2.3. Connection to amalgamated L,-spaces. The Rényi relative entropy D,(p||N)
a}geegfzr}osely related to the amalgamated L,-spaces and conditional L,-spaces mtroduceéimcl)n
ere we briefly recall the basic definitions and refer to the appendix and or
more information.
Let 1 < p < oo and %+ z% = 1. The amalgamated L,-space L{(N C M) is the
completion of M with respect the the norm

I povesn= 0t 1ol ooll ol 811,00 (6)

where the infimum runs over all factorization x = ayb with a,b € N and y € M. For
positive x > 0, it suffices to consider positive a = b > 0 in the infimum and

__1 __1
@ lroccan=,nt 1|0~ po 5 ||, ™

]

positive
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where the negative power are inverse on the support. Therefore, for 1 < p < oo,

Dy(plIN) = p'log [l pllrveny -

It follows from Hélder inequality that || p ||z > oIl and || pllLeveay=[ o1 if and
only if p € Li(N). This corresponds to the positivity D,(p||N) > 0 and D,(p||N) = 0 if
and only if p € S(NV). For 1 < p < ¢ < oo and é—l—% = %, we define LP(N C M) as the
completion of M with respect the norm

12\l pvern= sup lazdl|L, ) (8)

Lo ) =llLo, (1) =1
where the supremum runs over all a,b in the unit ball of Ly.(N). The connection of
Dy(p||N) for 3 < p < 1 goes with conditional L,-norm via pz. Let 1 < ¢ =2p <2 and

é =1+ 1. We define the norm

WNcm)y=  Sup HMHLq(M%
ML, w)=1

|22

(r,c0)
where the supreme runs over all @ € N with |al[z,wvy=1. For 1 <¢=2p <2

1
Dp(pllN) = —rlog | p |12

(r,00)

NCM) -

We show that the infimum in D,(p||N) is always attained. The proof uses uniform con-
vexity of L,-spaces and is included in the appendix.

Proposition 2.3. For1/2 < p < oo, the infimum D,(p||N) = D, (pl|o) is attained

inf
ceS(N)
at some o. For 1/2 < p < 00, such o is unique.

3. MAXIMAL RELATIVE ENTROPY
Recall the Popa-Pimsner index for a finite von Neumann algebra is defined as
AM :N) =max{M\x < E(x) Ve M}
This definition can be written by D, as follows
log A(M : N) =logsup{ Az < E(x) for all z € M}
=log xér/{/fur sup{ A\ Az < E(x)}

(log inf{ |z < pé€(x)}) ™

inf
CISEM+

:( sup loginf{u|z < ,uc‘f(x)}>_1

rzeEM4

=(sup DuclalE))
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where the last equality follows from the fact M is norm-dense in L;(M),. Thus we have

—log AMM : N) = s Do (pl|E(p))- (9)

We now prove the main theorem.

Theorem 3.1. Let N C M be an inclusion of II, subfactors or hyperfinite finite von
Neumann algebras. Then for 1/2 < p < oo,

—log \(M:N) = sup Dy(pl|€(p)) = sup Dy(pl|N)
peS(M) peS(M)

Proof. By monotonicity,
D3 (plIN) < Dy(plN) < DocplN) < Dac(plIE(p))
D1 (plIN) < Di(pll€(p)) < Dy(pll€(p)) < Deo(pllE(p))

it suffices to prove that

sup Di(p||N) > —logA\(M : N).
peS(M)

Not that

. . 11
Dy(plIN) = inf Dy (pllo) = inf ~2log [l p*

= —2logsup [ o2p? ||y .
Let e = supp(p) be the support projection of p. By Hélder inequality, for any o € S(N),
lo2p% |l <lloellzll o2 2
— tr(oe)} = tr(c€(e))F <||B(e) |5 .
Therefore, D%(,oHN) > —log || E(e) ||« and
Sl;p D%(pHN) > —loginf{||E(e)|| | e projection in M} .

It has been proved in )21§,0 Theorem 2.2, Proposition 2.6 and Corollary 5.6] that the infimum
at the right hand side equals A(M : N') when M, N are II; factors or hyperfinite. That

completes the proof. [ |
The above theorem basically used the monotonicity of D, over p and the following key

equality
max{ Az < E(x) V2 € M} =inf{||E(e) | | e projection in M} . (10)

proved for II; factors and hyperfinite von Neumann algebras. The ”<” direction always
holds form convexity. The converse inequality is open in general. In both finite dimensional

key
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or subfactor cases, it follows from the fact that there exists a projection e € M such that
E(e) is A(M : N) times a projection. Let py = tr(e) te be the normalized density of e.
As a consequence of monotonicity, D,(po||N) attains the index for all 1/2 < p < oo,

sup Dy(pllA) = DylpollN) = Dy(pol | E (o)) (11)
pES(M)

Let us briefly review the value of A\(M : N) and the optimal density p from FFZ%]Q.
For II; subfactor N' C M, there is a projection e € M such that E(e) = [M : N]~1.
This implies
AM Nt =[M:NT,
For finite dimensional cases, let N = SrM,, , M = @& M,,, and assume that the unital
inclusion ¢ : NV < M is given by

L(@kl'k) = @l(@kxk ® 1%1) :

Here 1,, denotes the identity matrix in M,, and ay; is called the inclusion matrix, which
means that each block M, of M contains ay; copy of M,, blocks from N. Let ¢; be the
trace of minimal projection in M,,, block of M and s; be the trace of minimal projection
in M,, block of N. Then s = (sx),t = (t;),n = (ng), m = (my) as column vectors sz%;cnigfy
s = At and m = ATn, where A = (az;) and AT is the transpose of A. Based on (ITT), 1t is
equivalent to consider the optimal element for D, of any 1/2 < p < co.

Without losing generosity, we assume the trace of M is an induced matrix trace by a
further inclusion M = @;M,,, ® 1;, C M,. Based on Theorem %.Elc%n equivalent approach
is to maximize D(p||E(p)) = H(E(p)) — H(p). By convexity of D, it suffices to consider a
minimal projection e = [¢))(¢)| ® 14, in one of the block M,,,. Then p = |¢) (Y| ® % is the
normalized density and H(p) = logt;. Denote P ; be the projection in M,,, corresponding
to the ith copy of M, and write |¢x;) = Py ;|1). The conditional expectation of p is given
by

Akl

Ex(p) = @3 ) () ® s—l,fsk |
=1

The largest possible rank of Exr(p) is D, min(ag, nx)s, because the part in the M,, block
of N

Akl

D Pl) WP = Y 1w (i
i=1 =1

is of rank at most min(ag;, nx). Then the maximal entropy H (£ (p)) is attained by choosing
|¥k.i) (¥r.;| mutually orthogonal and || ;||*= =——%———. In this case,

T X, min(agg,ng)sk

(295} 1 (225}

Ex(p) = @k(z [Vk,i) (Vril) ® i]‘sk A D (Z i) (D) © ilsk
i=1 =1

© Y, min(ag, ng)s
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where [¢r:) = [¢ri)/ ||%r. ]2 are normalized vector. Then

D(p||E(p)) =H(E(p)) — H(p) = log » _ min(a, nx)sy, — log,

= lOg Z min(akl, nk)sk/tl .
k

This leads to the formula in )215,0 Theorem 6.1]
—log A(M : N) = max D(p||N') = log mlaXZmin(akl,nk)sk/tl : (12)
p
k

Motivated from above we introduce for finite von Neumann algebras N' C M, the
maximal relative entropy D(M||N') and its Rényi version D,(M||N)

D(M|IN) := sup )D(pIIN)

pES(M

Dp(MHN) ‘= Sup Dp(PHN)

pPES(M)

ind
As a consequence of Theorem %I.ll ,e for 11, subfactors or hyperfinite N' € M, D,(M||N) =
D(M : N) is independent of p, while in general such equality is open. These definition
are different with the Connes-Stormer relative entropy

HMIN) = sup Ztr x;log w; — x;log E(x;))

;xi=1

where the supreme runs over all partition of unity ) . x; = 1,2; > 0. We now discuss the

relation between A(M : N), D,(M||N) and H(M|N).

Proposition 3.2. Let N' C M be finite von Neumann algebras.
i) D,(M||IN) is monotone for 1/2 < p < oo.
ii) For1<p< oo,

Clog MM : ) > Dy (M) > H(MIN) .
iii) If N'C M are IL, subfactors or hyperfinite, then for 3 < p < oo,
“log AM : N) = Dy(M|IN) .
Proof. 1) follows from the monotonicity of D,. For ii), we have by (5} that
—log A(M : N) = Sup Doo(plIE(p)) > Doo(M|IN) > Dpy(M|IN) .

Let x; € M such that Z —,r;=1and z; > 0. Write z; = T( 7y as the normalized density.
Then

H(MIN) = {sup sz (] |E(xy)) szlogpz = sup D(pl|lid @ Ex(p))

xz i {pz} Zq
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where p = . p;|i)(i| ® Z; is a density operator in [ (M). It follows from convexity that
for any finite n, D(I_(M)||IL(N)) = D(M||N). Then for 1 < p < o0,

H(MIN) < sup D(Ie (M)[[1.(N)) = DIMIIN) < Dp(MIN) < —log AM : N) .

oy s . %ﬁlde_x
iii) is a direct consequence of Theorem B.T. |

Remark 3.3. Recall that Petz’s Rényi relative entropy for two density p and o is defined
as

Dy(pllo) = p' log tr(pPa* 7)r .
~ 18
For p = %, D%(pHJ) < D%(p||0) and for 1 < p, it was proved in IGZH,CO(VTSrOHary 3.3] that
D, 1(p|lo) < D(pl|lo) < D,(p||o). Therefore, for N' C M subfactor or hyperfinite, the

maximal relative entropy expression also holds for [)p with % <p<2,

—log \(M : N) = Dy(M||N) := sup inf D,(pl|o).

peS(M) oceS(N)

As was observed in )2150, —log A(M : N) does not always equal to [M,N] for finite

dimensional subfactors. Indeed, for n < m,
D (M, || M,,) = log min(n, m)m # logm? = log[M, : M,] .

Moreover, the subfactors index satisfies the multiplicative properties

i) for NCMCL,[L:N]=[L: M]M:N]

ii) for N1 - Ml,NQ C MQ, [Ml ® Moy ZNl ®N2] = [Ml ZNl][MQ INQ]
The follow proposition shows that this also differs with D(M||N).
Proposition 3.4. Let N, M, L be finite von Neumann algebras.

i) for N'C M C £, D(L|IN) < D(L||M) + DM|IN);
ii) fO?“/\/l C Ml,Ng C M, D(Ml ®M2||./\/1 ®N2) > D(M1HN1) + D(MQHNQ)

In general both inequalities can be strict.

Proof. i) Let Epq (resp. Ej) be the conditional expectation from £ onto M (resp. N).
Because Ex o En = Ey, for p € S(L),

D(p||N) = H(Ex(p)) — H(p) = H(Ex(p)) — H(Em(p)) + H(Ex(p)) — H(p)
= D(Em(p)IIN) + D(p||M) < DIM||IN) + D(L||M)

which proves i). For the strict inequality case, we have

D(My||Ms) =log4d , D(Ms||C) =1log2, D(M,||C) =log4 # D(M,|| M) + D(Ms]||C) .
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For ii), let E;,i = 1,2 be the conditional expectation from M; to NV;. The inequality follows
from that

D(pl|€1(p)) + D(o]|€2(0)) = D(p @ a|€1(p) @ Ea(0)) < DMy @ Ma|]N; @ Na) .
This inequality is strict for the case
D(M6||M2) = 10g6 s D(M6||M3) = 10g4 s
D(Ms6||Ms) = log 36 # D(Ms||Mz) + D(Ms||Ms)
Another example is N' = (M, ® Cl3) ® (M3 ® Cly) C M2 = M. Then
D(M5||N) = log(4 + 6) = log 10 ,

The following is an example of left regular representation of finite groups.

Remark 3.5. Form the above example, we know that there exists a bipartite state p €
Mis ® Mo such that

D(p1||N) + D(pa| V) < D(p[]N @ N},

where p; and py are the reduced densities of p on each component. Hence the relative
entropy with respect to subalgebra is super-additive. The super-additivity implies that
p is an entangled state, which means p is not a convex combination of tensor product den-
sities. This }&egggrggnon for the coherent information is of particular interest in quantum
information 25

Example 3.6. Let G be a finite group and £(G) = spanA(G) C B(l2(G)) be the gourp
von Neumann algebra of left regular representation A. For a subgroup H C G, denote
L(H) as the subalgebra generated by A(H). Then for inclusion L(H) C L(G),

D(L(G)||L(H)) = loglG - H].

First, by Peter-Weyl formula (cf. 51 that L(G) = ®&pM,, ®Cl,, and |G| =Y, n;. Thus
by the formula (IZ;,

D(L(G)||C) = log|G|, D(B(I2(G))||£(G)) = log(y _ n}) = log |G-

Consider G = HUHg; U --- Hg,,_1 decomposed as a disjoint union of cosets and n = [G :
H]. Let P; be the projection onto ly(Hg;) as a subspace of I5(G). So L(H) is a left regular
representation of H of multiplicity n on @;Pilo(G) = l2(G). Thus

D(L(H)||C) =log|[H| , D(L(G)[|L(H)) = [G : H]
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by Proposition E.%%Blg)gf‘é)r the inclusion C C L(H) C L(G). On the other hand, the
conditional expectation Ey : L(G) — L(H) is given by
En(Y_agMg) =Y aghg) = > P(D_a\9)hi,
geG geH i geG

where A(g) is the unitary of left shifting by ¢g. For g € H, P,A(g)P; = 0 because for any
hi,hy € H, ghig; = hyg; implies g = hoh;' € H. Note that the trace on £(G) coincides
with the induced normalized matrix trace of B(ly(G)). Consider N' = &B(ly(Hg;)) C
B(l5(G)). We have D(M||N) =logn adn Ex(p) = 3, P,pP; is the conditional expecta-
tion. Thus

D(L(G)[|L(H)) = sup D(pl|€u(p)) = sup D(pl|Ex(p))

pEL(G) pPEL(G)
< sw D(pllén(p)) = DIMIIN) = logn
pEB(l2(G))

Therefore we obtain D(M||N) =[G : H].

nter

The continuity of D(:||N) follows from ; , Lemma 7]
Proposition 3.7. Let p,o € S(M) be two densities with ||p — o ||1= €. Then

[D(pIIV) = D(alIA)] < 2eD(MIIN) + (1+20h(7 ).

where h(\) = —Xlog A — (1 — X) log(1 — A) is the binary entropy function.

We know by convexity that adding an auxiliary classical (commutative) system [
does not change the maximal relative entropy,

Dp(IL (ML N)) = Dyp(M|IN) .

However this is not the case if we replace [, by a quantum system M,,. For finite von
Neumann algebras N' C M, we define the ch-maximal relative entropy

Doy p(MIIN) 1= sup Dy (M (M))[[ M (N))
In general, Dy, ,(M||N) > D,(M||N) and the inequality can be strict. In particular, for
all % <p<o
D,(M,, & M,,||M,) =mn = —log \(M, @ M,, : M,) ,
Dyp.oy(M,, @ My, ||M,) = m? = log[M, @ M,, : M,] . (13)

which are different when n < m. Using the properties of D(M||N), we immediately
obtain

Corollary 3.8. 1) Dpap(MI|N) is monotone for p € [1/2,00].
ii) If N C M are I, subfactors or hyperfinite, D, 4(M||N') is independent of p.
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iii) For N C M finite subfactors,

loglM < N] = Dy (M) (14)
b

Proof. For iii), the finite dimensional case is (Eﬂ) For II; subfactors, D é’(é/\s/lHN ) =

D(M||N) = log[M : N] because subfactor index [M : N] is multiplicative IE ) u

The above proposition suggests that (the exponential of) D, 4 are extensions of sub-
factor index [M : N] to finite von Neumann algebras. Using the connection between
Dp(plIN) and || p || zwveny for 1 < p < oo, we see that D,(M||N) is basically the norm of
identity map from L;(M) to LY(N C M). Indeed, it suffices to consider positive elements
because for x = yz,

|z ||L’1’(/\/’CM):|| Y HLQ,,/(N)LQP(M) |2 ||L2p(M)L2p,(N)§|| yy” HL{’(NCM) |22 HLTI’(NCM)

Thus, for 1 < p < oo,
Dy(M|IN) = p'log ||id : Li(M) — LY(N C M) |
For % <p<1and 2ip = % + %, the maximal relative entropy is

Dy(MIIN) = 29/ log [[id : La(M) = L3_ (N C M) |

(r,00)

We shall show that for 1 < p < oo, D, 4 are indeed given by the completely bounded
norms. We discuss in the appendix that the natural operator space of LY(N C M) is
given by

SPRQLE(N € M) = LE(M,(N) C M, (M)) . (15)
where ST = (M,)* is n operator space of trace class operators.
Proposition 3.9. Let 1 < p < oo and ]lo + }% =1.
i) for 1 <p<o0o
Dy (M|IN) = Sl7lzp Dy(RIM||RRN) . (16)
where the supremum runs over all finite von Neumann algebra R.

ii) for 1 <p < o0, Dpo(M||N) =p'log ||id : Li(M) = LYN C M) |-
iii) For N; C M;,i = 1,2 finite von Neumann algebras

Dy(Mi @ Ms||N7 @ Na) = Dep(Mi||N1) + Doy (Ma||N3) (17)
In particular, for p = oo,

Do cs(M1 @ Mo||N7 @ N2) = Do p(M1||N1) + Dog (Mo |N2) .

0s2
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Proof. Let R C B(H) and p € S(R&M), 0 € S(RIN). Let p (resp. p) be a normal state
on B(H)®M (resp. B(H)®N) extending p (resp. o). Let ¢ : R — B(H) be the inclusion.
¢ is a normal unital completely positive map. Its adjoint on the predual ' : B(H), — R,
is the restriction

() = ¢IR
In particular, using the identification B(H), = S;(H) and L;(R.), ¢! is a completely
positive trace preserving map. We have
p =1t @idm,(p),0 =1 @idp, (7).
Then by data processing inequality,
Dy(pllo) = Dy(e! @ id(p)||e" @ id(5)) < Dy(pl|5)
Since B(H) is approximate finite dimensional, we can find p,, € S(M,(M)), 7, € S(M,(N))
such that
0=l 0.3 = 3]s
encova

By the lower-semicontinuity of D, for 1 < p < oo [I2, Proposition 3.7],

D,(7116) < mint D, (p,[3,) < sup Dy(M (M)||M, () = Dy (MIIN)

isier93
ii) follows from (% and )2113S,lelrlemma 1.7]. For iii), let E; : M; — N; be the conditional
expectation. For a density p € ROM;@Ma,
D(pllid @ Er @ Ea(p)) = D(pllid @ id @ Ez(p)) + D(id ® id ® E:(p)|[id @ Ey ® Es(p))

< D(R @M1 @ My)||R®@ My @Ny) + D(RM; @Ny)|[|R N @ Na)

< Dy (M1||N7) 4 Doy (M| |N2)
This proves the case p = 1. For p > 1, let 0 € N1®N; be a invertible density

1 1

_ 1 _ 1 1
lo™5 po~ o ||,<|loy 7 po, 7 |pllo” 2 o7 ||

for some invertible density o, € Ni®@M,. Note that

=

— 2%7’ 2 -1 % % -1 I
o2 01" |G<llo720f |S=[l0 201077 ||% -

By relative entropy, we have
Dy(pllo) < Dy(pllor) + Doc(on]|0)
Taking infimum for both o1 € Ni®M, and o € N1RN,, we have
Dy(p[INi®N2) < Dyy(p[Ni®Mo) + D(01||[N1&N2) .
Taking supremum over p, we have

Dy(Mi@M|[N1&N3) <Dp(M1@Ms||Ni@My) 4+ Do (N@M;||N1RN?)
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SDp,cb(MlHNl) + Doo,cb(M2||M2) .

Replacing A7 € M; by R&N; C RRM yeilds the inequality for D,, (M1 @Ma||NTRNS).
The equality follows from choosing tensor product elements. [ |

Up to this writing, we do not know whether D, = D, independent of p holds
for general finite von Neumannkglgebras. Recall that for subfactor ot hyperfinite case,
this follows frO{nothe equality (&D%, which is open for general von Neumann algebras as
mentioned in .

4. APPLICATIONS TO DECOHERENCE TIME

In this section, we discuss the applications to decoherence time of quantum Markov
processes. We discuss the symmetric case and briefly mention the modification for non-
symmetric ones in Appendix. We start with the continuous time setting. Let (M, ¢r) be a
finite von Neumann algebra M equipped with faithful normal tracail state tr. A quantum
Markov semigroup (73)i>0 : M — M for t > 0 is a w*-continuous family of maps that
satisfies

i) T} is a normal unital completely positive (normal UCP) map for all ¢t > 0.
i) Ty o Ty = Tsyy for any t, s > 0 and Ty = id.
iii) for each z € M, t — Ti(x) is continuous in o-weak topology.
We denote by A the generator of T;, that is the densely defined operator on Ly(M) given
by
Ax = w* — t]_l}r(% ;(m —Ti(z))
for all z € M such that the o-weak limit exists. We denote

N ={a e M|Ty(a")Ti(a) = Ti(a*a) and Ty(a)T;(a*) = Ti(aa™) ,V t}

as the common multiplicative domain of T;. We call N the incoherent subalgebra. When
N = C1 is trivial, T} is called primitive and has a unique invariant state. In general,
(T})i>0 restricted on A is a semigroup of *-homomorphism.

We say a quantum markov semigroup (7}):>o is symmetric if for all z,y € M and
t >0, tr(z*Ty(y)) = tr(Ty(z)*y). Namely, T, = T} is self-adjoint with respect to trace.
As a consequence Tj is trace preserving tr(T;(p)) = tr(p) and invariant on N. Indeed, for

a,be N,
tr(aTy (b)) = tr(T,(a)T,(b)) = tr(T;(ab)) = tr(ab) .

Let E : M — N Dbe the trace preserving conditional expectation onto N. By the above
discussion, we know
AoE=0,T,oE=FoT,=F.
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One important functional inequality which relates the convergence property is the
modified logarithmic Sobolev inequality. We say (T}):>o satisfies \-modified logarithmic
Sobolev inequality (or A-MSLI) for A > 0 if for any density p € M

AD(plIN) < La(p) =: tr((Ap) Inp) .
LSI,bardet
This is equivalent to exponential decay of relative entropy :9, Vi

D(T(p)IIN) = D(T(p)l| E(p)) < e D(pl|E(p)) - 19)
By auantum Pinke incauatity (o, BEF2
1
D(pllo) = 5 llp = o |2,

this gives estimate of decoherence time
taeco(€) = min{t > 0| || Ti(p) — E(p) |1 < €V density p € M}.

Suppose the maximal relative entropy D(M||N) = sup, D(p||N') < oo is finite, we have
1 1
A= LSI = tgeeo(e) < X(2 log = +log 2D(M||N)) . (20)
€
Another important functional inequality is the spectral gap (also called Poincaré inequal-
ity) For A > 0, we say (7;); has A-spectral gap (or A-PI) if for any = € M,
Ao = Ex) |3< tr(e" Az)

Write [ as the identity map on Ly(M) and [ — FE is the pro ecthcn onto the orthgonoal
5 5 that

complement Ly(N)L. A-PI is the spectral gap condition (see
| AN — E) : Ly(M) — Ly(M)||< A
or equivalently ||T; — E : Ly(M) — Lo(M)||< e (21)

This means for each z, the Lo-distance between T xt) and its equilibrium FE(z) decays
eXIE)onentlall In general, A-MLSI im }iiega)\—PI , which means that the entropy decay
(Hﬁ—ls’%m}éer than Lo-norm decay (2I). The next theorem shows that the spectral gap
condition implies a weaker exponential decay of relative entropy.

Theorem 4.1. Let (T})i>0 : M — M be a symmetric quantum Markov semigroup and N
be the incoherent subalgebra of T;. Suppose Ty satisfies \-PI. Then for density p € M,

DT (p)|IN) < 26 4P/ (22)
If in additional, Dy(M||N) = sup, DQ(pHN) < 00, then

tdecO( ) = )\(2 log + DZ(MHN)/Q)

‘entropydecay
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Proof. The \-spectral gap property is equivalent to
| Ty — E: Ly(M) = Ly(M)||< e
LSI
Since both T and E are N-bimodule map, it follows from :9, Lemma 3.12] that
IT; = E: Li(N C M) = LIN C M)|| =Ty = E: L3N € M) = LiN C M) |
T = B Ly(M) = Lo(M) || < e

(see Appendix for definition of LI(N C M) for general 1 < p,q < 0o.) Then for a density
pEM,

D(Ty(p)|IN') <D(T(p)|IV)
<2log | T3(p) ll2(xvemmy

<2108 (| E(0) lczvern + 1T = Bl zvem )
<2log(1+ e || pllaqcnn) < 26 NP2 .

The decoherence time estimate follows from quantum Pinsker inequality.
entropydeca

Let us compare the above theorem with the decay property ( J) 0 ained from \-
MLSI. Because the MLSI constant > PI constant, the exponent in (b';%s_lé at least as the
MLSI constant but the constant factor in (23) is larger.

On the other hand, tensorization is an important property of MLSI for classical Markov
semigroup. However, tensorization propetry is not known for MLSI of quantum Markov
semigroup. We say (7}):>¢ satisfies \-complete logarithmic Sobolev inequality (or A\-CLSI)
if for any n, idy;, @1y : M, (M) — M, (M) satisfies A-MSLI. It follows from data processing
inequality that A\-CLSI is tensor stable. However, it is not clear in the noncommutative
case A-LSI implies \-CLSI. We refer to %]_for more discussion about CLSI and related
examples.

For M = B(H), quantum Markov semigroups are also called GLKS equation in quan-
tum physics (see h%T)’ It models the evolution of open quantum system which potentially

interacts with environment. In this setting, CLSI estimates the complete decoherence time
tedeco=f{t > 0| ||id® Ty(p) —id® E(p)|1< €, Vn > 1and density p € M, (M)}
d.
Suppose Dy (M||N) < 0o, we have as analog of (}'Ze(l B

1 1
A-CLST =t geco(€) < X(?log - +log 2ch(/\/lHN))
€

The complete version of decoherence time estimates the convergence rate independent of
the dimension of auxiliary system M,,. In particular, when A is a commutative algebra
(classical system), t. 4eco also bounds the entanglement breaking time.
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In contrast to MLSI, the spectral gap property or PI is stable under tensorization.
Indeed, for any n, the generator A has the same spectral as Iy A, the generator of id,;, ®T;.
Based on this, Theorem (h_l) also applies to idy;, ® Ti, which leads to an estimate of
complete decoherence time.

Corollary 4.2. Let (T})i>0 : M — M be a symmetric quantum Markov semigroup and N
be the incoherent subalgebra of Ty. Suppose T; satisfies A\-PI. Then for any n and density
p € Mn (M)7

D(id ® Ty(p)|| Ma(N) < 2e7XNFP20INAN/Z (23)
If in additional Dy 4,(M||N) < 0o, then
1 2
tc.deco(e) S X (2 IOg E + D2,cb(M | ’N)/Q)
The above theorem also works for tensor product of semigroups. Indeed, for two
semigroups S; : My — My and T; : My — M,
i) If S; satisfies A;-PI and T} satisfies Ao-PI, then S; ® T} satisfies min{\;, Ao }-P1L.

11) If D2,cb(M1HN1) < 0 and Doo,cb(MQHNQ) < o0, then DZd;(Ml@MQHngNQ) =
cb
Dy o (M1|IN7) + Doo.er(M3||N3) < 0o by Theorem [77.

We now discuss the discrete time setting. A quantum Makrov map T : M — M
is a symmetric normal completely positive unital map. Let N' = {a € M| T(a*a) =
T(a*)T(a)} be the multiplicative domain of T. T restricted on A is a normal trace
preserving *-homomorphism. 7 is identity on N because for any a,b € N

tr(aT?(b)) = tr(T(a)T (b)) = tr(T(ab)) = tr(ab) .

and T is a isometry on La(N). Let E : M — N be the conditional expectation onto N
and I be the identity operator on Ly(M). We have

T°cE=FEoT*=E,ToE=EoT. (24)

Theorem 4.3. Let T : M — M be a symmteric quantum Markov map and let N be
multiplicative domain of T. Suppose | T(I — E) : La(M) — Ly(M)||< p < 1. Then for
any n > 1 and density p € M,(M), we have

D(T*(p)||Ma(N)) < 20PN/
Moreover, for k > (log ;)" (log 2+ Dy (M|IN)/2),
lid @ T*(p) —id @ E(p) |[h< € for k even,
|id @ T*(p) —id @ T o E(p)|1< ¢ for k odd.

relation
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relation
Proof. Using the relation (bzﬂ, we have

(T(I-E)?=(T-ToEY?=T*-2I"c E+T*o0E=T>-F.

Then

(T—ToE)*=T"—-E,(T-ToE)* =T7%*% _EoT.

LSI
By :9, Lemma 3.12] again, since (T — E)* are A/-bimodule map,

||(T—ToE)k AN CM) = LAN M)
= |[(T =T o E): Ly(M) = Ly(M)[|< p*

d2
The rest of argument is similar to Theorem h_l Here we show the case for k odd,

D(T*™(p)[IN) <Da(I & T*(p)|INV)

<2log || T"(p) |l 2 (vemny
<2log (| B0 T*(0) | sztmrcntmonny + 117 =T 0 EY(p) [ zvenn) )

<2log(1 + p* || pll 2 veny)
<9k D2l /2

Applying the same argument for p € M, (M) yields the desired estimate. [ ]
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APPENDIX A

A.1. Amalgamated L,-space and Conditional L, -spaces. In this section, we recall
the definition of amalgamated Lp—spa%eea%d conditional L,-spaces needed for our discus-
sion. For general cases, we refer to . For 1 < p,q < oo and |% — %| = %, we define
LP(N C M) as the completion of M with respect the norm

z:ay%ll:ltfl‘,be,/\/ ||a'||L2T(N)||y||LLI(M)||b”LQT(N) lfp S q

sup | azb ||, ) ifp > q.
lallzy, w)=110llL,,w)=1

(25)

|z HLZ(NCM):

Forp <gq, L} (N C M) is called amalgamated L,-space and for p > ¢ conditional L,-space.
It follows from Holder inequality that

i) LYN € M) = Ly(M),

i) for o <p <o, 2]l po wern <zl <l =2 wer

iit) L,(N) C LYN C M) for any 1 < g < oo. Moreover, ||z || gvern=l = [z, if

and only if x € L,(N)
For1 < p,q< oo,%Jr% =1 and 5—1—? = 1, we have the duality L2(N € M)* = LZ:(N C
M) via
1 | zgvean= sup{tr @Y v pn = 1}
’ P

For ¢ = 1, LY(N € M) C LE (N C M)* as a w*-dense subspace. (see ISm:emF'oropsition

4.5]). In particular, the dual of amalgamated space is conditional space and vice versa.
We also have complex interpolation relation

LAN C M) = [LE(N € M), LI (N € M)]y

isometrically where (1—6)/po+6/p1 = 1/p,(1—-0)/q0+6/q1 = 1/q and (p1—q1)(p2—q2) > 0.
We will also need some ”square root” version of above Ly-spaces. For 2 <r < 00,1 <
p,q < oo and % = % + %, we define the norm

lelliee wean= sup  Jlaz |, -
’ al Lr(N)=1
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where the supreme runs over all ¢ € N with | a ||, (v)= 1. The dual spaces are the
amalgamated space Ly (M)L,.(N) given by

91z yaz 0= nf 112z mnllal,o -
For 1 < ¢ < 0o, we have the dual relation

[ ]l 2

(r,00)

wem) =sup{flaz (L, vy | llallz,wn=1}

= sup{[tr(zaz)| | [lallL,on=1 2], =1}

= sup{[tr(y2)| | |yllL, mL.on=1} (26)
) Pmemo ..
These spaces also inter oli%tes (see Theorem 4.6 from l5II ). Note that the property ii)
and iii) in Proposition E [ can also be obtained from complex interpolation relation of the

Pmemo unique

space LE(N C M) and Ly,

Proposition A.1. For1/2 <p < oo, D,(p||N) = ig(g\/) D,(pl||o) attains the infimum at
(2SS

00) proved in . We now prove Proposition 2.3

an o. For 1/2 < p < oo, such o is unique.

Proof. The case for p = 1 follows from (%)) For 1 < p < oo, we use the norm expression

Dy(plIN) = p'log inf a5, [lyll,="inf [allzyllnll2p
p=aya p2=an
where a € Loy (N),y € L,(M),n € Lyp(M) and a positive. It suffices to show that the
above infimum is attained at unique a. Assume | z ||pp(veay= 1. We find sequences

(an) C Loy (N') and (n,,) C Lap(M) such that for each n, /& = aynn, ||an||2p=1 and
170 l|2p=> 1, nh_{go 170 fl2p— 1.
Write a,,,, = (2a2 + 1a2,)7. Consider the factorization
%
\/_:[7% \/_T%} Tm = AnmTn,m ;
V2

where 1, , = a;’}n(%annn + %amnm). Note that

o = [|
An,m ||2p' = T )
2 y
1
Ml + My |[2 1 1 1
| 7,m |l2p= ‘ 2 < (5 170 115, +3 [7m 13,)2 — 1
p

when n,m — oco. Because /& = anmlnm, || Gnm |lop || Tam [|> 1 for any n,m. Then we

have ) )
lim inf || %my >
N—oconm>N
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. . . kosaki84,fack86
By uniform convexity of noncommutative L, space (c.f. \[lb S]], this implies that (a2)
icardilb
converges in Lo,y. Using the inequality || a* — b% ||2,>]|a — b ||p from [24, Lemma 2.1|, we

have that (a,) converges in L,y (N'). On the other hand, because Lo,(M) is reflexive, there
exists a subsequence 1,, — 1 weakly and || 7]|2,< 1. Thus /& = a,, 7, — an weakly in
Ly(M). Hence v/x = an and || a ||2p=|| 7 ||2p= 1. Note that we have shown that for any
sequence a,, with v/z = a,n, and

[anll2p=1, Im |9, [|2p— 1, (27)
n—oo

a, converges to some a in Loy. Let b, be another such sequence with = = 0,7, and
converges to b. Deﬁrée Con—1 = Qp, Con = by, Eon1 = Mp, Eon = 1, Then x = ¢,§, satisfies
same condition of (27). Then ¢, converges to some ¢ in Lg, which implies that the limit
a = b = c is unique. For p = oo, we know

Do (p||N) = loginf{X [p < Ao, for some |7 |, =1} .

Let A = inf{\ [p < Ao, || o ||z, (w»y= 1} and let o, be a sequence of densities in Ly (N) = N,
such that A, := min{\ |[p < Ao} — X monotonically non-increasing. By w*-compactness
of state space in N*, we have a subsequence o, converges to some state o € N* in the
weak* topology. Then for any k, A, 0,,, > p in N* for m > k. Passing to the limit, we
have Ao > p for some state o € N*. We show that o € N,. By the decomposition of the
double dual space N** = N @ eN**e for some projection e € N**, 0 = 0o ® o, decomposed
as a normal part og € N, supported on N and a singular part o, € N** supported on
eN**e. Suppose o, # 0. Then o4(1) = < 1 and

p < Ao =p< Ao

A
Take the normalized density ¢ = %00 € N.. We have p < —¢ with \/u > X which is a
1

contradiction. This proves the existence of o.
For 1 < ¢g=2p <2 and % = % + %., it sufficient to show that the norm

1
HP2 HL?T oy NCAM) = SUD lap? ||, m)
llall £, (A =1
is attained for some || a ||z, (vy= 1. Let || p2 ||L2 WeM)= A and a, > 0 be a positive

sequence in || a, ||z, (vy= 1 such that | anp? |z om)— A Write apm = (%) We have

: 0 0

1 1 -1 1 1
anp?  anp? | | apay,, 0 ApmP2  ApmP2

1 1 i _ °

2 2 Ama,, ., 0
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Suppose || anp? Ly |l (A p? |l ,om)=> (1 —€)A. Then we have

B 1 1 1
AppP?  GppP2 anp? 1
L ] (322 ra = | [ i ph | Iraanon= 21—,
[ aya,l 0
I aa-l | oo (at2(r))= 1
r 1 1
ApmP?2  ApmpP? 11 1 1 1
|| 7Op 7Op :| ||Lq(M2(M)):|| |: 00 :| ||Lq(M2)||an,mp2 ||Lq(/\/l): 24 ”a/n,mp2 ||Lq(./\/l)

By the definition of A,

1
(1 = A <[lanmp? |, (L =€) <[lanm|[L.ov) -

Thus we have shown
a2 + a?

lim inf || > 1.

N—oonm>N 2
Following the same argument of the case of 1 < p < oo, we obtain that a, converges a
in L,(N) and such limit a is unique for p2. Finally, we discuss the case for p = 1/2. It
suffices to show the following supremum is attained

1212z, wvery = supillaz o [ lallz.on=1}
= sup{|tr(azy)||| a| Loo\n= 1,y € M unitary}
= sup{|| E(zy) ||2 |y € M unitary} . (28)
Consider the set
C ={(id— E)(zy) | y € M unitary} .

C'is a weakly closed set in Ly(M). Indeed, for any y, such that (id — E)(zy,) — = weakly
in Ly(M), we can find a subsequence y,, — y weakly in M. Then (id — E)(z2y,,) —
(id — E)(zy) weakly in Ly(M). Hence z = (id — F)(zy) which proves the closeness. We
show that C' admits an element attains the infimum

inf =
inf ||z m:= A

Let x,, be a sequence such that ||z, ||o— A. For a weakly converging subsequence x,, — x,
we have x € C by closeness and

| ||2< liminf ||z, 2= .
k—o0

Hence the infimum norm for is attained. Since £ : Ly(M) — Lo(N) is a projection,

IECGy) 3 + [ (id — B)(=zy) 3=l 2y [|l= 1
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We have the supremum
sup{[| E(zy) [|2 [y € M unitary }
is attained by some yo. Therefore the supremum in (ES) is attained with a = |E(zy)[. M

A.2. Operator space structures. We shall now discuss the operator space structures
of LY(N € M). Let us introduce the short notation

Li,N CM)=LE N M), LEN C M) =L, (VT M)
Recall that the norm of these two spaces are given by

[z | zs, vern =l E(@z") [loo , %] e wern=I E(z"7) [l -
We define the operator space structure as follows,
M, (LN € M) = LT (Mn(N) C M,(M))
M, (LS,(N € M) = LE(Mn(N) C My(M))
Namely for a =3, a; ® x; € M, ® M,

. * 1/2
@l as, Lz, (wermyy:=lid @ E(aa™) ”1\//["(/\/):” a || Lo, (M ()M (M) 5

. * 1/2
lallas,zs, werny=llid @ E(a*a) |57 =l all s, aauovycar ) -

We verify the above norms satisfies Ruan’s axioms. For a = ay ® as € M, (M) & M,,(M),

. %\ 111/2
lallng iz verry =llid @ Eaa®) I3

=llidy ® E(a13) @ idm ® E(asa3) [, )
= max{|| a1 [|az, L, wemy) s | a2 g, oo, vy }
For a € M,,(M),by,by € M, we have
(r@labe1)((Brehabe1) = Gielabbe)e B e1) <|b |2 (1@l Ge1)
Thus we have
(b1 @ Dby @ 1) 13, 1n werry =1id © E((b1 ® 1)a(bsb; ® 1)a* (b @ 1)) (YRR
<[[b2 1211 (b1 © 1)id © E(aa*) (b @ 1) || s, Lz (wer))
<o 121161 2 1lid © E(aa®) || as, 2o, veam)
<[ b2 12101 12 1@ 113, (. v rny

The argument for M, (LS (N C M)) is similar. Using injectivity of minimal tensor product
®min, We have for a finite von Neumann algebra R C B(H),



26 LI GAO, MARIUS JUNGE, AND NICHOLAS LARACUENTE

and for a € R @ M,

| @ | R@minzr. Wer = @]l B @min L wern =] id ® E(aa*) || L2=| a|1r rEncram)

Therefore, R Qi Loy (N C M) C L (RN C R&M) as a subspace. It is easy to verify
that with above operator space structure L’ (N n{glng (resp. LS (N C M)) is a right
(resp. left) operator M-module. It was proved in i'5, Lemma 4.9] that for z € M,

12 |z, wern= nf{{| 2 [l wean ¥ e, weny |2 =2y, 2,y € M}, (29)

The lemma was stated for L2 with 1 < p < oo although the proof works for p = 1 as
well). It suggests the following decomposition by module Haargerup tensor product (see
[] for operator module and Haargerup tensor product).

Lemma A.2. We have isometric isomorphism
LN CM)@pp LENC M) 2L (N C M),

where @pqp, 15 the module Haagerup tensor product. Moreover, this induce the operator
space structure

My, (LagN C M) = Lo (M (N) € Myp(M))
SPRLE(N € M) = LP(M,(N) € Mp,(M)) .
where ST = (M,)* is the n-dimensional trace class.
Proof. Let us consider the map
m: LI (N C M) @, LN C M) = LLINCM), myz) =yz
This is a contraction because for Z?Zl Y; & 24,

1> vizi lovesy = sup{ll Y ay;zblli | lallzamn=1bllr.mn= 1}

J J

1 1
< swp o [|Y ayyial|l; S 1Y b=zl
j j

llallLymy=1 blloyny=1

1 1
< swp EQ ynllE  swp o [BQ #e)
j

llallLymny=1 161y )=1 J

=|| (yh e 7?Jn) ||Rn(L1(/\/CM))|| (21, 7Zn) HCn(Ll(N'CM))

where R, (resp. C,) are row (resp. column). space. Also, m induces a map on the
module tensor product L’_(N C M) @pp LS (N C /\/l)fgince y,z,a € M, the element
ya ® z —y ® az is in the kernel of m. By the inequality (bQ), m is an isometry. Morover,



VON NEUMANN ALGEBRA INDEX AND MAXIMAL RELATIVE ENTROPY 27

m is also surjective, because M C Li(N C M) is dense. Thus we proves the isometric
isomorphism. Based on that, we obtain

My (Log(N C M) = My (L (N € M) @ut,mtyn Ma(LE (N C M)
= Lgo(Mn(N) - Mn(-/\/l)) QM,, (M) h Lgo<Mn(N) - Mn(M)>
= Lo (My(N) € My (M)
We then define the operator space structure of L{° by duality that
LLN CM)C (LEWN M)
as w*-dense subspace. Then other identity follows from that
Lic(My(N) € My(M) © (LT (Mo(N) © My (M)
My (LL(N € M)) C (STRLFEWN ¢ M)
both as w*-dense subspace. [ |
Recall the complex interpolation relation for 1 < p < oo,
LYN C M) =[LTN C M), Li(M)|1), = LYN C M).
LE(N C M) = [Log(M), L (N € M)y = LE(N C M)

Note that SP®L;(M) = Li(M,(M)) and M, (Le(M)) = Loo(M,(M)). Then by inter-
polation, we obtain the operator space structure for L} and L.

Corollary A.3. For1 <p < oo,
My (LE(N € M) = LE(Mn(N) C Mn(M))

SPRLY(N € M) = LX (M, (N) € M,(M)). (30) ‘operatorspac

Question: 1. Do we have L;(R)®LY(N C M) = [X(RIN C R&M)? (complete)
isometrically? Or we do have the identity map is a contraction

id : L1 (R)QILHN € M) — LX(R&N C R&M) .
This gives an alternative way to show

Dyes(MIIN) = sup D(R & M|[R @ N)
R

for R finite von Neumann algebra.
It suffices to show R ®pnin L (N C M) C LL (RN C RRM) isometrically.
2. Do we have the identity map is a (complete) contraction?

Lzl)(./\/l C Mﬂ@[ff(/\ﬂ C Ml) — Lzl)(./\/i@./\/z C M1®M2) , TRQU— T QY (31)
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This implies the additivity for 1 < p < oo
Dyt MIIN) = Dp oy (M1||N1) + Dp (M| N2)

It suffices to show that LY(M®&N2 C M;®M,) induced a subcross norm on LY(N; C
M) ® LY(Ny € My). Actually, I can show the dual space L2 (N ®N2 C M1@My) gives
a cross norm on LE (N7 C M) ® L2 (Ny C M) and for py € STQLY(N; C M), ps €
S?@sz(./\/‘z - MQ)

sparrnicmn | P lsmarr v can) (32)

o1 @ p2 || spmerrvmnec MM =] A1

Below is a proof.

Proof. Let E; : M; — N; be the conditional expectation. It is clear from definition that
for x € My, y € Mo,

|2 @yl roviavecmimme) SN2 oo camn 1Y Lz voems)

>z

1z @yl vanvecrusrts 12 wier 12 e cans) -

For p = o0,p’ =1,

|| VY Yy ||L(1X,(N1@N2CM1@M2)
inf || B} ® Ey(aa™) ||1]| By @ Ex(b7b) ||y

r®y=ab

inf | By @ Ea(a1a] @ azas) [1]| E2 ® Ea(biby @ b3b2) |1

z@y=a1b1®azbz

< dnf [ Ev(aray) 1]l E1(6161) [lx it | E2(azas) [l1]| £2(b3b2) |1

T

A

= [zl e iermn 19 Lz vecma)

Thus we have

Iz @yl mssvecrmrn) =17l v 1Y 1o vocm) (33)
Then by duality,

|7 @yl Lo MmBA M EM)
=sup{|tr1 @ tra((z @ Y)2)| |2 |, wimne)= ¢}
> sup{|tr; @ tra((z @ y)(a @ b))| [ @ bl vavecrummn)= 1}
=sup{|tri(za)tr2(yd)| [|a |y, vicmn =02y wacma)= 1}
= ||z ||z (vica) | Y [ oo (M e M)
Thus,

[z @Y lle varvecrummn) =12 s v crmn 19 [ 5 vecms) - (34)
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By interpolation, we have for all 1 < p < oo,

H VY Y HL&(N&@NQCM1®M2):H z HLZO(/\ﬁch) H Yy ”L}x;(NQC./\/b)
[z @ ylle v anvecmmmn) =2l 2o ca 1V [ L2 vec ) -
The same argument works for M,,(N;) C M,(M;) and M,,(N2) C M, (M), which implies

LP (NTRN, C M1®Me) 211\17(3% a cross operator space norm on L2 (N} C My)® LP_(N, C
M) and the equality (%%; n

A.3. Non-tracial Cases. In previous discussion, we considered amalgamated L, space
and conditional L, space with respect to a normal faithful finite trace. These spaces in
Pmemo . . . det?2
was studied more generally for a normal faithful state. We follow the idea of 30
use the non-tracial cases for non-symmetric quantum Markov semigroups. For simplicity,
we consider M = M,, the matrix algebras equipped with normalized trace tr(1) = 1.
Let (13)i>0 : M — M be a quantum Markov semigroup and

N ={a e M| Tia*a) = T)(a")Ti(a) , Ty(aa) = Ti(a)Ty(a*) , Vit > 0}

be the incoherent subalgebra of T,. Denote (T} )iso : L1(M) — Li(M) as the adjoint
semigroup on the predual. (7} );>o models the time evolution of states in Schrédinger
pciture whereas (7})¢>o transforms observables in Heisenberg picture. We assume that
(T})e=0 admits an invariant normal faithful state o satisfying T} (0) = 0. Let E: M — N
be the o-preserving conditional expectation onto A'. The natural reference state is

oo = ET(1).
Note that o, restricted on N is the trace
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