

Dimension-Free Properties of Strong Muckenhoupt and Reverse Hölder Weights for Radon Measures

O. Beznosova¹ · A. Reznikov²

Received: 14 February 2018 / Published online: 26 April 2018
© Mathematica Josephina, Inc. 2018

Abstract In this paper, we prove self-improvement properties of strong Muckenhoupt and Reverse Hölder weights with respect to a general Radon measure on \mathbb{R}^n . We derive our result via a Bellman function argument. An important feature of our proof is that it uses only the Bellman function for the one-dimensional problem for Lebesgue measure; with this function in hand, we derive dimension-free results for general measures and dimensions.

Keywords Bellman function · Dimension-free estimates · Muckenhoupt weights · Reverse Hölder weights

Mathematics Subject Classification Primary 42B35 · Secondary 43A85

1 Introduction

It is well known that Muckenhoupt weights on a real line with respect to the Lebesgue measure satisfy self-improvement properties in the following sense: for $p > q$, we always have $A_q \subset A_p$; but also for any function $w \in A_p$, there is an $\varepsilon > 0$ such that $w \in A_{p-\varepsilon}$ (we refer to Definition 1 for precise definitions). Besides that, there always exists a q such that $w \in RH_q$. These self-improvement properties allow one to prove many important results in harmonic analysis, see, e.g., [4] or a more recent paper [5].

✉ A. Reznikov
reznikov@math.fsu.edu

O. Beznosova
ovbeznosova@ua.edu

¹ Department of Mathematics, University of Alabama, Tuscaloosa, USA

² Department of Mathematics, Florida State University, Tallahassee, USA

In [7], the authors considered *strong Muckenhoupt classes*; in particular, it was proven that for a Radon measure μ on \mathbb{R}^n which is absolutely continuous with respect to the Lebesgue measure dx , any weight $w \in A_p^*$ satisfies a Reverse Hölder property with an exponent that does not depend on the dimension n .

For $p > 1$, we say that w belongs to the *strong Muckenhoupt class with respect to μ* , $w \in A_p^*$, if there exists a number $Q > 1$ such that for any rectangular box $R \subset \mathbb{R}^n$ with edges parallel to axis, we have

$$\langle w \rangle_R \langle w^{-1/(p-1)} \rangle_R^{p-1} \leq Q,$$

where $\langle \varphi \rangle_R$ denotes the average of the function φ over R :

$$\langle \varphi \rangle_R := \frac{1}{\mu(R)} \int_R \varphi(x) d\mu(x).$$

For $p > 1$, we say that w belongs to the *strong Reverse Hölder class with respect to μ* , $w \in RH_p^*$, if there exists a constant $Q > 1$ such that for any rectangular box R with edges parallel to axis, we have

$$\langle w^p \rangle_R^{1/p} \leq Q \langle w \rangle_R.$$

We proceed with the following definition.

Definition 1 Let μ be a Radon measure on \mathbb{R}^n and w be a function which is positive μ -a.e. For $p > 1$, we denote the A_p^* -characteristic of w by

$$[w]_p := \sup_R \langle w \rangle_R \langle w^{-1/(p-1)} \rangle_R^{p-1}$$

and the *Reverse Hölder characteristic of w* by

$$[w]_{RH_p} := \sup_R \langle w^p \rangle_R^{1/p} \langle w \rangle_R^{-1},$$

where both suprema are taken over rectangular boxes R with edges parallel to axis. If $[w]_p < \infty$, we have $w \in A_p^*$ and if $[w]_{RH_p} < \infty$, we have $w \in RH_p^*$.

In [7], it was proved that if μ is an absolutely continuous Radon measure on \mathbb{R}^n and $[w]_p < \infty$, then for some $q > 1$ we have $[w]_{RH_q} < C < \infty$ with an explicit dimension-free estimates on q and C . It is of a particular importance that we can take

$$q = 1 + \frac{1}{2^{p+2}[w]_p}.$$

To prove this result, the authors used a clever version of the Calderón–Zygmund decomposition from [6]. The aim of this paper is to derive a sharp result from the one-dimensional case for Lebesgue measure (i.e., for the classical A_p and RH_p classes

on \mathbb{R}). In this case, the result from [7] can be obtained, for example, by means of the so-called Bellman function; i.e., a function of two variables that satisfies certain boundary and concavity conditions in its domain. In the one-dimensional case, this function is known explicitly, see [10]. It has been understood for some time that, for classes of functions like A_p , RH_p or BMO_p , when we work with their strong multidimensional analogs (e.g., A_p^* and RH_p^*), the one-dimensional Bellman function should prove the higher-dimensional results with dimension-free constants. For the Lebesgue measure and the inclusion $RH_p^* \subset A_q^*$, this was carried out in [1]. The trick of using the Bellman function for one-dimensional problems was also used in [2, 3, 9] (in a slightly different setting, the same trick was also used in [8]). In this paper, we present a simple version of this trick for general measures; we prove the result from [7] as well as all other results of self-improving type for strong Muckenhoupt and Reverse Hölder weights.

2 Statement of the Main Result

2.1 Properties of Muckenhoupt Weights A_p^*

For $p_1 := -1/(p-1)$ and every $t \in [0, 1]$, define $u_{p_1}^\pm(t)$ to be solutions of the equation:

$$(1-u)(1-p_1u)^{-1/p_1} = t.$$

The function $u_{p_1}^+$ is decreasing and maps $[0, 1]$ onto $[0, 1]$; the function $u_{p_1}^-$ is increasing and maps $[0, 1]$ onto $[1/p_1, 0]$. For a fixed $Q > 1$, define

$$s_{p_1}^\pm = s_{p_1}^\pm(Q) := u_{p_1}^\pm(1/Q). \quad (1)$$

Our first main result is as follows:

Theorem 2.1 *Let μ be a Radon measure on \mathbb{R}^n with $\mu(H) = 0$ for every hyperplane H orthogonal to one of the coordinate axis. Fix numbers $p > 1$ and $Q > 1$ and set $p_1 := -1/(p-1)$. Then for every weight w with $[w]_p = Q$ we have*

$$w \in A_q^*, \quad 1 - s_{p_1}^-(Q) < q < \infty,$$

and

$$w \in RH_q^*, \quad 1 \leq q < 1/s_{p_1}^+(Q),$$

where $s_{p_1}^\pm(Q)$ are defined in (1). These ranges for q are sharp for $n = 1$ and $\mu = dx$.

2.2 Properties of Reverse Hölder Weights

For $p > 1$ and every $t \in [0, 1]$, we define $v_p^\pm(t)$ to be solutions of the equation

$$(1 - pv)^{1/p}(1 - v)^{-1} = t.$$

In this case, v_p^+ is a decreasing function that maps $[0, 1]$ onto $[0, 1/p]$ and v_p^- is an increasing function that maps $[0, 1]$ onto $[-\infty, 0]$. As before for a fixed $Q > 1$, we define

$$s_p^\pm = s_p^\pm(Q) := v_p^\pm(1/Q). \quad (2)$$

Our second main result concerning Reverse Hölder weights is the following.

Theorem 2.2 *Let μ be a Radon measure on \mathbb{R}^n with $\mu(H) = 0$ for every hyperplane H orthogonal to one of the coordinate axis. Fix numbers $p > 1$ and $Q > 1$. Then for every weight w with $[w]_{RH_p} = Q$, we have*

$$w \in A_q^*, \quad 1 - s_p^-(Q) < q < \infty,$$

and

$$w \in RH_q^*, \quad 1 \leq q < 1/s_p^+(Q),$$

where $s_p^\pm(Q)$ are defined in (2). These ranges for q are sharp for $n = 1$ and $\mu = dx$.

3 Proof of the Main Results

We begin with the following Theorem from [10]. This theorem ensures the existence of a certain Bellman function for a one-dimensional problem. In what follows, by letters without sub-indices (e.g., x, x^\pm), we denote points in \mathbb{R}^2 and by letters with sub-indices, we denote the corresponding coordinates (e.g., x_1^+ denotes the first coordinate of x^+).

Theorem 3.1 (Theorem 1 in [10]) *Fix $p > 1$ and set $p_1 := -1/(p - 1)$. Also fix an $r \in (1/s_{p_1}^-, p_1] \cup [1, 1/s_{p_1}^+)$ for $s_{p_1}^\pm(Q)$ defined in (1). For every $Q > 1$, there exists a non-negative function $B_Q(x)$ defined in the domain $\Omega_Q := \{x = (x_1, x_2) \in \mathbb{R}^2 : 1 \leq x_1 x_2^{-1/p_1} \leq Q\}$ with the following property: $B_Q(x)$ is continuous in x and Q , and for any line segment $[x^-, x^+] \subset \Omega_Q$ and $x = \lambda x^- + (1 - \lambda)x^+$, $\lambda \in [0, 1]$, we have*

$$B_Q(x) \geq \lambda B_Q(x^-) + (1 - \lambda)B_Q(x^+).$$

Moreover, $B(x_1, x_1^{p_1}) = x_1^r$ and $B_Q(x) \leq c(r, Q)x_1^r$ for some positive constant $c(r, Q)$ and every $x \in \Omega_Q$.

To use the concavity property of the function B_Q for our proof, we need the following lemma. Its proof is given in [10, Lemma 4] with an interval instead of the rectangle; however, the proof remains the same in our case.

Lemma 3.2 *Let the measure μ be as before. Fix two numbers $Q_1 > Q > 1$ and a rectangular box $R \subset \mathbb{R}^n$ with edges parallel to the axis. For every coordinate vector \mathbf{e} , there exists a hyperplane H normal to \mathbf{e} that splits R into two rectangular boxes R^1 and R^2 with the following properties:*

- (i) *For $i = 1, 2$, we have $\mu(R^i)/\mu(R) \in (c, 1 - c)$ for some constant $c \in (0, 1)$;*
- (ii) *For every weight w with $[w]_p \leq Q$, we have $[x^1, x^2] \subset \Omega_{Q_1}$ and, therefore,*

$$B_{Q_1}(x_1, x_2) \geq \frac{\mu(R^1)}{\mu(R)} B_{Q_1}(x_1^1, x_2^1) + \frac{\mu(R^2)}{\mu(R)} B_{Q_1}(x_2^1, x_2^2),$$

where

$$\begin{aligned} x_1 &= \langle w \rangle_R, & x_2 &= \langle w^{p_1} \rangle_R \\ x_1^i &= \langle w \rangle_{R^i}, & x_2^i &= \langle w^{p_1} \rangle_{R^i}. \end{aligned}$$

We are ready to prove our main result.

Proof of Theorem 2.1 Fix a rectangular box R with edges parallel to the axis, and take any $Q_1 > Q$. We first explain how we split R into two rectangular boxes. Take one of the $(n - 1)$ -dimensional faces of R , call it R_{n-1} , which has the largest $(n - 1)$ -area. Among all $(n - 2)$ -dimensional faces of R_{n-1} , take one of those (call it R_{n-2}) that have the largest $(n - 2)$ -area. We proceed like this to get R_{n-1}, \dots, R_1 . Now take a vector \mathbf{e} that is orthogonal to every R_i , $i = 1, \dots, n - 1$.¹ We now split R according to Lemma 3.2. Notice that all the corresponding i -dimensional faces of R^1 and R^2 have smaller i -areas than the corresponding i -dimensional faces of R . We now take the boxes R^1 and R^2 and repeat the same procedure. If we repeat this M times, we get a family of rectangular boxes $\mathcal{R} = \{R^{i,M}\}_{i=1\dots 2^M}$. Denote

$$\begin{aligned} x_1 &= \langle w \rangle_R, & x_2 &= \langle w^{p_1} \rangle_R \\ x_1^{i,M} &= \langle w \rangle_{R^{i,M}}, & x_2^{i,M} &= \langle w^{p_1} \rangle_{R^{i,M}}. \end{aligned}$$

Abusing the notation, we also define step-functions

$$x_1^M(t) := \sum_{i=1}^{2^M} x_1^{i,M} \mathbb{1}_{R^{i,M}}(t), \quad x_2^M(t) := \sum_{i=1}^{2^M} x_2^{i,M} \mathbb{1}_{R^{i,M}}(t).$$

From the construction of rectangular boxes, we notice that $x_1^M(t) \rightarrow w(t)$ and $x_2^M(t) \rightarrow w^{p_1}(t)$ as $M \rightarrow \infty$ for μ -a.e. $t \in R$. Indeed, our splitting procedure (and the fact that we have $\mu(R^i)/\mu(R) \in (1 - c, c)$ at every step) guarantees that

$$\max_{i=1, \dots, 2^M} \text{diam}(R^{i,M}) \rightarrow 0, \quad M \rightarrow \infty,$$

¹ In the case that $n = 2$, we just take \mathbf{e} orthogonal to the longest side of R .

and we obtain the convergence of $x_1^M(t)$ and $x_2^M(t)$ from the Lebegue differentiation theorem for Radon measures. Therefore,

$$B_{Q_1}(x_1, x_2) \geq \sum_{i=1}^{2^M} \frac{\mu(R^{i,M})}{\mu(R)} B_{Q_1}(x_1^{i,M}, x_2^{i,M}) = \frac{1}{\mu(R)} \int_R B_{Q_1}(x_1^M(t), x_2^M(t)) d\mu(t).$$

By the Fatou lemma,

$$\begin{aligned} B_{Q_1}(x_1, x_2) &\geq \frac{1}{\mu(R)} \int_R \lim_{M \rightarrow \infty} B_{Q_1}(x_1^M(t), x_2^M(t)) d\mu(t) \\ &= \frac{1}{\mu(R)} \int_R B_{Q_1}(w(t), w^{p_1}(t)) d\mu(t) = \frac{1}{\mu(R)} \int_R w^r(t) dt = \langle w^r \rangle_R. \end{aligned} \quad (3)$$

Since $B_{Q_1}(x_1, x_2)$ is continuous in Q_1 and the above estimate holds for any $Q_1 > Q$, we get

$$c(r, Q) \langle w \rangle_R^r = c(r, Q) x_1^r \leq \langle w^r \rangle_R.$$

If we use this estimate for $q = r \in [1, 1/s_{p_1}^+]$, we obtain $w \in RH_q^*$. If we use this estimate for $-1/(q-1) = r \in (1/s_{p_1}^-, p_1]$, we obtain $w \in A_q^*$ for $1 - s_{p_1}^-(Q) < q < \infty$. \square

To prove Theorem 2.2, we need to use a different Bellman function B_Q . Namely, the following result holds.

Theorem 3.3 (Theorem 1 in [10]) *Fix $p > 1$ and $r \in (1/s_p^-, 1] \cup [p, 1/s_p^+)$ for s_p^\pm defined in (2). For every $Q > 1$, there exists a non-negative function $B_Q(x)$ defined in the domain $\Omega_Q := \{x = (x_1, x_2) \in \mathbb{R}^2 : 1 \leq x_1 x_2^{-1/p} \leq Q\}$ with the following property: $B_Q(x)$ is continuous in x and Q , and for any line segment $[x^-, x^+] \subset \Omega_Q$ and $x = \lambda x^- + (1 - \lambda)x^+$, $\lambda \in [0, 1]$, we have*

$$B_Q(x) \geq \lambda B_Q(x^-) + (1 - \lambda) B_Q(x^+).$$

Moreover, $B(x_1, x_1^p) = x_1^r$ and $B_Q(x) \leq c(r, Q) x_1^r$ for some positive constant $c(r, Q)$ and every $x \in \Omega_Q$.

We also notice that the analog of Lemma 3.2 reads the same, and with this in hand, the proof of Theorem 2.1 is analogous to the proof of Theorem 2.2; we leave the details to the reader.

Acknowledgements We are very grateful to Vasiliy Vasyunin for helpful discussions and suggestions on the presentation of this paper.

References

1. Dindoš, M., Wall, T.: The sharp A_p constant for weights in a reverse-Hölder class. *Rev. Mat. Iberoam.* **25**(2), 559–594 (2009)
2. Domelevo, K., Petermichl, S., Wittwer, J.: A linear dimensionless bound for the weighted Riesz vector. *Bull. Sci. Math.* **141**(5), 385–407 (2017)
3. Dragičević, O., Volberg, A.: Bellman functions and dimensionless estimates of Littlewood-Paley type. *J. Oper. Theory* **56**(1), 167–198 (2006)
4. García-Cuerva, J., de Francia, J.L.R.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 104 (1985)
5. Hytönen, T., Pérez, C.: Sharp weighted bounds involving A_∞ . *Anal. PDE* **6**(4), 777–818 (2013)
6. Korenovskyy, A.A., Lerner, A.K., Stokolos, A.M.: On a multidimensional form of F. Riesz's, “rising sun” lemma. *Proc. Am. Math. Soc.* **133**(5), 1437–1440 (2005)
7. Luque, T., Pérez, C., Rela, E.: Reverse Hölder property for strong weights and general measures. *J. Geom. Anal.* **27**(1), 162–182 (2017)
8. Nazarov, F., Reznikov, A., Treil, S., Volberg, A.: A Bellman function proof of the L^2 bump conjecture. *J. Anal. Math.* **121**, 255–277 (2013)
9. Treil, S.: Sharp A_2 estimates of Haar shifts via Bellman function. In: Recent Trends in Analysis, Theta Ser. Adv. Math., vol. 16, pp. 187–208. Theta, Bucharest (2013)
10. Vasyunin, V.I.: Mutual estimates for L^p -norms and the Bellman function. *Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)*, (Issledovaniya po Lineinym Operatoram i Teorii Funktsii. 36) **355**, 81–138, 237–238 (2008)