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Abstract In this paper, we prove self-improvement properties of strongMuckenhoupt
and Reverse Hölder weights with respect to a general Radonmeasure onRn .We derive
our result via a Bellman function argument. An important feature of our proof is that
it uses only the Bellman function for the one-dimensional problem for Lebesgue
measure; with this function in hand, we derive dimension-free results for general
measures and dimensions.
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1 Introduction

It is well known that Muckenhoupt weights on a real line with respect to the Lebesgue
measure satisfy self-improvement properties in the following sense: for p > q, we
always have Aq ⊂ Ap; but also for any function w ∈ Ap, there is an ε > 0 such that
w ∈ Ap−ε (we refer to Definition 1 for precise definitions). Besides that, there always
exists a q such that w ∈ RHq . These self-improvement properties allow one to prove
many important results in harmonic analysis, see, e.g., [4] or a more recent paper [5].
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In [7], the authors considered strong Muckenhoupt classes; in particular, it was proven
that for a Radon measure μ on Rn which is absolutely continuous with respect to the
Lebesgue measure dx , any weight w ∈ A∗

p satisfies a Reverse Hölder property with
an exponent that does not depend on the dimension n.

For p > 1, we say that w belongs to the strong Muckenhoupt class with respect to
μ, w ∈ A∗

p, if there exists a number Q > 1 such that for any rectangular box R ⊂ R
n

with edges parallel to axis, we have

〈w〉R 〈w−1/(p−1)〉p−1
R

� Q,

where 〈ϕ〉R denotes the average of the function ϕ over R:

〈ϕ〉R := 1

μ(R)

∫
R

ϕ(x)dμ(x).

For p > 1, we say that w belongs to the strong Reverse Hölder class with respect to
μ, w ∈ RH∗

p , if there exists a constant Q > 1 such that for any rectangular box R
with edges parallel to axis, we have

〈w p〉1/p
R

� Q〈w〉R .

We proceed with the following definition.

Definition 1 Let μ be a Radon measure on Rn and w be a function which is positive
μ-a.e. For p > 1, we denote the A∗

p-characteristic of w by

[w]p := sup
R

〈w〉R 〈w−1/(p−1)〉p−1
R

and the Reverse Hölder characteristic of w by

[w]R Hp := sup
R

〈w p〉1/p
R

〈w〉−1
R

,

where both suprema are taken over rectangular boxes R with edges parallel to axis. If
[w]p < ∞, we have w ∈ A∗

p and if [w]R Hp < ∞, we have w ∈ RH∗
p .

In [7], it was proved that if μ is an absolutely continuous Radon measure on R
n

and [w]p < ∞, then for some q > 1 we have [w]R Hq < C < ∞ with an explicit
dimension-free estimates on q and C . It is of a particular importance that we can take

q = 1 + 1

2p+2[w]p
.

To prove this result, the authors used a clever version of the Calderón–Zygmund
decomposition from [6]. The aim of this paper is to derive a sharp result from the one-
dimensional case for Lebesgue measure (i.e., for the classical Ap and RHp classes
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Strong Muckenhoupt and Reverse Hölder Weights 1111

on R). In this case, the result from [7] can be obtained, for example, by means of
the so-called Bellman function; i.e., a function of two variables that satisfies certain
boundary and concavity conditions in its domain. In the one-dimensional case, this
function is known explicitly, see [10]. It has been understood for some time that,
for classes of functions like Ap, RHp or B M Op, when we work with their strong
multidimensional analogs (e.g., A∗

p and RH∗
p ), the one-dimensional Bellman function

should prove the higher-dimensional results with dimension-free constants. For the
Lebesgue measure and the inclusion RH∗

p ⊂ A∗
q , this was carried out in [1]. The trick

of using the Bellman function for one-dimensional problems was also used in [2,3,9]
(in a slightly different setting, the same trick was also used in [8]). In this paper, we
present a simple version of this trick for general measures; we prove the result from
[7] as well as all other results of self-improving type for strong Muckenhoupt and
Reverse Hölder weights.

2 Statement of the Main Result

2.1 Properties of Muckenhoupt Weights A∗
p

For p1 := −1/(p − 1) and every t ∈ [0, 1], define u±
p1(t) to be solutions of the

equation:

(1 − u)(1 − p1u)−1/p1 = t.

The function u+
p1 is decreasing and maps [0, 1] onto [0, 1]; the function u−

p1 is increas-
ing and maps [0, 1] onto [1/p1, 0]. For a fixed Q > 1, define

s±
p1 = s±

p1(Q) := u±
p1(1/Q). (1)

Our first main result is as follows:

Theorem 2.1 Let μ be a Radon measure on R
n with μ(H) = 0 for every hyperplane

H orthogonal to one of the coordinate axis. Fix numbers p > 1 and Q > 1 and set
p1 := −1/(p − 1). Then for every weight w with [w]p = Q we have

w ∈ A∗
q , 1 − s−

p1(Q) < q < ∞,

and

w ∈ RH∗
q , 1 � q < 1/s+

p1(Q),

where s±
p1(Q) are defined in (1). These ranges for q are sharp for n = 1 and μ = dx.
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2.2 Properties of Reverse Hölder Weights

For p > 1 and every t ∈ [0, 1], we define v±
p (t) to be solutions of the equation

(1 − pv)1/p(1 − v)−1 = t.

In this case, v+
p is a decreasing function that maps [0, 1] onto [0, 1/p] and v−

p is an
increasing function that maps [0, 1] onto [−∞, 0]. As before for a fixed Q > 1, we
define

s±
p = s±

p (Q) := v±
p (1/Q). (2)

Our second main result concerning Reverse Hölder weights is the following.

Theorem 2.2 Let μ be a Radon measure on R
n with μ(H) = 0 for every hyperplane

H orthogonal to one of the coordinate axis. Fix numbers p > 1 and Q > 1. Then for
every weight w with [w]R Hp = Q, we have

w ∈ A∗
q , 1 − s−

p (Q) < q < ∞,

and

w ∈ RH∗
q , 1 � q < 1/s+

p (Q),

where s±
p (Q) are defined in (2). These ranges for q are sharp for n = 1 and μ = dx.

3 Proof of the Main Results

We begin with the following Theorem from [10]. This theorem ensures the existence
of a certain Bellman function for a one-dimensional problem. In what follows, by
letters without sub-indices (e.g., x , x±), we denote points inR2 and by letters with sub-
indices, we denote the corresponding coordinates (e.g., x+

1 denotes the first coordinate
of x+).

Theorem 3.1 (Theorem 1 in [10]) Fix p > 1 and set p1 := −1/(p − 1). Also fix an
r ∈ (1/s−

p1 , p1] ∪ [1, 1/s+
p1) for s±

p1(Q) defined in (1). For every Q > 1, there exists a

non-negative function BQ(x) defined in the domain �Q := {x = (x1, x2) ∈ R
2 : 1 �

x1x−1/p1
2 � Q} with the following property: BQ(x) is continuous in x and Q, and for

any line segment [x−, x+] ⊂ �Q and x = λx− + (1 − λ)x+, λ ∈ [0, 1], we have

BQ(x) � λBQ(x−) + (1 − λ)BQ(x+).

Moreover, B(x1, x p1
1 ) = xr

1 and BQ(x) � c(r, Q)xr
1 for some positive constant c(r, Q)

and every x ∈ �Q.

To use the concavity property of the function BQ for our proof, we need the follow-
ing lemma. Its proof is given in [10, Lemma4] with an interval instead of the rectangle;
however, the proof remains the same in our case.
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Lemma 3.2 Let the measure μ be as before. Fix two numbers Q1 > Q > 1 and a
rectangular box R ⊂ R

n with edges parallel to the axis. For every coordinate vector
e, there exists a hyperplane H normal to e that splits R into two rectangular boxes
R1 and R2 with the following properties:

(i) For i = 1, 2, we have μ(Ri )/μ(R) ∈ (c, 1 − c) for some constant c ∈ (0, 1);
(ii) For every weight w with [w]p � Q, we have [x1, x2] ⊂ �Q1 and, therefore,

BQ1(x1, x2) � μ(R1)

μ(R)
BQ1(x11 , x12) + μ(R2)

μ(R)
BQ1(xi

2, x22 ),

where

x1 = 〈w〉R , x2 = 〈w p1〉R
xi
1 = 〈w〉

Ri , xi
2 = 〈w p1〉

Ri .

We are ready to prove our main result.

Proof of Theorem 2.1 Fix a rectangular box R with edges parallel to the axis, and take
any Q1 > Q. We first explain how we split R into two rectangular boxes. Take one of
the (n − 1)-dimensional faces of R, call it Rn−1, which has the largest (n − 1)-area.
Among all (n − 2)-dimensional faces of Rn−1, take one of those (call it Rn−2) that
have the largest (n − 2)-area. We proceed like this to get Rn−1, …, R1. Now take a
vector e that is orthogonal to every Ri , i = 1, . . . , n − 1.1 We now split R according
to Lemma 3.2. Notice that all the corresponding i-dimensional faces of R1 and R2

have smaller i-areas than the corresponding i-dimensional faces of R. We now take
the boxes R1 and R2 and repeat the same procedure. If we repeat this M times, we
get a family of rectangular boxes R = {Ri,M }i=1...2M . Denote

x1 = 〈w〉R , x2 = 〈w p1〉R

xi,M
1 = 〈w〉

Ri,M , xi,M
2 = 〈w p1〉

Ri,M .

Abusing the notation, we also define step-functions

x M
1 (t) :=

2M∑
i=1

xi,M
1 1Ri,M (t), x M

2 (t) :=
2M∑
i=1

xi,M
2 1Ri,M (t).

From the construction of rectangular boxes, we notice that x M
1 (t) → w(t) and

x M
2 (t) → w p1(t) as M → ∞ for μ-a.e. t ∈ R. Indeed, our splitting procedure (and
the fact that we have μ(Ri )/μ(R) ∈ (1 − c, c) at every step) guarantees that

max
i=1,...,2M

diam(Ri,M ) → 0, M → ∞,

1 In the case that n = 2, we just take e orthogonal to the longest side of R.
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and we obtain the convergence of x M
1 (t) and x M

2 (t) from the Lebegue differentiation
theorem for Radon measures. Therefore,

BQ1(x1, x2) �
2M∑
i=1

μ(Ri,M )

μ(R)
BQ1(xi,M

1 , xi,M
2 ) = 1

μ(R)

∫
R

BQ1(x M
1 (t), x M

2 (t))dμ(t).

By the Fatou lemma,

BQ1(x1, x2) � 1

μ(R)

∫
R

lim
M→∞ BQ1

(
x M
1 (t), x M

2 (t)
)
dμ(t)

= 1

μ(R)

∫
R

BQ1(w(t), w p1(t))dμ(t) = 1

μ(R)

∫
R

wr (t)dt = 〈wr 〉R .

(3)

Since BQ1(x1, x2) is continuous in Q1 and the above estimate holds for any Q1 > Q,
we get

c(r, Q)〈w〉r
R

= c(r, Q)xr
1 � 〈wr 〉R .

If we use this estimate for q = r ∈ [1, 1/s+
p1), we obtain w ∈ RH∗

q . If we use this
estimate for −1/(q − 1) = r ∈ (1/s−

p1 , p1], we obtain w ∈ A∗
q for 1− s−

p1(Q) < q <

∞. 
�

To prove Theorem 2.2, we need to use a different Bellman function BQ . Namely,
the following result holds.

Theorem 3.3 (Theorem 1 in [10]) Fix p > 1 and r ∈ (1/s−
p , 1] ∪ [p, 1/s+

p ) for s±
p

defined in (2). For every Q > 1, there exists a non-negative function BQ(x) defined

in the domain �Q := {x = (x1, x2) ∈ R
2 : 1 � x1x−1/p

2 � Q} with the following
property: BQ(x) is continuous in x and Q, and for any line segment [x−, x+] ⊂ �Q

and x = λx− + (1 − λ)x+, λ ∈ [0, 1], we have

BQ(x) � λBQ(x−) + (1 − λ)BQ(x+).

Moreover, B(x1, x p
1 ) = xr

1 and BQ(x) � c(r, Q)xr
1 for some positive constant c(r, Q)

and every x ∈ �Q.

We also notice that the analog of Lemma 3.2 reads the same, and with this in hand,
the proof of Theorem 2.1 is analogous to the proof of Theorem 2.2; we leave the details
to the reader.

Acknowledgements We are very grateful to Vasiliy Vasyunin for helpful discussions and suggestions on
the presentation of this paper.
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