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We present an efficient algorithm for model-free episodic reinforcement learning on large (potentially con-
tinuous) state-action spaces. Our algorithm is based on a novel Q-learning policy with adaptive data-driven
discretization. The central idea is to maintain a finer partition of the state-action space in regions which
are frequently visited in historical trajectories, and have higher payoff estimates. We demonstrate how our
adaptive partitions take advantage of the shape of the optimal Q-function and the joint space, without sac-
rificing the worst-case performance. In particular, we recover the regret guarantees of prior algorithms for
continuous state-action spaces, which additionally require either an optimal discretization as input, and/or
access to a simulation oracle. Moreover, experiments demonstrate how our algorithm automatically adapts to
the underlying structure of the problem, resulting in much better performance compared both to heuristics
and Q-learning with uniform discretization.
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1 INTRODUCTION

Reinforcement learning (RL) is a natural model for systems involving real-time sequential decision
making [26]. An agent interacts with a system having stochastic transitions and rewards, and aims
to learn to control the system by exploring available actions and using real-time feedback. This
requires the agent to navigate the exploration exploitation trade-off, between exploring unseen parts
of the environment and exploiting historical high-reward actions. In addition, many RL problems
involve large state-action spaces, which makes learning and storing the entire transition kernel
infeasible (for example, in memory-constrained devices). This motivates the use of model-free
RL algorithms, which eschew learning transitions and focus only on learning good state-action
mappings. The most popular of these algorithms is Q-learning [2, 10, 29], which forms the focus of
our work.

The code for the experiments is available at https://github.com/seanrsinclair/AdaptiveQLearning.
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In even higher-dimensional state-spaces, in particular, continuous spaces, RL algorithms require
embedding the setting in some metric space, and then using an appropriate discretization of
the space. A major challenge here is in learning an “optimal” discretization, trading-off memory
requirements and algorithm performance. Moreover, unlike optimal quantization problems in
‘offline’ settings (i.e., where the full problem is specified), there is an additional challenge of learning
a good discretization and control policy when the process of learning itself must also be constrained
to the available memory. This motivates our central question:

Can we modify Q-learning to learn a near-optimal policy while limiting the size of the discretization?

Current approaches to this problem consider uniform discretization policies, which are either
fixed based on problem primitives, or updated via a fixed schedule (for example, via a ‘doubling
trick’). However, a more natural approach is to adapt the discretization over space and time in a
data-driven manner. This allows the algorithm to learn policies which are not uniformly smooth,
but adapt to the geometry of the underlying space. Moreover, the agent would then be able to
explore more efficiently by only sampling important regions.

Adaptive discretization has been proposed and studied in the simpler multi-armed bandit set-
tings [12, 23]. The key idea here is to develop a non-uniform partitioning of the space, whose
coarseness depends on the density of past observations. These techniques, however, do not immedi-
ately extend to RL, with the major challenge being in dealing with error propagation over periods.
In more detail, in bandit settings, an algorithm’s regret (i.e., additive loss from the optimal policy)
can be decomposed in straightforward ways, so as to isolate errors and control their propagation.
Since errors can propagate in complex ways over sample paths, naive discretization could result in
over-partitioning suboptimal regions of the space (leading to over exploration), or not discretizing
enough in the optimal region due to noisy samples (leading to loss in exploitation). Our work takes
an important step towards tackling these issues.

Adaptive partitioning for reinforcement learning makes progress towards addressing the chal-
lenge of limited memory for real-time control problems. In particular, we are motivated by con-
sidering the use of RL for computing systems problems such as memory management, resource
allocation, and load balancing [6, 15]. These are applications in which the process of learning the
optimal control policy must be implemented directly on-chip due to latency constraints, leading
to restrictive memory constraints. Adaptive partitioning finds a more “efficient” discretization of
the space for the problem instance at hand, reducing the memory requirements. This could have
useful applications to many control problems, even with discrete state spaces, as long as the model
exhibits “smoothness” structure between nearby state-action pairs.

1.1 Our Contributions

As the main contribution of this paper, we design and analyze a Q-learning algorithm based on
data-driven adaptive discretization of the state-action space. Our algorithm only requires that the
underlying state-action space can be embedded in a compact metric space, and that the optimal
Q-function is Lipschitz continuous with respect to the metric. This setting is general, encompassing
discrete and continuous state-action spaces, deterministic systems with natural metric structures,
and stochastic settings with mild regularity assumptions on the transition kernels. Notably, our
algorithm only requires access to the metric, unlike other algorithms which require access to
simulation oracles. In addition, our algorithm is model-free, requiring less space and computational
complexity to learn the optimal policy.

From a theoretical perspective, we show that our adaptive discretization policy achieves near-
optimal dependence of the regret on the covering dimension of the metric space. In particular, we
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Fig. 1. Comparison of the observed rewards and state-action space discretization under the uniform mesh
(e—Net) algorithm [25] and our adaptive discretization algorithm. Both algorithms were applied to the
ambulance routing problem with shifting uniform arrival distributions (see Section 7.1). The colors correspond
to the relative O value of the given state-action pair, where green corresponds to a higher value for the
expected future rewards. The adaptive algorithm converges faster to the optimal policy by keeping a coarser
discretization of unimportant parts of the space and a fine discretization in important parts.

prove that over K episodes, our algorithm achieves a regret bound
R(K) =0 (HS/ZK(d+1)/(d+2))

where d is the covering dimension and H is the number of steps in each episode. Moreover, for
non-uniform metric spaces where the covering dimension is not tight, we show improved bounds
which adapt to the geometry of the space.

Our algorithm manages the trade-off between exploration and exploitation by careful use of
event counters and upper-confidence bounds. It then creates finer partitions of regions which
have high empirical rewards and/or are visited frequently, to obtain better Q-value estimates. This
reduces the memory requirement of our RL algorithm, as it adapts the discretization of the space to
learn the shape of the optimal policy. In addition, it requires less instance dependent tuning, as it
only needs to tune the scaling of the confidence bounds. Implementing uniform mesh algorithms,
in contrast, also requires tuning the mesh size.

We complement our theoretical guarantees with experiments, where we compare our adaptive Q-
learning algorithm to the net based Q-learning algorithm from [25] on two canonical problems with
continuous spaces. Our algorithm achieves order-wise better empirical rewards compared to the
uniform mesh algorithm, while maintaining a much smaller partition. Moreover, the performance
gap of our algorithm to the uniform mesh algorithm grow larger with increasing non-uniformity
in the underlying Q-function. As an example, in Figure 1 we demonstrate the performance of our
algorithm and net based Q-learning for a canonical ambulance routing problem (cf. Section 7).
We see that the adaptive discretization maintains different levels of coarseness across the space,
resulting in a faster convergence rate to the optimal policy as compared to the uniform mesh
algorithm.

1.2 Related Work

Our work sits at the intersection of two lines of work — on model-free Q-learning, and on adaptive
zooming for multi-armed bandits. We highlight some of the closest work below; for a more extensive
list of references, refer to [26] (for RL) and [4, 24] (for bandits). There are two popular approaches
to RL algorithms: model-free and model-based.
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Model-based. Model-based algorithms are based on learning a model for the environment, and
use this to learn an optimal policy [2, 11, 13, 17-19]. These methods converge in fewer iterations,
but have much higher computation and space complexity. As an example, the UCBVI algorithm [2]
requires storing an estimate of the transition kernel for the MDP, leading to a space complexity of
O(S?AH) (where S is the number of states, A is the number of actions, and H the number of steps
per episode). Another algorithm for discrete spaces, UCRL [1], and its state-aggregation followup
[17, 18], maintain estimates of the transition kernel and use this for learning the optimal policy.
Other model-based approaches assume the optimal Q-function lies in a function class and hence
can be found via kernel methods [30, 32], or that the algorithm has access to an oracle which
calculates distributional shifts [8].

There has been some work on developing model-based algorithms for reinforcement learning
on metric spaces [13, 17, 19]. The Posterior Sampling for Reinforcement Learning algorithm [19]
uses an adaptation of Thompson sampling, showing regret scaling in terms of the Kolmogorov
and eluder dimension. Other algorithms like UCCRL [17] and UCCRL-Kernel Density [13] extend
UCRL [1] to continuous spaces by picking a uniform discretization of the state space and running a
discrete algorithm on the discretization with a finite number of actions. The regret bounds scale in
terms of K(2¢+1/(2d+2) Qur algorithm achieves better regret, scaling via K{¢+V/(4+2) and works for
continuous action spaces.

Model-free. Our work follows the model-free paradigm of learning the optimal policy directly
from the historical rewards and state trajectories without fitting the model parameters; these
typically have space complexity of O(SAH), which is more amenable for high-dimensional settings
or on memory constrained devices. The approach most relevant for us is the work on Q-learning
first started by Watkins [29] and later extended to the discrete model-free setting using upper
confidence bounds by Jin et al. [10]. They show a regret bound scaling via O(H%?+/SAK) where S
is the number of states and A is the number of actions.

These works have since led to numerous extensions, including for infinite horizon time discounted
MDPs [7], continuous spaces via uniform e-Nets [25], and deterministic systems on metric spaces
using a function approximator [31]. The work by Song et al. assumes the algorithm has access
to an optimal e—Net as input, where € is chosen as a function of the number of episodes and the
dimension of the metric space [25]. Our work differs by adaptively partitioning the environment
over the course of learning, only requiring access to a covering oracle as described in Section 2.3.
While we recover the same worst-case guarantees, we show an improved covering-type regret
bound (Section 4.2). The experimental results presented in Section 7 compare our adaptive algorithm
to their net based Q-learning algorithm.

The work by Yang et al. for deterministic systems on metric spaces shows regret scaling via
O(HK%/(@+1)) where d is the doubling dimension [31]. As the doubling dimension is at most the
covering dimension, they achieve better regret specialized to deterministic MDPs. Our work achieves
sub-linear regret for stochastic systems as well.

Lastly, there has been work on using Q-learning with nearest neighbors [21]. Their setting
considers continuous state spaces but finitely many actions, and analyzes the infinite horizon
time-discounted case. While the regret bounds are generally incomparable (as we consider the
finite horizon non-discounted case), we believe that nearest-neighbor approaches can also be used
in our setting. Some preliminary analysis in this regards is in Section 6.

Adaptive Partitioning. The other line of work most relevant to this paper is the literature on
adaptive zooming algorithms for multi-armed bandits. For a general overview on the line of work
on regret-minimization for multi-armed bandits we refer the readers to [4, 14, 24]. Most relevant
to us is the work on bandits with continuous action spaces where there have been numerous
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algorithms which adaptively partition the space [5, 12]. Slivkins [23] similarly uses data-driven
discretization to adaptively discretize the space. Our analysis supersedes theirs by generalizing it
to reinforcement learning. Recently, Wang et al. [27] gave general conditions for a partitioning
algorithm to achieve regret bounds in contextual bandits. Our partitioning can also be generalized
in a similar way, and the conditions are presented in Section 6.

1.3 Outline of the paper

Section 2 presents preliminaries for the model. The adaptive Q-learning algorithm is explained
in Section 3 and the regret bound is given in Section 4. Section 5 presents a proof sketch of the
regret bound. Section 7 presents numerical experiments of the algorithm. Proofs are deferred to the
appendix.

2 PRELIMINARIES

In this paper, we consider an agent interacting with an underlying finite-horizon Markov Decision
Processes (MDP) over K sequential episodes, denoted [K] = {1, ...,K}.

The underlying MDP is given by a five-tuple (S, A, H,P, r) where S denotes the set of states, A
the set of actions, and horizon H is the number of steps in each episode. We allow the state-space
S and action-space A to be large (potentially infinite). Transitions are governed by a collection
P={Pu(- | x,a) | h € [H],x € S,a € A} of transition kernels, where P, (- | x, a) € A(S) gives the
distribution of states if action a is taken in state x at step h, and A(S) denotes the set of probability
distributions on 8. Finally, the rewards are given by r = {rj, | h € [H]}, where we assume each
rn: S X A — [0,1] is a deterministic reward function. '

A policy 7 is a sequence of functions {7y, | h € [H]} where each 7;, : S — A is a mapping from
a given state x € S to an action a € A. At the beginning of each episode k, the agent decides on
a policy 7%, and is given an initial state xf € S (which can be arbitrary). In each step h € [H] in
the episode, the agent picks the action JT;: (x;f ), receives reward ry, (x}]j, n}’f (x,’: )), and transitions to

a random state x,’; ,, determined by Pp, ( | x,’;, ﬂ}]: (xZ )) This continues until the final transition to

k
state Xpriqo

repeated.

whereupon the agent chooses the policy 7%*! for the next episode, and the process is

2.1 Bellman Equations

For any policy 7, we use V' : S — R to denote the value function at step h under policy =, i.e.,
V¥ (x) gives the expected sum of future rewards under policy 7 starting from x; = x in step h until
the end of the episode,

V7 (x) = E

H
Z P (Xw s 7o (X)) ‘ Xp = 4.

h'=h

We refer to O : S X A — R as the Q-value function at step h, where Q7 (x, a) is equal to the
sum of rp,(x, a) and the expected future rewards received for playing policy x in all subsequent
steps of the episode after taking action a;, = a at step h from state x;, = x,

Qr(x,a) :== rp(x,a) + E

H
Z ' (Xp, T (X)) | Xp = x,ap = a]-

h'=h+1

IThis assumption is made for ease of presentation, and can be relaxed by incorporating additional UCB terms for the
rewards.
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Under suitable conditions on S X A and the reward function, there exists an optimal policy 7*
which gives the optimal value V*(x) = sup, V*(x) for all x € § and h € [H]. For simplicity and
ease of notation we denote E[V,,1(%)|x, a] := Ex-p,(.|x,a)[Vh+1(X)] and set Q* = 0™ . We recall
the Bellman equations which state that [20]:

Vi (x) = Qp (x, mp(x))
Qy (x,a) = rp(x,a) + E[Vh’il(fc) | x, a] (1)
Vi,x)=0 VxeS.

The optimality conditions are similar, where in addition we have V*(x) = max,e a Q} (x, a).
The agent plays the game for K episodes k = 1,..., K. For each episode k the agent selects a
policy 7* and the adversary picks the starting state xf. The goal of the agent is to maximize her

total expected reward ZI,le Vl”k (xf). Similar to the benchmarks used in conventional multi-armed
bandits, the agent instead attempts to minimize her regret, the expected loss the agent experiences
by exercising her policy 7* instead of an optimal policy 7* in every episode. This is defined via:

K

REK) = Y (v eed) - v ). @)

k=1

Our goal is to show that R(K) € o(K). The regret bounds presented in the paper scale in terms
of K(4*D/(d+2) \where d is a type of dimension of the metric space. We begin the next section by
outlining the relevant metric space properties.

2.2 Packing and Covering

Covering dimensions and other notions of dimension of a metric space will be a crucial aspect of
the regret bound for the algorithm. The ability to adaptively cover the space while minimizing
the number of balls required will be a tenant in the adaptive Q-learning algorithm. Following
the notation by Kleinberg, Slivkins, and Upfal [12], let (X, D) be a metric space, and r > 0 be
arbitrary (in the regret bounds r will be taken as the radius of a ball). We first note that the diameter
of a set B is diam (B) = SUP, yep D(x,y) and a ball with center x and radius r is denoted by
B(x,r) = {y € X : D(x,y) < r}. We denote by dp,qx = diam (X) to be the diameter of the entire
space.

Definition 2.1. An r-covering of X is a collection of subsets of X, which cover X, and each of
which has diameter strictly less than r. The minimal number of subsets in an r-covering is called
the r-covering number of  and is denoted by N;.

Definition 2.2. A set of points P is an r-packing if the distance between any points in P is at
least r. An r-Net of the metric space is an r-packing where |, cp B(x, r) covers the entire space X.

As an aside, the Net based Q-learning algorithm requires an e-Net of the state action space S X A
given as input to the algorithm [25].

The last definition will be used for a more interpretable regret bound. It is also used to bound
the size of the adaptive partition generated by the adaptive Q-learning algorithm. This is used as a
dimension of general metric spaces.

Definition 2.3. The covering dimension with parameter c induced by the packing numbers N; is
defined as

d. =inf{d > 0 | N, < cr™?® Vr € (0, dpax]}-
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For any set of finite diameter, the covering dimension is at most the doubling dimension, which
is at most d for any set in (R?, ,). However, there are some spaces and metrics where the covering
dimensions can be much smaller than the dimension of the entire space [12].

All of these notions of covering are highly related, in fact there are even more definitions of
dimensions (including the doubling dimension) through which the regret bound can be formulated
(see Section 3 in [12]).

2.3 Assumptions

In this section we state and explain the assumptions used throughout the rest of the paper. We
assume that there exists a metric D : (S X A)? — R, so that S X A is a metric space . To make the
problem tractable we consider several assumptions which are common throughout the literature.

AssUMPTION 1. 8§ X A has finite diameter with respect to the metric D, namely that
diam (S X A) < dpmax-

This assumption allows us to maintain a partition of S X A. Indeed, for any point (x, a) in S X A,
the ball centered at (x, a) with radius d,,q, covers all of S x A. This is also assumed in other
research on reinforcement learning in metric spaces where they set dy,,x = 1 by re-scaling the
metric.

AssUMPTION 2. For every h € [H], Q) is L-Lipschitz continuous with respect to D, i.e. for all
(x,a),(x’,a’) e S X A,

|QZ(X9 a) - Q;(X’, a’)| = LD((X, a)’ (x’7 a’))'

Assumption 2 implies that the O} value of nearby state action pairs are close. This motivates the
discretization technique as points nearby will have similar Q) values and hence can be estimated
together. Requiring the Q7 function to be Lipschitz may seem less interpretable compared to making
assumptions on the problem primitives; however, we demonstrate below that natural continuity
assumptions on the MDP translate into this condition (cf. Appendix C for details).

PROPOSITION 2.4. Suppose that the transition kernel is Lipschitz with respect to total variation
distance and the reward function is Lipschitz continuous, i.e.

IPa(- | x,a) = Pu( | x",a')llrv < LiD((x,a),(x",a")) and
Irn(x, @) = rp(x’, a')| < LyD((x, a), (', a"))

forall (x,a),(x’,a’) € S X A and h. Then it follows that Q) is also (2L1H + Ly) Lipschitz continuous.

This gives conditions without additional assumptions on the space S x A. One downside,
however, is for deterministic systems. Indeed, if the transitions in the MDP were deterministic then
the transition kernels P; would be point masses. Thus, their total variation distance will be either 0
or 1 and will not necessarily be Lipschitz.

Another setting which gives rise to a Lipschitz Q) function (including deterministic transitions)
is seen when S is in addition a compact separable metric space with metric ds and the metric on
S x A satisfies D((x, a), (x’, a)) < Cds(x,x’) for some constant C and for alla € A and x,x” € S.
This holds for several common metrics on product spaces. If A is also a metric space with metric

28 x A can also be a product metric space, where S and A are metric spaces individually and the metric on S x A is a
product metric.
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d# then common choices for the product metric,

D((x,a),(x",a")) =ds(x,x") + da(a,a’)
D((x,a),(x’,a")) = max{ds(x,x"),dx(a,a’)}
D((x,a),(x",a")) = |l(ds(x,x"), dala, a))ll

all satisfy the property with constant C = 1. With this we can show the following.

PROPOSITION 2.5. Suppose that the transition kernel is Lipschitz with respect to the Wasserstein
metric and the reward function is Lipschitz continuous, i.e.

|}"h(x, (1) - T"h(x,, a,)l < LID((x’ a)’ (X’, a’))
dW(Ph( | X, a)’ Ph( | x,’ a,)) < LZD((x’ a)’ (X’, a’))

orall (x,a),(x’,a’) € S X A and h and where dy; is the Wasserstein metric. Then QF and V.* are
f h h
both (Zﬁgh LlL;) Lipschitz continuous.

Because S is assumed to be a metric space as well, it follows that V}* is Lipschitz continuous
in addition to Q}'. We also note that the Wasserstein metric is always upper-bounded by the total
variation distance, and so Lipschitz with respect to total variation implies Lipschitz with respect
to the Wasserstein metric. Moreover, this allows Assumption 2 to hold for deterministic MDPs
with Lipschitz transitions. Indeed, if gx(x,a) : S X A — S denotes the deterministic transition
from taking action a in state x at step h (so that Px(x” | x, a) = 1|,r—x]) then using properties of the
Wasserstein metric we see the following [9].

dW(Ph( | X, a)7Ph(' | x’a a’))

SUP{VfdPh(- | x.a) - /fdPh(- | x",a")] ISl < 1}

sup{|f(gn(x,a)) = flgn(x",a)| - [Ifll < 1}
dS(gh(x’ (1), gh(x,’ (1,)) < LD((X, a)’ (X,, a,))

IA

where || f||L is the smallest Lipschitz condition number of the function f and we used the Lipschitz
assumption of the deterministic transitions g, (x, a).

The next assumption is similar to that expressed in the literature on adaptive zooming algorithms
for multi-armed bandits [12, 23]. This assumes unrestricted access to the similarity metric . The
question of representing the metric, learning the metric, and picking a metric are important in
practice, but beyond the scope of this paper [28]. We will assume oracle access to the similarity
metric via specific queries.

AssUMPTION 3. The agent has oracle access to the similarity metric D via several queries that are
used by the algorithm.

The Adaptive Q—Learning algorithm presented (Algorithm 1) requires only a covering oracle
which takes a finite collection of balls and a set X and either declares that they cover X or outputs
an uncovered point. The algorithm then poses at most one oracle call in each round. An alternative
assumption is to assume the covering oracle is able to take a set X and value r and output an r
packing of X. In practice, this can be implemented in several metric spaces (e.g. Euclidean spaces).
Alternative approaches using arbitrary partitioning schemes (e.g. decision trees, etc) are presented
in Section 6. Implementation details of the algorithm in this setting will be explained in Section 7.
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Algorithm 1 Adaptive Q-Learning
1: procedure ADAPTIVE Q-LEARNING(S, A, D, H, K, J)
2: Initiate H partitions Pi for h = 1,..., H each containing a single ball with radius d,,,x and
Q, estimate H

3: for each episode k < 1,...K do
4: Receive initial state xf
5: for eachsteph «— 1,...,H do
6: Select the ball By, by the selection rule Bg.; = AIEMAX g el EvaNTE () Qfl(B)
7: Select action alfl = a for some (x,’:, a) € dom(Bge;)
Play action a’,i, receive reward r;f and transition to new state xzﬂ
9: Update Parameters: t = ”Z“(Bsel) — nlfl(Bsel) +1
10:
11 QZ_H(Bsel) — (1 - at)QI;l(Bsel) + 0{[(}’]]; + b(t) + Vﬁ+1(xz+1)) where
12:
k k i k : ,
13: v, . (x,, ;) = min(H, MaXpeRELEVANTE  (xk ) Qy..,(B)) (see Section 3)
2
3 dmax
14: if nfl“(Bsel) > (m) then SprLiT BALL(Bs,, h, k)

15: procedure SpLIT BALL(B, A, k)

16: Set By, ... B, to be an %r(B)—packing of dom (B), and add each ball to the partition P}f”
(see Definition 2.2)

17: Initialize parameters QZ“(Bi) and n’;l“(B,-) for each new ball B; to inherent values from
the parent ball B

3 ALGORITHM

Our algorithm is parameterized by the number of episodes K and a value § € (0, 1) related to the
high-probability regret bound. * This algorithm falls under “Upper Confidence Bound” algorithms
popular in multi-armed bandits [4, 14] as the selection rule is greedy with respect to estimates of
the Q}’: function. For each step h = 1, ..., H it maintains a collection of balls 73}1‘ of § X A which
is refined over the course learning for each episode k € [K]. Each element B € P}; is a ball with
radius r(B). Initially, when k = 1, there is only one ball in each partition P}l which has radius dp,qx
and contains the entire state-action space by Assumption 1. A sample of the partition resulting
from our adaptive discretization of the space S = [0, 1], A = [0, 1] can be seen in Figure 1 with the
metric D((x, a), (x’,a’)) = max{|x — x’|, |a — a’|}.

In comparison to the previous literature where the algorithm takes an optimal e-Net as input,
our algorithm refines the partition 7’,’1‘ in a data-driven manner. In each iteration, our algorithm
performs three steps: select a ball via the selection rule, update parameters, and re-partition the
space.

For every episode k and step h the algorithm maintains two tables with size linear with respect to
the number of balls in the partition P}’l‘ . For any ball B € P,’; we maintain an upper confidence value
QI;I(B) for the true Q;l‘ value for points in B and ni(B) for the number of times B or its ancestors
have been selected by the algorithm at step h in episodes up to k. This is incremented every time B
is played. The counter will be used to construct the bonus term in updating the Q estimates and

3Knowledge of the number of episodes K can be relaxed by allowing the algorithm to proceed in phases via the doubling
trick.
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also for determining when to split a ball. We set the learning rate as follows:
H+1
3
H+t ®)
These learning rates are based on the the algorithm in [10], and are chosen to satisfy certain
conditions, captured via the following lemma (Lemma 4.1 from [10]).

ay =

LEmMA 3.1. Leta! £ g jt-:iﬂ(l — ;). Then {a; }i<; satisfy:
(1) Y al =1, max,-e[t] al < # and 3i_ (al)* < & foreveryt > 1

(2) L Vs Zl 1 \ft \fforeveryt>1
(3) Yilial =1+ 7 foreveryi > 1.

These properties will be important in the proof and we will highlight them as they come up in
the proof sketch.

At a high level the algorithm proceeds as follows. In each episode k and step h, a state x’; is
observed. The algorithm selects an action according to the selection rule by picking a relevant ball
Bin P, k which has maximum upper confidence value QZ(B) and taking an action in that ball. Next,
the algorlthm updates the estimates for Q h(B) by updating parameters and lastly re-partitions the
state-action space.

In order to define the three steps (selection rule, updating parameters, and re-partitioning) we
need to introduce some definitions and notation. Fix an episode k, step h, and ball B € 7)}]: . Let

t = n’;l(B) be the number of times B or its ancestors have been selected by the algorithm at step h
in episodes up to the current episode k. The confidence radius or bonus of ball B is

. [H310g(4HK/5)  4Ldpay
b(t) = 24/ . M 4)

The first term in Equation 4 corresponds to the uncertainty in the current estimate of the Q value
due to the stochastic nature of the transitions. The second term corresponds to the discretization
error by expanding the estimate to all points in the same ball. If in addition the rewards were
stochastic, there would be a third term to include the confidence in reward estimates.

The domain of a ball B is a subset of B which excludes all balls B" € PII; of a strictly smaller
radius

dom(B) = B \ (uB/ey)},f:r(B/)q(B)B’).
The domain of the balls in 73,’: will cover the entire space S X A and be used in the algorithm as a
partition of the space. A ball B is then relevant in episode k step h for a point x € S if (x, a) € dom(B)
for some a € A. The set of all relevant balls for a point is denoted by RELEVANT’;(x). In each round
the algorithm selects one relevant ball B for the current state x,’i and plays an action a in that ball.
After subsequently observing the reward r, = r(xz ,a) we increment t = nﬁ“(B) = n’;l(B) +1,and
perform the Q-learning update according to

QN (B) = (1 - ar)Qy(B) + ar(ry + Vi, (Xnew) + b(1)) (5)
where r}’: is the observed reward, x,.., is the state the agent transitions to, and
Vi (x) = min(H, max Qk..(B) (6)
BERELEVANTK _ (x)

is our estimate of the expected future reward for being in a given state. Let (x”j , a'};) be the state
action pair observed in episode k step h by the algorithm. Then the three rules are defined as
follows
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k
h

arbitrarily). Select any action a to play such that (xg, a) € dom(B). This is similar to the
greedy “upper confidence algorithms” for multi-armed bandits.

e update parameters: Increment nﬁ (B) by 1, and update the Qﬁ(B) value for the selected ball
given the observed reward according to Equation 5.

e re-partition the space: Let B denote the selected ball and r(B) denote its radius. We split
when nﬁ“(B) > (dmax/r(B))?. We then cover dom (B) with new balls By, .. ., B, which form
an %r(B)—Net of dom (B). We call B the parent of these new balls and each child ball inherits
all values from its parent. We then add the new balls By, ..., B, to P{f to form the partition

e selection rule: Select a relevant ball B for x; with maximal value of Q;‘l(B) (breaking ties

for the next episode Px*!.*

See Algorithm 1 for the pseudocode. The full version of the pseudocode is in Appendix B. As a
reference, see Table 1 in the appendix for a list of notation used.

4 PERFORMANCE GUARANTEES

We provide three main forms of performance guarantees: uniform (i.e., worst-case) regret bounds
with arbitrary starting states, refined metric-specific regret bounds, and sample-complexity guar-
antees for learning a policy. We close the section with a lower-bound analysis of these results,
showing that our results are optimal up to logarithmic factors and a factor of H?.

4.1 Worst-Case Regret Guarantees

We provide regret guarantees for Algorithm 1. First recall the definition of the covering number
with parameter c as

d.=inf{d > 0: N, < cr ? Vr € (0,dpmax]}. (7)

We show the regret scales as follows:

THEOREM 4.1. For any any sequence of initial states {x{< | k € [K]}, and any § € (0,1) with
probability at least 1 — § Adaptive Q-learning (Alg 1) achieves regret guarantee:

R(K) < 3H? + 6+/2H3K log(4HK /§)

4+ yHK@e+D/(dev2) (\/H3 log(4HK/8) + Ldmax)
_ O(H5/2K(dc+1)/(dc+2))

where d. is the covering number of S X ‘A with parameter ¢ and the problem dependent constant

y = 19201/(dc+2)d7_nicx/(dc+2).

The regret bound in Theorem 4.1 has three main components. The first term 3H? corresponds to
the regret due to actions selected in the first episode and its subsequent impact on future episodes,
where we loosely initialized the upper confidence value Q of each state action pair as H. The second
term accounts for the stochastic transitions in the MDP from concentration inequalities. The third
term is the discretization error, and comes from the error in discretizing the state action space by

“Instead of covering the parent ball each time it is “split”, we can instead introduce children balls as needed in a greedy
fashion until the parent ball is covered. When B is first split, we create a single new ball with center (x, a) and radius %r(B)
where x and a are the current state and action performed. At every subsequent time the parent ball B is selected where
the current state and action (%, @) € dom(B), then we create a new ball again with center (%, @) and radius %r(B), which
removes this set from dom (B).
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the adaptive partition. As the partition is adaptive, this term scales in terms of the covering number
of the entire space. Setting § = K~'/(@*2) e get the regret of Algorithm 1 as

O(HS/ZK(dC+1)/(dC+2)) .

This matches the regret bound from prior work when the metric space S x A is taken to be a
subset of [0, 1]¢, such that the covering dimension is simply d, the dimension of the metric space [25].
For the case of a discrete state-action space with the discrete metric D((s, a), (s, a")) = L[s=y' a=a’],

which has a covering dimension d. = 0, we recover the O(VH3K) bound from discrete episodic RL
[10].

Our experiments in Section 7 shows that the adaptive partitioning saves on time and space
complexity in comparison to the fixed e—Net algorithm [25]. Heuristically, our algorithm achieves
better regret while reducing the size of the partition. We also see from experiments that the regret
seems to scale in terms of the covering properties of the shape of the optimal Q} function instead
of the entire space similar to the results on contextual bandits in metric spaces [23].

Previous work on reinforcement learning in metric spaces give lower bounds on episodic rein-
forcement learning on metric spaces and show that any algorithm must achieve regret where H
scales as H*/? and K in terms of K(%*1)/(d+2) Because our algorithm achieves worst case regret
O(Kde+D)/(de*+2) [15/2) this matches the lower bound up to polylogarithmic factors and a factor of H
[23, 25]. More information on the lower bounds is in Section 4.4.

4.2 Metric-Specific Regret Guarantees

The regret bound formulated in Theorem 4.1 is a covering guarantee similar to prior work on bandits
in metric spaces [12, 23]. This bound suffices for metric spaces where the inequality in the definition
of the covering dimensions N, < cr~¢ is tight; a canonical example is when S X A = [0, 1]¢ under
the Euclidean metric, where the covering dimension scales as N, = ,Ld-

More generally, the guarantee in Theorem 4.1 arises from a more refined bound, wherein we
replace the yK(%*1/(de+2) factor in the third term of the regret with

. Kr() d
inf 7 + Z N, 2.
ro€(0,d, . r
0 ( max] max r:dmaxzil

r=ry

The bound in Theorem 4.1 is obtained by taking ry = @(K ﬁﬂ) inside of the infimum.

This regret bound gives a packing N, type guarantee. Discussion on the scaling is deferred to
Section 4.4.

4.3 Policy-ldentification Guarantees

We can also adapt our algorithm to give sample-complexity guarantees on learning a policy of

desired quality. For such a guarantee, assuming that the starting states are adversarially chosen is

somewhat pessimistic. A more natural framework here is that of probably approximately correct

(PAC) guarantees for learning RL policies [29]. Here, we assume that in each episode k € [K], we

have a random initial state X{‘ € 8§ drawn from some fixed distribution F;, and try to find the

minimum number of episodes needed to find an e-optimal policy 7 with probability at least 1 — 8.
Following similar arguments as [10], we can show that

THEOREM 4.2. ForK = 6((H5/2/5e)d6+2) (where d.. is the covering dimension with parameter c),

consider a policy & chosen uniformly at random from 1, . . ., mg. Then, for initial state X ~ Fy, with
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probability at least 1 — &, the policy & obeys
VA0 - VEX) < e

Note that in the above guarantee, both X and 7 are random. The proof is deferred to Appendix D

4.4 Lower Bounds

Existing lower bounds for this problem have been established previously in the discrete tabular
setting [10] and in the contextual bandit literature [23].
Jin et al. [10] show the following for discrete spaces.

THEOREM 4.3 (PARAPHRASE OF THEOREM 3 FROM [10]). For any algorithm, there exists an H-episodic
discrete MDP with S states and A actions such that for any K, the algorithm’s regret is Q(H>/>VSAK).

This shows that our scaling in terms of H is off by a linear factor. As analyzed in [10], we believe
that using Bernstein’s inequality instead of Hoeffding’s inequality to better manage the variance of
the Qﬁ(B) estimates of a ball will allow us to recover H? instead of H%/2,

Existing lower bounds for learning in continuous spaces have been established in the contextual
bandit literature. A contextual bandit instance is characterized by a context space S, action space
A, and reward function r : S X A — [0, 1]. The agent interacts in rounds, where in each round
the agent observes an arbitrary initial context x, either drawn from a distribution or specified by
an adversary, and the agent subsequently picks an action a € A, and receives reward r(x, a). This
is clearly a simplification of an episodic MDP where the number of steps H = 1 and the transition
kernel Py(- | x, a) is independent of x and a. Lower bounds presented in [12, 23] show that the
scaling in terms of N, in this general regret bound is optimal.

THEOREM 4.4 (PARAPHRASE OF THEOREM 5.1 FROM [23]). Let (S X A, D) be an arbitrary metric
space satisfying the assumptions in Section 2.3 with dynqx = 1. Fix an arbitrary number of episodes K
and a positive number R such that

N
R<Cy inf |reK + —Llog(K) |.
<Co Inf 70 > — log(K)

r=27"
r=ry

Then there exists a distribution I over problem instances such that for any algorithm, it holds that
E7(R(K)) = Q(R/log(K)).

This shows that the scaling in terms of K in Section 4.2 is optimal up to logarithmic factors.
Plugging in ry = ©(K~/(4*2) and exhibiting the dependence on ¢ from the definition of the
covering dimension (Equation 7) gives that the regret of any algorithm over the distribution of
problem instances is at least Q(K(@e+1/(de*2)¢1/(de+2)) This matches the dependence on K and ¢
from Theorem 4.1. We can port this lower bound construction over to reinforcement learning by
constructing a problem instance with H bandit problems in sequence. An interesting direction for
future work is determining which reinforcement learning problem instances have more suitable
structure where we can develop tighter regret bounds.

5 PROOF SKETCH

In this section we give a proof sketch for Theorem 4.1; details are deferred to Appendix E. We start
with a map of the proof before giving some details.

Recall that the algorithm proceeds over K episodes, with each episode comprising of H steps. We
start by showing that our algorithm is optimistic [22], which means that with high probability, the
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estimates maintained by the algorithm are an upper bound on their true values. This allows us to
write the regret in terms of the error in approximating the value function to the true value function
for the policy employed on that episode. Next, using induction we relate the error from a given
step in terms of the error from the next step. Unraveling the relationship and using the fact that
the value function for the last step is always zero, we write the regret as the sum of the confidence
bound terms from Equation 4. We finish by bounding these quantities using properties of the
splitting rule from Algorithm 1. Together, this shows the regret bound established in Theorem 4.1.

Before giving some details of the proof, we start with some notation. Let B’Z and (x,’; , a’;l) denote the

ball and state-action pair selected by the algorithm in episode k, step h. We also denote nﬁ = n’fl(BZ)

as the number of times the ball B’}; or its ancestors has been previously played by the algorithm.
The overall regret is then given by (Equation 2):

K
RK) = Y (Vi) = v ().
k=1
To simplify presentation, we denote (V*(xf) — V7 k(x;’i ) by (V= VT k)(x,’j )-

We start by relating the error in the estimates from step h in terms of the (h + 1) step estimates.
The following Lemma establishes this relationship, which shows that with high probability Q’;l is
both an upper bound on Qj', and exceeds Q) by an amount which is bounded as a function of the
step (h + 1) estimates. This also shows that our algorithm is optimistic.

LEMMA 5.1. For any ball B, step h and episode k, let t = nﬁ(B), andky < ... < k; to be the episodes
where B or its ancestors were encountered previously by the algorithm in step h. Then, for any § € (0,1),
with probability at least 1—5 /2 the following holds simultaneously for all (x, a, h, k) € SXAX[H|X[K]
and ball B such that (x, a) € dom(B):

1.QK(B) > QO (x,a) and VE(x) > V*(x)
2.QE(B) ~ QO (x.a) < LpcoH + B + . a (V’;;'+1 - V,:H)(x:ﬂrl)
i=1

where, for anyt € [K] andi < t, we define a = a; Hjt-:l-+1(1 —aj)and By =2%_, a!b(i) (where a;
are the learning rates, and b(-) the confidence radius).

In Appendix E, we provide an expanded version of Lemma 5.1 with a detailed proof (Lemma E.7).
Below we provide a proof sketch. The main claim in the Lemma follows from first expanding the
recursive update for Qﬁ (B) from (5), the property that };_; @/ = 1 from Lemma 3.1, and applying
definitions from the Bellman Equation (Equation 1) to show that

Qh(B) ~ Qi) = prmay(H = Qj (o)) + Y xf (VL = Vi) ) + ()

t

t
. ki ~ ki ki . ki ki
+ aﬁ(V;::l(th) - E[V;:ll(X) | x,'.a, ]) + Z a}(Q,’l‘(xh .a,") = Qp (x, a)).
=1 i=1

The last term ‘Zle a;(Q; (xZ", algi) — Q(x, a))| is the error due to the bias induced by discretization,

which we bound by 4Ld,,4, /Vt using Lipschitzness of the Q-function. The second term is the error
due to approximating the future value of a state. By using Azuma-Hoeffding’s inequality, we show
that with probability at least 1 — §/2, the error due to approximating the future value by the next
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state as opposed to computing the expectation is bounded above by

Zal( l(xh+1) E|V, 1()2')|x£i,aki:|) SZ\/@.

i=1
The final inequalities in Lemma 5.1 follow by the definition of b(i), $;, and substituting the above
inequalities to the expression for Qﬁ(B) - Qy(x,a).
By Lemma 5.1, with high probability, Vﬁ (x) > V;*(x), such that the terms within the summation
of the regret (Vl’"(x{c )=V k(x{‘ )) can be upper bounded by (V’f -Vr y )(x{C ) to show that

K
k kN (4K
R(K) < (VK = v )h).
k=1
The main inductive relationship is stated in Lemma 5.2 which writes the errors of these step h
estimates in terms of the (h + 1) step estimates.

LEMMA 5.2. Forany§ € (0,1) if f; = 2 3,i_, alb(i) then with probability at least 1 — §/2, for all

h € [H],
K k K k
DUVE =V < 3 (g + B + £ ) + (1+—)Z<vh+1 V)
k=1 k=1

N k
where £, = B[V, (0 = Vi ()| ko | - 7, - ik, ).

Expanding this inductive relationship, and using the base case that the value functions at step

H+1,VE andvZ"

H+1 H.1 are always zero, it follows that

H h-1 K
R(K)sZ(HIl{) D UH ) + B + £ )
h=1

k=1

H K
$3ZZ( kg +ﬁk+§h+1)

h=1 k=1
Clearly, Zle Hﬂ[n’;:o] = H as "h = 0 only for the first episode k = 1. For the terms with §,’1<+1

we use a standard martingale analysis with Azuma-Hoeftdings inequality to show in Lemma E.9 of
the Appendix that

H K
D2 &, < 632HK log(4HK /).

h=1 k=1
The dominating term in the regret is 3,77 he1 >k %=1 B,x, which captures critical terms in the approxi-
- - h
mation error of Q. By construction of b(t), it follows that f; = @(%) from the second condition in

Lemma 3.1. Using the following two lemmas we are able to bound this sum. The first lemma states
several invariants maintained by the partitioning scheme.

LEMMA 5.3. For every (h,k) € [H] X [K] the following invariants are maintained:

e (Covering) The domains of each ball in 50,’1‘ cover S X A.
o (Separation) For any two balls of radius r, their centers are at distance at least r.

The next lemma states that the number of samples in a given ball grows in terms of its radius.
This is needed to show a notion of “progress”, where as we get more samples in a ball we further
partition it in order to get a more refined estimate for the Q}° value for points in that ball.
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LEMMA 5.4. For any h € [H]| and child ball B € P}If (the partition at the end of the last episode K)
the number of episodes k < K such that B is selected by the algorithm is less than %(dmax/r)2 where
r = r(B). Le. denoting by B]; the ball selected by the algorithm in step h episode k,

3(d 2
k:Bf=B) < o[22 .
e = < 22

2
Moreover, the number of times that ball B and it’s ancestors have been played is at least i(dm%) .

de
Using these two lemmas we show that |7)}]lc | =~ Kd+2. Hence we get using Jensen’s and Cauchy’s
inequality that:

Mx

K
Db == Y,
k=1 k=1\/a BePF k:Bf=B \/Z

> Ik :BE =Bl = \IPFIK

Be?’}’f
~ K(dc+1)/(dc+2) X

1

Combining these terms gives the regret bound in Theorem 4.1.

Finally we would like to give some intuition for how the induction relationship presented in
Lemma 5.2 follows from the key Lemma 5.1. Recall that the selection rule in the algorithm enforces
that the selected ball B;‘l is the one that maximizes the upper confidence Q-values amongst relevant
balls. By definition, it follows that for any h and k,

VE-Vi)af) < max  QF(B)-QF (xF.af)

BERELEVANTK (x¥)
k
= QF(BF) - OF (xf,ak)
k
= QF(BF) — QO (xf, ak) + QF (xf, ak) — OF (xF, af).

By the definition of the Q-function in Equation 1,

O ek ) = QF (o af) = B[V, () -

o]

We bound Q’Z(BZ)—Q;(xlg, aﬁ) by Lemma 5.1, as (x’];, aﬁ) € dom (B’];) Putting these bounds together,

fort = n’;l(BZ) and for k; < ... < k; denoting episodes where B’; or its ancestors were previously
encountered, it follows that

t
k i ki k
(VZ - Vhﬂ )(xili) < ]l[tZO]H + 'Bt + Z 4a;(vh+1 +1)(xh+1) +( h+1 VIZH)(XEH) + SZF]:H’

i=1

where §,’;+1 is defined in Lemma 5.2. Let us denote n’; = nZ(BZ), and let the respective episodes

k,—(BZ ) denote the time BZ or its ancestors were selected for the i-th time. By comparing the above
inequality to the final inductive relationship, the last inequality we need show is that upon summing
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over all episodes k,

K, Kki(BE) k(B | X k

i i i k
Z a;Z(VhH " V}T+1)(xh+1 " ) + Z(VF::I - Vlfi—l)(xhﬂ)
k=1 i=1 k=1

K
1 k * Nk
< (1 + ?I) ;(Vhﬂ - Vh+1)(xh+1)'

For every k’ € [K] the term (VK —V*

he1 — Vi H)(xk' ) appears in the summand when k = nil. The next

h+1

time it appears when k = ni/ + 1 and so on. By rearranging the order of the summation,
k
K ny,
i ki(By) ki(By)
1 h * h
Z anﬁ(vhﬂ - Vh+1)(xh+1 )
k=1 i=1

K 00 B

k * k ny

< Z(Vhﬂ - Vh+1>(xh+1) Z ay -
k=1 t=nk
h

The final recursive relationship results from the property that by construction )2, al = 1 + % for

all i from Lemma 3.1, and the inequality Vh’ikl (x,’iﬂ) < V;‘H(x’,;l) < V];Hl(xlgﬂ).

6 DISCUSSION AND EXTENSIONS

The partitioning method used in Algorithm 1 was chosen due to its implementability. However,
our analysis can be extended to provide a framework for adaptive Q-learning algorithms that
flexibly learns partitions of the space in a data-driven manner. This allows practitioners to use their
favourite partitioning algorithm (e.g. decision trees, kernel methods, etc) to adaptively partition the
space. This begs the question: Amongst different partitioning algorithms, which ones still guarantee
the same regret scaling as Theorem 4.17

In particular, we consider black box partitioning schemes that incrementally build a nested
partition, determining when and how to split regions as a function of the observed data. This black
box partitioning algorithm is then plugged into the “repartioning” step of Algorithm 1. Let 7’}’1“
denote the partition kept by the algorithm for step h in episode k. The algorithm stores estimates
Q’;(P) for the optimal Q}* value for points in a given region P € P}’l‘ and n’};(P) for the number of
times P or its ancestors has been selected in step h up to the current episode k. In every episode
k, step h of the algorithm, the procedure proceeds identically to that in Algorithm 1 by selecting
a region P’]; which is relevant for the current state with maximal QZ(P) value. The update rules
are the same as those defined in (5) where instead of balls we consider regions in the partition.
When a region is subpartitioned, all of its children must inherent the values of Q’;L(P) and n’;l(P)
from its parent. The black box partitioning algorithm only decides when and how to subpartition
the selected region P,]:.

In Theorem 6.1, we extend the regret guarantees to modifications of Algorithm 1 that maintain
the conditions below.

THEOREM 6.1. For any modification of Algorithm 1 with a black box partitioning scheme that
satisfiesV h € [H], 7’}’::

(1) {SD}’: }k>1 is a sequence of nested partitions.
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(2) There exists constants c; and c; such that for every h,k and P € P}Il‘

2 2
Cc C
1 k(P < 2

— <n < —.
diam (P)* ~ " )< Gam (P)*
(3) |PK| < Kdellder2),
the achieved regret is bounded by O(H®/?K(de*1/(de+2)),

Our algorithm clearly satisfies the first condition. The second condition is verified in Lemma E.1,
and the third condition follows from a tighter analysis in Lemma E.10. The only dependence on the
partitioning method used when proving Theorem 4.1 is through these sets of assumptions, and so
the proof follows from a straightforward generalization of the results.

Similar generalizations were provided in the contextual bandit setting by [27], although they
only show sublinear regret. The first condition requires that the partition evolves in a hierarchical
manner, as could be represented by a tree, where each region of the partition has an associated
parent. Due to the fact that a child inherits its Q’; estimates from its parent, the recursive update
expansion in Lemma 5.1 still holds. The second condition establishes that the number of times a
given region is selected grows in terms of the square of its diameter. This can be thought of as
a bias variance trade-off, as when the number of samples in a given region is large, the variance
term dominates the bias term and it is advantageous to split the partition to obtain more refined
estimates. This assumption is necessary for showing Lemma 5.4. It also enforces that the coarseness
of the partition depends on the density of the observations. The third condition controls the size of
the partition and is used to compute the sum ZIk(:l ﬁ"’ﬁ from the proof sketch in Section 5.

This theorem provides a practical framework for developing adaptive Q-learning algorithms.
The first condition is easily satisfied by picking the partition in an online fashion and splitting
the selected region into sub-regions. The second condition can be checked at every iteration and
determines when to sub-partition a region. The third condition limits the practitioner from creating
unusually shaped regions. Using these conditions, a practitioner can use any decision tree or
partitioning algorithm that satisfies these properties to create an adaptive Q-learning algorithm.
An interesting future direction is to understand whether different partitioning methods leads to
provable instance-specific gains.

7 EXPERIMENTS
7.1 Experimental Set up

We compare the performance of Q-learning with Adaptive Discretization (Algorithm 1) to Net Based
Q-Learning [25] on two canonical problems to illustrate the advantage of adaptive discretization
compared to uniform mesh. On both problems the state and action space are taken to be S = A =
[0, 1] and the metric the product metric, i.e. D((x, a), (x’,a’)) = max{|x — x’|, |a — a’|}. This choice
of metric results in a rectangular partition of S X A = [0, 1] allowing for simpler implementation
and easy comparison of the partitions used by the algorithms. We focus on problems which have a
two-dimensional state-action space to provide a proof of concept of the adaptive discretizations
constructed by the algorithm. These examples have more structure than the worst-case bound, but
provide intuition on the partition “zooming” into important parts of the space. More simulation
results are available with the code on github at https://github.com/seanrsinclair/AdaptiveQLearning.

0il Discovery. This problem, adapted from [16], is a continuous variant of the popular ‘Grid
World’ game. It comprises of an agent (or agents) surveying a 1D map in search of hidden “oil
deposits”. The world is endowed with an unknown survey function f(x) which encodes the oil
deposit at each location x. For agents to move to a new location they must pay a cost proportional
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to the distance moved; moreover, surveying the land produces noisy estimates of the true value of
that location.

We consider an MDP where S = A = [0, 1] represent the current and future locations of
the agent. The time-invariant transition kernel (i.e., homogeneous for all h € [H]) is defined via
Pp(x” | x,a) = 1y—q), signifying that the agent moves to their chosen location. Rewards are given
by ru(x, a) = max{0, f(a)+e—|x—al}, where € is independent sub-Gaussian noise and f(a) € [0, 1]
is the survey value of the location a (the max ensures rewards are in [0, 1]).

We choose the survey function f(x) to be either f(x) = e**~l or f(x) = 1 — A(x — ¢)? where
¢ € [0, 1] is the location of the oil well and A is a smoothing parameter, which can be tuned to
adjust the Lipschitz constant.

Ambulance Relocation. This is a widely-studied stochastic variant of the above problem [3].
Consider an ambulance navigating an environment and trying to position itself in a region with
high predicted service requests. The agent interacts with the environment by first choosing a
location to station the ambulance, paying a cost to travel to that location. Next, an ambulance
request is realized, drawn from a fixed distribution, after which the ambulance must travel to meet
the demand at the random location.

Formally, we consider an MDP with § = A = [0, 1] encoding the current and future locations
of the ambulance. The transition kernels are defined via Py (x’|x, a) ~ ¥, where 7, denotes the
request distribution for time step h. The reward is ry(x’|x,a) = 1 — [c|x — a| + (1 — ¢)|x" — a|]; here,
¢ € [0, 1] models the trade-offs between the cost of relocation (often is less expensive) and cost of
traveling to meet the demand.

For the arrival distribution ¥} we consider Beta(5, 2) and Uniform(0, 1) to illustrate dispersed and
concentrated request distributions. We also analyzed the effect of changing the arrival distribution
over time (e.g. Figure 1). We compare the RL methods to two heuristics: “No Movement”, where the
ambulance pays the cost of traveling to the request, but does not relocate after that, and “Median”,
where the ambulance always relocates to the median of the observed requests. Each heuristic is
near-optimal respectively at the two extreme values of c.

7.2 Adaptive Tree Implementation

We used a tree data structure to implement the partition P;’: of Algorithm 1. We maintain a tree for
every step h € [H] to signify our partition of S X A = [0, 1]%. Each node in the tree corresponds to
a rectangle of the partition, and contains algorithmic information such as the estimate of the Q’;
value at the node. Each node has an associated center (x, a) and radius r. We store a list of (possibly
four) children for covering the region which arises when splitting a ball.

To implement the selection rule we used a recursive algorithm which traverses through all the
nodes in the tree, checks each node if the given state x”; is contained in the node, and if so recursively
checks the children to obtain the maximum QZ value. This speeds up computation by following
the tree structure instead of linear traversal. For additional savings we implemented this using a
max-heap.

For Net Based Q-Learning, based on the recommendation in [25], we used a fixed e-Net of the
state-action space, with € = (KH)™/4 (since d = 2). An example of the discretization can be seen in
Figure 1 where each point in the discretization is the center of a rectangle.

7.3 Experimental Results

0il Discovery. First we consider the oil problem with survey function f(a) = e *1%=¢l where
A = 1. This results in a sharp reward function. Heuristically, the optimal policy can be seen to
take the first step to travel to the maximum reward at ¢ and then for each subsequent step stay
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Fig. 2. Comparison of the observed rewards, size of partition, and discretization for the uniform mesh [25] and

our adaptive discretization algorithms, on the oil discovery problem with survey function f(x) = e
The transition kernel is Pp,(x” | x, @) = 1[,—4) and reward function is r(x,a) = (1 -

e—1a=0.75] _
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Section 7.1). The adaptive algorithm quickly learns the location of the optimal point 0.75 and creates a fine

partition of the space around the optimal.
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Fig. 3. Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution and
reward function r(x,a) = 1— |x — a| (see Section 7.1). Clearly, the no movement heuristic is the optimal policy
but the adaptive algorithm learns a fine partition across the diagonal of the space where the optimal policy

lies.

at the current location. For the experiments we took the number of steps H to be five and tuned
the scaling of the confidence bounds for the two algorithms separately. In Figure 2 we see that
the adaptive Q-learning algorithm is able to ascertain the optimal policy in fewer iterations than
the epsilon net algorithm. Moreover, due to adaptively partitioning the space instead of fixing a
discretization before running the algorithm, the size of the partition in the adaptive algorithm
is drastically reduced in comparison to the epsilon net. Running the experiment on the survey
function f(a) = 1 — A(x — ¢)? gave similar results and the graph can be seen in Appendix F. We
note that for both experiments as we increase A, causing the survey distribution to become peaky
and have a higher Lipschitz constant, the Net based Q-learning algorithm suffered from a larger
discretization error. This is due to that fact that the tuning of the € parameter ignores the Lipschitz
constant. However, the adaptive Q-learning algorithm is able to take advantage and narrow in on
the point with large reward.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 55. Publication date: December 2019.

RIGHTS

(o



Adaptive Discretization for Episodic Reinforcement Learning in Metric Spaces 55:21

Ambulance Routing. We consider the ambulance routing problem with arrival distribution
¥ = Beta(5, 2). The time horizon H is again taken to be five. We implemented two additional
heuristics for the problem to serve as benchmarks. The first is the “No Movement” heuristic. This
algorithm takes the action to never move, and pays the entire cost of traveling to service the arrival.
The second, “Median” heuristic takes the action to travel to the estimated median of the distribution
based on all past arrivals. For the case when ¢ = 1 no movement is the optimal algorithm. For ¢ = 0
the optimal will be to travel to the median.

After running the algorithms with ¢ = 1 the adaptive Q-learning algorithm is better able to
learn the stationary policy of not moving from the current location, as there is only a cost of
moving to the action. The rewards observed by each algorithm is seen in Figure 3. In this case,
the discretization (for step h = 2) shows that the adaptive Q-learning algorithm maintains a finer
partition across the diagonal where the optimal policy lives. Running the algorithm for ¢ < 1 shows
that the adaptive Q-learning algorithm has a finer discretization around (x, a) = (0.7, 0.7), where
0.7 is the approximate median of a Beta(5, 2) distribution. The algorithm keeps a fine discretization
both around where the algorithm frequently visits, but also places of high reward. For ¢ < 1 and the
arrival distribution ¥ = Uniform|[0, 1] the results were similar and the graphs are in Appendix F.

The last experiment was to analyze the algorithms when the arrival distribution changes over
time (e.g. over steps h). In Figure 1 we took ¢ = 0 and shifting arrival distributions 7, where 77 =
Uniform(0, 1/4), 2 = Uniform(1/4, 1/2), ¥3 = Uniform(1/2, 3/4), ¥4 = Uniform(3/4,1),and F5 =
Uniform(1/2 —0.05,1/2 + 0.05). In the figure, the color corresponds to the Q}"l‘ value of that specific
state-action pair, where green corresponds to a larger value for the expected future rewards. The
adaptive algorithm was able to converge faster to the optimal policy than the uniform mesh
algorithm. Moreover, the discretization observed from the Adaptive Q-Learning algorithm follows
the contours of the Q-function over the space. This shows the intuition behind the algorithm
of storing a fine partition across near-optimal parts of the space, and a coarse partition across
sub-optimal parts.

8 CONCLUSION

We presented an algorithm for model-free episodic reinforcement learning on continuous state
action spaces that uses data-driven discretization to adapt to the shape of the optimal policy. Under
the assumption that the optimal Q* function is Lipschitz, the algorithm achieves regret bounds
scaling in terms of the covering dimension of the metric space.

Future directions include relaxing the requirements on the metric, such as considering weaker
versions of the Lipschitz condition. In settings where the metric may not be known a priori, it would
be meaningful to be able to estimate the distance metric from data over the course of executinng of
the algorithm. Lastly, we hope to characterize problems where adaptive discretization outperforms
uniform mesh.
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A NOTATION TABLE

Symbol Definition

S, AH MDP specifications (state space, action space, steps per episode)
ru(x,a), Pu(- | x,a) | Reward/transition kernel for taking action a in state x at step h
K Number of episodes

Ty Optimal policy in step h

(x;’:, a’];) State and action executed by the algorithm at step h in episode k
A(S) Set of probability measures on S

Vh*('), Q;(’ )

ay

a;

diam (B)
r(B)

b(t)

R(K)

dom(B)
RELEVANTY (x)
E[Vh41(%) | x, a]

Value/Q-function at step h under policy 7

Value/Q-function for step h under the optimal policy

Lipschitz constant for Q*

Metric on S X A

Bound on § X A using the metric O

r covering number of S X A

The covering dimension of S X A with parameter c

Partition of S X A for step h in episode k

Ball selected by algorithm in step h episode k

Estimate of the Q value for points in B in step h episode k

Estimate of the value function for x in step h episode k

Number of times B or its ancestors has been chosen
before episode k in step h

The adaptive learning rate Z—i} (cf. Alg 1)

ai ]t':i+1(1 - aj)

The diameter of a set B

The radius of a ball B

3
The upper confidence term, ZW + 4L?Eax

The regret up to episode K

The domain of a ball B, excludes points in a ball with a smaller radius

The set of all balls which are relevant for x in step h episode k
Espy(-lx,a)[Var1(X)]

Table 1. List of common notation
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B COMPLETE PSEUDOCODE FOR ADAPTIVE Q-LEARNING ALGORITHM

Algorithm 2 Adaptive Q-Learning

1: procedure ADAPTIVE Q-LEARNING(S, A, D, H, K, §)

2:
3:

-

16:

17:
18:

19:
20:
21:

22

23:
24:
25:
26:
27:
28:
29:

forh—1,...,Hdo
P; contains a single ball B with radius dp,4x
Q,(B) — H

for each episode k < 1,...K do

Receive initial state xf
for eachsteph «— 1,...,H do

Selection Rule:
Set RELEVANTX (x¥) = {B € PF | Ja € A with (x},a) € dom(B)}
Select the ball Bg,; by the selection rule Bg.; = AIGMAX g cpel vaNTE (k) Q’;l(B)

k

Select action a® = a for some (x;f, a) € dom(Bge;)

h
Play action aﬁ, receive reward r,’f, and new state x
Update Parameters:
nZ+I(Bsel) — nZ(Bsel) +1

b nI;IH(Bsel)

H3log(4HK /& dmax
b(t) — 4y HIEGHRID) . 2Ly

Q! (Bser) = (1= a)Qf (Bser) + ar(ry + Vi (xf, ) + b(1)) where

Vﬁ (x}li ) = min(H, max, ERELEVANTK (xF) QI;,(B))

. d 2
if t > (%) then

SpLIT BALL(Bs,;, b, k)
Py}

k
h+1

: procedure SpLiT BALL(B, h, k)
Set By,...B, tobea %r(B)—Net of dom (B)
for each ball B; do

QL I(B;) — QLI(B)
nk(By) — nktI(B)

Add B; to P}*!

C PROOFS FOR LIPSCHITZ Q* FUNCTION

ProrosiTiON C.1. Suppose that the transition kernel and reward function are Lipschitz continuous

with respect to D, i.e.

”Ph( | X, a) - Ph( | x/9 a/)”TV < L1~D((-X7 a)? (X/, a/)) and
|rh(x’ (1) - rh(xla al)l < LZD((x7 a)? (x/’ a/))

for all (x,a),(x’,a") € S X A and h. Then Q}; is also (2L1H + L) Lipschitz continuous.
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ProoF. We use the definition of Q. Indeed, for any h € [H],

|Q;(x, a) — QZ(x’, a’)| = |rp(x,a) — rp(x’,a’) + E[V};:_l()?) | x, a] - E[V;H(J?) | x/, a'] l.

However, noting that both Py(- | x,a) and Py(- | x’,a’) are absolutely continuous with respect
to the base measure A = %(Ph(- | x,a) + Py(- | x’,a’)) we are able to deconstruct the difference in
expectations with respect to the Radon-Nikodym derivatives as the measures are o-finite. Hence,

< |rh(x’ a) - rh(xl$ al)l +

/ VA () dPA(% | x,a) - / VAR dBy(% | Xy d)

/ vr ) EnE X ) / vr T ) g

< LyD((x,a), (x',a")) +

%) FRE)
< La(ma.a+ [ v EEE L B )

< LD((a) o) + 177 o [ | - S i)
0y EAL B ]

= LZD((x’ a)’ (x” a’)) + ZH”Ph( | X, a) - Ph( | x’9 a’)“TV
< L,D((x,a),(x’,a")) + 2HL,D((x, a), (x’,a’))

where we have used the fact that the total variation distance is twice the £; distance of the
Radon-Nikodym derivatives. O

Now we further assume that § is a separable and compact metric space with metric dg. We also
assume that D((x, a), (x’, a)) < Cdgs(x, x") where we assume C = 1 for simplicity.
As a preliminary we begin with the following lemma.

LEMMA C.2. Suppose that f : S X A — R is L Lipschitz and uniformly bounded. Then g(x) =
sup,c.4 f(x,a) is also L Lipschitz.

Proor. Fix any x; and x, € S. First notice that | f(xy,a) — f(x2,a)] < LD((x1, a), (x2,a)) <
Lds(x1,x2) by choice of product metric.
Thus, for any a € A we have that

f(x1,a) < f(x2,a) + Lds(x1, x2) < g(x2) + Lds(x1, x2).

However, as this is true for any a € A we see that g(x1) < g(x2) + Lds(x1, x2). Swapping the role
of x; and x; in the inequality shows |g(x1) — g(x2)| < Lds(x1, x2) as needed. |

We will use this and properties of the Wasserstein metric from [9] to give conditions on the Q*
function to be Lipschitz. First notice the definition of the Wasserstein metric on a separable metric

space via:
[rauw-[rav

where || f]|L is the smallest Lipschitz constant of the function f and p and v are measures on the
space S.

dw(p,v) = sup{ S flle < 1}
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ProrosiTioN C.3. Suppose that the transition kernel is Lipschitz with respect to the Wasserstein
metric and the reward function is Lipschitz continuous, i.e.

Irn(x, @) = rp(x’,a’)| < LiD((x, a), (x",a))
dW(Ph( | X, (Z), Ph( | x/v a,)) < LZD((x’ (Z), (X,, a,))

or all (x,a),(x’,a’) € S X A and h where dy is the Wasserstein metric. Then Q¥ and V* are both
h h
(SR LyLY) Lipschitz continuous.

ProoF. We show this by induction on h. For the base case when h = H+1then V};,, = QF,, =0
and so the result trivially follows.

Similarly when h = H then by Equation 1 we have that Q7 (x, a) = rg(x, a). Thus, |QF(x, a) —
Qn(x",a)| = |ru(x,a) — ru(x’,a’)] < LiD((x,a),(x",a’)) by assumption. Moreover, V;(x) =
max,ea Qf(X, a) is Ly Lipschitz by Equation 1 and Lemma C.2.

For the step case we assume that Q)  and V}*, | are both S k- L L} Lipschitz and show the
result for Q) and V}*. Indeed,

|Q;(x’ a) - QZ(XI’ al)l = |rh(x’ a) - rh(x,’ al) + E[V};.l()%) | X, a] - E[V};l(-’e) | x,a/] |
< Iru(x, @) = ru(x’, @) + [E[ V7, (R) | x,a] B[V, (R) | x"d’]|

< LiD((x,a),(x',a") + /V;+1(J?) dPy(% | x,a) — /V}:‘H(fc) dPp(x | x’,a")

Now denoting by K = Zfi_oh_l L1 L} by the induction hypothesis and the properties of Wasserstein
metric (Equation 3 from [9]) we have that

|Q;(x’ a) - QZ(X,’ a/)l < LID((X’ a)9 (x/’ al))
[ #via@ e 1xa- [ 2vi,@des )
< le)((x’ a)’ (x,’ a,)) + KdW(Ph( | X, a)’ Ph( | x/’ a/))

< LiD((x,a),(x",a")) + KLyD((x, a), (x",a"))
= (L, + KLy)D((x, a), (x’,a")).

+K

Noting that by definition of K we have L; + KL, = 32! LyL}. To show that V}* is also Lipschitz
we simply use Lemma C.2. O

D POLICY-IDENTIFICATION GUARANTEES PROOF

o~ dc . . . . .
TaeoreMm D.1. ForK = O((H5/2/56) +2) (where d. is the covering dimension with parameter c),

consider a policy  chosen uniformly at random from my, ..., mg. Then, for an initial state X ~ Fi,
with probability at least 1 — &, the policy & obeys

VA0 - VEX) < e
Note that in the above guarantee, both X and 7 are random.
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Proor. Let X ~ F; be a random starting state sampled from F;. Then from Markov’s inequality
and the law of total expectation, we have that:

P(V*(X) - V7 (X) > c)

IA

K
L LGS EAes]
k=1

< LO(H5/2K<dC+1>/<dC+z))) -5
Kc c

HS2K %ew )

where the last inequality follows from the guarantee in Theorem 4.1. Setting ¢ = € and K =
O((H 512y 56)d0+2) in the above expression gives that V*(x) — V" (x) < e with probability at least
1-6. m]

E PROOF DETAILS
E.1 Required Lemmas

We start with a collection of lemmas which are required to show Theorem 4.1.

The first two lemmas consider invariants established by the partitioning of the algorithm. These
state that the algorithm maintains a partition of the state-action space at every iteration of the
algorithm, and that the balls of similar radius are sufficiently apart.

LEmMA E.1 (LEMMA 5.3 FROM THE MAIN PAPER). Forevery(h, k) € [H]|X[K] the following invariants
are maintained:

e (Covering) The domains of each ball in P,’f cover S X A.
o (Separation) For any two balls of radius r, their centers are at distance at least r.

ProoFr. Let (h, k) € [H] X [K] be arbitrary.
For the covering invariant notice that U, epk dom(B) = U BesD;fB where we are implicitly taking

the domain with respect to the partition ‘7’,’1‘. The covering invariant follows then since P,’f contains
a ball which covers the entire space S X A from the initialization in the algorithm.

To show the separation invariant, suppose that B; and B; are two balls of radius r. If By and B,
share a parent, we note by the splitting rule the algorithm maintains the invariant that the centers
are at a distance at least r from each other. Otherwise, suppose without loss of generality that By has
parent BP%" and that B, was activated before B;. The center of By is some point (x, a) € dom (B¢").
It follows then that (x, a) ¢ dom(B;) by definition of the domain as r(B?%") > r(B,). Thus, their
centers are at a distance at least r from each other. O

The second property is useful as it maintains that the centers of the balls of radius r form an
r—packing of S X A and hence there are at most N¥ ack < N, balls activated of radius r.

The next theorem gives an analysis on the number of times that a ball of a given radius will be
selected by the algorithm. This Lemma also shows the second condition required for a partitioning
algorithm to achieve the regret bound as described in Section 6.

LEmmA E.2 (LEMMA 5.4 FROM THE MAIN PAPER). For any h € [H] and child ball B € P,If (the
partition at the end of the last episode K ) the number of episodes k < K such that B is selected by the
algorithm is less than %(dmax/r)2 wherer = r(B). Le. denoting by Bﬁ the ball selected by the algorithm
in step h episode k,

2
|{k : Bs = B}| < Z(d’"—") .

r
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2
Moreover, the number of times that ball B and its ancestors have been played is at least i(d"‘%) .

For the case when B is the initial ball which covers the entire space then the number of episodes that
B is selected is only one.

Proor. Consider an arbitrary h € [H] and child ball B € Pf such that r(B) = r. Furthermore,
let k be the episode for which ball B was activated. Then B¥, the ball selected by the algorithm at

step h in episode k is the parent of B. Moreover, if t = ni“(B’}j) is the number of times that B’; or
2

it’s ancestors have been played then t = (%) by the activation rule. Also, r(B’};) = 2r(B) by the
h

re-partitioning scheme. Hence, the number of times that B and its ancestors have been played is at

least
= dmax ’ _ (dmax )2 _ l(dmax)z
\rBh)  \er®)) 4\ rB) ]

The number of episodes that B can be selected (i.e. |[{k : B]; = B}|) by the algorithm is bounded

) 2
above by (‘i’z’l‘;; ) - (f&‘%’;) as this is the number of samples of B required to split the ball by the

partitioning scheme. However, plugging in r(Bﬁ) = 2r(B) gives
dmax 2 _ dmax 2 _ § dmax 2
r(B) 2r(B)) 4\ r(B)
as claimed.

Lastly if B is the initial ball which covers the entire space then r(B) = d,;4 initially and so the
ball is split after it is selected only once. O

Next we provide a recursive relationship for the update in Q estimates.

LemmA E.3. Foranyh,k € [H] X [K] and ball B € SD}': lett = n’fl(B) be the number of times that B
or its ancestors were encountered during the algorithm before episode k. Further suppose that B and its
ancestors were encountered at step h of episodes ki < ky < ... < k; < k. By the update rule of Q we
have that:

t
QF(B) = 1jy=qH + Z al (rh(x}]:i’ Ay + Vi () + b(i)).

i=1

Proor. We show the claim by induction on ¢ = nﬁ (B).

First suppose that ¢ = 0, i.e. that the ball B has not been encountered before by the algorithm.
Then initially Q, (B) = H = 1j;=qH.

Now for the step case we notice that Qﬁ (B) was last updated at episode k;. k; is either the most
recent episode when ball B was encountered, or the most recent episode when it’s parent was
encountered if B was activated and not yet played. In either case by the update rule (Equation 5)
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we have
QK(B) = (1 - a)Q" (B) + a (rh(x;jf, ahy+ VE (ke ) 4 b(t))
= (1-a)a’ H+(1-a) ti ol (rh(x,’jf, A INCANE: b(i))
i=1
+ a; (rh(xlg’, aflt) + V}fil(x:jrl) + b(t)) by the induction hypothesis
= LjpegH + Zt: a;'(r,,(x’,;f, akiy + VL (ki )4 b(i))
i=1

by definition of a’. | O

The next lemma extends the relationship between the optimal Q value Q7 (x, a) for any (x, a) €
S X A to the estimate of the Q value for any ball B containing (x, a). For ease of notation we denote

(Vi(x) = VX (x)) = (V§ = V().

LEmMMA E4. Forany (x,a,h, k) € S X A X [H] X [K] and ball B € ‘Pll‘ such that (x,a) € dom(B)

then ift = n’;l(B) and B and its ancestors were previously encountered at step h in episodes ki < k; <
... <k; <kthen

QA(B) - O} (v, @) = Tjpeoy(H = Q@) + Y @t (VG = VAL DGefs ) + Vi ()
i=1

—B|vr, @) | £k, a;i] + (i) + QF (N, aM) - O (x, a))

Proor. Consider any (x,a) € S X A and h € [H] arbitrary and an episode k € [K]. Furthermore,
let B be any ball such that (x, a) € B. First notice by Lemma 3.1 that 1,_¢) + Zle a! =1 for any
t>0.

We show the claim by induction on ¢ = n’;(B).

For the base case that t = 0 then Q’;(B) = H as it has not been encountered before by the
algorithm. Then

Q];I(B) - Q;(x’ a) =H- Q;(x’ Cl) = ]]-[t:OJ(H - Q;{(x’ a))
For the step case we use the fact that Y;_; @} + 1[;=q) = 1. Thus, Q¥ (x,a) = Xi_, 2{QF (x,a) +
11=0)Q; (x, @). Subtracting this from Q;‘l(B) and using Lemma E.3 yields

t
QZ(B) - Qr(x,a) = Lj—H + Z ai(rh(x’;i’ a:i) + V:;l(x;zrl) + b(i))
i=1

t
~ 1= Q5 (x.0) = ) @} Q} (x,a)

i=1

= Nprmo)(H = Qp (@) + ) af (e, af!) + VL (k) + b(0)

t
i=1
ki ki ki ki
+ OF (. ) - OF (e ) - Of (v, @)).
However, using the Bellman Equations (1) we know that

ki ki ki ki o ki ki
On(x;' a,’) = ru(x,’, a)t) +E[Vh’;1(x) | x,%,a, ]
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Using this above we get that

%@—mm@:mﬂw—qmmn

ki
o ( h+1(xh+1) E| Vi (%) |xh a4y

)

* k[
a( h+1 Vh+1)(xh+1)

zb4~

+b(i) + OF (x}', al) - OF(

=%
=

= Njp=o)(H — Qj (x,a)) +

D4w

Il
—

i

P VLGN - E[ x @) | xh, a’,jf] +b(0) + OF (xf, ") - QF (v, ).

O
Consider now V;H(x}]jjrl) - E[ s +1(x) | xh , i]. We notice that as the next state x:jrl is drawn
from Pp(- | x a ) then E[ e ( h+1)] = E[Vh*ﬂ(x) | xZi,aZi]. Thus, this sequence forms a

martingale difference sequence and so by Azuma-Hoeftding’s inequality we are able to show the
following.

LemmA E.5. Forall (x,a,h, k) € S X A X [H| X [K] and for all § € (0,1) we have with probability
at least 1 — §/2 if (x, a) € B for some B € P;’f then fort = nﬁ(B) and episodesky <k, < ... <k, <k
where B and its ancestors were encountered at step h before episode k then

< HJ 2 Z(a;')z log(4HK/5).
i=1

t

Z(x( +1(xh+1) E\V, if+1(’%)|xll§i’a1;li])

i=1

Proor. Consider the sequence
k; = min(k, min{k : nf;(Ba) = i and B? is an ancestor of B or B itself}).

Clearly k; is the episode for which B or its ancestors were encountered at step h for the i-th time
(as once a ball is split it is never chosen by the algorithm again). Setting

= ]l[k <k]( h+1(xh+1) E h+1(x) | xZia aki])

then Z; is a martingale difference sequence with respect to the filtration #; which we denote as
the information available to the agent up to an including the step k;. Moreover, as the sum of a
martingale difference sequence is a martingale then for any 7 < K, }}7_, Z; is a martingale. Noticing
that the difference between subsequent terms is bounded by Ha! and Azuma-Hoeffding’s inequality
we see that for a fixed 7 < K

P ZaiZ,- SHJZZ(&%)Zlog(g))
i=1 i=1

2H? 37 (al)? log(2EE
>1-2exp|— 1_21(0‘;) Oig(z 5 )
2H iZI(ar)
é
—_ 1 —_
2HK'

Since the inequality holds for fixed 7 < K the the inequality must also hold for the random stopping
timer =t = nﬁ (B) < K. Moreover, for this stopping time each of the indicator functions will be 1.
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Taking a union bound over the number of episodes and over all H the result follows. We only
need to union bound over the number of episodes instead of the number of balls as the inequality
is satisfied for all balls not selected in a given round as it inherits its concentration from its parent
ball because the value for t does not change.

We also notice that for t > 0 that )!_, (a/)? < % by Lemma 3.1 and so

H J 2 ) (a})? log(4HK 5) < H\/z? log(4HK /5) = 2\/ H? log(4HK/6)
i=1

t
O

The next lemma uses the activation rule and Assumption 2 to bound the difference between the
optimal Q functions at a point (x, a) in B from the points sampled in ancestors of B by the algorithm.
This corresponds to the accumulation of discretization errors in the algorithm by accumulating
estimates over a ball.

LemmA E.6. For any (x,a,h, k) € S X A X [H] X [K] and ball B € P}’f with (x,a) € dom(B) if B
and its ancestors were encountered at step h in episodes k1 < k; < ... < k; < k wheret = n’;l(B) then

t
. 4Ld
ki ki
Z a; Q,’l'(xh ,a,") - 05 (x, a)‘ < max .
= Vi

Proor. Denote by BZ" as the ball selected in step h of episode k; and ni" as nZ" (BZ"). Then

each Bzi is an ancestor of B and s both (x, a) and (x];i, a];li). Hence by the Lipschitz assumption

(Assumption 2) we have that |Q2(x,’;", a];") - Qy(x,a)| < Ldiam (BZ") < 2Lr(BZ").

2
However, r(B:") < d’"ﬁ. Indeed, by the re-partition rule we split when n’;" = ( d(m:f)) (and

2
afterwards B is not chosen again) and so n]; < ( d(;af)) Square rooting this gives that w/
d

d'"“" . However, as n*' = % Using this we have that

r(B hl) h
t

2.

i=1

= i we get that r(Bhi) <
t
ki ki i ki
n oot a’) = Qn(x, a)| < Z a;2Lr(B,")

t
<2 Z Ldmax

i=1

< 4Ldmax Vi by Lemma 3.1.

O

The next lemma provides an upper and lower bound on the difference between QZ(B) and
Qj(x, a) for any (x, a) € dom(B). It also shows that our algorithm is optimistic, in that the estimates
are upper bounds for the true quality and value function for the optimal policy [22].

LEmmA E.7 (EXPANDED VERSION OF LEMMA 5.1 FROM THE MAIN PAPER). For any § € (0,1) if

Br =2 X, alb(i) then
H3 log(4HK
pr<8 OBUHK]O) | ¢ Lmax
t \/Z
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[H3 log(4HK /5
ﬁt Z 4 Og( / ) + 8Ldmax .
t Vi

Moreover, with probability at least 1 — §/2 the following holds simultaneously for all (x, a, h, k) €
S X A X [H] X [K] and ball B such that (x, a) € dom (B) wheret = n’;l(B) andk; < ... <k; are the
episodes where B or its ancestors were encountered previously by the algorithm

and

t
0 < QF(B) = Oy (x,0) < TpgiH + B + Y @f(VyL = Vi )(xpt )

i=1

Proor. First consider ; = 2 3}f_, a!b(i). By definition of the bonus term as

H3log(4HK /6
VT Vi

we have the following (where we use Lemma 3.1):

B =2 ajbli)

i=1
t

 [HPlog(dHK/S)  Ldmax
D ai(2y) l_ R )
)

i=1

=2
3
< 4(o [T 10BCHK]S) | Ldmax
VT Vi
H31
_ o [HIog(HKS)  Ldma
t Vi

We can similarly lower-bound the expression by 44/ H3 log(‘;HK/ 9) 4 gldmax using the lower bound

Vit
from Lemma 3.1.
We start with the upper bound on Qz(B) — Q7 (x, a). Indeed, by Lemma E.4 we have

QL(B) - Q1 (v, @) = jpmo)(H = Qi (@) + . at (Vi = Vi )

t

i=1
ki 2 ki ki . ki ki

S VRGN - E[V;‘H(x) | i, ok ] + b(i) + QF (xN, k) - O (i, a)).

However, with probability at least 1 — §/2 by Lemma E.5 and Lemma E.6 we get

t t
. H3log(4HK/S) Ld o ,
< LjpegH + Z alb(i) + 24 ——8 t +4 \’/";" + Z al(VE v ek )
i=1 i=1

t t
j . ﬁt i ki ki
< ljeqH + Z afb(i) + = + Z al(VE —vE k)
i=1 i=1

1

Using that },i_; a!b(i) = f; /2 establishes the upper bound.

For the lower bound we show the claim by inductionon h=H + 1,H, ..., 1.

Indeed, for the base case when h = H + 1 then O, (x,a) =0 = QIIEIH(B) for every k, ball B, and
(x,a) € S X A trivially as at the end of the episode the expected future reward is always zero.
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Now, assuming the claim for h+ 1 we show the claim for h. First consider V
We show that V

h+1(xh+1) h+1(xh+1)'

th1(xhﬂ) thl(xh+1) > 0. By the Bellman Equations (1) we know that

>* i _ * i — * i * i
Vh+1(xh+1) = sup Qh+1(xh+1’ a) = Qh+1(xh+1’ ”h+1(xh+1))'

If Vh+1(xh+1) -

in the algorithm we can assume that V

H then the inequality trivially follows as V* (x¥i ) < H. Thus by the update

Q /(B). Now let B* be
h+1) h

h+1, thl(th)) € B* Such a ball exists as Ph+1

) € dom (B*) as B* was taken to have the

h+1

h+1(xh+1) = max

the ball with smallest radius in SD , such that (x

BGRELEVANT ki

covers S X A by Lemma E.1. Moreover (xh+1, h+1(xh+1)

smallest radius. Thus, Qh (B*) > Q,’I‘H(x
have that

1 Th +1(xh+1)) by the induction hypothesis. Hence we

ki ki k; ki ki = ki
Vh+1(xh+1) 2 Qh+1(B*) = QZ+1(xh+1’ n;+1(xh+1)) - V;+1(xh+1)'
Putting all of this together with Lemma E.4 then with probability 1 —6/2 we have (using Lemma E.5
and definition of f;/2) that

QL(B) - Q5 (x, @) = Lyumo)(H - Of (@) + . af (VL = Vi kL)

i=1

P VLG - E[ VL) | x5 a ] +b(i) + QF (N, a) - 0 (x, a))

i i Ldmax
> Z océ(V],;‘+1 +1)(th) + = ﬁ — 2+/H3 log(4HK /8)/t —
BB
2 2 z
where in the last line we used that Vh 1(xh+1) > h+1(xh+1) from before. O

The next Lemma extends the results from Lemma E.7 to lower bounds of Vﬁ - V; over the entire
state space S.

CoroLLARY E.8. Foranyd € (0,1) with probability at least 1 — §/2 the following holds simultane-
ously for all (x,h,k) € S X [H] X [K]

VEx) - VX(x) = 0

Proor. The proof of the lower bound follows from the argument used in the proof of Lemma E.7.
m]

The next lemma uses Azuma-Hoeffding’s inequality to bound a martingale difference sequence
which arises in the proof of the regret bound.

LeEMMA E.9. Forany§ € (0,1) with probability at least 1 — §/2 we have that

ZZ’E[V;H( )= VLG |k ab] = (Vi G, ) = Vi ek, )| < 2 2FEK Tog(4HK5).
h=1 k=1

Proor. First consider Z,’; = [ th1( X) — thl(x) | xh, ] ( thl(xhﬂ) thl(xk)) Similar to

the proof of Lemma E.5 we notice that Z }]: is a martingale difference sequence due to the fact that
the next state is drawn from the distribution Py (- | xlg, aﬁ). Using that |Z ,’i | < 2H we have that
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H
(Z B[V 1) = Vi () | ks af] = (Vi k) - Vi (a af)| > VBHPK Tog(@HK /)

h=1k
<y ( H3Klog(4HK/5))
- 2HK(2H)?
B 8HK log(4HK /§)
- ( 8H3K )
= 2— <éd/2.

4KH

Thus with probability at least 1 — §/2 we have that

ZZ(E[ ) = VIS @) x| = (2, () = Vi e af)| < VBHPK Tog(GHK D)

=1 k=1

as claimed. m]

This next lemma provides a bound on the sum of errors accumulated from the confidence bounds
B throughout the algorithm. This term gives rise to the N, covering terms from Theorem 4.1. This
Lemma can also show the third condition required for a partitioning algorithm to achieve the regret
bound as described in Section 6.

LemMA E.10. For every h € [H], ifB’;L is the ball selected by the algorithm in step h episode k and
n’;l = n’;l(BZ) then

ZK:‘BHI; = 32(\/1W+Ldmax) inf Z N, max KrO

— nedpa| | dmax
r=ro
Proor. Using Lemma E.7,
K
H? 10g(4HK/5) max
ﬂng Z 8 -
k=1 =1 h nh

< 16(\/H3 log(4HK/3) + Ldmax)

>~
Ul
—_

gl
|-
5

=

We thus turn our attention to Zle 1/4/ n’;. Rewriting the sum in terms of the radius of all balls

activated by the algorithm we get for an arbitrary ry € (0, dpmax],

1 —
1\/:_ %12!3;1%; \Jnh(B)

r(B)=r

K

r=dpmax2"i BePX k:BF=B [N} (B) rdmaxz-'BesDKkBk s (B)
r>ro r<rp

r(B)=r r(B)=r
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taking the two cases when r > ry and r < ry separately. We first start with » < ry. Then,

r= dmzaxz ‘BEZP:KkBZB Jnk(B)

r<fo  .(B)=r

1
1
r=dmax2”" BEPK kBk \[ ngnax/’“2
r<rp

r(B)=r

MDD

. ~d
r=dmax2" BePK k:BE=B dmax — dmax
r<fo  .(B)=r

by Lemma E.2

by bounding the number of terms in the sum by the number of episodes K.
For the case when r > r, we get

2
1 1(nes)
YN Y A N Y Y e byenmar
r= dmaxz IBEPKkBk nﬁ(B) r= dmaxz IBEPK i=1 _( max)
r>rog r=ro 4 r

r(B)=r r(B)=r
§ dmax
4 1
D N A —
2
r= dmux2" BEPK x + l dmax
r=ro r(B)=r 4 r

Sy ol

r= dmaxz_'BEPK
rzro r(B)=r

S o, dne

r=dmax2"
r=ry

IA

as by Lemma E.1 the centers of balls of radius r are at a distance at least r from each other and thus
form an r-packing of S x A. Hence, the total number of balls of radius r is at most N,. Thus we
get that (taking the inf over ry arbitrary):

K
1 . d ZKY'O
Z —— < inf Z 2N, /% 4 y
ro€(0,d, . r
k=1 n];l 0 ( max] r:dmax2_’ max
r2ry
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Plugging this back into the first inequality gives that

i B < 16(\/1W + Ldmax) i b
=1 ="

d 2Kr,
< 16(\/H3 10g(4HK/5)+Ldmax) inf > aN,Tmex g 20
rOE(Ovdmax] . r dmax
r=dmax2""
r>rp

dnax K
_ 32(\/H3 log(4HK/3) + Ldmax) inf > Ny 20
r

r0€(0,dmax] r:dmaxzﬂ' dmax
rzry

E.2 Regret Analysis
We start with a lemma which was highlighted in the proof sketch from Section 5.

LemMa E.11 (LEMMA 5.2 FROM THE MAIN PAPER). Forany§ € (0,1) if B = 2 Y,i_, a’b(i) then with
probability at least 1 — /2, for all h € [H],

K K K
D VE =V k) £ ) )+ B+ )+ (1 1) D (Vhws ~ Vi)
k=1 k=1 k=1

Proor or LEmMmA E.11. By equations 6 and 1, and the definition of the selection rule by the
algorithm it follows that for any h and k that

k k
Vit) = Vi () < max  Qu(B) - Qf (xj,aj)
BERELEVANTX (x )

k
= Q;,(B)) - Q) (x;, @})
k
= Qy(By) — Q5 (xy, ap) + Op (xy, a) = OfF (x5, ay).
: : *(ok kN _rkik kY —wmlux (e vk ey ok ok _
First, by Equation 1 we know that Q) (x,, a,) — Q7 (x,,a;) = E|V (X) -V (%) | x,,a, |. More

over, as (x}]f, a’;l) € dom (B’;) we can use Lemma 5.1 and get for t = n’};(BZ) and episodesk; < ... < k;

where Bﬁ or its ancestors were previously encountered

k
Q) (By) - Of (xy. af) + O (xp.ay) — QF (xp.ay)
! k
i yrki ki A N
< Ljpeo)H + fr + Z al(VE —vE )+ B[V () - VL (R) | xF, b
i=1

t
i ki ki k k k
< BpomopH + Pe+ 3 @V = Vit )G ) + (Vi = Vi) + By
i=1

. ko k : .
where §;:+1 = E[V,:rl(x) -V (@) x}’j, aﬁ] - (V< - Vhﬁl)(x}ljﬂ). Taking the sum over all episodes

k and letting nﬁ = n’;l(B’};) and the respective episodes ki(Bﬁ) as the time B’}; or its ancestors were
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selected for the i’th time,

ZV ()= V) < 3 (Ut Brg) + . > @l Vit = v o)
k=1 k=1 i=1
+ Z(( h+1 Vfﬁ—kl)(xzﬂ) + §}’f+1)' 8)

For the second term we rearrange the summation using the observation used in the proof from
[10, 25]. For every k’ € [K] the term (V -V )(xh+1 appears in the summand when k = n¥’

h+1 h+1 h-*
The next time it appears when k = n¥" + 1 and so on. Hence by rearranging and using Lemma 3.1,
it follows that

h
k
ny

K )
ki(B¥) ki(BK) k nk
PIP I AR A ><Z<vh+1 Vi) D e

k=1 i=1 t:nﬁ

(1 + _) Z(Vhﬂ Vh*+1)(xili+1)'

Using these inequalities in Equation 8 we have that

th(x,f) —v k) < Z(H]l co] +Bat + Eni) + (1 + —) Z(vh+1 VE Gk

k=1
+ Z( s = VDGR, ©)

However, noticing that V, ) we have

h+1(xh+1) = h+1(xh+1

1+ —) D Vhes = Vi) Z( V)
K

=(1+%)Z<Vh+l v,:+1><xh+1>+2<vh+l Vi) = (Vi = Vi )G )
k=1

=—Z<vh+1 vh:lxx,’;l)@(vhﬂ Vi G )

xk k
<1+ )2 Z(V,m Vo)
Substituting this back into Equation 9 we get that
K
k k
D VE- VIR < Z(H]l ko] + Bak + Er) + (1 + —) Z(vh+1 VE (k).
k=1

O

With the machinery in place we are now ready to show the general version of Theorem 4.1. We
restate it here for convenience.
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THEOREM E.12. For any any sequence of initial states {x{c | k € [K]}, and any § € (0, 1) with
probability at least 1 — § Adaptive Q-learning (Alg 1) achieves regret guarantee:

R(K) < 3H? + 6+/2H3K log(4HK /)

max K
4 96H(\/H3 log(4HK/8) + Ldmax) inf > N, dmax | Kro
r

0 €(0, dmax] ) d
max red,, 271 max
r>ro

where N, is the r-covering number of S X ‘A with respect to the metric D.

Proor. By definition of the regret we have that R(K) = Zle(Vl* (x{‘ )= V[T g (x{‘ )). By Lemma E.8
we know with probability at least 1 — §/2 that for any (x, a, h, k) that VZ (x) = V*(x) > 0. Hence we
have that R(K) < YK (VK(xk) - v7* (xF)).

The main idea of the rest of the proof is to upper bound Z (Vk (xk ) -V (xk )) by the next

step Zk l(Vh+1(xh+1) h+1(xh+1)) For any fixed (h, k) € [H] X [K] let B’g be the ball selected at
episode k step hand t = nﬁ (B). Using Lemma E.11 we know for any h € [H] that

K K
k RNk k RNk
DV Vi k) € YL p + B+ )+ 1+ ) D (Vi ~ Vo).
k=1 k=1

For the first term we notice that

K

Z 1 H <H

k=1

as the indicator is 1 only when k = 1 for the first iteration when there is only a single ball covering
the entire space.

Substituting this in and expanding this relationship out and using the fact that VX (g +1)
1(th) =0as VP’}H = Vgﬂ = 0 gives

h-1 K

K h—1 H
REK) = Y (VR - v (o) < HZ(l - RS (B3 MY A=)
k=1 h=1 k=1

Indeed, we can show this by induction on H. For the case when H = 1 then we get (using that
k
Vi(x) = V;" (x) = 0)

K K K

D vt vy s B (1 ) 5 (Ve 1 )+ 5 e+ )
! 1 1 h—ll 1 1 h-1 K .
:HZ(1+E) +;(1+ﬁ) Z(,Bn{<+§z).

h=1
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For the step case then

K

k
D IVEGE) - v )
k=1

A
s
+
—_——
—_
+
I
N —
Nl
—_—
<
=
[N
\./
<
~51
A
N
+
el
—_—
=
=
o~
+
3
~—

k=1 k=1
1 H-1 1 h-1 H-1 1 h-1 K K
k k
SH+(1+E) H (1+ﬁ) + (1+ﬁ) Z('B"ZH+ h+2))+2(ﬁn{<+§2)
h=1 h=1 k=1 k=1
H h-1  H h-1 K
k
:H}Z(1+—) +Z(1+—) ;(ﬁn§+§h+1)
=1 = =1

Moreover, noticing that Y;_ (1 + i)h_1 < 3H and that (1 + i)h_l <(1+ %)H < 3 we get

Z( E(xk) - vy (xf))<3H2+3ZZ( ).

k=1 h=1 k=1

However, Zle Zle 3 }’fﬂ < 24/2H3K log(4HK /§) with probability at least 1 — /2 by Lemma E.0.
Hence by with probability 1 — § by combining the two high probability guarantees we have

K
Z( k(xky — v (xf)) < 3H? + 6/2H3K log(4HK/3) + 3 Z Z Bt
k=1 h=1 k=1
We use Lemma E.10 to bound 2115:1 ﬂ"’ﬁ

Combing all of the pieces in the final regret bound we get with probability at least 1 — § that

K
R(K) < Y (VF(eb) = v ()
k=
1 H K
< 3H? + 6\/2H3K10g (4HK/3) +3 ) > Bt

h=1 k=1

< 3H? + 6+/2H3K log(4HK /5)

H
d 2K
+3 Z 16(\/1—[3 log(4HK/§) + Ldmax) (i]rbf Z 2Nr% " : ro
h=1 r0€(0,dmax] r:dmaXZ_i max

r=ry

< 3H? + 6+/2H3K log(4HK /5)

max K
+ 96H(\/H3 log(4HK /) + Ldmax) inf Z N o
10 €(0, dmax max

r=dmax2
r=ro

To recover the term established in Theorem 4.1 we simply take ry = O(K Tt ) O
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F EXPERIMENTAL RESULTS AND FIGURES

F.1

Oil Problem with Quadratic Survey Function
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Adaptive Discretization for Step 2
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Fig. 4. Comparison of the algorithms on the oil problem with quadratic survey function. The transition kernel
is Pp(x" | x,a) = 1[x=q) and reward function is r(x,a) = (1 - (a - 0.75)% — |x — a|)+ (see Section 7.1). The
adaptive algorithm creates a fine partition of the space around the optimal point of 0.75.
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Fig. 5. Comparison of the algorithms on the oil problem with quadratic survey function. The transition kernel
is Pp(x’ | x,a) = L[x=q) and reward function is r(x, a) = (1 - 10(a — 0.75)> — |x — a|)+ (see Section 7.1). The

epsilon net algorithm suffers by exploring more parts of the space.
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Fig. 6. Comparison of the algorithms on the oil problem with quadratic survey function. The transition kernel
is Py (x" | x,a) = 1[,/—4] and reward function is r(x, a) = (1 - 50(a — 0.75)% — |x — a|)+ (see Section 7.1). The
epsilon net algorithm suffers a fixed discretization error as the mesh is not fine enough to capture the peak
reward.

RIGHTS

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 55. Publication date: December 2019.

(o



55:42 Sean R. Sinclair, Siddhartha Banerjee, and Christina Lee Yu

F.2 Oil Problem with Laplace Survey Function
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Fig. 7. (Duplicate of Figure 2) Comparison of the algorithms on the oil discovery problem with survey
function f(x) = e~ 1%¥=0.75] The transition kernel is Pp(x” | x,a) = 1[x=q) and reward function is r(x, a) =
(1- e 1a=0.75] _ |x — al)+ (see Section 7.1). The adaptive algorithm quickly learns the location of the optimal
point 0.75 and creates a fine partition of the space around the optimal.
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Fig. 8. Comparison of the algorithms on the oil problem with Laplace survey function. The transition kernel
is Pp(x" | x,a) = 1[,s—4) and reward function is r(x, a) = (1 — 10e~1470-751 _ |x — q), (see Section 7.1). The
adaptive algorithm learns a fine partition around the optimal point 0.75 while the e-Net algorithm suffers
from a large discretization error.
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Fig. 9. Comparison of the algorithms on the oil problem with Laplace survey function. The transition kernel
is Pp(x" | x,a) = 1[,s—4) and reward function is r(x, a) = (1 — 50e~1470-75] _ |x — a|)+ (see Section 7.1). The
epsilon net algorithm suffers from a large discretization error as the mesh is not fine enough to capture the
high reward region.
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F.3 Ambulance Problem with Uniform Arrivals
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Fig. 10. Comparison of the algorithms on the ambulance problem with Uniform(0, 1) arrivals and reward
function r(x, a) = 1 — |x — a| (see Section 7.1). Clearly, the no movement heuristic is the optimal policy but
the adaptive algorithm learns a fine partition across the diagonal of the space where the optimal policy lies.
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Fig. 11. Comparison of the algorithms on the ambulance problem with Uniform(0, 1) arrival distribution and
reward function r(x’, x,a) = 1 —.25|x — a| —.75|x” — a| (see Section 7.1). All algorithms perform sub optimally
but the adaptive algorithm is able to learn a mixed policy between no movement and traveling to the median.
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Fig. 12. Comparison of the algorithms on the ambulance problem with Uniform(0, 1) arrival distribution and
reward function r(x’, x,a) = 1 — |x’ — a| (see Section 7.1). The median policy performs best, and the adaptive
algorithm is beginning to learn a finer partition around the median of the arrival distribution (0.5).
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F.4 Ambulance Problem with Beta Arrivals

Comparison of Observed Rewards
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Fig. 13. (Duplicate of Figure 3) Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival
distribution and reward function r(x,a) = 1 — |x — a| (see Section 7.1). Clearly, the no movement heuristic is
the optimal policy but the adaptive algorithm learns a fine partition across the diagonal of the space where
the optimal policy lies.
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Fig. 14. Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution and
reward function r(x’, x,a) = 1 — .25|x —a| — .75|x" — a| (see Section 7.1). All algorithms perform sub optimally
but the adaptive algorithm is able to learn a mixed policy of traveling to the median.
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Fig. 15. Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution and
reward function r(x’, x,a) = 1 — |x’ — a| (see Section 7.1). The median policy performs best, and the adaptive
algorithm is beginning to learn a finer partition around the median of the arrival distribution (=~ 0.7).
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