

1 **A new free-convection form to estimate sensible heat and latent heat fluxes for
2 unstable cases**

3 Francesc Castellví¹, Kosana Suvočarev^{2,4}, Michele L. Reba³, Benjamin R.K. Runkle⁴

4 (1) Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain. f-

5 castellvi@macs.udl.cat.

6 (2) Department of Land, Air and Water Resources, University of California, Davis, CA,

7 95616, USA. ksuvocarev@ucdavis.edu

8 (3) USDA-ARS, Delta Water Management Research Unit, Jonesboro, AR 72401, USA.

9 Michele.Reba@ARS.USDA.GOV

10 (4) Corresponding author. Department of Biological & Agricultural Engineering,

11 University of Arkansas, Fayetteville, AR 72701, USA. brrunkle@uark.edu

12

13 Highlights:

14 - New Free Convection Limit approaches (FCL) are developed for turbulent fluxes

15 - FCL are tested over three surfaces of major interest in agriculture

16 - Similar surface energy balance closures obtained using FCL and reference

17 methods

18 **ABSTRACT**

19 Free convection limit (FCL) approaches to estimate surface fluxes are of interest given
20 the evidence that they may extend up to near neutral cases. For measurements taken in
21 the inertial sublayer, the formulation based on surface renewal theory and the analysis of
22 small eddies (SRSE) to estimate the sensible heat flux (H) was extended to latent heat
23 flux (LE) with the aim to derive their FCL approaches. For sensible heat flux (H_{FCL}), the
24 input requirements are traces of the fast-response (such as 10 to 20 Hz) air temperature
25 and the zero-plane displacement. For latent heat flux (LE_{FCL}), input requirements are fast
26 response traces of water vapor density, mean temperature of the air, the available net
27 surface energy ($Rn-G$, where Rn and G are the net radiation and soil heat flux,
28 respectively) and the zero-plane displacement. Taking eddy covariance (EC) as a
29 reference method, the performance of the FCL method was tested over a growing cotton
30 field that involved three contrasting surfaces: partly mulched bare soil, a sparse canopy
31 and a homogeneous canopy. Using traces at 10 Hz and 20 Hz, H_{FCL} overestimated and
32 underestimated the EC sensible heat flux (H_{EC}), respectively. In general, LE_{FCL} tended to
33 slightly underestimate LE_{EC} . The surface energy balance closure show that ($H_{EC} + LE_{EC}$)
34 underestimated ($Rn-G$) in a range of 19% (homogeneous canopy) and 8% (sparse
35 canopy). Given that, in general ($H_{FCL} + LE_{FCL}$) was closer to ($Rn-G$) than ($H_{EC} + LE_{EC}$),
36 the FCL method may be recommended for field applications, especially when the wind
37 speed is not available.

38 **KEYWORDS:** Sensible heat flux; latent heat flux; surface energy balance; EC method;
39 Free Convection limit

40

41 **1. Introduction**

42 The latent heat flux (LE) is involved in two fundamental equations, the surface energy-
43 balance equation and the water-balance equation. Given that the main drivers for LE are
44 the supply of water (including water content in topsoil) and the available net surface
45 energy, $(R_n - G)$ where R_n is the net radiation and G is the soil heat flux, it links
46 hydrological, agricultural and climatological features (Dominguez et al., 2008; Li and
47 Wang, 2019; Robles-Morua et al., 2012; Stagl et al., 2014; Yang and Wang, 2014). In
48 particular, its knowledge is crucial for irrigation planning, to perform weather forecasting,
49 climate modelling, to determine the risk of fire, among others (Brutsaert, 1982; Fang et
50 al., 2018; Silva et al., 2010).

51 Direct measurements of LE by means of the eddy covariance (EC) method and
52 large weighing lysimeters are preferred for scientific studies in agricultural landscapes.
53 However, the required instrumentation and maintenance are expensive. When the sensible
54 heat flux (H), LE and the available net surface energy are measured independently they
55 allow calculating the simplified surface energy balance ($R_n - G = H + LE$), which can be
56 used as a conventional quality control, to indirectly check the measurement reliability of
57 H and LE (Aubinet et al., 2000). In general, the instrumentation required for monitoring
58 LE over large areas involving different surfaces is not always affordable or applicable
59 (Haymann et al., 2019) and, on the other hand, flow distortion and windy conditions
60 (among others) are problems when using, respectively, the EC method and a weighing
61 lysimeter (Alfieri et al., 2012; Brutsaert, 1982; Burba, 2013; Noltz et al., 2013). Thus,
62 techniques and approaches to estimate LE are of interest to overcome some shortcomings
63 in measurement scaling and cost that are inherent in the EC method and weighing
64 lysimeters (Albertson et al., 1995; Castellví, 2004; Drexler et al., 2004 and 2008; French

65 et al., 2012; Haymann et al., 2019; Li and Wang, 2019; Paw U et al., 1995; Snyder et al.,
66 1996; Suvočarev et al., 2019; Yang and Wang, 2014; Zhao et al., 2010).

67 To minimize costs, in moderately tall canopies LE has often been estimated
68 indirectly using the simplified energy balance residual method (i.e., $LE = Rn - G - H$)
69 because the instrumentation required to estimate H, G and Rn is more affordable. A major
70 (potential) issue involved in the residual method to estimate LE half-hourly is that
71 accurate measurements of all the energy terms involved in the surface energy balance
72 (SEB) equation do not guarantee its closure. On a half-hourly basis, in general, even on
73 extended homogeneous surfaces, the sum of turbulent fluxes is smaller than the available
74 net surface energy (Foken 2008; Foken et al., 2011; Twine et al., 2000; Wilson et al.,
75 2002). Thus, often the residual method adds unexplained energy to LE. There is an
76 ongoing scientific debate about the role of low frequency circulations in the lack of
77 closure of the SEB equation (Cuxart et al., 2015; Eder et al., 2014; Foken, 2008; Huang
78 et al, 2008; Kanda, 2004; Stoy et al., 2013; Steinfeld et al., 2007). While some studies
79 have suggested that large circulations appear to be more efficient in transporting sensible
80 heat than latent heat (Charuchittipan et al., 2014; Stoy et al., 2006 and 2013), other studies
81 have shown that this role depends on the surface heterogeneity, type of terrain, and its
82 uses (Brunsell et al., 2011; Cuxart et al., 2015). These issues may affect the uncertainty
83 when the residual method to estimate LE is used. In fact, at some sites the residual method
84 may be preferred to estimate H (i.e, $H = Rn - G - LE$) than LE (Castellví and Oliphant,
85 2017).

86 When the Monin – Obukhov Similarity Theory (MOST) is used, through the
87 stability parameter, the friction velocity (u_*) and the sensible heat flux are required as
88 input to estimate the latent heat flux. Traditionally, to avoid measurement of the wind
89 field, the wind log-law is implemented to estimate u_* , H and LE (Castellví and Snyder,

90 2008; De Bruin et al., 1993; Hsieh et al., 1996; Suvočarev et al., 2019). When convection
91 dominates the turbulence in the atmospheric surface boundary layer, MOST similarity
92 relationships were redone to best fit this limit case (termed free convection limit, FCL,
93 approaches) (Stull, 1988). Implementing the FCL formulation, surface eddy flux
94 estimates of scalars become independent of the friction velocity. Consequently, FCL
95 approaches become simpler and, surprisingly, there is evidence that they performed rather
96 reliably up to near-neutral conditions (Albertson et al., 1995; Högström, 1988; Kohsieck,
97 1982; Monin and Yaglom, 1971; Wang and Brass, 2010). For field applications,
98 minimization of input requirements has special interest when surface flux estimates are
99 desired at multiple sites, such as in the framework of remote sensing and estimation of
100 crop coefficients (Drexler et al., 2008; French et al., 2012; Zapata and Martínez-Cob
101 2001; Zhao et al., 2010).

102 The framework of Surface Renewal (SR) theory (Danckwerts, 1951; Harriot,
103 1962; Higbie, 1935; Seo and Lee 1988), combined with the analysis of Small Eddies
104 (SRSE) (Aminzadeh, 2017; Castellví, 2018; Haghghi and Or, 2013 and 2015), has shown
105 potential to open new perspectives in micrometeorology. For instance, an SRSE approach
106 was proposed to estimate u_* (alternative to the wind log-law) and H requiring as input
107 measurements of the mean wind speed and the high-frequency trace of the air (or virtual)
108 temperature in the roughness and inertial sub-layers (Castellví, 2018). In the following,
109 the SRSE formulation will refer to applications requiring measurements taken in the
110 inertial sub-layer as input and it will be used to estimate LE. To our knowledge, the SRSE
111 approach to estimate fluxes of scalars other than temperature, has never been tested. Here,
112 given the benefits of developing approaches requiring minimum inputs, an SRSE-FCL
113 expression was derived for estimating H and LE. It was shown that the inputs required to
114 determine H as H_{FCL} are fast-response traces of air temperature and the zero-plane

115 displacement. Similarly, for LE, LE_{FCL} may be determined using fast-response traces of
116 water vapor concentration, the zero-plane displacement, the mean temperature of the air
117 and the available net surface energy as input. Therefore, H_{FCL} and LE_{FCL} do not share
118 instrumentation. This separation minimizes the probability to have simultaneous gaps in
119 H and LE . In addition, H_{FCL} and LE_{FCL} are estimated independently which allows testing
120 closure of the surface energy balance for an integral quality check. Here, the performance
121 of H_{FCL} and LE_{FCL} were tested for a growing cotton field, which involved surfaces with
122 different roughness.

123 **2. Theoretical considerations**

124 *2.1 The SRSE method with measurements in the inertial sub-layer*

125 SRSE is a semi-empirical method, fully described in Castellví (2018), to estimate the
126 friction velocity and eddy fluxes. To estimate the surface flux of a scalar, SRSE considers
127 that downward flows (i.e., descending macro-parcels of air following a coherent motion)
128 generate a narrow, highly turbulent, shear layer containing multiple small-scale vortices
129 (Zhu et al., 2007). SRSE assumes: (1) the population of small eddies (which in the
130 following are termed fluid elements) generated in the volume within the canopy of the
131 macro-parcel are randomly distributed; (2) during the time that a fluid element remains
132 close to the viscous sub-layer of a source (exposure time), mass and heat transfers through
133 and the fluid element increases (or depletes) its scalar concentration until it is randomly
134 replaced by another fluid element; (3) by continuity, following the coherent motion, the
135 macro-parcel remains in contact with the surface for a given period (though it depends on
136 the wind speed, surface roughness and stability conditions, this period is on the order of
137 a few tens of seconds) until it ejects being renewed by a new sweep (Katul et al., 1996;
138 Paw U et al., 1995; Zhu et al., 2007). During ejection most fluid elements located in the
139 upper part of the canopy remain attached to the macro-parcel of air (Zhu et al., 2007). As

140 a consequence, regularly (i.e., at the sweep – ejection frequency) a large number of fluid
141 elements are broadly spread above the canopy in the surface boundary-layer (Katul et al.,
142 1996; Zhu et al., 2007). Additionally, SRSE assumes (4) the coherent motion transports
143 fluid elements across finite distances before they have a chance to be dissipated or become
144 significantly diluted. Thus, a transilient turbulence mixing concept is adopted (Stull,
145 1984).

146 For an unstable case, Fig. 1 depicts the formation and identification of the fluid
147 elements. It shows a macro-parcel of air (defined as a parcel of air whose volume covers
148 most sinks and sources) following a coherent motion (Fig. 1, panel a). The actual trace of
149 the sonic temperature and water vapor concentration of the air (measured at 20 Hz on
150 May 5 at 17.5 h) for a short interval is shown in Fig. 1 (panel b) which was composed by
151 small fluctuations (signatures of fluid elements) embedded in the scalar change of a
152 macro-parcel of air over time (t) (signature of a coherent structure). In Fig. 1 (panel b),
153 the signature of the coherent structure was assumed to follow the generalized ramp-like
154 shape (Fig. 1, panel b) proposed in Chen et al. (1997a) which is composed by three phases
155 (quiescent, enriching and ejection). Regardless, the composition shown in Fig. 1 admits
156 any ramp model to identify coherent motions (Chen et al., 1997a; Paw U et al., 1995;
157 Shapland et al., 2012; Van Atta, 1977) because in the SRSE method the analysis to
158 identify coherent motions is bypassed. The SRSE method focuses on the fluid elements
159 attached to macro-parcels of air whose frequencies are in the order of tenths of a second.
160 For a given trace of scalar (s), where in the following s may refer either to virtual
161 temperature or temperature of the air (T) and to water vapor concentration (W), the
162 exposure time for an i^{th} -fluid element (τ_{is}) was estimated as the time between two
163 consecutive valleys in the trace and its net scalar increase (a_{is}) as the difference between
164 the value achieved at the peak and at the first valley. As an example, Fig. 1 (panel c)

165 shows two fluctuations for sonic temperature and one for water vapor concentration. For
166 the latter, the time exposure and amplitude were 0.2 s and 0.3 g m⁻³, respectively.

167 To estimate the sensible heat flux carried out by a fluid element, SRSE assumes
168 (Castellví, 2018): (1) a fluctuation follows a ramp-like shape whose quiescent period can
169 be neglected because the mass of a fluid element is small (Fig. 1, panel c) and; (2) the
170 eddy diffusivity for heat (K_{hi} where i denotes the i^{th} fluid element) is mainly driven by
171 shear and can be parameterized as $K_{hi} = k \tau_{iT} (u'_i w'_i)$ where u'_i and w'_i denote fluctuation
172 (Reynolds decomposition) of the horizontal and vertical wind speed, respectively. Given
173 that $(u'_i w'_i)$ represents a portion of the mean friction velocity which weight is expected to
174 depend on the size of the fluctuation, a semi-empirical relationship for $\frac{K_{hi}}{\tau_{iT}}$ was proposed
175 weighting each fluctuation by the ratio of the time exposure over the mean time exposure
176 of fluid elements as, $\frac{K_{hi}}{\tau_{iT}} = k \frac{\tau_{iT}}{\bar{\tau}_T} \phi_{h(\zeta)}^{-1} u_*^2$ (where k is the Von Kármán constant, $\bar{\tau}_T$ is the
177 averaged time exposure of all fluid elements in half an hour temperature trace, ϕ_h is the
178 stability function for the heat transfer and $\zeta = \frac{Z-d}{L}$ is the stability parameter; Z is the
179 measurement height, d is the zero-plane displacement and L is the Obukhov length).

180 Here, to estimate the latent heat flux carried out by a fluid element it was assumed
181 that the eddy diffusivity for water vapor of the i -th fluid element (K_{wi}) over its time
182 exposure follows the same analytical form as for temperature. Therefore, K_{wi} was
183 parameterized as, $\frac{K_{wi}}{\tau_{iw}} = k \frac{\tau_{iw}}{\bar{\tau}} \phi_{w(\zeta)}^{-1} u_*^2$ where $\phi_{w(\zeta)}^{-1}$ is the stability function for the transfer
184 of water vapor. For the i^{th} fluid element, K_{hi} and K_{wi} are expected to be different because
185 time exposures for air temperature and water vapor are different (i.e., the flux-footprint
186 area of each source, such as a leaf, is different for a given scalar). An example of this
187 difference is in Fig. 1 (panel c).

188 2.2. *Sensible heat flux*

189 When the turbulent diffusion equation is solved for the i^{th} fluid element with an eddy
 190 diffusivity for heat over time exposure, $\frac{K_{hi}}{\tau_{iT}} = k \frac{\tau_{iT}}{\bar{\tau}_T} \phi_{h(\zeta)}^{-1} u_*^2$, its sensible heat flux density
 191 (H_i) can be expressed as (Castellví, 2018)

$$192 \quad H_i = \rho c_p \sqrt{\frac{k}{\pi}} \phi_{h(\zeta)}^{-1/2} u_* \left(\frac{\tau_{iT}}{\bar{\tau}} \right)^{1/2} a_{iT} \quad (1)$$

193 where ρ and c_p are the density and isobaric specific heat capacity of the air, respectively.
 194 Here, we note that because Eq. (1) refers to a fluid element, the small volume of the parcel
 195 (ΔV_i) to consider for this eddy may be written as $\Delta V_i = S dZ_i$ where S denotes a unit area
 196 and dZ_i represents a small part of the total vertical extent of fluid elements ejected up to
 197 the measurement height. To determine the total sensible heat flux, the sensible heat flux
 198 carried out by the fluid element obtained after averaging Eq. (1) for all the time exposures
 199 (i.e., a representative fluid element of the population) must be integrated to account for
 200 all the volume (per unit area) containing fluid elements. Hence, the mean flux of sensible
 201 heat injected to the surface sub-layer by the macro-parcel of air can be estimated as

$$202 \quad H_{Est} = \frac{Z_V}{N \bar{\tau}} \sum_{i=1}^{i=N} H_i \tau_{iT} = Z_V \frac{\rho c_p \sqrt{\frac{k}{\pi}}}{N \bar{\tau}} \phi_{h(\zeta)}^{-1/2} u_* \left(\sum_{i=1}^{i=N} \left(\frac{\tau_{iT}}{\bar{\tau}} \right)^{1/2} \tau_{iT} a_{iT} \right) \quad (2)$$

203 where Z_V (dimensionless) accounts for the volume of air containing fluid elements (V_c)
 204 per unit volume (i.e., $Z_V = \frac{V_c}{1 \text{ m}^3}$ represents the total vertical extend of fluid elements
 205 ejected up to the measurement height per unit height) and N is the total number of fluid
 206 elements observed in half an hour, thus $N \bar{\tau} = 1800$ s. The theoretical Probability
 207 Distribution Function (PDF) of time exposures proposed in Seo and Lee (1988) involves
 208 a coefficient (α) that accounts for the spectra of fluid elements.

209 It was found that the theoretical PDF can explain the actual PDF observed within
 210 and above the canopy (Castellví, 2018) and that from the top of a canopy down to a height
 211 of about 2/3 the canopy height the profile of α showed a decay similar to the mean wind
 212 speed. From the ground up to about 2/3 the canopy height, the α profile was
 213 unpredictable. Therefore, by assuming codependence between the distinct turbulent flows
 214 near and far from the surface (Haghghi et al., 2013), the predictable α dependence on
 215 height was interpreted as representing that the majority of fluid elements sampled at the
 216 measurement height were placed above the zero-plane displacement during the ejection
 217 phase. This assumption was partly supported by Zhu et al. (2007) who showed for a
 218 homogeneous canopy that most of the fluid elements that spread above the canopy during
 219 the ejection phase originated in the upper part of the canopy. Additionally, sensible heat
 220 fluxes estimated setting $Z_V = p_v(Z - d)$ in Eq. (2) with $p_v = 1 \text{ m}^{-1}$ and $p_v =$
 221 $f_c \text{ m}^{-1}$ (where f_c is the fraction of ground canopy cover) for homogeneous and sparse
 222 canopies, respectively, compared close to HEC (the reference). For completeness (i.e., to
 223 include bare soil or surfaces where bare soil dominates over sparse short vegetation), here
 224 it is proposed to estimate Z_V setting $p_v = 0.5 \text{ m}^{-1}$ which is empirical (supported in Sect.
 225 4.1.2). This case assumes that the fluid elements mainly originated in the bottom part of
 226 the macro-parcel. Therefore, Z_V is expressed as

$$227 Z_V = p_v \begin{cases} (Z - d) & \text{homogenous canopy} \\ (Z - d)f_c & \text{sparse canopy} \\ 0.5 Z & \text{bare soil} \end{cases} \quad (3)$$

228 Where here, p_v is set to 1 m^{-1} for dimensional homogeneity. The bare soil case seems to
 229 introduce a discontinuity in Z_V , but it does not because the bare soil must be interpreted
 230 as a different interface (i.e., coherent structures penetrate into the canopy, but the ground
 231 acts as a wall).

232 2.3. Latent heat flux

233 On the basis of the K_{hi} and K_{wi} parameterization (Sect. 2.1) and assuming that the stability
 234 functions are similar regardless of the scalar (i.e., $\phi_{w(\zeta)}^{-1} = \phi_{h(\zeta)}^{-1} = (1 -$
 235 $16\zeta)^{0.5}$, Dyer (1974)), the analytical form for the sensible heat flux is valid for any
 236 scalar (Castellví, 2004 and 2013). Therefore, the latent heat flux can be estimated as

$$237 LE_{Est} = Z_V \frac{L_v}{N \bar{\tau}} \sqrt{\frac{k}{\pi}} \phi_{h(\zeta)}^{-1/2} u_* \sum_{i=1}^{i=N} \left(\frac{\tau_{iw}}{\bar{\tau}} \right)^{1/2} a_{iw} \tau_{iw} \quad (4)$$

238 where L_v is the heat of vaporization and Z_V is estimated by Eq. (3).

239 2.4 Free convection approaches

240 2.4.1 Sensible heat flux

241 For unstable cases, the stability function for the transfer of momentum $\phi_{m(\zeta)}$ and heat
 242 are related as, $\phi_{h(\zeta)} = \phi_{m(\zeta)}^2$. The free convection form for $\phi_{m(\zeta)}$ is $\phi_{m(\zeta)} =$
 243 $0.42(-\zeta)^{-1/3}$ for $\zeta \leq -0.16$ (Högström, 1988) which can be combined with Eq. (2) and
 244 the Obukhov length $L (= -u_*^3 \left(\frac{kg}{T} \frac{H}{\rho C_p} \right)^{-1}$, where g is the acceleration of gravity and T
 245 the mean air temperature) to estimate the half-hourly free convection limit sensible heat
 246 flux as

$$247 H_{FCL} = Z_V^{3/2} \rho C_p \left(\frac{k}{\pi} \right)^{3/4} \left(\frac{1}{0.42} \right)^{3/2} \left(\frac{kg(Z-d)}{T} \right)^{1/2} \left[\frac{1}{N \bar{\tau}} \left(\sum_{i=1}^{i=N} \left(\frac{\tau_{iT}}{\bar{\tau}} \right)^{1/2} \tau_{iT} a_{iT} \right) \right]^{3/2} \quad (5)$$

248 2.4.2 Latent heat flux

249 Combining Eq. (4), the FCL form for $\phi_{h(\zeta)}$, the Obukhov length and the SEB equation
 250 to estimate H (i.e., $H = Rn - G - LE$), the following 3rd order equation involving the free
 251 convection limit approach for the latent heat flux is obtained

252 $LE_{FCL}^3 + b_u LE_{FCL} - b_u (Rn - G) = 0$ (6)

253 where the coefficient b_u is positive

254
$$b_u = Z_V^3 \left(\frac{L_v}{0.42} \right)^3 \left(\frac{k}{\pi} \right)^{3/2} \left(\frac{kg(z-d)}{\rho C_p T} \right) \left[\frac{1}{N \bar{\tau}} \left(\sum_{i=1}^{i=N} \left(\frac{\tau_{iw}}{\bar{\tau}} \right)^{1/2} \tau_{iw} a_{iw} \right) \right]^3$$

255 **3. Materials and methods**

256 **3.1. The field campaign**

257 From 13 May to 30 September 2016, an experiment was carried out on a cotton
 258 field in Manila, AR, US ($35^{\circ} 53' 14''$, $-90^{\circ} 8' 15''$) (Suvočarev et al., 2019; Fong et al.,
 259 2020). The field was on a flat terrain (0.1% slope), the crop was sprinkler irrigated, and
 260 the fetch, in practice, may be considered unlimited regardless of the wind direction
 261 because the flux tower was deployed between two fields of the same cotton crop (63×10^4
 262 and 45×10^4 m 2). From the beginning of the campaign up to 22 June, bare soil dominated
 263 the field. Sparse mulches made of the cover crop residues (about 0.1 m thick) remained
 264 and the fraction of ground cover was about 30%. Sparse vegetation predominated from
 265 22 June to 18 July and during this period the canopy height (h_c) and the fraction of ground
 266 cover varied from about $h_c = 0.25$ m and $f_c = 30\%$ up to about $h_c = 0.90$ m and $f_c =$
 267 85%, respectively. After 18 July the crop was considered homogeneous, f_c remained
 268 about 85%, and the maximum canopy height, $h_c = 1.10$ m, was reached around 28 July.
 269 A three dimensional (3-D) sonic anemometer (CSAT3) and a gas analyzer (LICOR,
 270 7500A) operating at 20 Hz were deployed at $Z = 3$ m.

271 The net radiation (CNR4, Kipp and Zonen) was measured at 2 m above the ground
 272 and other conventional measurements were performed to estimate the soil heat flux at
 273 three points located about 8 m into the North field. At each point, G was determined
 274 summing the heat flux at 0.08 m below the ground and the ground heat storage above the
 275 soil heat flux plate (Fuchs and Tanner, 1968; Sauer and Horton, 2005). The heat flux was

276 measured with a flux plate (HFP01SC, Hukseflux) placed 0.08 m below the ground. The
277 change in heat storage in the soil above the plate was estimated using the calorimetric
278 method (Fuchs and Tanner, 1968). Changes in soil temperature were measured using a
279 temperature probe (107, Campbell Scientific) placed above the soil heat flux plate at 0.06
280 m below the ground surface and the volumetric water content was measured with a Digital
281 Time Domain Transmissometer (Digital TDT soil moisture sensor, Acclima) adjacent to
282 the flux plate. For water, the specific heat capacity and density were set to 4.19 kJ kg^{-1}
283 K^{-1} and 1 kg m^{-3} , respectively. For dry soil, the specific heat capacity was $0.9 \text{ kJ kg}^{-1} \text{ K}^{-1}$
284 and the bulk density was 1470 kg m^{-3} .

285 **3.2. Method and performance evaluation**

286 *3.2.1 Database*

287 The entire dataset was split into three sub-datasets referred to as bare soil, sparse-canopy,
288 and homogeneous-canopy datasets with samples collected from the beginning of the
289 experiment up to 22 June, from 23 June up to 18 July, and from 19 July up to the end of
290 the experiment, respectively. For each half an hour, regardless of the dataset, two traces
291 were formed; one sampling the measurements at a frequency of 10 Hz and another at 20
292 Hz. The former was obtained by down-sampling (i.e. skipping every other 0.05 s sample
293 in the original 20 Hz series). Therefore, the impact in H and LE estimates when different
294 sizes of fluid elements are resolved was compared. For field applications, this is of main
295 interest with regard to using thicker fine-wire thermocouples (i.e., that are more robust)
296 to measure the temperature of the air and saving space in memory cards. For the bare soil
297 dataset, (Rn-G) was available for a total of 117 half-hourly samples due to damage and
298 power issues at the beginning of the campaign.

299 3.2.2 *Canopy parameters*

300 The zero-plane displacement was neglected for the bare soil dataset because the fraction
301 of canopy cover was small and the mulch and vegetation at tillering were short and sparse.
302 For the other two datasets, it was estimated as $d = 2/3h_c$ (Brutsaert, 1982). The sparse
303 canopy dataset was split in three sub-periods of about 10 days each because the crop was
304 growing. Intermediate values for the pair (h_c, f_c) for each sub-period were (0.4 m, 0.4),
305 (0.6 m, 0.6) and (0.8 m, 0.8), respectively. For the homogeneous dataset, the intermediate
306 pair was (1.05 m, 0.85).

307 3.2.3 *Post-field flux processing and performance evaluation*

308 After correcting the wind field for flow distortion due to transducer shadowing (Horst et
309 al., 2015) and removing samples where mean streamwise directions approached the back
310 of the sonic anemometer (by $\pm 30^\circ$ to avoid flow distortion by the tower mounting), EC
311 sensible and latent heat fluxes, H_{EC} and LE_{EC} , respectively, were determined using the
312 package EddyPro 6.2 (LI-COR Biosciences, Lincoln, NE) with time series at 20 Hz.
313 Samples were filtered for positive H_{EC} and those that accomplished 90% fetch from the
314 observed field.

315 Regardless of the scalar, time exposures and amplitudes for each fluid element in
316 a 30 min scalar trace were determined analyzing the fluctuations observed (Fig. 1, panel
317 c). Thus, for a given fluctuation (signature of a fluid element) in sonic temperature or
318 water vapor concentration traces, the time exposure and amplitude was determined as the
319 time between two consecutive *valleys* and the difference between the peak and the first
320 valley, respectively (Castellví 2018). According to the SEB equation for unstable cases,
321 LE_{FCL} was solved by minimizing Eq. (6) with boundaries $0 \leq LE_{FCL} \leq (Rn - G)$. Once LE_{FCL}
322 was obtained, the traces of sonic temperature were used to estimate the buoyant heat flux
323 using Eq. (5) and the final H_{FCL} was determined after humidity correction (Schotanus et

324 al., 1983). The performance of H_{FCL} and LE_{FCL} was compared against the EC method and
325 discussed in relation to their capability in closing the SEB equation, (H+LE) versus (Rn-
326 G). Comparisons were performed by calculating the slope, the intercept, the coefficient
327 of determination (R^2) of the linear regression analysis, a normalized root mean square
328 error (NRMSE) which was calculated as the RMSE over the mean flux taken as a
329 reference (i.e. the corresponding EC flux in this case), and the mean bias error (MBE)
330 which is defined as $MBE = \frac{1}{N} \sum_{i=1}^{i=N} (y_{est} - y_i)$ where y_{est} and y denote the estimated
331 and the measured reference variable, respectively. Moreover, H_{Est} and LE_{Est} were
332 included in the comparison which involve the stability parameter. Here, approaches to
333 estimate the stability parameter when the sonic anemometer is not available were omitted
334 (i.e., the focus is the FCL formulation which does not involve the stability parameter)
335 and, in a straightforward manner, it was determined using as input the friction velocity
336 and the buoyant heat flux from the sonic anemometer high frequency measurements.

337 **4. Results and discussion**

338 **4.1 Results**

339 For each dataset, Table 1 shows the regression characteristics and model error terms to
340 compare H and LE determined using traces of scalars sampled at 10 Hz against the
341 corresponding EC reference fluxes, and (H+LE) against (Rn-G). The results obtained for
342 H and LE determined using the sampling frequency of 20 Hz differed from the results
343 obtained at 10 Hz are shown in parentheses. Though not shown in Table 1, for each half-
344 hour scalar trace the number of fluid elements resolved at 20 Hz nearly doubled those
345 resolved at 10 Hz. Thus, the different performance shown in Table 1 would partly be
346 related to the amount of small eddies resolved. As an example of an indirect quality
347 control for eddy fluxes determined using the EC and FCL methods, Fig. 2 shows a

348 comparison between $(H_{EC} + LE_{EC})$ and $(H_{FCL} + LE_{FCL})$ determined using scalar traces
349 sampled at 10 Hz versus (Rn-G) for each dataset.

350 *4.1.1 Sensible heat and latent heat fluxes*

351 Regardless of the dataset, sampling frequency and method to estimate H and LE, Table 1
352 shows that the intercepts (int) were small and that the MBE values nearly fall within the
353 accuracy of determining H_{EC} and LE_{EC} using different brands of sonic anemometers
354 (Foken, 2008; Foken and Oncley, 1995).

355 Regardless of the dataset and the method to estimate H and LE, the estimates
356 determined using traces at 10 Hz were in general slightly better correlated with the EC
357 method than using traces at 20 Hz. In any case (i.e., regardless of the frequency), the
358 coefficients R^2 for H and LE were high (the minimum R^2 was 0.80). The slopes obtained
359 show that the H and LE estimates determined using traces at 10 Hz consistently
360 overestimated those calculated using traces at 20 Hz. For sensible heat flux the
361 overestimation was about 30%. For latent heat flux, the overestimation depended slightly
362 on the surface. Regardless of the method, it was about 18% and 15% for the bare soil and
363 the sparse-canopy datasets, respectively. For the homogeneous dataset, LE_{Est} compared
364 higher (about 25%) than using LE_{FCL} (about 10%). Given the generalized small intercepts
365 and MBE values and the high coefficients R^2 , the performance in the slopes lead, in
366 general, to higher NRMSE values at 10 Hz than at 20 Hz.

367 Regardless of the dataset and the sampling frequency, the main difference between
368 the SRSE methods to estimate the sensible heat flux was that H_{FCL} correlated slightly
369 better to the EC method than H_{Est} and the intercepts were slightly smaller using H_{FCL} than
370 H_{Est} . H_{FCL} also generated smaller NRMSE values than H_{Est} and, in general, to slightly
371 smaller MBE values. For latent heat flux, the only one clear pattern observed comparing

372 the two SRSE methods was that the NRMSE values obtained using LE_{FCL} were smaller
373 than using LE_{Est} . The other statistics were similar.

374 *4.1.2 Surface energy balance*

375 Regardless of the dataset and the SRSE method, the slopes comparing the total turbulent
376 flux to the available net surface energy estimated using scalar traces at 10 Hz were slightly
377 closer one than using scalar traces at 20 Hz. The intercepts were, in general, closest to
378 zero at 20 Hz than at 10 Hz. Coefficients R^2 , NRMSE and MBE values did not show
379 dependency on the sampling frequency.

380 In general, the SRSE and EC methods generated a similar surface energy balance
381 closure. In fact, the EC method was not consistently superior to SRSE and, on the basis
382 of NRMSE, the FCL method operating at 10 Hz was the best. For each surface, Fig. 2
383 shows that $(H_{FCL} + LE_{FCL})$ and $(H_{EC} + LE_{EC})$ scattered around $(Rn - G)$ similarly, including
384 in near neutral cases. Thus, the extension of the FCL approach to small values of the
385 stability parameter leads to a performance similar to the EC surface energy balance
386 closure.

387 For bare soil, $(H_{Est} + LE_{Est})$ and $(H_{FCL} + LE_{FCL})$ were highly correlated with $(Rn -$
388 $G)$ which suggests that for this surface a refinement of the parameter p_v , or coefficient 0.5
389 in Eq. (3), would close the surface energy balance better, especially for the FCL method.
390 In practice, a coefficient obtained by forcing closure of surface energy balance could be
391 interpreted as the factor, instead of 0.5, required in Eq. (3). However, it is not clear how
392 to refine Eq. (3) because the reasons for the EC method's lack of closure (about 14% of
393 the available net surface energy) are unknown. Provided that all the unexplained energy
394 by the EC method in the surface energy balance arise from issues inherent in the EC
395 method that are bypassed by the SRSE method (e.g., the need to account for detrending,
396 shadowing, tilt correction, sensor separation and Reynolds decomposition among others),

397 a refinement of Eq. (3) could be obtained by forcing closure of surface energy balance.
398 In practice however, the latter likely would account for a portion of the available net
399 surface energy balance that neither the EC nor the SRSE method can explain (e.g., fluxes
400 associated to mean convection and mesoscale circulations). Further experiments are
401 required to refine Eq. (3) over surfaces dominated by bare soil. However, here, the EC
402 and SRSE methods performed comparably.

403 **4.2 Discussion**

404 By defining (as a rule of thumb) windy conditions when the mean (half-hourly) wind
405 speed observed at $Z = 3$ m was, in general, higher than 1 m/s over a given period
406 (i.e., $(\bar{u} - \sigma_u) > 1$ m/s, where the overbar denotes average and σ_u is the standard
407 deviation of the mean wind speed), it was observed throughout the campaign that windy
408 conditions prevailed for the bare dataset and for the first 20 days of the sparse-canopy
409 dataset. Lighter winds (i.e., $(\bar{u} - \sigma_u) < 1$ m/s) and clear sky days were the prevailing
410 atmospheric conditions for the last 10 days of the sparse - canopy dataset and for the
411 entire homogeneous – canopy dataset. Calm conditions imply a lack of good ramp
412 formation by shear in the traces and that the scalar exchange around midday under clear
413 skies is dominated by large convective eddies. Both atmospheric conditions are
414 compromising because a regular and well-defined canopy scale coherent motions are
415 crucial for the SRSE method and large eddies are poorly sampled within a half-hourly
416 basis. These factors may explain the higher portion of the unexplained available net
417 surface energy by the EC method in the homogeneous dataset (Sakai et al., 2001).

418 Given the challenge for any approach to surface flux estimation to perform better
419 than the EC method, the performance obtained by the FCL approach should be
420 highlighted. Across the dataset, the FCL method had excellent closure, in fact, even
421 slightly better than for the EC method. Throughout the campaign, the EC method was

422 able to explain between 81% and 92% of the available net surface energy for the different
423 surface types, and for all the data it was unable to explain 18% of the available net surface
424 energy. Consistently (i.e., regardless of the surface), energy balance closure tests show
425 that the R^2 coefficient for the EC method was between the values obtained with the two
426 SRSE methods. The amounts of unexplained energy by the EC method may be split into
427 two distinct general source of errors: one related to the EC method that are bypassed using
428 the SRSE method (i.e., SRSE does not require measurement of the wind field) and the
429 other related to common issues that are not accounted for by both EC and SRSE methods.
430 Currently, it is unknown how to quantify the portion of the total unexplained energy
431 corresponding to each error's source. Consequently, it is difficult to assure that the
432 sampling frequency really played a role in the SRSE method's results and future research
433 is required. To confirm these findings, the post-field EC data requirements may play a
434 role in its performance and energy balance closure.

435 Regardless, the FCL approach does not share instrumentation to estimate H and
436 LE, and so it may be used to fill gaps in series of EC-derived flux estimates. In practice,
437 the results in Table 1 allow recommending the FCL method using a sampling frequency
438 of 10 Hz because the mean wind speed is not required as an input and it is convenient to
439 use thicker thermocouples because they are more affordable and less prone to damage.

440 **5. Conclusions**

441 Combining the frameworks of transilient and Surface Renewal theories with the
442 analysis of Small fluctuations in scalar traces, Eddies (the SRSE method), the Free
443 Convection Limit (FCL) approach for estimating the sensible and latent heat fluxes was
444 derived to avoid measurement of the wind speed. Along a full cotton growing season and
445 taking as a reference the EC method operating at 20 Hz, it was found that the EC and FCL
446 methods performed similarly when taking measurements in the inertial sub-layer.

447 Performance was especially strong during periods where the mean (half-hour) wind
448 speeds measured at 3 m above the ground were about 1 m s^{-1} or higher. If stable conditions
449 are not met, this study corroborates that FCL approaches may extend up to near neutral
450 cases for surface types commonly encountered in croplands. The SRSE method did not
451 show a dependency on the sampling frequency. Therefore, in practice, sensible heat flux
452 estimates using the FCL approach operating at 10 Hz appear convenient to apply at the
453 farm level and for studies involving large spatial scales, such as in the framework of
454 remote sensing, because the use of thick thermocouples allow denser spatial coverage and
455 low cost monitoring. Though further research is required (especially over surfaces with a
456 high portion of bare soil and light winds), given that this study involved different surface
457 types, here it is concluded that (1) the FCL approach for the SRSE method can be
458 recommended for unstable cases to perform sensible heat flux and latent heat flux model
459 calibration when the wind speed is not available, (2) it may be considered to fill gaps in
460 half-hourly EC flux series and (3) appears to be a convenient approach to estimate the
461 sensible heat flux.

462 **Acknowledgments**

463 This work was supported under project RTI2018-098693-B-C31 Ministerio de
464 Ciencia, Economía y Universidades of Spain. Data collection and analysis was partially
465 funded through the U.S. Geological Survey (USGS) under Cooperative Agreements
466 G11AP20066 and G16AP00040 administered by the Arkansas Water Resources Center
467 at the University of Arkansas; the United States Department of Agriculture (USDA),
468 Natural Resources Conservation Service under Cooperative Agreement 68-7103-17-119,
469 and the United States National Science Foundation (NSF) under Award 1752083. We
470 acknowledge the assistance of Yin-Lin “Jack” Chiu and Bryant Fong in data collection
471 and analysis. The views and conclusions contained in this document are those of the

472 authors and do not represent the opinions or policies of the USGS, NSF, or USDA;
473 mention of trade names or commercial products does not constitute endorsement by any
474 entity.

475

476 **References**

477 Albertson, J. D., Parlange, M. B., Katul, G.G., Chu, C., Striker, H., Tyler, S., 1995.
478 Sensible Heat Flux From Arid Regions: A Simple Flux-Variance Method. *Water Resour.*
479 *Res.* 31(4). <http://doi.org/10.1029/94WR02978>.

480 Alfieri, J.G., Kustas, W.P., Prueger, J.H., Hipps, L.E., Evett, S.R., Basara, J.B., Neale,
481 C.M.U., French, A.N., Colaizzi, P., Agam, N., Cosh, M.H., Chávez, J.L., Howell, T.A.,
482 2012. Estimation of surface energy fluxes using surface renewal and flux variance
483 techniques over an advective irrigated agricultural site. *Adv. Water Resour.* 50, 62-78.

484 Aminzadeh, M., Breitenstein, D., Or, D., 2017. Characteristics of Turbulent Airflow
485 Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer.
486 *Bound.-Lay. Meteorol.* 165, 519–534. <http://doi.org/10.1007/s10546-017-0279-5>

487 Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A.S.,
488 Martin, P.H., Berbigier, P., Bernhofer, C., Clemen, R., Elbers, J., Granier, A., Grünwald,
489 T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., Vesala, T.,
490 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX
491 methodology. *Adv Ecol Res.* 30, 113–175.

492 Brunsell, N.A., Mechem, D.B., Anderson, M.C., 2011. Surface heterogeneity impacts on
493 boundary layer dynamics via energy balance partitioning. *Atmos. Chem. Phys.* 11, 3403–
494 3416.

495 Brutsaert, W., 1982. Evaporation into the Atmosphere. *Environmental Fluid Mechanics.*
496 Kluwer Academic Publishers. Dordrecht/Boston/London (299 pp).

497 Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and
498 Regulatory Applications. LiCor Biosciences, Lincoln, Nebraska.

499 Castellví, F., 2018. An advanced method based on surface renewal theory to estimate the
500 friction velocity and the surface heat flux. *Water Resour. Res.* 54.
501 <http://doi.org/10.1029/2018WR022808>.

502 Castellví, F., Oliphant, A., 2017. Daytime sensible and latent heat flux estimates for a
503 mountain meadow using in-situ slow-response measurements. *Agr. Forest Meteorol.* 236,
504 135–144.

505 Castellví, F., 2013. A method for estimating the sensible heat flux in the inertial sub-layer
506 from high-frequency air temperature and averaged gradient measurements. *Agr. Forest*
507 *Meteorol.* 180, 68-75.

508 Castellví, F., 2004. Combining surface renewal analysis and similarity theory: A new
509 approach for estimating sensible heat flux. *Water Resour. Res.* 40, W05201.
510 <http://doi.org/10.1029/2003WR002677>.

511 Charuchittipan, D., Babel, W., Mauder, M., Leps, J.P., Foken, T., 2014. Extension of the
512 averaging time in eddy-covariance measurements and its effect on the energy balance
513 closure. *Bound.-Lay. Meteorol.* 152 - 303. <http://doi:10.1007/s10546-014-9922-6>.

514 Chen, W., Novak, M.D., Black, T.A., Lee, X., 1997. Coherent eddies and temperature
515 structure functions for three contrasting surfaces. Part I. Ramp model with finite micro-
516 front time. *Bound.-Lay. Meteorol.* 84, 99-123.

517 Danckwerts, P., 1951. Significance of liquid-film coefficients in gas absorption. *Ind. Eng.*
518 *Chem.* 43(6), 1460–1467.

519 De Bruin, H.A.R., Kohsiek, W., Vandenhurk, B.J.J.M., 1993. A verification of some
520 methods to determine the fluxes of momentum, sensible heat, and water vapor using
521 standard deviation and structure parameter of scalar meteorological quantities. *Bound.-*
522 *Lay. Meteorol.* 63 (3), 231-257.

523 Dominguez, F., Kumar, P., Vivoni, E. R., 2008. Precipitation recycling variability and
524 ecoclimatological stability—A study using NARR data. Part II: North American
525 monsoon region. *J. Climate.* 21, 5187–5203.

526 Drexler, J. Z., Snyder, R. L., Spano, D., Paw U, K.T., 2004. A review of models and
527 micrometeorological methods used to estimate wetland evapotranspiration. *Hydrol.*
528 *Process.* 18, 2071–2101. <http://doi: 10.1002/hyp.1462>.

529 Drexler, J. Z., Anderson, F.E., Snyder, R. L., 2008. Evapotranspiration rates and crop
530 coefficients for a restored marsh in the Sacramento–San Joaquin Delta, California, USA.
531 *Hydrol. Process.* 22, 725–735. <http://doi: 10.1002/hyp.6650>.

532 Dyer, A.J., 1974. A review of flux-profile relationships. *Bound.-Lay. Meteorol.* 7, 363–
533 372.

534 Eder, F., De Roo, F., Kohnert, K., Desjardins, R.L., Schmid, H.P., Mauder, M., 2014.
535 Evaluation of two energy balance closure parametrizations. *Bound.-Lay. Meteorol.* 151,
536 195. <http://doi.org/10.1007/s10546-013-9904-0>

537 Higbie, R., 1935. The rate of absorption of a pure gas into a still liquid during short
538 periods of exposure. *Trans. AIChE*, 31, 365–388.

539 Fang, L., Yang, J., White, M., Liu, Z., 2018. Predicting potential fire severity using
540 vegetation, topography and surface moisture availability in a Eurasian Boreal Forest
541 landscape. *Forest*. 9, 130. <http://doi.org/10.3390/f9030130>.

542 Foken, T., 2008. *Micrometeorology*. Springer-Verlag (Berlin – Heidelberg) Publishers,
543 306 pp.

544 Foken, T., Oncley, S.P., 1995. Workshop on instrumental and methodical problems of
545 land surface flux measurements. *Bull. Amer. Meteorol. Soc.* 76, 1191–1193.

546 Foken, T., Aubinet, M., Finnigan, J.J., Leclerc, M.Y., Mauder, M., Paw U, K.T., 2011.
547 Results of a panel discussion about the energy balance closure correction for trace
548 gases. *Bull. Am. Meteorol. Soc.* 92, ES13–ES18. <https://doi.org/10.1175/2011BAMS3130.1>.

550 Fong, B., Reba, M.L., Teague, T.G., Runkle, B.R.K., Suvočarev, K., 2020, Eddy
551 covariance measurements of carbon dioxide and water fluxes in US mid-south cotton
552 production, *Agric., Ecosyst. & Env.*, 292, 106813,
553 <https://doi.org/10.1016/j.agee.2019.106813>.

554 French, A.N., Alfieri, J.G., Kustas, W.P., Prueger, J.H., Hipps, L.E., Chávez, J.L., Evett,
555 S.R., Howell, T.A., Gowda, P.H., Hunsaker, D.J., Thorp, K.R., 2012. Estimation of
556 surface energy fluxes using surface renewal and flux variance techniques over an
557 advective irrigated agricultural site. *Adv. Water Resour.* 50, 91-105.

558 Fuchs, M., Tanner, C.B., 1968. Calibration and field test of soil heat flux plates. *Soil Sci.*
559 *Soc. Am. Proc.* 32, 326–328.

560 Haghghi, E., Or, D., 2015. Linking evaporative fluxes from bare soil across surface
561 viscous sublayer with the Monin–Obukhov atmospheric flux-profile estimates. *J. Hydrol.*
562 525, 684–693.

563 Haghghi E., Or, D., 2013. Evaporation from porous surfaces into turbulent airflows:
564 coupling eddy characteristics with pore scale vapor diffusion. *Water Resour. Res.* 49,
565 8432–8442. <http://doi:10.1002/2012WR013324>.

566 Haymann, N., Lukyanova, V., Tanny, J., 2019. Effects of variable fetch and footprint on
567 surface renewal measurements of sensible and latent heat fluxes in cotton. *Agr. Forest
568 Meteorol.* 124, 237-251. <http://doi.org/10.1016/j.agrformet.2019.01.010>.

569 Horst, T.W., Semmer, S.R., Maclean, G., 2015. Correction of a Non-orthogonal, Three-
570 Component Sonic Anemometer for Flow Distortion by Transducer Shadowing. *Bound.-
571 Lay. Meteorol.* 155, 371–395. <http://doi.org/10.1007/s10546-015-0010-3>.

572 Hsieh, C-I., Katul, G.G., 1996. Estimation of momentum and heat fluxes using dissipation
573 and flux variance methods in the unstable surface layer. *Water Resour. Res.* 32(8), 2453–
574 2462.

575 Huang, J., Lee, X., Patton, E., 2008. A modelling study of flux imbalance and the
576 influence of entrainment in the convective boundary layer. *Bound.-Lay. Meteorol.* 127,
577 273–292.

578 Kanda, M., Inagaki, A., Letzel, M.O., Raasch, S., Watanabe, T., 2004. LES Study of the
579 energy imbalance problem with eddy covariance fluxes. *Bound.-Lay. Meteorol.* 110,
580 381–404.

581 Katul, G.G., Hsieh, C-I., Oren, R., Ellsworth, D., Philips, N., 1996. Latent and sensible
582 heat flux predictions from a uniform pine forest using surface renewal and flux variance
583 methods. *Bound.-Lay. Meteorol.* 80, 249-282.

584 Kohsiek, W., 1982. Measuring C_T^2 , C_Q^2 , and C_{TQ} in the unstable surface-layer, and
585 relations to the vertical fluxes of heat and moisture. *Bound.-Lay. Meteorol.* 24(1), 89–
586 107.

587 Monin, A.S., Yaglom, A.M., 1971. *Statistical Fluid Mechanics: Mechanics of*
588 *Turbulence*. Vol. 1, The MIT Press, 782 pp.

589 Noltz, R., Krammerer, G., Cepuder, P., 2013. Interpretation of lysimeter weighing data
590 affected by wind. *Journal of Plant Nutrition and Soil Science*, 176(2), 200-208.

591 Paw U., K.T, Qiu, J., Su, H-B., Watanabe, T., Brunet, Y., 1995. Surface renewal analysis:
592 a new method to obtain scalar fluxes without velocity data. *Agr. Forest Meteorol.* 74, 119–
593 137.

594 Robles-Morua, A., Vivoni, E.R., Mayer, A.S., 2012. Distributed Hydrologic Modeling in
595 Northwest Mexico Reveals the Links between Runoff Mechanisms and
596 Evapotranspiration. *J. Hydrometeorol.* 13, 785-805. <http://doi.org/10.1175/JHM-D-11-0112.1>.

598 Sakai, R., Fitzjarrald, D., Moore, K. E., 2001. Importance of low-frequency contributions
599 to eddy fluxes observed over rough surfaces. *J. Applied Meteorol.* 40, 2178–2192.

600 Sauer, T.J., Horton, R., 2005. Soil heat flux. Chapter 7 in: J.L. Hatfield and J.M. Baker
601 (Editors), *Micrometeorology in agricultural systems*. ASA Monograph 47: 131-154.
602 American Society of Agronomy, Madison, Wisconsin.
603 <http://doi.org/10.2134/agronmonogr47.c7>.

604 Schotanus, P., Nieuwstadt, F.T.M., DeBruin, H.A.R., 1983. Temperature measurement
605 with a sonic anemometer and its application to heat and moisture fluctuations. *Bound.-*
606 *Lay. Meteorol.* 26, 81-93.

607 Seo, Y.G., Lee, W.K., 1988. Single-eddy model for random surface renewal.
608 *Chem.Eng.Sci.* 43(6), 1395–1402. [http://doi.org/10.1016/0009-2509\(88\)85112-1](http://doi.org/10.1016/0009-2509(88)85112-1).

609 Shapland, T.M., McElrone, A.J., Snyder, R.L., Paw U, K.T., 2012. Structure function
610 analysis of two-scale scalar ramps. Part I: theory and modelling. *Bound.-Lay. Meteorol.*
611 145, 5–25. <http://doi.org/10.1007/s10546-012-9742-5>.

612 Silva, D., Meza, F. J., Varas, E., 2010. Estimating reference evapotranspiration (ET₀)
613 using numerical weather forecast data in central Chile. *J. Hydrol.* 382, 64–71.

614 Snyder, R.L., Spano, D., Paw U, K.T., 1996. Surface renewal analysis for sensible and
615 latent heat flux density. *Bound.-Lay. Meteorol.* 77, 249-266.

616 Stagl J., Mayr, E., Koch, H., Hattermann, F.F., Huang, S., 2014. Effects of Climate
617 Change on the Hydrological Cycle in Central and Eastern Europe. In: Rannow S., Neubert
618 M, eds. *Managing Protected Areas in Central and Eastern Europe Under Climate Change.*
619 *Advances in Global Change Research*, vol 58. Springer, Dordrecht.

620 Steinfeld, G., Letzel, M., Raasch, S., Kanda, M., Inagaki, A., 2007. Spatial
621 representativeness of single tower measurements and the imbalance problem with eddy-
622 covariance fluxes: results of a large-eddy simulation study. *Bound.-Lay. Meteorol.* 123,
623 77–98.

624 Stoy, P.C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M.A.,
625 Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D.,
626 van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L.,
627 Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P.,
628 Sottocornola, M., Spano, D., Vaccari, F., Varlagin, A., 2013. A data-driven analysis of
629 energy balance closure across FLUXNETresearch sites: the role of landscape scale
630 heterogeneity. *Agric For Meteorol.* 171, 137–152.

631 Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.Y., Novick, K.A., McCarthy, H.R.,
632 Oishi, A.C., Uebelherr, J.M., Kim, H.S., Oren, R.A.M., 2006. Separating the effects of
633 climate and vegetation on evapotranspiration along a successional chrono sequence in the
634 southeastern US. *Glob Change Biol.* 12, 2115–2135.

635 Stull, R.B., 1988. An introduction to boundary layer meteorology. Kluwer, Dordrecht 666
636 pp.

637 Suvočarev, K., Castellví, F., Reba, M.L., Runkle, B.R.K., 2019. Surface renewal
638 measurements of H, λ E and CO₂ fluxes over two different agricultural systems. *Agr.*
639 *Forest Meteorol.* <http://doi.org/10.1016/j.agrformet.2019.107763>.

640 Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Teyers, T.P.,
641 Prueger, J.H., Starks, P.J., Wesely, M.L., 2000. Correcting eddy-covariance flux
642 underestimates over a grassland. *Agr. Forest Meteorol.* 103(3), 279-300

643 Wang, J., Brass, R.L., 2010. An Extremum Solution of the Monin–Obukhov Similarity
644 Equations. *J. Atmos. Sci.* 785 - 499. <http://doi.org/10.1175/2009JAS3117.1>.

645 Li, P., Wang, Z.H., 2019. Estimating evapotranspiration over vegetated surfaces based on
646 wet patch patterns. *Hydrology Research*, 50, 1037-1046.

647 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D.D., Berbigier, P.,
648 Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law,
649 B.E., Kowalski, A., Meyers, T.P., Moncrieff, J., Monson, R., Oechel, W., Tenhumen,
650 J., Valentini, R., Verma, S., 2002. Energy balance closure at FLUXNET sites. *Agric.*
651 *For. Meteorol.* 113, 223–143.

652 Yang, J., Wang, Z.H., 2014. Land surface energy partitioning revisited: A novel approach
653 based on single depth soil measurement. *Geophysical Research Letters*, 41, 8348-8358.

654 Zapata, N., Martínez-Cob, A., 2001. Estimation of sensible and latent heat flux from
655 natural sparse vegetation surfaces using surface renewal. *J. Hydrol.* 254, 215–228.
656 [http://doi.org/10.1016/S0022-1694\(01\)00495-4](http://doi.org/10.1016/S0022-1694(01)00495-4).

657 Zapata, N., Martínez-Cob, A., 2002. Evaluation of the surface renewal method to estimate
658 wheat evapotranspiration. *Agric. Water Manage.* 55 (2), 141-157.
659 [http://doi.org/10.1016/S0378-3774\(01\)00188-3](http://doi.org/10.1016/S0378-3774(01)00188-3).

660 Zhao, X., Liu, Y., Tanaka, H., Hiyama, T., 2010. A comparison of flux variance and
661 surface renewal methods with eddy covariance. *IEEE Journal of selected topics in applied*
662 *earth observations and remote sensing*, 3 (3), 345-350.

663 Zhu, W., Van Hout, R., Katz, J., 2007. On the flow structure and turbulence during sweep
664 and ejection events in a wind-tunnel model canopy. *Bound.-Layer Meteor.* 124, 205–233.

665

666

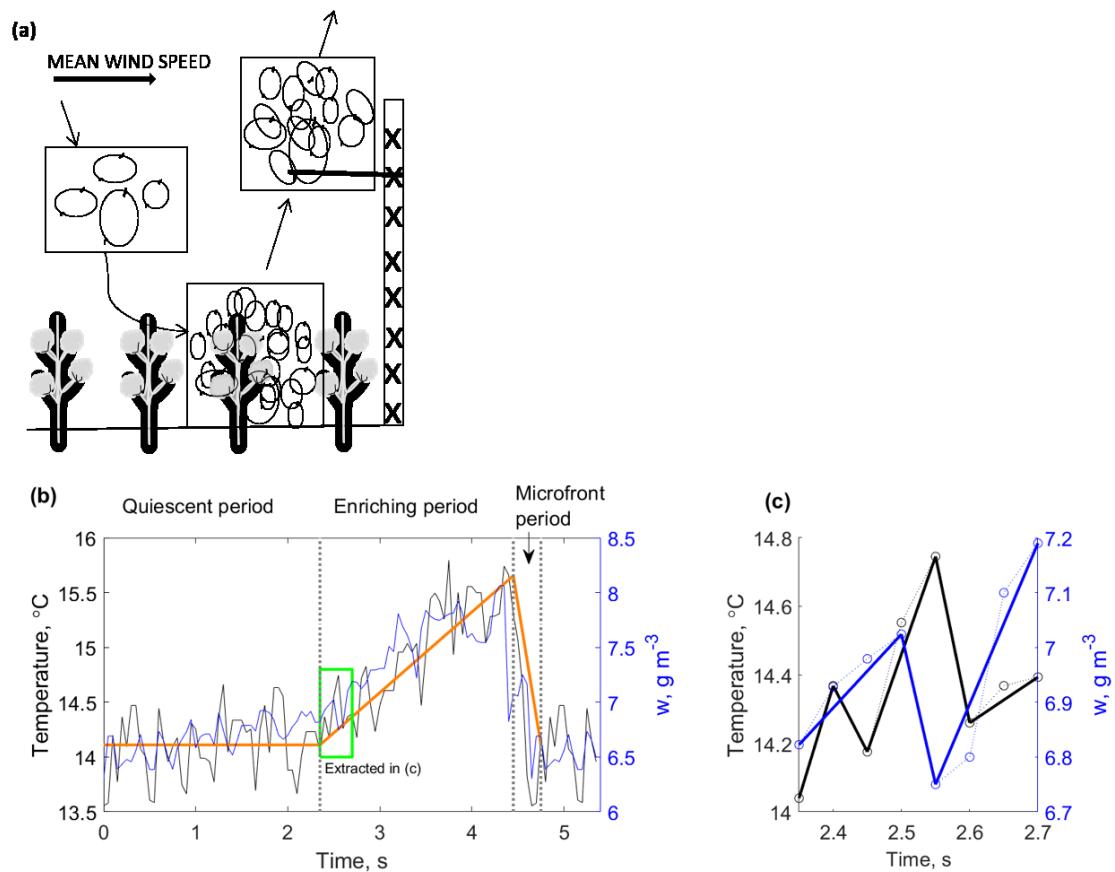
667 Table 1. Comparison of sensible heat and latent heat flux estimates using trace of scalars
 668 sampled at 10 Hz versus the corresponding EC results and the total eddy flux versus the
 669 available net surface energy for the bare, sparse - canopy and homogeneous – canopy
 670 datasets. N_s is the total number of samples available, s , int and R^2 are the slope, the
 671 intercept and the coefficient of determination of the linear regression analysis,
 672 respectively. NRMSE is the relative root mean square error and MBE is the mean bias
 673 error. In parentheses are the results using a sampling frequency of 20 Hz if different from
 674 10 Hz.

Surface:	Bare soil dataset ($N_s=1062$, $N^*=117$)				
Comparison:	s	int (Wm^{-2})	R^2	NRMSE	MBE (Wm^{-2})
H_{Est} vs H_{EC}	1.24 (0.97)	10	0.82 (0.80)	0.72 (0.49)	-27 (-8)
H_{FCL} vs H_{EC}	1.26 (0.87)	2 (3)	0.90 (0.87)	0.56 (0.35)	-21 (5)
LE_{Est} vs LE_{EC}	1.02 (0.81)	9 (8)	0.83 (0.81)	0.45 (0.43)	-11 (13)
LE_{FCL} vs LE_{EC}	0.96 (0.82)	5 (4)	0.94 (0.93)	0.16 (0.25)	1 (24)
$(H_{EC}+LE_{EC})$ vs $(Rn-G)^*$	0.86	9	0.84	0.32	-19
$(H_{Est}+LE_{Est})$ vs $(Rn-G)^*$	0.85 (0.68)	9 (4)	0.75 (0.79)	0.42 (0.47)	-25 (-65)
$(H_{FCL}+LE_{FCL})$ vs $(Rn-G)^*$	0.92 (0.76)	-2 (-3)	0.87 (0.94)	0.31 (0.36)	-21 (-58)
Surface:	Sparse - canopy dataset ($N_s = 609$)				
H_{Est} vs H_{EC}	1.16 (0.89)	7 (9)	0.85 (0.80)	0.56 (0.44)	-15 (-4)
H_{FCL} vs H_{EC}	1.03 (0.70)	0 (2)	0.93 (0.92)	0.27 (0.42)	-1 (-12)
LE_{Est} vs LE_{EC}	1.12 (0.90)	2 (0)	0.92 (0.90)	0.31 (0.27)	-24 (19)
LE_{FCL} vs LE_{EC}	0.86 (0.78)	13 (11)	0.85	0.21 (0.27)	19 (33)
$(H_{EC}+LE_{EC})$ vs $(Rn-G)$	0.91	18	0.83	0.21	9
$(H_{Est}+LE_{Est})$ vs $(Rn-G)$	1.06 (0.91)	32 (20)	0.73 (0.71)	0.35 (0.31)	-45 (10)
$(H_{FCL}+LE_{FCL})$ vs $(Rn-G)$	0.98 (0.83)	-8 (-6)	0.95 (0.95)	0.12 (0.23)	13 (52)
Surface:	Homogeneous - canopy dataset ($N_s = 1703$)				
H_{Est} vs H_{EC}	1.38 (1.07)	1 (4)	0.85 (0.81)	0.77 (0.52)	-20 (-7)
H_{FCL} vs H_{EC}	1.28 (0.88)	0 (1)	0.94 (0.93)	0.49 (0.27)	-13 (4)
LE_{Est} vs LE_{EC}	1.22 (0.96)	5 (4)	0.89 (0.88)	0.46 (0.28)	-41 (3)
LE_{FCL} vs LE_{EC}	1.08 (0.99)	6 (-1)	0.88	0.22 (0.18)	-23 (6)
$(H_{EC}+LE_{EC})$ vs $(Rn-G)$	0.80	14	0.87	0.24	52

($H_{Est}+LE_{Est}$) vs (Rn-G)	1.00 (0.83)	46 (27)	0.72	0.35 (0.32)	-41 (29)
($H_{FCL}+LE_{FCL}$) vs (Rn-G)	1.04 (0.89)	-12	0.96 (0.95)	0.11 (0.19)	0 (50)

675

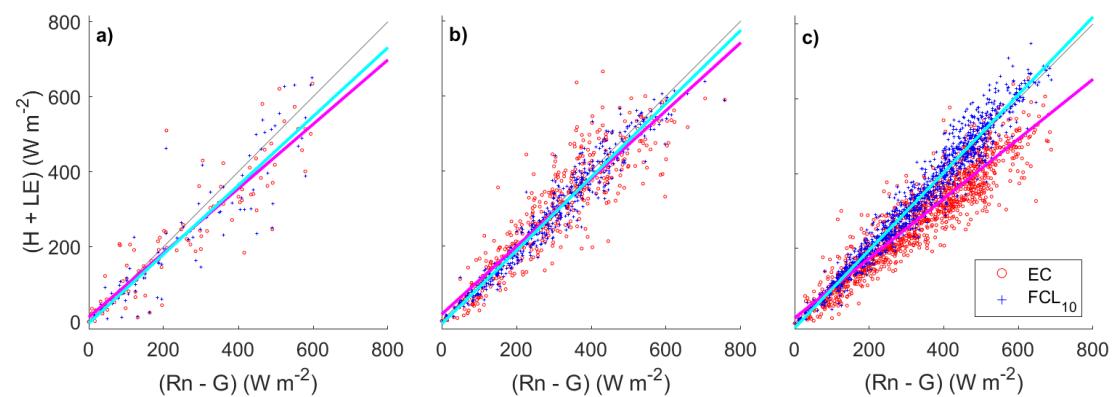
676 Figure Captions


677 Figure 1. A descending cool and dry large parcel of air will remain in contact with the
 678 surface for a given period until, by continuity, it will be replaced by a fresh parcel of air
 679 (panel a). The signature of the coherent motion (a) in scalar traces at the measurement
 680 height is modelled by a large ramp-like shape (thick orange) as shown in panel b for the
 681 actual sonic temperature (T) change (thin black solid, left y-axis) and water vapor
 682 concentration (W) change (thin blue solid, right y-axis) with time. The large ramp-like
 683 shape is a composition of three phases (vertical dotted lines): a quiescent period, a
 684 gradually enriching (sensible heat and moisture) period and an ejection period
 685 (microfront). A population of fluid elements remain attached to the large-parcel ejected
 686 (a). These are identified by fluctuations embedded in the large ramp-like shape (b) whose
 687 signatures are modelled as a small ramp-like shape without quiescent period. This is
 688 shown in panel c, zoom of the green box (b), which identifies in the T trace (dotted black)
 689 two fluid elements (thick black) and one fluid element (thick blue) in the W trace (dotted
 690 blue line).

691

692 Figure 2. Comparison of ($H_{EC}+LE_{EC}$) (red circles) and ($H_{FCL}+LE_{FCL}$) determined using
 693 traces sampled at 10 Hz (blue crosses) versus (Rn-G) for all the data over a) partly
 694 mulched bare soil, b) growing crop and c) mature crop cotton field. The 1:1 line (grey)
 695 and linear regression lines (blue, solid for 10 Hz; pink, solid for EC) are also shown.

696


697 Figure 1

698

699 Figure 2

700

701