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Abstract

Focused ion beam microscopy suffers from source shot noise — random variation in the number of incident ions in any fixed
dwell time — along with random variation in the number of detected secondary electrons per incident ion. This multiplicity of
sources of randomness increases the variance of the measurements and thus worsens the trade-off between incident ion dose and
image accuracy. Repeated measurement with low dwell time, without changing the total ion dose, is a way to introduce time
resolution to this form of microscopy. Through theoretical analyses and Monte Carlo simulations, we show that three ways to
process time-resolved measurements result in mean-squared error (MSE) improvements compared to the conventional method of
having no time resolution. In particular, maximum likelihood estimation provides reduction in MSE or reduction in required dose
by a multiplicative factor approximately equal to the secondary electron yield. This improvement factor is similar to complete
mitigation of source shot noise. Experiments with a helium ion microscope are consistent with the analyses and suggest accuracy
improvement for a fixed source dose by a factor of about 4.
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1. Introduction

State-of-the-art techniques for imaging the structure of a
sample at near-atomic resolution depend on the use of micro-
scopes that scan the sample with a focused beam of particles.
For instance, a focused electron beam is employed in scanning
electron microscopy (SEM) [1], laser beams in confocal laser-
scanning microscopy [2] and two-photon laser-scanning fluo-
rescence microscopy [3], and focused ion beams in focused ion
beam (FIB) microscopy [4]. A fundamental goal with these
technologies is to produce the best image quality for a given
number of incident particles. This is especially relevant when
each incident particle appreciably damages the sample; because
helium ions cause such damage, we henceforth concentrate on
helium ion microscopy (HIM) [5].

FIB imaging methods have randomness in the number of in-
cident particles (the source shot noise) and in the influence of
each incident particle on the device measurement. The goal of
the imaging is to infer properties of the sample that are revealed
through the number of detected secondary electrons (SEs) per
incident ion, and the source shot noise is detrimental to this ef-
fort because it is unrelated to the sample. It is intuitive that
one would prefer to have a precisely known number of incident
ions, and we provide a simple analytical result to demonstrate
this in Section 2.2.

The main idea of this work is that time-resolved measure-
ment of SEs can be used to mitigate the effect of source shot
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noise. Here, time-resolved (TR) measurement means to divide
any given pixel dwell time ¢ into n dwell times ¢/n and to jointly
process the n low-dose measurements to produce one pixel of
the micrograph. This type of TR measurement requires no
change of hardware: it is a data-processing innovation imple-
mented with existing hardware. The main limitation is whether
the dose in dwell time ¢#/n is small enough; roughly, the mean
number of incident ions in dwell time ¢/n should be less than
0.5 to attain at least half of the advantages described herein.
Though total dose is not increased, total acquisition time may
be increased, depending on the data transfer rate and whether
the hardware requires raster scanning to be completed n times
to implement this conception of TR measurement.

In certain limiting cases, we can completely eliminate the
effect of source shot noise, producing estimation performance
equivalent to a deterministic incident ion beam. More impor-
tantly, for parameters that reasonably model HIM, the improve-
ment is substantial and validated by both simulations and ex-
periments. While our initial modeling and theoretical results
assume direct detection of SEs, our experimental demonstra-
tion of improved performance is with extensions of the model-
ing and algorithms for use with instruments without direct SE
detection.

We first presented the TR measurement concept for FIB mi-
croscopy in abstract form in [6]. Here, we provide theoretical
analyses, develop three estimators for use with TR data, com-
pare these three with the conventional estimator in synthetic
simulations, and also compare the best of these estimators with
the conventional estimator for experimental data.



1.1. Background

The first image of a solid sample based on secondary elec-
trons emitted in response to an electron beam scanner was pro-
duced by Knoll in 1935, inspiring the development of a dedi-
cated SEM [1]. Ever since their development, SEMs have been
ubiquitous in both research and industrial imaging, as well as in
nanometerological applications [7]. Building upon decades of
research in focused ion beam microscopy, the first commercial
HIM was introduced in 2006 [5, 8], with the promise of pro-
ducing images with sub-nanometer resolution [9] and reduced
charging of the sample, when compared with SEM. However
just like SEM, HIM uses a focused particle beam to produce
lateral spatial resolution in a ballistic configuration [5]. Both
material composition (e.g., atomic number) and shape (topo-
graphic yield variations common to SEM as well) contribute to
the number of SEs dislodged from the specimen [10]. These
properties, along with improved imaging resolution, larger
depth-of-field, and reduced sample charging, have enabled su-
perior imaging of insulators without the need for metal coating.
Hence HIM is an important imaging technology for semicon-
ductor and nanofabrication research [11].

Notwithstanding the progress in the pursuit of ultra-high res-
olution, these imaging technologies all have the disadvantage of
causing damage to the sample through sputtering [12, 13, 14].
Whilst sample damage can have especially severe impact on
biological samples, it also occurs for many other types of mate-
rials. It is thus recognized and modeled as a fundamental limit
to imaging with focused beams [13, 15]. With a helium ion
being 7300 times more massive than an electron, mitigating
sample damage in HIM is paramount. One possible approach
is imaging using lower ion doses but at the cost of lower im-
age quality [13]. Consequently, studies analyzing the extent
of beam damage and establishing safe imaging dose have ap-
peared [16, 17].

1.2. Outline

In Section 2, we present our baseline Poisson—Poisson mea-
surement model and basic analyses of this model. These analy-
ses provide the foundations for our development, in Section 3,
of the advantage provided by dividing any fixed ion dose into
small doses through TR measurement. We present both abstract
numerical results and image simulations. While a Poisson—
Poisson model sufficiently describes direct SE detection, in-
direct SE detection necessitates additional modeling. Inspired
by the indirect detection of SEs in current HIM instruments,
Section 4 introduces suitable hierarchical compound models.
Section 5 presents experimental results using data from a Zeiss
HIM.

2. Single measurement: model and analyses

Two main components enable FIB-based imaging: a stable
source to generate the FIB and a detector to measure the num-
ber of SEs leaving the sample’s surface. Due to ion—sample in-
teraction, SEs become excited and dislodged from the sample’s
surface [18], accelerating towards the SE detector. Imaging is

achieved by raster scanning the ion beam with some fixed dwell
time per pixel. For each pixel, the number of detected SEs is
mapped to a grayscale level, hence producing an image of the
sample.

During the acquisition process, for any fixed dwell time there
is randomness in the number of ions reaching the sample. In
addition, for each ion that interacts with the sample, there is
randomness in the number of emitted SEs. In this section, we
discuss a “Poisson—Poisson” model in which both the numbers
of ions and the numbers of SEs induced by each ion follow
Poisson distributions, which is a well recognized model in the
SEM literature [19]. With this model, the estimability of mean
SE yield is amenable to theoretical analysis through Fisher in-
formation (FI). The analyses of this section are used to support
the use of time-resolved measurement in Section 3, and richer
models are considered in Section 4. All the analyses and meth-
ods of this paper are applied separately for each micrograph
pixel, so we do not include any pixel indexing.

2.1. A Poisson—Poisson model for FIB imaging

In our abstraction, an ion beam incident on the sample for a
fixed dwell time ¢ has ion arrivals following a Poisson process
with rate A per unit time. Hence, the number of incident ions M
is a Poisson random variable with mean A = At. Ion i produces
a number of SEs X; following a Poisson distribution with mean
n, i.e., SE yield. Since emitted SEs travel a very short distance
before being captured by the SE detector, we model the SE de-
tections as instantaneous and simultaneous. The fundamental
assumption is that the delay before SE detection is much less
than a typical ion interarrival time; this places some upper limit
on the ion beam currents at which our model is reasonable.

The goal is to produce an estimate of 77 from the total detected
SEs

Y= X, (1

M=
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with known current and dwell time, i.e., 4 known. Notice that ¥
is a sum of M independent Poisson random variables where the
unknown M is itself also a Poisson random variable. As shown
in Appendix A, Y is an example of a compound Poisson ran-
dom variable; specifically, it has the so-called Neyman Type A
distribution [20, 21], with probability mass function (PMF) of
detecting y number of SEs
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mean
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and variance
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Ward et al. [22] demonstrated empirically that this is an ac-
curate model for numbers of detected SEs in an experimental
setup involving a gallium ion beam.



2.2. Conventional estimator

It follows from (3) that simple scaling,

Y

f]baseline(Y) = Z’ (5)

gives an unbiased estimate of 77. The mean-squared error (MSE)
of this estimate,

MSE(ﬁbaseline) = E[ (77 - ﬁbaseline(Y))2 ]

_var(Y)  n(1+n)
o2 a7 ©)

thus follows from (4). In imaging (in contrast to metrology),
the scaling may be arbitrary; thus, when every pixel has the
same mean dose A, the SE counts can be used directly to form
a reasonable image.

Assuming for the moment that A is an integer, if the num-
ber of incident ions were deterministically A, the conventional
estimator would be the sample mean of {Xi}le. Furthermore,
it would be the maximum likelihood (ML) estimator of n, it
would again be unbiased, and its MSE would be /4. The fac-
tor of (1+17) excess seen in (6) is the cost of the randomness of a
Poisson ion beam, i.e., the cost of source shot noise. We will see
approximately this factor of improvement from TR measure-
ment, thus approximately cancelling the effect of source shot
noise.

2.3. Oracle estimator

If one were able to know M, the estimate

R Y
foracte(Y, M) = — @)

M

would be superior to fjpaseline because Y is the sum of M random
variables, each with mean 7. One can view #jo,cle @S mitigating
the source shot noise by using the exact number of ions. Along
with the issue of resolving 0/0 when no ions are incident, the
problem with this is that M is not observable. While the exact
number of ions M cannot be known exactly from only observ-
ing Y, we will see that M becomes approximately known with
TR measurement.

For a non-Bayesian analysis of fjo,cle, We can fix an arbitrary
value 79 as the estimate produced when M = 0. While fjoracle 18
unbiased whenever M > 0 (which can be seen by iterated ex-
pectation with conditioning on M), there is nothing computable
from the data (¥, M) = (0, 0) that makes #joracle Unbiased overall.
Specifically,

bias(ﬁoracle) = E[ ﬁoracle(Ya M) ] -n
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where (a) follows from the law of iterated expectation; (b) from
E[ floracte (Y, M) | M = m ] taking only the values 79 and 17; and (c)

from the Poisson distribution of M. The variance of the estimate
is
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where (a) follows from the law of total variance; (b) from
the conditional distribution of fjorce being the constant g for
M = 0 and the sample mean of mPoisson(7) random vari-
ables for M = m, m > 0; and (c) introduces a function
g = Zf;’:l(l/m)e‘ﬂ/l’” /m!, which has no elementary closed
form. Notice that g(1) = A for 4 <« 1, since only the m = 1
term is appreciable; moreover, it can be shown that g(1) = 1/4
for A > 1.

The bias and variance computations can be combined to give
an expression for the MSE of the oracle estimator:

MSE(ﬁoracle) = [bias(ﬁoracle)]2 + Var(ﬁoracle)
a 112 _ _
Lm0 —me] +ngd) +eA(1 - e - no)?
=ng() + e — o), (10)

where (a) follows by substituting (8) and (9). Furthermore,

MSE(ﬁoraCle) > Tlg(/l)’ (1 1)

with the bound achieved when 19 = 1. We stress that this bound
is unachievable because 7 is not a priori known.

2.4. Fisher information

The MSE of any unbiased estimator is lower bounded by the
reciprocal of the Fisher information via the Cramér—Rao bound
(CRB) [23]. Fl is also central to our explanation of why time-
resolved measurement combined with ML estimation greatly
mitigates source shot noise.

The FI for the estimation of 7 from Y in the Poisson—Poisson
model, with 4 a known parameter, can be simplified to

dlog Py(Y; n, )\
Iy(p: ) =E (%) :
n
oy P+ lipdy+1Y o
_;(T] Py(y,n,/l) )PY()’, 7]’/1)
(12)

While this expression is not readily comprehensible, it can be
used to compute Jy(1n; 4) numerically and to derive certain
useful asymptotic approximations and limits.

One can study Zy(n7; 1)/ as the information gain per inci-
dent ion. This normalized Fisher information is a decreasing
function of A, with

; 1
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lim == L (13)
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We define a function B(17) as the ratio of these limits,
B = +md —ne™), (15)

which varies from 1 to = 1 + 7 as 7 increases from 0. Recall the
1 + n factor arose in Section 2.2 as the cost of randomness of a
Poisson ion beam.

Comparing (14) with (6), we see that, asymptotically for
large A, the conventional estimator achieves the CRB. In con-
trast, for low A, the probability for M = 0 is appreciable, so
there is no (even approximately) unbiased estimator.

3. Time-resolved measurements

Taken together, the analyses in Section 2 suggest that there
may be a way for the conventional estimate from (5) to be im-
proved upon to give a reduction in MSE by the factor in (15).
TR measurement indeed achieves this improvement. We ex-
amine this first through Fisher information and then through
simulated performance of the ML estimator for imaging.

3.1. Fisher information of TR measurements

If we divide pixel dwell time ¢ into n sub-acquisitions to ob-
tain Yy, Y, ..., Y,, these are independent and obtained with
source dose A replaced by A/n. The FI for the set of sub-
acquisitions together is

IR )L nIy(p; An) (16)
_  Ivtn: Am)
A/n
@ a(l —e-ﬂ), (17)
n

where (a) follows from the additivity of FI over independent
observations; and (b) holds for large enough n because of (13).
Without TR measurement, for total dose values useful for imag-
ing (say, A > 2), the limit in (14) provides a good approximation
of the FI:

Iy(n;/l)z/l(%—l—in). (18)
The ratio of (17) and (18) was already computed as (15). This
ratio gives a convenient way to evaluate the improvement from
TR measurement and data processing. The ratio of FIs is the
reciprocal of the ratio of Cramér—Rao lower bounds.

3.2. Cramér—Rao bounds

The CRB informs us that no unbiased estimator can have
variance lower than the reciprocal of the Fisher information.
Thus, the FI for a single measurement (12) and for time-
resolved measurement (16) imply bounds on MSE for unbiased

estimators, as plotted in Figure 1. The asymptotic approxima-
tion (17) implies a bound that applies to any unbiased estimator
fitr computed from the TR measurements:

n/(1—ne™)
—
For the performance without TR measurement, this should be
contrasted with (6); the conventional estimator achieves the
CRB asymptotically in large A.

MSE(jrr) 2 19)

3.3. Quotient mode estimators

When the sub-acquisitions are short enough (that is, n is
large enough), each sub-acquisition will have very low dose and
thus very likely have O or 1 incident ion. Assuming most sub-
acquisitions with 1 incident ion yield at least 1 SE, one can use
the number of sub-acquisitions with a strictly positive number
of detected SEs, i.e. >;_; Liy,>0}, as a proxy for the number of
ions M, where 1y,.q, is equal to 1 when Y} > 0, otherwise it is
equal to 0. Then analogous to the oracle estimator in (7), one
can define a quotient mode (QM) estimator

Yi+Yh+...+47%,
2i=1 Liy>o)

The QM name is taken from a presentation by John Notte of
Zeiss [24] where counting of the analog-domain pulses gener-
ated by SE bursts was proposed to give the denominator of an
estimator similar to (20). Our QM estimator is implementable
with TR measurement, and we improve upon it below and in
Section 3.4.

The probability of an incident ion leading to at least 1 emitted
SE is 1 — 7", so when the SE yield 7 is low, };_; Liy,>0) be-
comes a significant underestimate for M, leading to a large bias
in figm. If we knew 7, the adjusted value (1 - e ! Yiet Liyesoy
would be an improved estimate of M. Since we do not know 7,
using this improved estimate for M in the denominator of (20)
yields a transcendental equation,

A

nom =

(20)

Yi+Y+...+Y,
n=——" : @1)

(I—e kZl 1iy,>0)

The solution 71 gm of (21) has the closed form
fiLow = W(=figue ™) + figu, (22)

where W(-) is the Lambert W function [25]. Hence, we dub
fiLom the Lambert quotient mode (LQM) estimator.

The QM and LQM estimators are illustrated and numerically
assessed in Section 3.5, after we introduce a final estimator.

3.4. Joint distribution and ML estimation

Rather than use the heuristic of dividing the number of de-
tected SEs by an estimate of the number of incident ions, we
may apply the statistically principled maximum likelihood ap-
proach. For time-resolved measurements, the joint PMF of the
vector of observed SEs is

Py, 0t s D) = [ | Prus maim),  (23)
k=1
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Figure 1: Comparison between the Cramér—Rao bounds obtained for conventional method (red, see (12)) and time-resolved measurement (blue, n = 10000, see
(16)) for several values of mean secondary electron yield 7. Also shown in each plot is the oracle bound (10) for the estimator (7); recall that this bound is based on
estimator that is “increasingly unimplementable” as A — 0 since it is derived from assuming 7 = 7 when no ions are incident. Each plot also shows the performance
from (6) for the conventional estimate, which is a high-1 asymptote for the Cramér—Rao bound in the case of conventional sensing. The expression (19) is plotted

as well, but it lies coincident with the blue curve.

where Py(-; -,-) is given by (2). The same expression is called
the likelihood when viewed as a function of r. Given the TR
observation (yi, y2, ..., Yn), the time-resolved maximum likeli-
hood (TRML) estimate for 7 is thus

fiTRML = arg max l_l Py(yi; 1, 4/n). 24)
T k=l

Since [];_; Pr(yx; 7, 4/n) is a non-convex function of 7, we
compute the optimization via grid search. This is not pro-
hibitively complex because the decision variable is scalar.

3.5. Comparison of Poisson—Poisson estimators

Note that the QM, LQM, and TRML estimators all exploit
TR measurement. Before comparing their performances as n
is varied and in imaging simulations, we present a single illus-
trative example to show how each is computed from a TR ob-
servation vector (yi, y2, ..., y»). We also include the unimple-
mentable oracle estimator and the conventional estimator that
does not require TR measurement.

Example 1. Consider imaging at a single pixel for which the
ground truth is n = 2 with mean total ion dose A = 20 split
evenly over n = 100 sub-acquisitions. Figure 2a shows one
realization that could occur. The top panel shows the (un-
observed) sequence of incident ions (my,my, ...,myo0) and the
bottom panel shows the sequence of (observed) detected SEs
(V1,¥2, --» Y100)- Notice that the relatively unlikely possibility of
more than one incident ion in a sub-acquisition occurs once, in
the 16th sub-acquisition (P(Y; > 1) = 1 —e V" — %(/l/n)e"l/” ~
0.099). Also, a few times, an incident ion results in no detected
SEs.

(i) Oracle. The oracle estimator (7) divides the total num-
ber of observed SEs 'y = y +y, + -+ + yioo = 49

w
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(a) incident ions and detected SEs function of 7.

Figure 2: One realization incident ions M and observed SEs Y over n = 100
sub-acquisitions with total ion dose A = 20. The ground Truth = 2. (a) Stem
plot of ions and SEs over sub-acquisition indexes. (b) Joint probability and the
TR estimator fitg = 2.2 computed from (24).

by the number of incident ions M = 22, which yields
Noracte (Y, M) = Y/M = 49/22 =~ 2.23. However, we em-
phasize that we do not expect M to be known exactly with
any current instrument.

(ii) Conventional. The conventional estimator (5) divides the
total number of observed SEsy = y1 +yo + -+ + Y100 by
the expected number of incident ions, A = 20, which yields
Tbaseline = 49/20 = 2.45. The implicit assumption is that A
is a good estimate for M.

(iii) Quotient mode. The QM estimator (20) divides the
total number of observed SEs y by the number of
sub-acquisitions with at least one detected SE, i.e.,
Yot Lysoy = 19, which yields fiom = 49/19 ~ 2.58.
Implicitly, Y7 _, 1,0y is an estimate of M. In a few sub-
acquisitions (the 3rd and 16th), incident ions lead to no
detected SEs, resulting in an underestimation of M and
thus an overestimation of 1.

(iv) Lambert quotient mode. The LOM estimator (22) adjusts
the QM estimator to compensate for the underestimation
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Figure 3: MSE comparison for Poisson-Poisson model in Section 2.1 as a func-
tion of 5 for conventional, quotient mode, Lambert quotient mode, and time-
resolved maximum likelihood estimators with total dose 4 = 20 and n = 100
sub-acquisitions.

of M, which yields fliom = W(-2.58 e 238) + 258 ~
W(-0.1955) + 2.58 ~ 2.45 after using a look-up table
to evaluate W(-0.1955).

(v) Time-resolved maximum likelihood. @The TRML es-
timator (24) is given by maximizing the likelihood
[Tiz, PyOs 1, A) over . While the likelihood may be
multimodal, it is typical for it to have an easily distin-
guished global maximum as shown in Figure 2b. Then
fitRML IS the maximizing value of 13, as depicted by the red
star in Figure 2b.

Figure 3 shows MSE comparisons across 7, by pseudoran-
dom simulation, for the conventional, QM, LQM, and TRML
estimators for 4 = 20 and n = 100 sub-acquisitions. The
curve for fjpserine Matches the theoretical MSE expression in
(6). QM has large MSE for low n values because low 1 leads
to >¢_; Liv,>0, being a very poor estimate of M. LQM thus
improves significantly upon QM at low n. Estimates figm
and A om achieve convergence at moderate 1 values, while
firrmr uniformly achieves the lowest MSE amongst all esti-
mators across the full 7 range. This highlights the merits of
time-resolved measurement and corresponding ML estimation.
Moreover, TR measurements and relatively simple processing
like QM or LQM also yield moderate MSE improvements.

We also compare the four implementable estimators in a sim-
ulated imaging experiment. Figure 4a shows the “Modified
Shepp-Logan phantom” provided by the Matlab phantom com-
mand, at size 256 X 256, scaled to give ground truth SE yield
values in the interval [2, 8], as suggested in [26]. Figures 4b—
4e show image formation results for a total dose of 4 = 20
split evenly over n = 100 sub-acquisitions. Consistent with the
results in Figure 3, the TRML method achieves an MSE reduc-
tion by a factor of 2.6 as compared to the conventional, with
the QM and LQM methods achieving substantial but lesser im-
provements. An alternative way to demonstrate the improve-

(c) TRML
MSE: 0.2297

(b) conventional
MSE: 0.5934

(a) ground truth

(4 QM
MSE: 0.4936

(e) LQM
MSE: 0.3963

Figure 4: Simulated HIM experiment under Poisson—Poisson (direct electron
detection) model in Section 2.1. Measurement is with total dose 4 = 20 split
evenly over n = 100 sub-acquisitions. (a) Ground truth image with mean sec-
ondary electron yield i in [2, 8]. (b) Conventional HIM image. (c) Pixelwise
TRML estimates (24). (d) Quotient mode estimates (20). (e) Lambert quotient
mode estimates (22). These results do not use spatial regularization.

ment due to TR measurement is through a dose reduction for
fixed image quality. For example, TRML achieves a slightly
lower MSE than the conventional reconstruction in Figure 4b
with a dose of only 10 ions per pixel [27, Fig. 4d].

4. Hierarchical compound models

The model introduced in Section 2.1 assumes direct sec-
ondary electron counting, so that the number of SEs is the final
readout of the device. In current HIM instruments, the output
is more indirect. We now discuss some plausible models for
the SE detection process and show that simulations continue to
suggest substantial advantages for time-resolved measurement.

4.1. Poisson—Poisson—Normal

In a typical HIM instrument, SEs emitted due to ion-sample
interaction are accelerated towards a phosphor scintillator plate
by an electric field. Photons generated as a result of SE-
scintillator interaction are amplified by a photomultiplier tube
(PMT) and subsequently converted into an electrical current
[28]. There is high degree of randomness in the scintillator and
the PMT response [29], both of which cause randomness in the
output current.

As one possible model with only two additional parameters,
one could model the contribution to the final measurement from
each detected SE as being normally distributed. Specifically,
suppose the measured output current due to the jth SE is normal
with mean ¢ and variance c», i.e., Z; ~ N(cy,c2). Then, the
observation model at one pixel becomes

u=>y 7, (25)

Y
J=1



(b) time-resolved ML
A =20, MSE: 0.562

(a) Conventional
A =20, MSE: 1.053

Figure 5: Simulated HIM experiment for Quantized Poisson—Poisson—Normal
model in Section 4.2 when A = 20, ¢; = 10, and ¢; = 200: (a) Conventional
HIM image. (b) Pixelwise TRML estimates computed from n = 100 time-
resolved measurements. These results do not use spatial regularization.

where Y is the number of SEs. Combining the normal distri-
bution with the Neyman Type A distribution in (2) gives the
following probability density function (PDF) for U:

o)

PR
Ful: n.dcren) = —M)PY@; 7).

1
————exp
yz_:‘ \2mreay ( 2coy
(26)

Under (26), the ML estimate of 7, from n short acquisitions,
becomes:

fitrme, = argmax fy,, . v, (U1, ..., Uy 1,4, ¢c1,¢2),  (27)

n

where

n
Suu, iy, o w4, c,020) = ﬂfu(uk; n,4,c1,02).
k=1

4.2. Quantized Poisson—Poisson—Normal

While the Poisson—Poisson—Normal model of Section 4.1 at-
tempts to account for randomness in the scintillator and PMT
responses, several aspects of a typical HIM instrument are not
modelled. In particular, (26) allows negative measurements and
the analog-to-digital conversion (ADC) to map output current
into an 8-bit gray scale value is unmodelled. Assuming analog
gains are set to avoid ADC overload, both of these effects can be
accounted for by rounding the measurement to its nearest non-
negative integer. (Overload could be accounted for similarly.)
Consequently, the PMF for the observed output U € N for each
pixel is then:

-
f;; Suu;n,4,c1,c2)du

f_z foGu; m, A cr,c)du

Pz n,4,c1,¢0) = (28)

Note that the denominator in (28) normalizes the PMF to ac-
count for there being no negative measurements. The corre-
sponding TRML estimate 7jyrmr, under this new model can be
written in an analogous fashion to (27).

Figure 5 shows the results of simulations for the same sam-
ple as in Figure 4. At the same dose of 4 = 20, the MSEs
are higher than in Figure 4, but substantial improvement from

time-resolved measurement is again demonstrated by a factor of
1.9. The reduced advantage relative to Figure 4 is attributable to
the extra layer of randomness introduced by the scintillator and
PMT. In addition, the discrepancy can be viewed as theoretical
support for preferring direct secondary electron counting over
other methods of electron detection.

5. HIM imaging results

5.1. Experiment details

Our methods were validated with data from a Zeiss ORION
NanoFab HIM used to image a carbon-based defect on a sil-
icon substrate. The instrument was used to collect 128 sub-
acquisitions of the sample using a 0.1 pA beam current and
200 ns dwell time, resulting in low ion dose of 0.125 ions per
pixel. The image of one typical sub-acquisition is shown in
Figure 6a. In the first three columns of Figure 6, the scaling
for display maps the range of the data linearly to the full black-
to-white range, with 2% of pixels saturated at white. In the last
two columns of Figure 6, absolute error values are shown for SE
yield per incident ion with the scale indicated by the colorbars.

With the set of 128 sub-acquisitions, we can emulate conven-
tional and time-resolved image formation for doses from 0.125
ions per pixel to 16 ions per pixel. Conventional image forma-
tion has no time resolution; this is emulated by summing the
sub-acquisitions, as shown in Figures 6b and 6¢. To take ad-
vantage of time-resolved acquisition, the Quantized Poisson—
Poisson—Normal model of Section 4.2 was employed since the
instrument does not use direct electron detection and its output
at each pixel is a nonnegative integer. Hyper-parameters c¢; = 5
and c; = 50 were used without significant optimization. Results
of pixel-by-pixel ML estimation under this model are shown in
Figures 6g and 6h. With increasing ion dose (moving from sec-
ond to third column of Figure 6), the image quality improves
as expected. Results for other numbers of sub-acquisitions are
presented in [27, Fig. 8].

5.2. Quantitative evaluation

With no ground truth image of the sample available, any ac-
curacy claims are delicate. A proxy for ground truth is formed
by taking the average of smoothed versions of the images pro-
duced using the conventional and TRML methods with all 128
sub-acquisitions. The smoothing operation is to replace a pixel
by the average of its 8 neighbors; this is less likely to underes-
timate the errors than using a 9-pixel average that includes the
pixel under consideration. The average of the two images and
subsequent error image calculations are computed on a scale
corresponding to SE yield, i.e., where values correspond to SEs
detected per incident ion. The ground truth proxy is shown in
Figure 6f. Absolute values of differences from the ground truth
proxy are shown in Figures 6d, 6e, 6i, and 6j, zoomed in to the
red boxes of the previous figures. It is apparent that the TRML
method significantly reduces absolute error.

We define the MSE estimate MSE for an image as the average
over all the pixels of the squared difference between the im-
age and the ground truth proxy (Figure 6f); more conservative



(b) corl\fntional, A=1,
MSE = 1.173
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—

(f) ground truth proxy

(g) time-resolved, A = 1,
MSE = 0.281

(c) con@tional, A=25,
MSE = 0.497

(h) time-resolved, A = 2.5,
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absolute error, 1 = 1

(e) zoom-in conventional
absolute error, A = 2.5

(i) zoom-in time-resolved
absolute error, 1 = 1

(j) zoom-in time-resolved
absolute error, A = 2.5

Figure 6: HIM experimental results for imaging a carbon-based defect on a silicon substrate sample. Results for our time-resolved method use the Quantized
Poisson—Poisson—-Normal compound model in Section 4.2 with ¢; = 5 and ¢; = 50. All images are produced pixel-by-pixel (i.e., without spatial regularization),
and all errors are with respect to using (f) as a ground truth proxy. (a) A typical image from one sub-acquisition acquired with dose 4/n = 0.125 ions per pixel. (b)
Conventional method using 8 sub-acquisitions. (c¢) Conventional method using 20 sub-acquisitions. (d) Absolute error of image shown in (b), zoomed in to the red
square. (e) Absolute error of image shown in (c). (f) Ground truth proxy with dose 4 = 16, formed by averaging results of smoothed time-resolved reconstruction
and smoothed conventional reconstruction using 128 sub-acquisitions. The smoothed images are formed by replacing the center pixel with the average of 8 neighbor
pixels around that center pixel. (g) Time-resolved method using 8 sub-acquisitions. (h) Time-resolved method using 20 sub-acquisitions. (i) Absolute error of image
shown in (g). (j) Absolute error of image shown in (h). Comparing (b) and (g) (or (d) and (i)) shows MSE reduction by a factor of 4.17, and comparing (c) and (h)

(or (e) and (j)) shows MSE reduction by a factor of 3.94.

quantitative comparisons are discussed in Section 5.3. These
MSE estimates appear in the captions of Figure 6. Comparing
Figures 6b and 6g shows a reduction of MSE by a factor of 4.17,
while comparing Figures 6¢ and 6h shows a reduction of MSE
by a factor of 3.94. By computing performance at more values
of the total dose (i.e., more numbers of sub-acquisitions), one
can interpret the improvement of the TRML method as a dose
reduction for achieving a desired MSE [27].

5.3. Conservative error analysis

While we believe MSE to be a reasonable metric, we aug-
ment the comparison of MSE values with a more conservative
approach.

Accumulating the sequence of 128 sub-acquisitions with
conventional image formation creates a sequence of images,
culminating in a 4 = 16 image which we refer to as IAfg‘g“’;
similarly, the TRML method creates a sequence culminating in
ITRML The ground truth proxy defined in Section 5.2 and used
to compute MSE is the average of the 8-neighbor smoothed ver-

: FTRML feonv : :
sions of /},5" and [{5¢". Comparing a conventionally formed

image to smoothed ffggv likely underestimates its error, so
we call the average squared difference MSE™; comparing it to
smoothed /TRM likely overestimates its error, so we call the av-
erage squared difference MSE*. Conversely, comparing an im-
age formed with the TRML method to smoothed fg%ML likely
underestimates its error, so we call the average squared differ-

ence MSE™; comparing it to smoothed IAT‘Z’QV likely overestimates

its error, so we call the average squared difference MSE*. The
square roots of these values are called RMSE™ and RMSE* and
are shown along with MsE'” in Figure 7.

While MSE™ and MSE* are not rigorously lower and up-
per bounds to the MSE, they strengthen the evidence that the
TRML method provides a substantial improvement. For ex-
ample, we see that for ion doses up to 9, MSE* for the TRML
method is lower than MSE™ for the conventional method.

6. Discussion

The main contribution of this paper is to introduce the idea
that a set of low-dose focused ion beam microscope measure-
ments can be substantially more informative than a single mea-
surement with the same total dose. We refer to the acquisition
of the set of low-dose measurements as “time-resolved mea-
surement” because it can be realized by keeping beam current
and total dwell time unchanged, while dividing the dwell time
into short time segments.

Our demonstrations of the potential of TR measurements
take a few forms. For a Poisson—Poisson model (Section 2.1)
that serves as an abstract model for FIB measurement with
direct detection of secondary electrons, we used normalized
Fisher information to demonstrate that low-dose measurements
are the most informative per incident ion (comparison of (13)
and (14)); furthermore, we used simulations to demonstrate that
ML estimation achieves performance improvement consistent
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Figure 7: Estimated root mean-squared error Mse'/? (see Section 5.2) as a func-
tion of mean source dose A for conventional (red) and time-resolved sensing
(blue) methods. Also shown are the ranges (RMSE™, RMSE™) (see Section 5.3)
intended to allow more conservative comparisons.

with the Fisher information increase (Figure 4). Indirect de-
tection of secondary electrons can be modeled as well (Sec-
tion 4). While analysis is made more complicated by these hi-
erarchical models, imaging simulations indicate that substantial
improvements are still possible (Figure 5). Experiments with
HIM data used a Quantized Poisson—Poisson—-Normal model
(Section 4.2) and demonstrated the advantage of TR measure-
ments and processing, even without direct electron counting
(Figures 6 and 7).

Appendix A. Neyman Type A distribution of the number
of secondary electrons

We wish to derive the PMF of Y in (1), where M ~
Poisson(1) and X; ~ Poisson(r) for each i. Since the sum of
a deterministic number of Poisson random variables is a Pois-
son random variable, given M = m, Y is a Poisson random
variable with mean mn. The PMF of Y can now be derived by
marginalizing the joint PMF of Y and M over M:

Py(y) = ZPYM(y m) & ZPWMm) Pyy(m)
e & (e m?

m=0
® mn(mn)y A
B mZ: m! ! Z m!

m=0

where (a) follows from the multiplication rule; and (b) from
substituting Poisson PMFs. This verifies (2). The mean in (3)
and variance in (4) follow from the laws of total expectation
and of total variance, each applied with conditioning on M.
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