

Article

www.acsanm.org

# Composites Composed of Polydopamine Nanoparticles, Graphene 2 Oxide, and $\varepsilon$ -Poly-L-lysine for Removal of Waterborne Contaminants and Eradication of Superbugs

- <sup>4</sup> Avijit Pramanik,<sup>†</sup> Kaelin Gates,<sup>†</sup> Ye Gao,<sup>†</sup> Qinku Zhang,<sup>†</sup> Fengxiang X. Han,<sup>†</sup> Salma Begum,<sup>†</sup> Chris Rightsell,<sup>‡</sup> Dhiraj Sardar,<sup>‡</sup> and Paresh Chandra Ray\*,<sup>†</sup>
- 6 †Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
- <sup>7</sup>Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States
- 8 Supporting Information

9

10

11

12

13

15

16

17

18

19

20

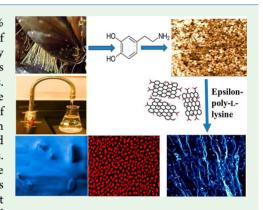
21

22

23

24

2.5


26

27

28 29

30

**ABSTRACT:** The World Health Organization (WHO) estimates that 30% people in the world lack access to safe drinking water due to the presence of toxic waterborne contaminants, which kills more than 7.6 million children every year. Marine mussels secure themselves in the environment via foot proteins containing 3,4-dihydroxy-L-phenylalanine (DOPA) and lysine amino acids. Inspired by mussel surface chemistry, in the current paper, we report the development of novel composite nanoparticles via functionalization of polydopamine nanoparticle with graphene oxide and  $\varepsilon$ -poly-L-lysine, which can be used in decontamination of toxic waterborne contaminants and disinfection of drug resistance pathogens from environmental water samples. Reported composite nanoparticles with specific surface area 410 m<sup>2</sup>g<sup>-1</sup>, pore volume 0.620 cm<sup>3</sup> g<sup>-1</sup>, and pore size between 2 and 130 nm have been used as channels for water passage and captured toxic metals as well as drug resistant pathogens. The surface oxygen-containing groups from GO and the functional

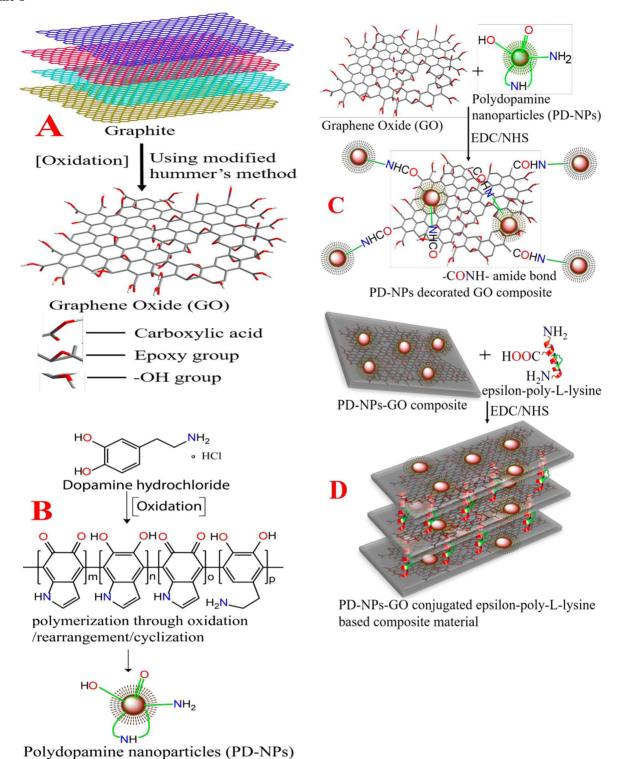


groups of catechols and amines in PD nanoparticles have been used as active sites for decontamination of heavy metals ions.  $\varepsilon$ -Poly-L-lysine, a natural antimicrobial peptide, has been attached to the composite nanoparticle for killing of superbugs captured by the membrane. Reported data demonstrated that composite nanoparticles can be used for efficient separation of several heavy toxic metals such as  $Cr^6$ +,  $Pb^{2+}$ ,  $Cu^{2+}$ ,  $Hg^{2+}$ , and  $Zn^{2+}$  from environmental water samples. The same membrane also can be used for 100% separation and eradication of different superbugs such as  $\beta$ -lactamase (ESBL)-producing *Klebsiella pneumoniae* (KPN) and methicillin-resistant *Staphylococcus aureus* (MRSA). Possible mechanisms for water contaminant separation and disinfection of superbugs using composite nanoparticles are discussed.

KEYWORDS: polydopamine nanoparticles, graphene oxide,  $\epsilon$ -poly-L-lysine, waterborne contamination,

31 eradication of multidrug-resistant superbugs

# 1. INTRODUCTION


32 According to the World Health Organization (WHO) and the 33 United Nations (UN), 3 in 10 people in the world lack access to 34 safe drinking water due to toxic waterborne pollutant 35 infection.<sup>1,2</sup> Due to agricultural, medical, and other industrial 36 pollutants contamination, common water sources are infected 37 by heavy toxic metals such as As<sup>3+</sup>, Pb<sup>2+</sup>, Cu<sup>2+</sup>, Hg<sup>2+</sup>, and Zn<sup>2</sup>, 38 which raised huge concerns in our society for potential 39 hazardous impacts on health. 1-4 As per UNICEF data published 40 in 2018, waterborne diseases due to pathogenic bacteria 41 infection in drinking water kill more than 7.6 million children 42 every year in our society. 5-7 According to the Centers for 43 Disease Control and Prevention (CDC) data published in 44 2018, 5-7 multidrug-resistant superbugs such as methicillin-45 resistant Staphylococcus aureus (MRSA) and  $\beta$ -lactamase 46 (ESBL)-producing Klebsiella pneumoniae (KPN) are responsible 47 for more than 2 million hospital-acquired infections and around 48 100,000 deaths annually. 5-7 Driven by the continuous rise of toxic metal concentrations in water and the number of new types 49 of superbug strains in our society, there is an urgent demand for 50 the search for new types of water separation membranes for the 51 decontamination and disinfection of waterborne pollutants. 52 Here we report the design of mussels inspired surface chemistry 53 based polydopamine nanoparticle (PD-NP) attached graphene 54 oxide (GO) conjugated  $\varepsilon$ -poly-L-lysine ( $\varepsilon$ -PL) based composite 55 nanoparticles, as shown in Scheme 1, which has capability for 56 s1 decontamination of toxic waterborne pollutants and disinfection 57 of superbugs from environmental water samples.

Over billions of years of evolution, nature has optimized 59 materials with unique combinations of functions to achieve 60 maximal performance in this environment. For example, 61 marine mussels are well-known to be the masters of adhesion 62

Received: January 25, 2019 Accepted: April 8, 2019 Published: April 15, 2019



### Scheme 1<sup>a</sup>



"(A) Development of graphene oxide from graphite using Hummer's method. (B) Development of polydopamine nanoparticle from polydopamine via polymerization. (C) Synthetic procedures we have used to develop PD-NP attached two dimensional GO. (D) Synthetic procedures we have used to develop PD-NP attached GO conjugated ε-PL based three-dimensional composite nanoparticle.

63 due to the presence of Mytilus edulis foot protein-5, which 64 contain 3,4-dihydroxy-L-phenylalanine (DOPA) and lysine 65 (Lys). 20-28 At the molecular level, catechol from DOPA and 66 amine from lysine in the Mytilus edulis foot protein are believed 67 to be highly crucial for achieving strong adhesion proper-68 ties. 20-28 Catecholamines including dopamine are well

documented to be considered as small-molecule mimics of the 69 adhesive proteins of mussels.  $^{14-20}$  Due to the widespread use of  $_{70}$ mussel-inspired surface chemistry using dopamine and 71 lysine,  $^{20-28}$  we have reported the design of a PD-NP attached  $_{72}$ GO conjugated  $\varepsilon$ -PL based composite nanoparticle which shows 73 promise as a versatile platform for the separation of toxic 74

ACS Applied Nano Materials Article

75 waterborne pollutants like heavy metals and superbugs, as well as 76 disinfection of superbugs.

Graphene oxide (GO), developed via strong oxidation of graphene, contains a huge amount of oxygen-containing functional groups such as hydroxyl, carboxyl, and epoxy, on both basal planes and edges.<sup>29–40</sup>

In the last few years, we and other groups have reported that 82 GO is highly useful for the development of two-dimensional 83 (2D) and three-dimensional (3D) composites with significant 84 potential for broad use in water purification applications. 34-42 In 85 our design, the surface oxygen-containing groups from GO in 86 the membrane allow removal of positively charged heavy metal 87 irons via electrostatic interaction, In the reported three-88 dimensional composite nanoparticle, dopamine plays multi-89 functional roles and those are the formation of polydopamine 90 (PD) nanoparticles from dopamine hydrochloride in the 91 presence of tris buffer as well as surface functionalization agents 92 for graphene oxides to develop composite nanoparticles with plenty of interconnected pores with pore size between 2 and 130 94 nm, which has been used as channels for water passage. Since the 95 surfaces of PD nanoparticles have abundant functional groups of 96 catechols and amines, in our design, those surface functional 97 groups have been used as active sites for decontamination of 98 water via interaction with heavy metal ions. Since the sizes of 99 superbugs are 1  $\mu$ m and above whereas the pore size of the 100 membrane is below 300 nm, all superbugs are captured by the 101 membrane, because superbugs are not able to pass through the 102 membrane. We have used  $\varepsilon$ -poly-L-lysine, a natural antimicrobial 103 peptide, 43-45 for killing of superbugs captured by the 104 membrane. Since  $\varepsilon$ -poly-L-lysine is known to kill micro-105 organisms via disruption of a cell membrane, it has been used 106 as food preservative in industry very often. 43-45 In our design, 107 for the disinfection of superbugs we have developed  $\varepsilon$ -poly-L-108 lysine attached PD nanoparticle conjugated composite nano-109 particle, as shown in Scheme 1. Reported data in the paper shows 110 that  $\varepsilon$ -poly-L-lysine attached PD nanoparticle conjugated 111 composite nanoparticles can be used for efficient separation of 112 several waterborne toxic metals such as Cr<sup>6+</sup>, Pb<sup>2+</sup>, Cu<sup>2+</sup>, Hg<sup>2+</sup>, 113 Cr<sup>3+</sup>, and Zn<sup>2+</sup> from environmental water samples from different 114 sources. We have also demonstrated that the same architecture 115 can be used for 100% separation and eradication of different 116 super bugs such as MRSA and ESBL-KPN from environmental 117 water samples from different sources.

# 2. RESULTS AND DISCUSSION

f1

2.1. Design of Novel Composite Nanoparticle via 119 Functionalization of Polydopamine with Graphene 120 **Oxide and \varepsilon-Poly-L-lysine.** As shown in Scheme 1, we used 121 a multistep synthetic procedure to develop PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. As reported in 123 Scheme 1A, initially we developed water-soluble graphene oxide 124 from graphite using the well documented Hummer's method as 125 we and others have reported before. 29-40 After that, we developed polydopamine nanoparticles, as reported in Scheme 127 1B. PD-NPs were synthesized using the following literature procedure via a modified Stöber method. 20-28 For this purpose, 1.0 g of dopamine hydrochloride was dissolved in a solution of 130 100 mL of ethyl alcohol and 200 mL of water. Subsequently, 4 131 mL of concentrated NH<sub>4</sub>OH was finally added to the reaction 132 mixture under vigorous stirring at room temperature. After 24 h, 133 PD-NPs were separated via centrifugation at 8500, washed with 134 water several times, and dried under vacuum. As shown in 135 Scheme 1C, in the next step, we developed PD-NP-graphene

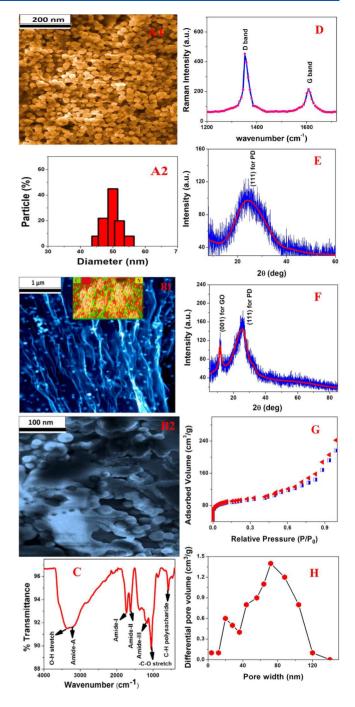



Figure 1. (A1) Surface SEM image of polydopamine nanoparticle developed via a modified Stöber method. SEM image shows the particle size is  $50 \pm 6$  nm. (A2) SEM analysis shows the percent of different size polydopamine particles, which indicates that the particle size varies from 44 to 56 nm. (B1, B2) SEM images from PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle: (B1) surface view and (B2) cross section view. Insert EDX data in B1 show the presence of C, N, and O. (C) FTIR spectra of PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle, which shows the presence of -OH stretch, amide-I, amide-II, amide-III, and -CO stretch and -C-H polysaccharide vibrational bands. (D) Raman spectra from PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle indicates the presence of D and G bands. (E) X-ray diffraction spectra from PD-NP indicate the presence of (111) reflection for polydopamine. (F) X-ray diffraction spectra from composite nanoparticle, which indicate the presence of (111) reflection for polydopamine and (001) reflection for GO. (G) N<sub>2</sub> adsorption/desorption isotherm of

ACS Applied Nano Materials Article

Figure 1. continued

PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle, which shows type III isotherms. (H) Pore size distributions from PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle, which shows pore size ranging from 2 to 130 nm and highest density at around 70 nm.

136 oxide based composite nanoparticles. For this purpose, 200 mg 137 of freeze-dried graphene oxide (GO) was dispersed in 250 mL of 138 double distilled water through ultrasonication for 2 h. To this 139 suspension, dopamine nanoparticles were added and stirred. 140 Then we used EDC (1-ethyl-3-(3-(dimethylamino)propyl)-141 carbodiimide)/NHS (N-hydroxysuccinimide) chemistry to 142 develop dopamine nanoparticle attached GO. In the next step, 143  $\varepsilon$ -poly-L-lysine was added to the dopamine nanoparticle 144 attached GO, as shown in Scheme 1D. After that we used 145 EDC coupling chemistry to develop composite nanoparticles. 146 Then the mixture was sonicated for 30 min. In the next step, we 147 kept the sample mixture on an oil bath at about 80 °C under a 148 hood for 90 min.

After that, we performed sonication for 1.5 h to separate PD-150 NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle from the reactants. After sonication, the semisolid product was used to develop the round shape membrane using spin-casting at 153 1500 rpm onto the glass substrate. Finally, we performed vacuum-drying overnight at 60 °C. After that, the PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticle membrane was removed from the glass substrate and stored for use for water purification.

We used high-resolution tunneling electron microscopy 159 (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-160 ray diffraction (XRD) spectroscopy, Raman spectroscopy, and 161 other techniques as we have reported before, 11-13,36-39 to 162 characterize PD nanoparticle and PD-NP attached GO 163 conjugated  $\varepsilon$ -PL based composite nanoparticles. Scanning 164 electron microscopy (SEM) image, as reported in Figure 1A1, 165 and SEM image analysis as reported in Figure 1A2 show that the 166 average size for freshly developed polydopamine nanoparticle 167 via modified Stöber method is  $50 \pm 6$  nm. Similarly, the SEM 168 image, as reported in Figure 1B1 and B2, shows the morphology 169 of freshly developed PD-NP attached GO conjugated  $\varepsilon$ -PL 170 based porous architecture. The inset EDX data clearly shows the 171 presence of C, N, and O in our developed composite 172 nanoparticles. As reported in Figure 1C, the Fourier transform 173 infrared (FT-IR) spectroscopy of our developed composite 174 nanoparticle, shows the presence several different types of 175 surface functional groups such as amide A, -OH, amide-I, 176 amide-II, amide-III, and C=O. The presence of different amide groups indicates that graphene oxides are attached with peptide 178 and polydopamine nanoparticles. The Raman spectra from 179 composite nanoparticles, as reported in Figure 1D, clearly shows 180 the presence of D and G bands which originate from graphene 181 oxide. 29-40 Figure 1E shows the powder XRD spectrum of 182 polydopamine nanoparticles, which indicates the presence of (111) reflection for polydopamine. <sup>20–26</sup> On the other hand, 184 XRD data from composite nanoparticles, as reported in Figure 185 1F, shows two peaks and those are the (111) reflection for 186 polydopamine and (001) reflection for GO. 20-2

We measured the specific surface area for freshly developed 188 PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 189 nanoparticles using N<sub>2</sub> adsorption/desorption data. For this 190 purpose, we used a Tristar II 3020 surface area analyzer

(Micromeritics). Experimental details have been reported 191 previously. 36,39 On the other hand, for the measurement of 192 pore size distribution for freshly developed PD-NP attached GO 193 conjugated arepsilon-PL based composite nanoparticles, we used the 194 Barrett-Joyner-Halenda (BJH) method. Experimental details 195 have been reported previously. 36,39 Brunauer-Emmett-Teller 196 (BET) analysis from PD-NP attached GO conjugated  $\varepsilon$ -PL 197 based composite nanoparticles, as reported in Figure 1G, 198 indicates that the specific surface area for our developed 199 architecture is 410 m $^{2}$  g $^{-1}$ , with a pore volume of 0.620 cm $^{3}$  g $^{-1}$ . 200 Using the BJH method, we also estimated the pore size 201 distribution, as reported in Figure 1H, which indicates that the 202 pore size ranges from 2 to 130 nm. In the next step, we also 203 measured the water flux for PD-NP attached GO conjugated  $\varepsilon$ - 204 PL based composite nanoparticles. For this purpose, we 205 collected the permeated water through the nanoporous 206 composites using an electronic balance, as we have reported 207 before. 36-39 From the experiment, we estimated the water flux 208 for PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 209 nanoparticle to be 138.2 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>.

2.2. Use of PD-NP Attached GO Conjugated  $\varepsilon$ -PL Based 211 Composite Nanoparticle for Decontamination of Toxic 212 Metal from Environmental Water Sample. Next, to find out 213 whether PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 214 nanoparticlse can be used for the decontamination of toxic metal 215 from environmental water samples, we performed several 216 different experiments as discussed below. At first, we infected 217 the drinking water sample with Cr(VI), Hg(II), Pb(II), Cd(II), 218 and Zn(II), selectively and simultaneously. For the selective 219 toxic metal ion experiment, we used 10 ppm concentration of 220 each toxic metal

For the mixture of all five metals ion experiment, we used 2 222 ppm concentration for each metal. After that, we performed 223 filtration using our developed PD-NP attached GO conjugated 224  $\varepsilon$ -PL based composite nanoparticles. At the end, we used 225 inductively coupled plasma mass spectrometry (ICP-MS) for 226 determining the removal efficiency of different toxic metals 227 using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 228 nanoparticles. As shown in Figure 2A-D, the reported 229 f2 experimental data indicates that the removal efficiency for 230 Cr(VI) is 89% and that for Hg(II) is 93%. Whereas the removal 231 efficiency for Pb(II) is 95% and that for Cd(II) is 90%. The 232 observed high removal efficiency using our developed PD-NP 233 attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles is 234 due to the fact that polydopamine contains amine and catechol 235 functionalities which are capable of scavenging metals. Also, in 236 the presence of nitrogen heteroatoms, PD nanoparticles have a 237 strong tendency to interact with positively charged metal ions, 238 which also helps to remove toxic metal ions. <sup>20–26</sup> On the other 239 hand, the surface oxygen-containing groups in graphene oxide 240 allow removal of positively charged heavy metal ions via 241 electrostatic interaction. Since in real life a water sample 242 can contain all different metal ions together, next we performed a 243 filtration experiment where all five toxic metals are present in the 244 water. As shown in Figure 2F, the toxic metal removal efficiency 245 is between 80 and 90%, when several toxic metals are present 246 together.

Next, to find out whether PD-NP attached GO conjugated  $\varepsilon$ - 248 PL based composite nanoparticles can be used for the separation 249 of toxic metals from an environmental sample, we used tap 250 water, lake water, Mississippi River water, and Mississippi 251 reservoir water samples spiked with Cr(VI), Hg(II), Pb(II), 252 Cd(II), and Zn(II) (2 ppm concentration each) simultaneously. 253

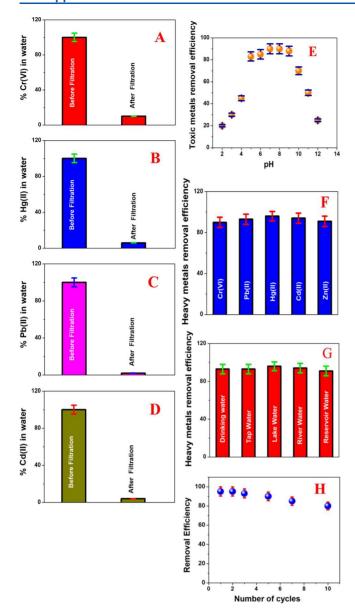



Figure 2. (A) Cr(VI) (10 ppm concentration) removal efficiency from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (B) Hg(II) (10 ppm concentration) removal efficiency from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (C) Pb(II) (10 ppm concentration) removal efficiency from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (D) Cd(II) (10 ppm concentration) removal efficiency from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (E) Plot showing how the pH of water influences the removal efficiency for a mixture of different toxic metals [Cr(VI), Hg(II), Pb(II), Cd(II), and Zn(II) (2 ppm concentration for each metal ion) from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (F) Percentage of toxic metal removal efficiency for a mixture of different toxic metals [Cr(VI), Hg(II), Pb(II), Cd(II), and Zn(II)] (2 ppm concentration for each metal ion) from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (G) Plot showing how the source of water influences the toxic metal removal efficiency for a mixture of different toxic metals [Cr(VI), Hg(II), Pb(II), Cd(II), and Zn(II)] (2 ppm concentration for each metal ion) using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (H) Plot showing how the removal efficiency of different toxic metals [Cr(VI), Hg(II), Pb(II), Cd(II), and Zn(II)]

Figure 2. continued

(2 ppm concentration for each metal ion) varies with number of cycles of filtration.

Since the pH can be different for different sources of water, 254 initially we performed an experiment on how the pH of water 255 can influence the removal efficiency of different toxic metal ions. 256 As shown in Figure 2E, the best performance is observed when 257 pH is between 5 and 9. At higher acidic and basic pH, the 258 removal efficiency decreases and this is due to the fact the 259 oxygen functional groups in GO and amine, catechol groups in 260 PD is highly protonated in acidic pH and deprotonated in basic 261 pH. Due to the observed pH effect, we measured the pH of 262 environmental water collected from tap water, lake water, 263 Mississippi River water, and Mississippi reservoir and we 264 determined that the pH varies from 5 to 9. Experimental data 265 reported in Figure 2G clearly shows that the toxic metal removal 266 efficiency varies between 80 and 90%. The reported data also 267 indicates that although environmental water from different 268 sources contains different organic compounds and other metals 269 ions like sodium, potassium, and magnesium, our developed PD-270 NP attached GO conjugated ε-PL based composite nano- 271 particles can be used for targeted metal ion separation in the 272 presence of other metal ions and organic pollutants. As reported 273 in Figure 1H, the removal efficiency performance for the 274 composite material decreases around 10% after 10 cycles of 275 filtration. The observed decrease in removal efficiency can be 276 due to the fouling issue of composite material which occurs due 277 to the accumulation of microorganisms on the surface from the 278 environmental water sample. To compare the removal efficiency 279 for the developed composite materials with a commercially 280 available activated carbon filter, we also performed the same 281 experiment with an activated carbon filter. From the 282 experimental data, we found out that the removal efficiency 283 for heavy metals using the developed composite material is 284 comparable for the activated carbon filter. Although removal 285 efficiency is comparable, we have noted the removal efficiency 286 performance is almost unchanged after 10 cycles for the 287 activated carbon filter, whereas as reported in Figure 2H the 288 removal efficiency performance decreases around 10% after 10 289 cycles for the developed composed materials,

2.3. Use of Composite Nanoparticle for Disinfection of 291 Superbugs from Environmental Water Sample. Next, to 292 find out whether PD-NP attached GO conjugated  $\varepsilon$ -PL based 293 composite nanoparticle can be used for the removal and killing 294 of superbugs from environmental water samples, we performed 295 several different experiments as discussed below. At first, we 296 infected the drinking water sample with MRSA and KPN 297 superbugs, selectively and simultaneously. For the selective 298 separation and killing experiment, we used a  $1 \times 10^5$  CFU/mL 299 concentration of each superbug. For the mixture of MRSA and 300 KPN superbugs experiment, we used a 5  $\times$  10<sup>4</sup> CFU/mL 301 concentration for each superbug. After that, we performed 302 filtration using our developed PD-NP attached GO conjugated 303  $\varepsilon$ -PL based composite nanoparticles. At the end, we used reverse 304 transcription polymerase chain reaction (RT-PCR) technique 305 and colony plating technique on LB agar for determining the 306 removal efficiency of different toxic metals using PD-NP 307 attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. 308 Experimental details have been reported previously. 11-13,36-39

Colony counting data reported in Figure 3A,B and RT-PCR 310 f3 data reported in Figure 3D-F clearly show that almost 100% of 311

ACS Applied Nano Materials Article

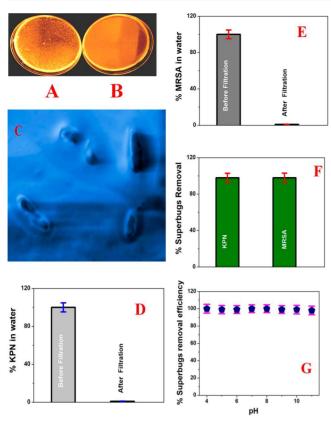



Figure 3. (A, B) Colony counting data shows colonies of KPN, which indicate the amount of live KPN superbugs (A) before filtration and (B) after filtration using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (C) Top view SEM image data after filtration using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles, which shows that KPN superbugs are captured by composite nanoparticle. membrane. (D) Plot showing the percentage of KPN removed using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles, when the KPN concentration was  $1 \times 10^5$ CFU/mL. (E) Plot showing the percentage of MRSA removed using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles, when the MRSA concentration was  $1 \times 10^5$  CFU/mL. (F) Percentage of superbug removal efficiency for the mixture of MRSA and KPN in water  $(5 \times 10^4 \text{ CFU/mL concentration for each superbug)}$  using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. (G) Plot showing how the pH of water influences the removal efficiency for a mixture of superbugs from drinking water using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles.

312 KPN and MRSA can be removed selectively or simultaneously 313 using our PD-NP attached GO conjugated  $\varepsilon$ -PL based 3D 314 architecture. Our observed very high removal efficiency for KPN 315 and MRSA using the PD-NP attached GO conjugated  $\varepsilon$ -PL 316 based composite nanoparticles is due to the fact that the size of 317 the superbugs is larger than the pore size of the composite nanoparticles. Since the size of KPN is greater than 1  $\mu$ m and the size of MRSA is between 0.5 and 1  $\mu$ m, whereas the pore size of our PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 321 nanoparticles is less than 120 nm, only water can pass through. 322 On the other hand, due to the much bigger size, superbugs will 323 not able to go through the PD-NP attached GO conjugated  $\varepsilon$ -PL 324 based composite nanoparticles. To characterize the captured 325 superbugs by our developed PD-NP attached GO conjugated arepsilon-326 PL based composite nanoparticles, we performed a high-327 resolution SEM experiment as shown in Figure 3B. Reported 328 experimental data clearly indicate that superbugs are captured

on the surface of the membrane. Since the pH of water can be 329 different for different sources of water, we also performed an 330 experiment on how the pH of water can influence the removal 331 efficiency of different superbugs. As shown in Figure 3G, the 332 removal efficiency is almost independent of the pH of water 333 within the range of 4-11. The observed almost pH independent 334 superbug removal efficiency is mainly due to the fact that the 335 superbugs are captured due to their size which is much larger 336 than the pore size of our developed PD-NP attached GO 337 conjugated  $\varepsilon$ -PL based composite nanoparticles. Since pH 338 change can only change the protonation or deprotonation 339 character for the functional groups attached with membrane and 340 it does not effect the pore size abruptly, we did not observe any 341 significant change in superbug removal efficiency as we vary the 342 pH of water. Since superbugs like MRSA and KPN are known to 343 be transmitted through contaminated water, for possible 344 practical uses for our developed PD-NP attached GO 345 conjugated  $\varepsilon$ -PL based composite nanoparticles, it is extremely 346 important that the composite nanoparticles have the capability 347 to disinfect superbugs after separation. To find out whether PD- 348 NP attached GO conjugated  $\varepsilon$ -PL based composite nano- 349 particles can be used for the killing of superbugs which have been 350 captured from environmental water samples, we performed 351 several different experiments as discussed below. After filtration, 352 we used the colony plating technique on LB agar as well as 353 LIVE/DEAD BacLight Molecular Probes kit for determining 354 the amounts of live/dead bacteria after capture by PD-NP 355 attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. 356 Experimental details for colony plating technique on LB agar as 357 well as LIVE/DEAD BacLight Molecular Probes kit have been 358 reported before. 11-13 As reported in Figure 4A-D, almost 100% 359 f4 of MRSA and KPN superbugs are killed when they are captured 360 by our developed PD-NP attached GO conjugated  $\varepsilon$ -PL based 361 composite nanoparticles.

Next to determine the superbug killing mechanism using our 363 developed PD-NP attached GO conjugated  $\varepsilon$ -PL based 364 composite nanoparticles, we also performed the same experi- 365 ment with PD-NP attached GO based composite nanoparticles 366 without  $\varepsilon$ -PL, As reported in Figure 3C, less than 20% KPN and 367 MRSA superbugs are killed when those superbugs are captured 368 by PD-NP attached GO based composite nanoparticles without 369  $\varepsilon$ -PL; on the other hand 100% KPN and MRSA superbugs are 370 killed when those superbugs are captured by PD-NP attached 371 GO conjugated  $\varepsilon$ -PL based composite nanoparticles. Around 372 18% superbug death using PD-NP attached GO based 373 composite nanoparticles is due to the mechanical wrapping 374 which may cause induced membrane stress, disrupting and 375 damaging cell membranes, as we and others reported 376 before. Mechanical wrapping of KPN superbugs also 377 can be seen in the SEM image reported as Figure 3C in this 378 paper. Reported results in Figure 3C clearly indicate that 379 attachment of  $\varepsilon$ -PL antimicrobial peptide in composite 380 nanoparticles is very important for disinfection of superbugs. 381 It is now well reported that arepsilon-PL can bind to the membrane 382 surface of bacteria by electrostatic interaction. 43-45 It is also 383 well-known that  $\varepsilon$ -PL antimicrobial peptide can fracture the 384 membrane surface of bacteria, and as a result the cell contents 385 leak out.43-45

To understand whether our developed PD-NP attached GO  $_{387}$  conjugated  $\varepsilon$ -PL based composite nanoparticles can damage the  $_{388}$  membrane of superbugs, we performed a bacterial ATP leakage  $_{389}$  experiment using Molecular Probes ATP determination kit  $_{390}$  (Thermo Fisher Scientific). Experimental details have been  $_{391}$ 

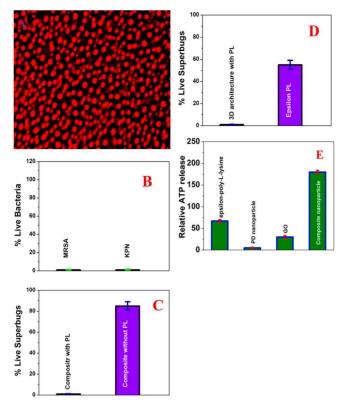



Figure 4. (A) MRSA superbug viability after filtration using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. We used the Molecular Probes LIVE/DEAD BacLight Bacterial Viability kits to determine amount of live and dead superbugs after filtration. (B) Plot indicating percentage of live MRSA and KPN superbugs after filtration using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. We used colony counting as well as Molecular Probes LIVE/DEAD BacLight Bacterial Viability kits to determine the amount of live and dead superbugs. (C) Plot indicating percentage of live KPN superbugs after filtration using PD-NP attached GO based composite nanoparticles without  $\varepsilon$ -PL and PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. We used colony counting as well as Molecular Probes LIVE/DEAD BacLight Bacterial Viability kits to determine the amount of live and dead KPN superbugs. (D) Plot indicating percentage of live KPN superbugs when treated with  $\varepsilon$ -PL only and after filtration using PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles. We used colony counting as well as Molecular Probes LIVE/DEAD BacLight Bacterial Viability kits to determine the amount of live and dead KPN superbugs. (E) Plot showing relative cellular ATP leakage percentage for KPN superbugs when bacteria were treated with  $\varepsilon$ -PL, PD nanoparticles, GO and PD-NP attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles separately.

392 reported before.  $^{11,12}$  For this experiment, PEG coated gold 393 nanoparticles, which are known to be nontoxic, are utilized, as 394 we and others have reported before. ATP leakage experiment 395 data as reported in Figure 4E clearly shows our developed PD-396 NP attached GO conjugated  $\varepsilon$ -PL based composite nano-397 particles can promote high leakage of cellular ATP in the case 398 KPN. Reported data also shows that  $\varepsilon$ -PL also promotes leakage 399 of cellular ATP, but the amount is much lower than that caused 400 by PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 401 nanoparticles. Experimental data reported in Figure 4D also 402 indicate that only  $\varepsilon$ -PL can kill only 55% KPN when the 403 concentration of  $\varepsilon$ -PL used was  $100 \,\mu$ M. On the other hand, PD-404 NP attached GO conjugated  $\varepsilon$ -PL based composite nano-

particles can kill 100% KPN, although the concentration of  $\varepsilon$ -PL 405 used was 100  $\mu$ M for composite nanoparticle formation.

To understand the observed experimental data, we have 407 determined the minimum inhibitory concentrations (MICs) for 408  $\varepsilon$ -PL against KPN and MRSA, using the National Committee for 409 Clinical Laboratory Standards [NCCLS]. Experimental details 410 have been reported before. From the experimental results, the 411 MICs of  $\varepsilon$ -PL were determined to be 220  $\mu$ M for MRSA and 175 412  $\mu$ M for KPN. The observed very high killing of superbugs using 413 PD-NP attached GO conjugated  $\varepsilon$ -PL based composite 414 nanoparticles can be due to the fact that when superbugs are 415 trapped by composite nanoparticles, it causes high membrane 416 stress. It becomes a very good condition for  $\varepsilon$ -PL to bind to the 417 membrane surface of bacteria by electrostatic interaction and 418 fracture the membrane surface of bacteria, and as a result 419 superbugs are killed due to the disrupted and damaged cell 420 membranes.

### 3. CONCLUSIONS

In the current Article, we have reported the development of PD- 422 NP attached GO conjugated  $\varepsilon$ -PL based novel composite 423 nanoparticles via functionalization of polydopamine nano- 424 particles with graphene oxide and  $\varepsilon$ -poly-L-lysine. Experimental 425 data reported in this paper indicate that our developed PD-NP 426 attached GO conjugated  $\varepsilon$ -PL based composite nanoparticles 427 can be used in the decontamination of toxic waterborne 428 contaminants and disinfection of drug resistant pathogens from 429 environmental samples. We have shown that composite 430 nanoparticles can be used for efficient separation of several 431 heavy toxic metals such as Cr<sup>6</sup>+, Pb<sup>2+</sup>, Cu<sup>2+</sup>, Hg<sup>2+</sup>, and Zn<sup>2+</sup> from 432 environmental water samples. Reported data also shows that 433 porous composites developed by us can be used for 434 simultaneous removal of several toxic metals together from 435 environmental river, lake, and tap water samples. We have also 436 demonstrated that PD-NP attached GO conjugated  $\varepsilon$ -PL based 437 composite nanoparticles can be used for 100% separation and 438 eradication of different superbugs. Experimental data indicates 439 that since the pore size of the PD-NP attached GO conjugated  $\varepsilon$ - 440 PL based composite nanoparticles (less than 130 nm) is much 441 smaller than the size of KPN and MRSA superbugs, 100% of 442 superbugs were captured by the membrane and only water 443 passed through the porous membrane. Reported superbug 444 killing data shows that PD-NP attached GO conjugated  $\varepsilon$ -PL 445 based composite nanoparticles not only captured the superbugs 446 but also killed them totally. Although our reported data show 447 that the developed novel composite nanoparticles may be used 448 for the separation of toxic metals and disinfection of superbugs, 449 research needs to be performed for proper engineering design to 450 obtain highly repeatable and recyclable membranes for multiple 451 end-use applications.

### ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge on the 455 ACS Publications website at DOI: 10.1021/acsanm.9b00161. 456

Detailed synthesis, characterization of composite nano- 457 particles and other experiments(PDF) 458

# AUTHOR INFORMATION

# **Corresponding Author**

\*E-mail: paresh.c.ray@jsums.edu. Fax: +16019793674

453

459

460

# 462 ORCID ®

463 Paresh Chandra Ray: 0000-0001-5398-9930

### 464 Notes

465 The authors declare no competing financial interest.

## **466 ACKNOWLEDGMENTS**

467 P.C.R. thanks NSF-PREM Grant # DMR-1205194, NSF 468 CREST Grant # 1547754, and NSF-RII-EPSCoR Grant 469 #1632899 for their generous funding. D.S. would like to 470 acknowledge the support from UTSA through the Faculty Leave 471 during the 2018 Fall semester.

# REFERENCES

- (1) http://www.un.org/en/sections/issues-depth/water/ (accessed 473 474 January 8, 2019).
- (2) https://www.who.int/news-room/detail/12-07-2017-2-1-billion-476 people-lack-safe-drinking-water-at-home-more-than-twice-as-many-477 lack-safe-sanitation (accessed January 8, 2019).
- (3) Nys, C.; Versieren, L.; Cordery, K. I.; Blust, R.; Smolders, E.; De 479 Schamphelaere, K. A. Systematic evaluation of chronic metal mixture 480 toxicity to three species and implications for risk assessment. Environ. 481 Sci. Technol. 2017, 51 (8), 4615-462.
- (4) Chebeir, M.; Liu, H. Kinetics and mechanisms of Cr(VI) 482 483 formation via the oxidation of Cr(III) solid phases by chlorine in drinking water. Environ. Sci. Technol. 2016, 50 (2), 701-710.
- (5) National Antimicrobial Resistance Monitoring System for Enteric 485 486 Bacteria (NARMS). https://www.cdc.gov/narms/index.html (ac-487 cessed Dec 11, 2018).
- (6) Drug-resistant 'nightmare bacteria' pose growing threat: CDC, 488 489 https://nypost.com/2018/04/03/drug-resistant-nightmare-bacteriapose-growing-threat-cdc (accessed August 12, 2018).
- (7) Wuijts, S.; van den Berg, H. H. J. L.; Miller, J.; Abebe, L.; Sobsey, 492 M.; Andremont, A.; Medlicott, K. O.; Van Passel, M. W. J.; de Roda 493 Husman, A. M. Towards a Research Agenda for Water, Sanitation, and 494 Antimicrobial Resistance. J. Water Health 2017, 15 (2), 175-184.
- (8) Zhu, Y.-G.; Zhao, Y.; Li, B.; Huang, C.-L.; Zhang, S.-Y.; Chen, Y. 496 S.; Zhang, T.; Gillings, M. R.; Su, J.-Q. Continental-Scale Pollution of 497 Estuaries with Antibiotic Resistance Genes. Nat. Microbiol. 2017, 2,
- (9) Baym, M.; Stone, L. K.; Kishony, R. Multidrug Evolutionary 499 500 Strategies to Reverse Antibiotic Resistance. Science 2016, 351 (6268), 501 40-46.
- (10) Kavanagh, K. T.; Abusalem, S.; Calde-Ron, L. E. The incidence of 503 MRSA infections in the United States: is a more comprehensive 504 tracking system needed? Antimicrob. Resist. Infect. Control 2017, 6, 34.
- (11) Vangara, A.; Pramanik, A.; Gao, Y.; Gates, K.; Begum, S.; 505 506 Chandra Ray, P. Fluorescence Resonance Energy Transfer Based 507 Highly Efficient Theranostic Nanoplatform for Two-Photon Bioimag-508 ing and Two-Photon Excited Photodynamic Therapy of Multiple Drug 509 Resistance Bacteria. ACS Appl. Biomater. 2018, 1, 298-309.
- (12) Begum, S.; Pramanik, A.; Gates, K.; Gao, Y.; Ray, P. C. 511 Antimicrobial Peptide-Conjugated MoS2-Based Nanoplatform for 512 Multimodal Synergistic Inactivation of Superbugs. ACS Appl. Bio 513 Mater. 2019, 2, 769.
- (13) Pramanik, A.; Jones, S.; Pedraza, F.; Vangara, A.; Sweet, C.; 515 Williams, M. S.; Ruppa-Kasani, V.; Risher, S. E.; Sardar, D.; Ray, P. C. 516 Fluorescent, Magnetic Multi-functional Carbon Dots for Selective 517 Separation, Identification, and Eradication of Drug-Resistant Super-518 bugs. ACS Omega 2017, 2, 554-562.
- (14) Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. 520 Mussel-inspired Surface Chemistry for Multifunctional Coatings[J]. 521 Science 2007, 318 (5849), 426-430.
- (15) Waite, J. H. Mussel adhesion essential footwork. J. Exp. Biol. 523 **2017**, 220 (4), 517-530.
- (16) Lee, H.; Rho, J.; Messersmith, P. B. Facile Conjugation of 525 Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired 526 Coatings. Adv. Mater. 2009, 21, 431-434.

- (17) Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: 527 Synthesis and Promising Applications in Energy, Environmental, and 528 Biomedical Fields. Chem. Rev. 2014, 114 (9), 5057-5115.
- (18) Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine Surface 530 Chemistry: A Decade of Discovery[J]. ACS Appl. Mater. Interfaces 531 2018, 10 (9), 7523-7540. 532
- (19) Liu, M.; Wang, S. T.; Jiang, L. Nature-Inspired Superwettability 533 Systems. Nat. Rev. Mater. 2017, 2, 17036-17044.
- (20) Zhao, D.; Kim, J. F.; Ignacz, G.; Pogany, P.; Lee, Y. M.; Szekely, 535 G. Bio-Inspired Robust Membranes Nanoengineered from Inter- 536 penetrating Polymer Networks of Polybenzimidazole/Polydopamine. 537 ACS Nano 2019, 13, 125-133. 538
- (21) North, M. A.; Del Grosso, C. A.; Wilker, J. J. High strength 539 underwater bonding with polymer mimics of mussel adhesive proteins. 540 ACS Appl. Mater. Interfaces 2017, 9 (8), 7866-7872.
- (22) Ahn, B. K. Perspectives on mussel-inspired wet adhesion. J. Am. 542 Chem. Soc. 2017, 139 (30), 10166-10171. 543
- (23) Zhang, C.; Lv, Y.; Qiu, W.-Z.; He, A.; Xu, Z.-K. Polydopamine 544 Coatings with Nanopores for Versatile Molecular Separation. ACS 545 Appl. Mater. Interfaces 2017, 9, 14437-1444.
- (24) Han, L. B.; Gong, L.; Chen, J. S.; Zhang, J. W.; Xiang, L.; Zhang, 547 L.; Wang, Q.; Yan, B.; Zeng, H. B. Universal Mussel-Inspired 548 Ultrastable Surface-Anchoring Strategy via Adaptive Synergy of 549 Catechol and Cations. ACS Appl. Mater. Interfaces 2018, 10, 2166-550
- (25) Yang, H.-C.; Waldman, R. Z.; Wu, M.-B.; Hou, J.; Chen, L.; 552 Darling, S. B.; Xu, Z.-K. Dopamine: Just the Right Medicine for 553 Membranes. Adv. Funct. Mater. 2018, 28, 1705327.
- (26) Zhao, Y. H.; Wu, Y.; Wang, L.; Zhang, M. M.; Chen, X.; Liu, M. 555 J.; Fan, J.; Liu, J. Q.; Zhou, F.; Wang, Z. K. Bio-Inspired Reversible 556 Underwater Adhesive. Nat. Commun. 2017, 8, 2218.
- (27) Xu, Y.; You, F.; Sun, H.; Shao, L. Realizing Mussel-Inspired 558 Polydopamine Selective Layer with Strong Solvent Resistance in 559 Nanofiltration toward Sustainable Reclamation. ACS Sustainable Chem. 560 Eng. 2017, 5, 5520-5528.
- (28) Ma, Y. F.; Ma, S. H.; Wu, Y.; Pei, X. W.; Gorb, S. N.; Wang, Z. K.; 562 Liu, W. M.; Zhou, F. Remote Control over Underwater Dynamic 563 Attachment/Detachment and Locomotion. Adv. Mater. 2018, 30, 564 1801595
- (29) Celebi, K.; Buchheim, J.; Wyss, R. M.; Droudian, A.; Gasser, P.; 566 Shorubalko, I.; Kye, J.-I.; Lee, C.; Park, H. G. Ultimate Permeation 567 Across Atomically Thin Porous Graphene. Science 2014, 344, 289-292. 568
- (30) Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; 569 Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. 570 I.; Dryfe, R. A.; et al. Proton Transport Through One-Atom-Thick 571 Crystals. Nature 2014, 516, 227-230.
- (31) Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; 573 Veith, G. M.; Dai, S.; Mahurin, S. M. Water Desalination Using 574 Nanoporous Single-Layer Graphene. Nat. Nanotechnol. 2015, 10, 459-575
- (32) Wang, L.; Boutilier, M. S. H. B.; Kidambi, P. R.; Jang, D.; 577 Hadjiconstantinou, N. G.; Karnik, R. Fundamental Transport 578 Mechanisms, Fabrication and Potential Applications of Nanoporous 579 Atomically Thin Membrane. Nat. Nanotechnol. 2017, 12, 509-522.
- (33) Walker, M. I.; Ubych, K.; Saraswat, V.; Chalklen, E. A.; 581 Braeuninger-Weimer, P.; Caneva, S.; Weatherup, R. S.; Hofmann, S.; 582 Keyser, U. F. Extrinsic Cation Selectivity of 2D Membranes. ACS Nano 583 2017, 11, 1340-1346.
- (34) Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; 585 Nair, R. R.; Geim, A. K.; Gopinadhan, K. Size Effect in Ion Transport 586 Through Angstrom-Scale Silts. Science 2017, 358, 511-513.
- (35) Alvarez, P. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; 588 Villagrán, D. Emerging Opportunities for Nanotechnology to Enhance 589 Water Security. Nat. Nanotechnol. 2018, 13, 634-641.
- (36) Jones, S.; Pramanik, A.; Kanchanapally, R.; Viraka Nellore, B. P.; 591 Begum, S.; Sweet, C.; Ray, P. C. Multifunctional Three-Dimensional 592 Chitosan/Gold Nanoparticle/Graphene Oxide Architecture for 593 Separation, Label-Free SERS Identification of Pharmaceutical Con- 594

- 595 taminants, and Effective Killing of Superbugs. ACS Sustainable Chem. 596 Eng. 2017, 5, 7175–7187.
- 597 (37) Jones, S.; Sinha, S. S.; Pramanik, A.; Ray, P. C. Three-dimensional 598 (3D) plasmonic hot spots for label-free sensing and effective 599 photothermal killing of multiple drug resistant superbugs. *Nanoscale* 600 **2016**, *8*, 18301–18308.
- 601 (38) Viraka Nellore, B. P.; Kanchanapally, R.; Pedraza, F.; Sinha, S. S.; 602 Pramanik, A.; Hamme, A. T.; Arslan, Z.; Sardar, D.; Ray, P. C. Bio-603 Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for 604 Highly Efficient Disinfection of Pathogenic Bacteria and Removal of 605 Toxic Metals from Water. ACS Appl. Mater. Interfaces 2015, 7, 19210–606 19218.
- 607 (39) Pramanik, A.; Jones, S.; Gao, Y.; Sweet, C.; Begum, S.; Shukla, M. 608 K.; Bu-Chanan, J. P.; Moser, R. D.; Ray, P. C. A bio-conjugated chitosan 609 wrapped CNT based 3D nanoporous architect re for separa-tion and 610 inactivation of Rotavirus and Shigell a waterborne pathogens. *J. Mater.* 611 *Chem. B* **2017**, *S* (48), 9522–9531.
- 612 (40) Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; 613 Yeung, K. W. K.; Pan, H. B.; Wang, X. B.; Chu, P. K.; Wu, S. L. Photo-614 Inspired Antimicrobial Activity and Wound Healing Acceleration by 615 Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS 616 Nano 2017, 11, 9010–9021.
- 617 (41) Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, 618 R.; Kong, J.; Chen, Y. An tibacterial Activity of Graphite, Graphite 619 Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane 620 and Oxidative Stress. ACS Nano 2011, 5, 6971–6980.
- 621 (42) Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the 622 Antimicrobial Activities of Graphene Materials. *J. Am. Chem. Soc.* **2016**, 623 138, 2064–2077.
- 624 (43) Reuter, M.; Schwieger, C.; Meister, A.; Karlsson, G.; Blume, A. 625 Poly-L-Lysines and Poly-L-Arginines Induce Leakage of Negatively 626 Charged Phospholipid Vesicles and Translocate through the Lipid 627 Bilayer upon Electrostatic Binding to the Membrane. *Biophys. Chem.* 628 **2009**, 144, 27–37.
- 629 (44) Hyldgaard, M.; Mygind, T.; Vad, B. S.; Stenvang, M.; Otzen, D. 630 E.; Meyer, R. L. The Antimicrobial Mechanism of Action of Epsilon-631 Poly-L-Lysine. *Appl. Environ. Microbiol.* **2014**, *80*, 7758–7770.
- 632 (45) Ushimaru, K.; Hamano, Y.; Katano, H. Antimicrobial activity of 633  $\epsilon$ -poly-L-lysine after forming a water-insoluble complex with an anionic 634 surfactant. *Biomacromolecules* **2017**, *18*, 1387–1392.