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t the core of many sensing and imaging applications, the 
signal of interest can be modeled as a linear superposition 
of translated or modulated versions of some template [e.g., 

a point spread function (PSF) or a Green’s function] and the 
fundamental problem is to estimate the translation or modula-
tion parameters (e.g., delays, locations, or Dopplers) from noisy 
measurements. This problem is centrally important to not only 

target localization in radar and sonar, channel estimation in 
wireless communications, and direction-of-arrival estimation 
in array signal processing, but also modern imaging modalities 
such as superresolution single-molecule fluorescence micros-
copy, nuclear magnetic resonance imaging, and spike localiza-
tion in neural recordings, among others.

Typically, the temporal or spatial resolution of the acquired 
signal is limited by the sensing or imaging devices, due to factors 
such as the numerical aperture of a microscope, the wavelength of 
the impinging electromagnetic or optical waves, or the sampling 
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rate of an analog-to-digital converter. This resolution limit is well 
known and often referred to as the Rayleigh limit (RL) (see “What 
Is the Rayleigh Limit?”). The performance of matched filtering, or 
periodogram, which creates a correlation map of the acquired sig-
nal against the range of parameters, is limited by the RL, regard-
less of the noise level.

On the other hand, the desired resolution of parameter 
estimation can be much higher, a challenge known as super-

resolution. There is a long history of pursuing superresolu-
tion algorithms in the signal processing community [1]–[3]. 
The oldest one probably dates back to de Prony’s root-
finding method in as early as 1795 [4], and variants of this 
method that are better suited for noisy data have also been 
proposed over time (see, e.g., [5]). Subspace methods based 
on the computation of eigenvector or singular vector decom-
positions, such as MUSIC [6], ESPRIT [7], and matrix pen-
cil [8], have been another class of popular approaches since 
their inception in the 1980s. Different forms of maximum 
likelihood estimators have also been studied extensively 
[9], [10]. Collectively, these algorithms have superresolu-
tion capabilities, that is, they can resolve the parameters of 
interest at a resolution below the RL when the noise level is 
sufficiently small.

While a plethora of traditional methods already exists, 
convex optimization has recently emerged as a  compelling 

framework for performing superresolution, garnering sig-
nificant attention from multiple communities spanning sig-
nal processing, applied mathematics, and optimization. 
Due to (the relative) tractability of convex analysis and 
convex optimization, the new framework offers several 
benefits. First, strong theoretical guarantees are rigor-
ously established to back its performance up, even in the 
presence of noise and corruptions. Second, it is versatile 
enough to include prior knowledge into the convex program 
to handle a wide range of measurement models that are out 
of the reach of traditional methods. Third, leveraging the 
rapid progress in large-scale convex optimization opens up 
the possibility of applying efficient solvers tailored to real-
world applications.

The goal of this article is to offer a friendly exposition 
to atomic norm minimization (ANM) [11] as a canonical 
convex approach for superresolution. The atomic norm is 
first proposed in [12] as a general framework for designing 
tight convex relaxations to promote simple signal decompo-
sitions, where one seeks to use a minimal number of atoms 
to represent a given signal from an atomic set composed of 
an ensemble of signal atoms. Celebrated convex relaxations 
such as the 1,  norm approach for cardinality minimization 
[13] and the nuclear norm approach for rank minimiza-
tion [14], can be viewed as particular instances of atomic 
norms for appropriately defined atomic sets. Specializing 
the atomic set to a dictionary containing all translations of 
the template signal over the continuous-valued parameter 
space, estimating the underlying translation parameters is 
then equivalent to identifying a sparse decomposition in an 
infinite-dimensional dictionary. 

This key observation allows one to recast superresolu-
tion as solving an infinite-dimensional convex program [15], 
a special form of ANM considered in this article. We first 
highlight its mathematical formulation through a pedagogi-
cal yet useful model of superresolution that amounts to line 
spectrum estimation, where this infinite-dimensional convex 
program can be equivalently reformulated as a semidefinite 
program (SDP). We then demonstrate its versatility by dis-
cussing how it can be adapted to address measurement mod-
els that traditional methods may not apply easily. Finally, we 
illustrate its utility in superresolution image reconstruction 
for single-molecule fluorescence microscopy [16], where the 
infinite-dimensional convex program can be solved efficient-
ly via tailored solvers.

Throughout this article, we use boldface letters to represent 
matrices and vectors, e.g., a and A. We use A< , , ( )A ATrH  to 
represent the transpose, Hermitian transpose, and trace of A, 
respectively. The conjugate of a complex scalar a is denoted as 

.a*  We use A 0*  to represent A is positive semidefinite. The 
matrix toep u^ h denotes the Hermitian Toeplitz matrix whose 
first column is equal to u, and diag ( )g  denotes the diagonal 
matrix with diagonal entries given as g. The inner product 
between two matrices X and P is defined as , ( ) .X P X PTr H

=  
Additionally, the notation ( ) ( )f n O g n= ^ h means that there 
exists a constant c > 0 such that .f n c g n#^ ^h h

The Rayleigh limit (RL) is an empirical criterion characteriz­
ing the resolution of an optical system due to diffraction. In 
a conventional fluorescence microscope, for example, the 
observed diffraction patterns of two fluorescent point sourc­
es become visually more difficult to distinguish as the point 
sources get closer to each other, as illustrated in Figure S1.  
They are no longer resolvable when their separation is 
below the RL.

What Is the Rayleigh Limit?

FIGURE S1. The combined response for two translated point spread 

functions under different separations of the point sources. The RL 

is an indication of the separability of the two sources. 
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What is the atomic norm?
An everlasting idea in signal processing is decomposing a 
signal into a linear combination of judiciously chosen basis 
vectors and seeking compact and interpretable signal rep-
resentations that are useful for downstream processing. For 
example, decomposing time series into sinusoids, speeches 
and images into wavelets, total system responses into impulse 
responses, and so on.

To fix ideas, consider the task of representing a signal x 
in a vector space using atoms from a collection of vectors in 

aA i= " , called an atomic set. The set A  can contain either a 
finite or infinite number of atoms. We wish to expand x using 
the atoms in a form of

 , ,x a ac Ai

i

i i !=/  (1)

where c 0i 2  specifies the coefficients of the decomposi-
tion. In many applications, the size of A  can be much larger 
than the dimension of the signal, leading to an overcomplete 
representation, and there are an infinite number of possibili-
ties to decompose x. Which representation, then, shall we 
pick? Among the many plausible criteria, one meaningful 
approach is to pursue the Occam’s razor principle and seek 
a parsimonious decomposition of the signal x involving the 
smallest possible number of atoms in ,A  i.e., the sparsest 
solution to (1). The corresponding representation is known 
as a sparse representation [17]. Many real-world signals ad-
mit sparse representations for appropriately chosen atomic 
sets. As a simple example, natural images are approximately 
sparse by selecting A  as a wavelet frame. Low-rank ma-
trices, another class of signals that have enjoyed wide suc-
cess in signal processing [18], are sparse with respect to an 
atomic set A  that is the collection of all unit-norm rank-
one matrices.

Given a signal x, how do we find its sparse representation in 
the atomic set A? In general, this problem is nonconvex and 
can be NP-hard due to the combinatorial aspect of cardinality 
minimization. The key motivation behind ANM, proposed by 
Chandrasekaran et al. [12], is to relax the nonconvex sparsity 
cost by its tight convex surrogate and instead solve the result-
ing convex relaxation, which is more tractable. This idea is a 
generalization of the popular 1,  minimization for sparse vector 
recovery [19], [20] when A  is a finite set. Therein, one seeks 
to solve a linear program that minimizes the sum instead of the 
cardinality of the nonzero coefficients.

To extend the same idea to the case where A  is an arbitrary 
and possibly infinite-dimensional set, we first take the convex 
hull of ,A  denoted as ,conv A^ h  and then define its associated 
Minkowski functional (or gauge function) as [12]

 : ,infx xt t0 conv AA $_ $ ! ^ h" ,  (2)

which is the solution to a convex program. When A  is cen-
trally symmetric about the origin, definition (2) leads to a val-
id norm and is called the atomic norm of x. Figure 1 illustrates 

this concept, where the atomic norm is the smallest nonnega-
tive scaling of conv A^ h until it intersects x. Following defini-
tion (2), a fundamental geometric property is that the atomic 
norm ball, i.e., },1#A|{ : | |x x|  is exactly .conv A^ h

More interestingly, consider the case when x lies in an 
n-dimensional vector space. Carathéodory’s theorem [21] 
guarantees that any point in conv A^ h can be decomposed 
as a convex combination of at most n 1+  points in ,A  
where A  is not necessarily convex. Therefore, one may 
rewrite (2) as

 : , ,infx x a ac c c 0 Ai

i

i

i

i i iA 2 != = ,' 1/ /  (3)

as long as the centroid of conv A^ h is the origin. The decom-
position aci iiR  that obtains the infimum is referred to as the 
atomic decomposition of x onto .A  It is not hard to see that the 
atomic norm indeed subsumes the 1,  norm as a special case 
but accommodates the more general case where A  can be an 
infinite-dimensional set.

Several central questions regard how to properly select the 
atomic set, compute the atomic norm, and find the atomic 
decomposition, and when does the atomic decomposition 
coincide with the sparse representation, i.e., the convex relax-
ation is tight. Clearly, the answers highly depend on the atom-
ic set as well as the signal itself. These questions have been 
addressed extensively in the study of 1, -norm minimization 
for sparse vector recovery [19], [20], [22]. In the context of 
superresolution, we first address these questions under a 
simple model that amounts to the classical problem of line 
spectrum estimation, which has deep connections to systems 
and control theory.

A mathematical model of superresolution,  
equivalent to the line spectrum estimation
We first focus on a simple yet widely applicable model of 
superresolution that describes the convolution of a se-
quence of point sources with a PSF that is resolution-
limited and is illustrated in Figure 2. Let x(t) be a spike 
signal given as

tconv (A)

conv (A)

A

0

t = xA
x

FIGURE 1. An atomic set A  (in red) and its convex hull ( )conv A  (in orange). 

The atomic norm of a vector x  can be interpreted as the smallest dilation 

factor t 0$  such that x  belongs to ( )tconv A  (in blue).
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 ( ) ( ) .x t c tk k

k

r

1

d x= -

=

/  (4)

Here, r is the number of spikes, c Ck d  and [ , )0 1k dx  

are the complex amplitude and delay of the kth spike. With-

out loss of generality, the maximal delay is normalized to 1. 

Such a spike signal can model many physical phenomena, 

such as firing times of neurons, locations of fluorescence 

molecules, and so on. Let g(t) be the PSF whose bandwidth 

is limited due to the RL. Its Fourier transform G( f ) satis-

fies (G 0=f )  whenever /f B 22; ;  for some bandwidth B > 0. 

Its convolution with x(t), contaminated by an additive noise 

( ),te  can be written as

 ( )( ) ( ) ( ) ( ) ,( ) ty t x t g t t c g tk

k

r

k

1

) e x e= + = - +

=

/

where )  denotes the convolution operator. Sampling the 

Fourier transform of the above equation at the frequencies 

/ , , , , / ,B B2 0 2f f, =-6 6@ @  we obtain the measurements

 ,Y G X E G c e Ek

k

r
j

1

2 k
$ $= + = +, , , , ,

,
,

r x

=

-c m/  (5)

where , ,G X E, , , , and Y,  are the Fourier transforms of g(t), 

x(t), ( ),te  and y(t) evaluated at frequency ,,  respectively. The to-

tal number of samples is / .n B B2 2 1 .= +6 @  We write (5) in a 

vector form as

 ( ) ,y g xdiag e= +  (6)

where [ ], [ ], [ ],y g xY G X= = =, , ,  and [ ] .Ee = ,  The prob-

lem of superresolution is then to estimate ,ck k k r1x # #" ,  ac-

curately from y, without knowing the model order r a priori. 

Here, the RL is inversely proportional to the bandwidth B and, 

roughly speaking, is about / .n1

When the PSF g(t) is known, one can equalize (5) by multi-

plying G 1
,
-  to both sides, provided that G s\,  are nonzero. The 

observation [ ]z G Y
1

= , ,
-  relates to x as

 ,z x e= + u  (7)

where eu is the additive noise. With a slight abuse of notation, 

we map the index of ,  from / , , /B B2 2f -6 6@ @ to , , n0 1f -  

for convenience, and write x as a superposition of complex si-

nusoids as

 ( ),x ack
k

r

k

1

x=

=

/  (8)

where ( )a C
n

dx  is a vector defined as

 ( ) , , , , [ , ) .a e e1 0 1( )j j n2 2 1
f !x x=

<rx r x-6 @  (9)

Notably, the above simplified model (7) also amounts 

to the classical problem of line spectrum estimation, which 

consists of estimating a mixture of sinusoids (with fre-

quencies [ , ))0 1k !x  from equispaced time samples (sam-

pled at integers { , , })n0 1f -  of the time-domain signal 

.( )x t c els
r
k k

j t
1

2 k
R=

rx
=  This finds applications in speech 

processing, power system monitoring, systems identification, 

and so on. The same model also describes direction-of-arriv-

als estimation using a uniform linear array, which is studied 

extensively in the literature of spectrum analysis [1].

Line spectrum superresolution via ANM
In the absence of noise, one could think of superresolution as 

estimating the continuous-time spike signal x(t) in (4) from 

its discrete-time moment measurements x in (8), which are 

related through

 ( ) ( ) .x a t x td
0

1
= #  (10)

One can also think of x(t) as the representation of x over a 

continuous dictionary

 : [ , ,a 0 1A0 !x x= ^ h h" ,  (11)
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FIGURE 2. The mathematical model of superresolution. The spike signal ( )x t  is convolved with a point spread function ( ),tg  leading to the degradation of 

its resolution, which is further exacerbated by an additive noise ( ),te  producing an output signal ( ).ty



43IEEE SIGNAL PROCESSING MAGAZINE   |   March 2020   |

which forms a one-dimensional variety of Cn  called the mo-

ment curve, illustrated in Figure 3(a). It is well known that the 
convex hull of ,A0  illustrated in Figure 3(b), is a body of Cn  
that can be parameterized by a set of linear matrix inequalities 
[23] and has close relationships with the positivity of Hermi-
tian Toeplitz matrices. This fundamental property of the mo-
ment curve has many implications in control and signal pro-
cessing [24], [25] and is key for developing a superresolution 
theory based on ANM.

It is clearly possible to obtain the same x from different 
x(t). However, if we impose some sparsity assumption, namely 
constraining how many spikes are allowed in x(t), this repre-
sentation can be ensured to be unique. In particular, the repre-
sentation (8) is unique as long as /r n 2# 6 @ and the support set 

{ }T k k r1x= # #  contains distinct elements.

Atomic norm for line spectrum superresolution
To apply the framework of ANM for superresolution, one 
must first define the atomic set properly. Since the complex 
amplitudes c sk\  can take arbitrary phases, we introduce the 
following augmented atomic set taking this into account:

 : , , , .[ [ae 0 1 0 2A D
j

1 ! !x x z r=
z ^ h h h" ,  (12)

See an illustration of A D1  and its convex hull in Figure 3(c) 
and (d). Writing ,c c ek k

j k
=

z  x can be represented as a positive 
combination of the atoms in A D1  as .x ac er

k k
j

k1
k xR=
z

= ^ h  
It is easy to verify that A D1  is centrally symmetric around the 
origin and consequently it induces an atomic norm over ,Cn  as 
defined in (2) and (3). It is worth noting that minimizing the 
atomic norm of x is equivalent to minimizing the total varia-
tion of x(t), i.e.,

 
TV

( ) ( )( ) ,min x ax t t x ts.t. d
0

1
= #  (13)

and both viewpoints are used frequently in the literature.
Remarkably, this atomic norm admits an equivalent SDP 

characterization, thanks to the following Carathéodory–Fejér–
Pisarenko decomposition [26]:

 : .infx u
u

x

x

n
t

t2
1

2
1 0Tr toep

toep
H

t 0
A

u C
n

*= +

2
!

^ ^ ^hh h; E' 1  (14)
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FIGURE 3. A visualization of the continuous-valued atomic set for line spectrum superresolution. (a) The moment curve A0  restricted to three real 

moments ( ), ( ), ( ) : [ , )cos cos cos2 4 6 0 1!rx rx rx x<^ h6 @" ,  and (b) its convex hull. (c) The phased version of the moment curve A D1  restricted to 

three real moments ( ), ( ), ( ) :cos cos cos2 4 6rx z rx z rx z+ + +
<^ 6 @"  [ , ), , )0 1 0 2! !x z r h6 ,  and (d) its convex hull.
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Contrary to its abstract definition in (2), the reformulation (14) 
provides a tractable approach to compute the quantity A ,x< <  
which can be accomplished using generic off-the-shelf convex 
solvers [27]. The Vandermonde decomposition of ( ),utoep  i.e., 

u a actoep Hr
kk k k1 x xR= = l l l

l^ ^ ^h h h  can then be used to identify 
the support T kx= lt " , of the atomic representation of x, as well 
as the atomic norm A .x cr

kk 1< < R= = l
l

Duality and atomic decomposition
The Lagrangian duality theory marks an important aspect in 
understanding the atomic norm. The Lagrange dual problem 
associated with the ANM (2) reads [11]

 ,  ,max Re x p p 1subject to
p A #

)  (15)

where the dual atomic norm p A
)  of a vector p C

n!  is de-
fined with respect to the atomic set A D1  as

 ; ., ,sup Re supp a p a p

P
[ ,a 0 1

A
A D1

_ x

x

=
)

! !x

; ^
^
h
hh 1 2 344 44

 (16)

The last equality of (16) suggests that the dual atomic norm can 
be interpreted as the supremum of the modulus of a complex 
trigonometric polynomial ( ) ,a pP p en j

0
1 2x x R= = , ,

,r x
=

- -^ h  
with coefficients given by the vector p. Constraints of this type 

Many applications encountered in signal processing,  
systems and control theory involve comparing the 
magnitudes of two real trigonometric polynomials, 

( ) ( ),a rReR G Hx x=  and ( ) ( ),a sReS G Hx x= , e.g.,  bounding 
the frequency response of a finite impulse response filter 
by a desired shape. Although such inequalities, in ap ­
pearance, require verification over a continuous set of 
pa  rameters, they can easily be translated into linear 
matrix inequalities of finite dimension, which are amena­
ble to optimization.

Central to the equivalence is a Gram parametrization of 
real trigonometric polynomials [24], [S1], [S2], by noticing 
that every real trigonometric polynomial ( ) ( ),a rReR G Hx x=  
can be equivalently represented as a quadratic form 

( ) ( ) ( )a GaR Hx x x=  for a family of Hermitian matrices 
G RG! ^ h, where G is related to r through the following 
Gram mapping (Figure S2):

( ), , , , .G G ReR r G r k n
2

1 1TrG ,

i

n k

i i k
k

0

1

, f! = = = -

=

-

+/^ ^h h  
 (S1)

A remarkable property (e.g., [25, Lemma 4.23]) is that 
the Gram mapping preserves the partial order between 
the polynomials and the Hermitian matrices. Let 
G RG! ^ h, then ( ) ( )R S#x x  holds for every [ , )0 1!x  if 
and only if there exists H SG! ^ h such that .G H)

As an example, consider the dual norm constraint 
p 1A #
)  in (16), which amounts to upper bounding ( )R x =
( ),a p

2G Hx  by ( ) .S 1x =  Since ( ) ( ) ( )a pp aR H Hx x x= , it is 
clear that .pp RGH ! ^ h  The constraint holds if and only 
if their exists a matrix H SG! ^ h satisfying .H ppH*  
Rewriting this condition using the Schur’s complement, as 
well as expanding the Gram mapping of ( )S 1x = , we can 
obtain the semidefinite constraint in (17), a consequence 
also known as the bounded real lemma.
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are known to be equivalent to linear matrix inequalities in-

volving the positivity of some Hermitian matrices (see “From 

Bounded Polynomials to Linear Matrix Inequalities”). The 

dual program (15) can be reformulated into an SDP as

 ,max Re x p
,p HC C
n n n! ! #

p

pH

1
0    subject to H *; E

, , , ,H k n0 1                         ,

i

n k

i i k k

1

fd= = -

=

-

+/  (17)

where H ,i j  is the (i, j)th entry of the matrix H and the indicator 

function kd  equals 1 if k 0=  and 0 otherwise.

Another merit of the dual formulation is that the support set 

of the atomic decomposition can be inferred from the optimal 

solution pt  to the dual problem (15), by examining the dual 

polynomial .,a pP x x=t t^ ^h h  We identify the spikes as the 

locations of the extreme values of the modulus of ( ):P xt

 : .P 1T x x= =
t t ^ h" ,  (18)

This is possible, because, under strong duality, both the primal 

and the dual problems must share the same optimal objective 

value, i.e., A = ,x c
r

kk 1 ; ;< < R = l
l

 where = )(ax c
r

kk k1 xR = l l
l

  is the 

atomic decomposition of x. Consequently, the optimal value of 

the dual program becomes

, , ,Re Re Rex p a pc c P

k

r

k k

k

r

k k

1 1

x x= =
)

= =

/ /l l l l
l l

t t t^ ^h h

indicating /P c c csgnk k k kx = =l l l lt ^ ^h h  whenever the atomic 

decomposition is nonvanishing at .kxl  This approach is illus-

trated in Figure 4 for a length-33 signal with six spikes, where 

the peaks of ( )P xt  match the locations of the true spikes, in-

dicating the atomic decomposition perfectly recovers the true 

sparse representation.

The atomic norm offers an approach for line spectrum 

superresolution that is drastically different from traditional 

methods, which rely heavily on the correctness of model order 

estimation. The dual polynomial approach, in contrast, does 

not require any prior knowledge of the model order and can 

estimate the spikes with an infinitesimal precision.

Exact recovery guarantees
So far, we have explained the algorithmic approach of ANM 

for line spectrum superresolution. A central question regards 

understanding whether this convex relaxation is tight or not. 

More precisely, one would like to identify the conditions un-

der which the estimated support Tt  coincides with the true 

support T  of the signal x and, correspondingly, the atomic 

decomposition x ack k
r

k1 xR= = l l
l ^ h coincides with the sparsest 

representation x ack k
r

k1 xR= = ^ h over the atomic set .A D1

Such questions were extensively addressed in the con-

text of 1,  norm minimization, where the atomic set A  has a 

finite number of elements. The performance guarantees 

often depend on specific structural properties of ,A  formal-

ized in the notion of restricted isometry property (RIP) [28] 

or certain incoherence properties [29]. Unfortunately, these 

properties do not hold when considering a continuous dic-

tionary such as ,A D1  since two atoms a x^ h and ( )a x d+  can 

be more and more correlated with each other as their separa-

tion d  tends to zero, leading to arbitrarily small RIP or coher-

ence constants.

Nonetheless, one could question for which class of signals is 

the relaxation tight. Leveraging duality theory, the atomic norm 

approach is tight for a fixed signal x, i.e., ,T T=t  as long as 

there exists a dual certificate ,p*  such that ,a pP x x=* *^ ^h h  

satisfies [11]

 , ,P csgn Tk k k6 !x x=* ^ ^h h  (19a)

 , .P 1 T61 "x x* ^ h  (19b)

In other words, it amounts to finding an ( )n 1- -order trigono-

metric polynomial that interpolates sign patterns of the spike 

signal at the spike locations, as well as is bounded in magni-

tude by 1.

Intuitively, the difficulty of interpolation depends on the 

separations between the spikes in T  and, more precisely 

on the minimal separation, or the minimal wrap-around 

distance between any pair of distinct spikes in ,T  defined 

formally as

 .inf min qT
q Z

T
, T

_ x xD - +

!
!

x x

!x x

l

l

l

^ h  (20)

This metric is illustrated in Figure 5 and reflects the periodic 

behavior of the atom a aqx x+ =^ ^h h for any integer .q Z!  

For instance, if . , . ,0 1 0 9T = " ,  then . .0 2TTD =^ h

A remarkable result, established by Candès and Fernandez-

Granda in [11], is that for sufficiently large n, a valid certificate 

can be constructed in a deterministic fashion, as long as the 

separation condition / ( )n4 1-TT $D ^ h  holds, regardless of 

the complex amplitudes of the spikes. Furthermore, this result 

does not make any randomness assumptions on the signal. 

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6

Time

0.8 1

A
b
s
o
lu

te
 A

m
p
lit

u
d
e

FIGURE 4. A spike localization via pinpointing the peaks of the dual 

 polynomial ( )u uP x
t  (in blue) associated with the optimal solution pt   

of the dual program (15) for a signal x  of length n 33=  with six true 

spikes (in black).



46 IEEE SIGNAL PROCESSING MAGAZINE   |   March 2020   |

Later, this separation condition was further improved by Fer-
nandez-Granda [30] to

. .
n 1
2 52

TT 2D
-

^ h

Conversely, there exist some spike signals with TT 1D ^ h
/ ( )n2 1-  such that ANM fails to resolve [31].

Atomic norm denoising
In practice, the observations are corrupted by noise and no es-
timator can exactly recover the spike signal x(t). This raises a 
natural question regarding the robustness of the estimate pro-
duced by ANM methods. When the noise is additive and the 
observation z obeys the noisy model (7), it has been proposed 
to estimate x by searching around the observation z for signals 
with small atomic norms [32]:

 ,min x z x
2
1

x 2
2

Am- +  (21)

where 02m  is a regularization parameter that draws a trad-
eoff between the fidelity to the observation and the size of the 
atomic norm. This method, known as atomic norm denoising, 
can be interpreted as a generalization of the celebrated LASSO 
estimator [33].

When the noise vector eu  is composed of independent iden-
tically distributed (i.i.d.) complex Gaussian entries with zero 

mean and variance ,2v  the mean square error (MSE) of the 
estimate xt  returned by (21) can be bounded as [32]

| |
log

x x
n

O
n

n
c

1

k

r

k

1
2
2

v- =

=

/t e o
with a high probability by setting logn nm hv=  for some 
constant ( , )1 3!h , e.g., .1 2h =  in practice. This error rate 
can be significantly improved when the spikes satisfy the sep-
aration condition / ( )n4 1TT $D -^ h  where with high prob-
ability one has [34]

.
log

x x
n

O
n

r n1
2
2 2v- =t c m

This last error rate is near-optimal up to some logarithmic 
factor, since no estimator can achieve an MSE below the rate  

/( )log nr n rO 2v ^ h  [34].
A more important performance criteria in superresolution 

concerns the stability of the support estimate ,Tt  which has 
been studied in [34]–[38]. When the spikes satisfy the sepa-
ration condition . ,n5 0018 1TT 2D -^^ hh  and the complex 
amplitudes of the coefficients c     k k r1 # #" ,  have approximately 
the same modulus, then it is established in [36] that the atomic 
decomposition of the output xt  of (21) is composed of the same 
number of spikes, i.e., rTT = =

t  and that the estimated 
parameters satisfy

,
log log

c O
n

n
c c O

n

n
/k k k k k3 2x x v v- = - =t te co m

with high probability. Altogether, it can be seen that atomic 
norm denoising achieves near-optimal performance guaran-
tees as long as the spikes are separated by a few times the RL 
(see “Is the Separation Condition Necessary?”).

It is natural to wonder how atomic norm denoising fares com-
pared with classical approaches such as Prony and MUSIC for line 
spectrum estimation. We examine their ability to resolve close-
located spikes with opposite signs, where the reconstruction per-
formance is measured in terms of the MSE of the estimated spike 
locations ,Tt  and for different values of separation / .nTT aD =^ h  
Figure 6 shows the MSE of atomic norm denoising, Prony’s 
method with Cadzow denoising [39], and root-MUSIC [40] with 
respect to the SNR defined as / ,x n2

2 2< < v^ h  benchmarked against 
the Cramér–Rao bound (CRB), when the separation parameter 

,2a =  1.75, 1.5, respectively. It is clear that atomic norm denois-
ing outperforms classical approaches and approaches the CRB at 
a much lower SNR.

A faster algorithm via ADMM
While the SDP formulation is tractable, its computational 
complexity is prohibitive when solving large-dimensional 
problems. Fortunately, it is possible to develop tailored 
algorithms that are significantly faster. For conciseness, 
we will discuss one approach based on the alternating 
direction method of multipliers (ADMM) [32]. The  general 
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principle of ADMM is to split the quadratically augment-
ed Lagrangian function of an optimization problem into a 
sum of separable subfunctions [41]. Each iteration of the 
algorithm consists of performing independent local mini-
mization on each of those quantities, while ensuring that 
the feasibility constraints are always satisfied. The itera-
tions run until both primal and dual residuals satisfy a pre-
defined tolerance level.

We take atomic norm denoising (21) as an example, which, 
in light of (14), can be equivalently rewritten as

  min x z u
n

t
2
1

2
1 Tr toep

, ,x u t 2
2 m

- + +` ^ ^ hh j
 

 
, .S S

u

x

x

t
0subject to

toep
H *=

^ h; E

The above program has been “augmented” by introducing 
an intermediate variable S for the purpose of decoupling the 
positive semidefinite constraint on the matrix S from the lin-
ear constraints on its structure. The augmented Lagrangian 
L  is given as

 , , , ,x u S x z ut
n

t
2
1

2
1 Tr toepL 2

2 m
R = - + +^ ` ^ ^h hh j

 , S
u

x

x

t
                               

toep 
HR+ -

^ h; E
 ,S

u

x

x

t2
                              

toep 
H

2

F

t
+ -

^ h; E

where S and R  are ( )n 1+ -dimensional Hermitian matrices 
and 02t  is a regularization parameter. The successive update 
steps to minimize the augmented Lagrangian are given in Al-
gorithm 1. Closed-form solutions can be found for the first up-
date step, yielding a very efficient implementation. The second 
update is the most costly part, as a projection over the cone of 
positive semidefinite Hermitian matrices has to be computed. 
This computation is typically achieved using power methods 
[42], with a computational complexity of ( )O n3  per iteration.

Can we discretize?
It may be worthwhile to pause and compare ANM to other 
approaches based on convex optimization for superreso-
lution, particularly 1,  minimization that is widely popular 

One might wonder if requiring a separation condition 
makes atomic norm minimization inferior, since many 
methods do not require such a separation in the noise­
free case. However, some form of separation is unavoid­
able for stable recovery in noisy superresolution, no 
matter which method is used [S3]. In particular, [S3] 
shows that when /n2TT 1D ^ h , there exists a pair of 
spike signals x t^ h and 'x t^ h with the same minimal sep­
aration, such that no estimator can distinguish them. 
Figure S3(a) exhibits such a pair of positive spike signals 
(see [S3] for its construction) with a minimal separation 

. /n1 7 , where their observations are very close. Figure S3(b) 
further demonstrates the distance between their obser­
vations as the signal dimension increases, for differ­
ent separation parameter a, where /nTT aD =^ h . It is 
clear that their observations are increasingly indistin­
guishable as the signal dimension tends to infinity when 

/n2TT 1D ^ h .

Reference
[S3] A. Moitra, “Super­resolution, extremal functions and the condition num­

ber of Vandermonde matrices,” in Proc. 47th Annual ACM Symp. Theory of 

Computing, 2015, pp. 821–830. doi: 10.1145/2746539.2746561.
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for high-resolution imaging and localization in the recent lit-
erature due to compressed sensing (CS) [43], [44].

The 1,  norm can be seen as a discrete approximation of the 
atomic norm. Indeed, taking the atomic set ,A D1  one can pick 
a desired resolution Q and discretize it as

: , , , , ,[ae
Q

q
q Q0 1 0 2A D discrete,

j
1 f !z r= = -

z c m h' 1

and then perform 1,  minimization over .A D,discrete1  The con-
vex hull of A D discrete,1  approaches that of A D1  as the discreti-
zation gets finer, which suggests the performance of 1,  minimi-
zation over the discretized dictionary approaches that of ANM 
asymptotically [45]. If the spike signal meets a so-called non-
degenerate source condition [46, Definition 2], this approach 
will return a sparse solution supported on the elements of the 
discretized A D discrete,1  surrounding the ground-truth spikes, 
when the noise is small enough [46], [47]. However, it remains 
unclear which class of spike signals satisfies the nondegenerate 
source condition in practice.

However, this discretization may come with several unde-
sired consequences when the grid size Q is finite in practice. 
The theory of 1,  minimization only provides exact recovery 
guarantees when the spikes of x(t) lie on the grid, which is unre-
alistic. In fact, there is always an inevitable basis mismatch [48] 
between the spikes represented in the discretized dictionary 
A D discrete,1  and the true spikes, no matter how fine the grid 
is. Perfect recovery is not possible in this situation, even in 
the absence of noise due to this mismatch. Furthermore, one 
can find signals whose representations in A D discrete,1  are not 
compressible due to spectral leakage and therefore are poorly 
recovered using 1,  minimization, e.g., the recovery may con-
tain many spurious spikes. Therefore, cautions are needed to 
account for such consequences when applying discretization, 
and efforts to mitigate the basis mismatch have been proposed 
extensively, e.g., [49] and [50].

Generalizations of atomic sets
The tool of atomic norms can be extended easily to handle a 
wide range of scenarios in a unified manner, by properly ad-
justing the atomic set for signal decompositions such as incor-
porating prior information and dealing with multidimensional 
settings and multiple measurement vectors, to illustrate a few.

Atomic set for positive spikes
In some applications, there exist additional information about 
the spikes, such as the coefficients of the spikes in (8) are posi-
tive, i.e., .c 0k2  Examples include neural spike sorting, fluo-
rescence microscopy imaging, or covariance-based spectrum 
estimation for noncoherent sources [1].

In this case, the atomic set reduces to the moment curve 
A0  in (11). The induced x A< <  is no longer a norm, since A0  
is not centrally symmetric but, nonetheless, similar SDP char-
acterization still holds. To be specific, the dual program now 
becomes

, , ,max Re supx p a p 1subject to Re
,p 0 1C

n
#x

! !x

^ h
h6

where the constraint bounds the real part of the trigonometric 
polynomial ( ) ,( ) .a pP x x=  Using the Fejér-Riesz theorem 
(see, e.g., [25, Th. 1.1] and “From Bounded Polynomials to Lin-
ear Matrix Inequalities”), this can be equivalently represented as
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Algorithm 1. ADMM for atomic norm denoising [32].

Input: Observation ;z  parameters , ;02m t
 Initialize ,j 0=  and ,S0 0R  to zero matrices
 Repeat until stopping criteria

, , , , ,, ;x u x u Sargmint tL
, ,x u

j j j
t

j j1 1 1 ! R+ + +^ ^h h
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It is long established [51], [52] that the spikes can be per-
fectly localized as long as ( ) / ,r n 1 2# -6 @  without requiring 
any separation between the spikes, as long as they are positive. 
The stability of this approach as well as the implications of 
nonnegative constraints for other atomic sets are further stud-
ied in [53]–[56]. As a comparison, Figure 7 shows the MSE of 
atomic norm denoising with and without positive constraints, 
Prony’s method with Cadzow denoising [39], and root-MUSIC 
[40] with respect to the SNR defined as /( )x n2

2 2< < v  for resolv-
ing two spikes with positive signs, separated by /( ) nTTT a=  
for , . , . ,1 0 75 0 5a =  respectively. It can be seen that atomic 
norm denoising still outperforms classical approaches and, in 
particular, incorporating the positive constraint leads to fur-
ther improvements.

Atomic set for multidimensional spikes
When the spikes reside in a multidimensional space, one can 
extend the 1D model in a straightforward manner. Here, we 
illustrate the setup for the 2D case, where each entry of the 
signal X C2D

n n1 2! #  can be expressed as a superposition of r 
complex sinusoids propagating in two directions:

 ( ) ( ) ,X a ac2D , ,k

k

r

k k

1
1 1 2 2x x=

<

=

/  (22)

where ck  and , [ , )0 1T
, ,k k k1 2

2!x x x= 6 @  are the complex am-
plitude and location of the kth spike, and ( )ai x  is given by 
(9) with the dimension parameter replaced by ,ni  , .i 1 2=  It 
is natural to define the corresponding atomic set as [11], [57]

( ) [ ) [ )( ) : , , , ,a ae 0 1 0 2A2D
j

1 1 2 2
2! !xx x z r=

<z" ,
and the atomic norm according to (2). To localize the spikes, 
one could similarly study the associated dual problem

, ,max Re X P P 1subject to
P C

A
n n1 2

< < #)
! #

where the dual atomic norm can be reinterpreted as the su-
premum of a bivariate complex trigonometric polynomial 

, ( ) ,( ) ( )a a PP 1 2 1 1 2 2x x x x=
<  with the matrix P  as its coef-

ficients. Again, one can localize the spikes by examining the 
extremal points of the dual polynomial, which is illustrated 
in Figure 8. Cautions need to be taken when attempting to 
solve the dual program in two or higher dimensions, since the 
bounded real lemma [24], [25] does not hold anymore. Instead, 
a precise characterization requires solving a hierarchy of sum-
of-squares relaxations and, fortunately in practice, the first 
level usually suffices [24], [57], [58].

The tightness of the ANM approach is closely related to a 
separation condition analogous to the 1D case [30]. Namely, 

the atomic decomposition is unique and exact, as soon as there 
exists a universal constant C 02  such that the set of spikes 

{ }T k k r1x= # #  satisfies
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Moreover, if the signal X2D  is real valued, .C 4 76=  suffices to 
guarantee exact recovery of the spikes.

Atomic set for multiple measurement vectors
One can collect multiple snapshots of observations, where they 
share the same spike locations with varying coefficients. Con-
sider T  snapshots, stacked in a matrix, ,, ,[ ]X x x1MMV Tf=  
which is expressed similarly to (8) as

 ( ) ,X a cMMV

k

r

k k

1

x=
<

=

/  (23)

where , ,[ ]c c c C, ,k k L k
T

1 f !=  is the coefficient of the kth spike 
across the snapshots. Following the recipe of atomic norms, we 
define the atoms as

, ,( ) ( )A b a bx x=
<

where , ,0 1!x h6  b C
T!  with .b 12< < =  The atomic set is de-

fined as

, : , , .( ) [ )A b b 10 1AMMV 2< <!x x == " ,
The atomic norm can then be defined following (2), which 

turns out sharing similar nice SDP characterizations for primal 
and dual formulations as for the single snapshot model [59]. 
The atomic norm XMMV A< <  can be written equivalently as
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A curious comparison can be drawn to the nuclear norm by 
noticing that one recovers the nuclear norm of XMMV  by re-
placing the principal block ( )utoep  in (24) with an arbitrary 
positive semidefinite matrix. The fact that ( )utoep  has signifi-
cantly fewer degrees of freedom (n  versus )n2  is in parallel to 
that ( )a x  has significantly fewer degrees of freedom than an 
arbitrary vector (1 versus ) .n

Again, one can determine the atomic decomposition and 
localize the spikes by resorting to the dual program in a similar 
fashion. Figure 9 illustrates how multiple snapshots improve 
the performance of localization over the single snapshot case 
when the coefficients across snapshots exhibit some kind of 
diversity, e.g., generated with i.i.d. complex Gaussian entries.

Generalizations of measurement models
So far, we have seen that ANM provides a means for super-
resolution via convex relaxation in additive Gaussian noise. 
The framework of convex optimization is quite versatile and 
can be extended to handle models when the measurements are 
partially observed, corrupted, contain interfering sources, or 
even come from unknown modulations. This is an important 
advantage over classical methods such as MUSIC or ESPRIT, 
as most of them cannot be extended easily to these variants 
of models.

Compressed spectral sensing
CS [43], [44] has suggested that it is possible to recover a signal 
using a number of measurements that is proportional to its de-
grees of freedom, rather than its ambient dimension. Consider 
the problem where only a subset of entries of x is observed,

,y A xCS CS=

where ,A CCS
m n! #  and m n%  representing compressive ac-

quisition of the signal x. The goal is to recover x and its spectral 
content from ,y CCS

m!  the compressive measurements. This 
has applications in wide-band spectrum sensing and cognitive 
radio [60], for example. 

One can easily extend the framework of ANM and recover 
x by solving the program

 .min x y A xsubject to CS CS
x A =

When ACS  is a partial observation matrix, namely, a sub-
set of m entries of x is observed uniformly at random, then 
x can be perfectly recovered with high probability using 

log log logm O n r r n2
= +^ h measurements as long as x satis-

fies the separation condition, and with random signs of the coeffi-
cients c sk \  [15, Th. II.3]. More generally, a broader class of mea-
surement matrices ACS  can be allowed where its rows are drawn 
independently from some isotropic and incoherent distribution 
[61], [62], and exact recovery is possible under the same separa-
tion condition using a number of measurements on the order of r 
up to some logarithmic factors. In addition, quantized measure-
ments are further dealt in [63] with theoretical guarantees.

Demixing sinusoids and spikes
Due to sensor failures or malicious environments, the mea-
surements are susceptible to corruptions that can take arbitrary 
magnitudes. To this end, consider the problem when the obser-
vations are contaminated by sparse outliers, where

.y x scorrupt = +
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Here, s is a sparse vector, where its nonzero entries correspond 
to corruptions of the observations. The goal is to decompose x 
and s from ycorrupt,  a problem intimately related to the uncer-
tainty principle of signal decomposition in [17] and [64] and 
sparse error correction in CS [65].

Leveraging low-dimensional structures in both x and s, we 
seek x with a small atomic norm and s with a small 1,  norm 
that satisfies the observation constraint [66]

 ,min y x sx s subject to corrupt
,x s 1A m+ = +

where 02m  is some regularization parameter. As long as the 
sample size is sufficiently large [66, Th. 2.2] and the spikes 
satisfy the separation condition, then the above algorithm 
perfectly localizes the spikes with high probability, even 
when the corruption amounts to near a constant fraction of 
the measurements.

Demixing interfering sources
A scenario of increasing interest is when the observation is com-
posed of a mixture of responses from multiple exciting or trans-
mitting sources, and the goal is to simultaneously separate and 
localize the sources at a high resolution. For example, an elec-
trode probing the activities in a brain records firing patterns of a 
few neighboring neurons, each with a distinct PSF. For pedagogi-
cal reasons, let us consider a generalization of the model (6) with 
two interfering sources, where the observation is given as

( ) ( ) ,y g x g xdiag diagmix 1 1 2 2= +

where g1  and g2  correspond to the frequency-domain re-
sponse of the PSFs, and ( ), , .x ac i 1 2, ,i k

r
i k i k1

i xR= ==  The goal 
is to separate and recover the spikes in both x1  and x2  from 

,ymix  where g1  and g2  are assumed to be known.
Using ANM, one seeks to recover both x1  and x2  simul-

taneously by minimizing the weighted sum of their atomic 
norms [67]:

 min xx
,

1
x x

2A A
1 2

m+

 ,y g x g xsubject to diag diagmix 1 1 2 2= +^ ^h h
where 02m  is some regularization parameter. Unlike the 
single-source case, the success of demixing critically depends 
on how easy it is to tell two PSFs apart; the more similar g1  
and g2  are, the harder it is to separate them. A random model 
can be used to generate dissimilar PSFs, namely it is assumed 
the entries of g si  are i.i.d. generated from a uniform distribu-
tion over the complex circle [67]. The algorithm then succeeds 
with high probability as long as the sample size is sufficiently 
large and the spikes within the same signal satisfy the separa-
tion condition [67, Th. 2.1], without requiring any separation 
for spikes coming from different sources.

Blind superresolution
So far, all algorithms have assumed the PSF as known, which 
is a reasonable assumption for problems where one can design 

and calibrate the PSF a priori. In general, one might need to 
estimate the PSF at the same time, possibly due to the fact that 
the PSF may drift and needs to be calibrated on the fly during 
deployment. In this case, we need to revisit (6) and estimate g 
and x simultaneously from their bilinear measurements,

( ) .y g xdiagBR =

This problem is terribly ill-posed, as the number of unknowns 
far exceeds the number of observations. One remedy is to 
exploit additional structures of g. For example, if g lies in 
a known low-dimensional subspace [ , , ]B b b Cn

n d
1 f !=

R #  
with ,d n%  then the degrees of freedom of g is greatly dropped, 
since one only needs to estimate the coefficient h C

d!  of 
g Bh=  in that subspace, which has a much smaller dimension. 
Even such, the measurement yBR  is still bilinear in h and x, 
and one cannot directly apply ANM to x as it does not lead to 
a convex program.

Interestingly, a lifting trick can be applied [68], which rewrites 
y ZXBR = ^ h as linear measurements of a higher-dimensional 
object Z xh C

n d!=
#<  similar to (23):

, , , , ,b he x xh e by i n1BR
H

,i i i i i f= = =
< < <

where ei  is the ith standard basis vector. Consequently, one 
can apply ANM to Z with respect to (24), leading to the 
algorithm [68]

.min y ZZ subject to XBR
Z

A = ^ h
This approach succeeds with high probability; as soon as the 
sample size is sufficiently large, the spikes are well separated 
and the PSF satisfies certain incoherence properties [68, Th. 1]. 
Moreover, it can be further extended to demixing a mixture of 
sources with unknown PSFs, where each PSF lies in a distinct 
subspace [69].

Beyond line spectrum estimation: Superresolution 
imaging for single-molecule fluorescence microscopy
When the atomic set is composed of a family of complex sinu-
soidal signals, an exact implementation of the atomic norm in 
SDP is available. In the most general setting, ANM is an in-
finite-dimensional convex program whose computation needs 
to be addressed carefully. Encouragingly, tailored solvers have 
been proposed and applied successfully to practical applica-
tions such as superresolution imaging for single-molecule fluo-
rescence microscopy, which we now present as a case study to 
show its promise.

Imaging principle
The development of superresolution fluorescence microscopy, 
which was awarded the 2014 Nobel Prize in Chemistry, is con-
sidered to fundamentally impact biological science and medi-
cine. To date, a partial list of superresolution fluorescence mi-
croscopy technologies includes PALM [70], STORM [71], and 
fPALM [72], which share a similar imaging principle. A very 
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nice introduction can be found in [73]. While optical micros-
copy is desirable for imaging complex biological processes in 
live cells due to its noninvasive nature, due to diffraction limit, 
which is about hundreds of nanometers, it cannot image detailed 
internal structures of cells, which are often below 100 nm.

To deal with this challenge, biologists have come up with a 
clever idea of divide and conquer. To begin, imagine that every 
point within a cell is equipped with a photoswitchable fluores-
cent molecule, which means, once excited, the molecule will 
emit light stochastically over a duration of time to identify its 
location. This allows one to divide the imaging process into 
many frames, where in each frame a random and sparse subset of 
fluorescent molecules (point sources) are activated and localized 
at a resolution below the diffraction limit using imaging algo-
rithms. The final image is thus obtained by superimposing the 
localization outcomes of all of the frames. Therefore, the high 
spatial resolution is achieved by sacrificing the temporal resolu-
tion. To speed up the imaging process and improve the temporal 
resolution, it is desirable to develop localization algorithms that 
are capable of identifying more fluorescent molecules per frame, 
which is known as the emitter density.

Very interestingly, this imaging principle can be used to 
reconstruct a 3D biological structure from 2D image frames 
[74]. One way is to introduce a cylindrical lens to modulate 
the ellipticity of the PSF based on the depth of the fluorescent 
object, which can be modeled as a Gaussian pulse with varying 
ellipticity along the x and y directions,

( , | )
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,g x y z
z z

e
2

1
( ) ( )
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where ( )zxv  and ( )zyv  are functions of the depth in the z di-
rection, and can be calibrated in advance. For a 3D scene of 
point sources,
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its convolution with the PSF ( , | )g x y z  is given as a 2D image 
in the form of
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Therefore, to perform superresolution, one needs to decode si-
multaneously the ellipticity as well as the location of the PSF, 
which is much more challenging. In practice, the situation is even 
more complex, since the continuous spatial function ( ) ( , )g x y)g  

needs to be further discretized due to pixelization of the detector, 
leading to a discretized 2D image, ,R

n n1 2!~ #  where each entry 
of ~ corresponds to the integration of ( ) ( , )g x y)g  over the area 
of a pixel. The final image, z, counting the number of photons 
hitting the detector at each pixel, is modeled as a Poisson distribu-
tion with rate .~  The whole process is summarized in Figure 10.

Applying ANM
Luckily, due to linearity, ~  can be viewed a sparse superposi-
tion of atoms that are parameterized by the 3D point sources,

( , , ) ( , , ) ( , , ),a ac x y z x y z d x y z
, ,

i

i

r

i i i
x y z1

~ g= =

=

/ #

where each atom ( , , )a x y z  corresponds to the image of a point 
source at (x, y, z) after convolution and pixelization. The atomic set 
is then given as , , : , , .a x y z x y z imaging rangeA D3 != ^ h" ,  
The goal is thus to recover ( , , )x y zg , or the atomic decomposi-
tion of ,~  from the observation Poisson~ ( )z ~  as accurately 
as possible.

A natural approach is to seek the sparsest ~  such that the 
likelihood function of the observation z is maximized. To that 
end, we consider a constrained maximum likelihood estima-
tion, where we seek to solve ~  via

 ( | ) ,min log zp subject to A #~ ~ h-
~

 (25)

where ( )zp ; ~  is the Poisson likelihood function, A~  is the 
induced atomic norm with respect to ,A D3  and h  is some regu-
larization parameter that may be tuned in practice.

Early efforts such as CSSTORM [75], which are based on 

1,  minimization by directly discretizing the parameter space, 
suffer from high computational complexity, due to the need 
of storing and manipulating a large dictionary of atoms, as 
fine discretization is required along all three spatial dimen-
sions. On the other end, recent algorithmic developments such 
as alternating descent conditional gradient (ADCG) [76] and 
CoGEnT [77] solve sparse inverse problems over continu-
ous dictionaries with general convex loss functions at much 
reduced memory and computation requirements. In a nutshell, 
the ADCG method is an acceleration of conditional gradient, 
also known as Frank–Wolfe, to solve (25) with a general atom-
ic set : ,aA !i i H= ^ h" ,  where i  is a short-hand notation 
for the parameter space. In particular, it directly estimates the 
atomic decomposition of ( ) ( ) .a d~ i g i= #

The standard Frank–Wolfe adds one new atom at every iter-
ation to reduce the negative log-likelihood function; however, 
it will introduce many spurious atoms and lose sparsity as the 
iteration increases. To deal with this, ADCG introduces prun-
ing and local refinements with a hope to maintain a sparse rep-
resentation at all iterations. The detailed procedure of ADCG 
is given in Algorithm 2. In the jth iteration, denote the support 
and coefficient of the current estimate of ( )g i  as T j  and ,c j  
and the current estimate of ~  as .cA T j j^ h  Like Frank–Wolfe, 
ADCG starts by adding a spike to the estimated support T j  
that maximally correlates with the derivative of ( | )log zp ~  

ζ (x, y, z) ζ ∗ g ω z

Low-Pass

Convolution
Pixelization

Poisson

Noise

FIGURE 10. The mathematical model of 3D imaging in superresolution 

fluorescence microscopy. 
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with respect to ~  at the current estimate, .cA T j j^ h  Because 
the spike location will be refined next, in practice, this step can 
be solved approximately by searching over a coarse grid of H  
to save computation.

ADCG then deviates from the standard Frank–Wolfe, 
and tries to improve the updated estimate 
by performing alternating descent over 
the coefficient and the support. It iter-
ates between coefficients update via 1,  
minimization, support pruning, and local 
refinement of the support by holding the 
coefficients fixed. The last step leverages 
the fact that ( )a i  is differentiable with 
respect to ,i  and a simple local search 
via gradient descent allows one to adjust 
the support to further reduce the loss function. Despite the 
nonconvexity in this refine step, [76] guarantees the con-
vergence of ADCG with a convergence rate of /O 1 e^ h to 
reach -e accuracy in the function value, under some techni-
cal assumptions. In practice, the main computational ben-
efits of ADCG are the absence of semidefinite constraints 
and small memory footprints, making it highly suitable for 
large-scale implementations.

TVSTORM [78] is a modification of ADCG tailored to 
solve (26) for 3D image reconstruction with some domain 
adaptations to speed up implementations. TVSTORM out-
performs CSSTORM both in terms of computational time 
and reconstruction quality. Figure 11(a) shows the diffrac-
tion-limited imaging using conventional microscopy; in 
contrast, the 3D superresolution image reconstructed using 
TVSTORM in Figure 11(b) is much clearer, where the 
structure of 3D microtubules can be well resolved with the 
axial coordinate represented in different colors. Figure 11(c) 
and (d) compares the reconstruction quality of an enlarged 
region between TVSTORM and CSSTORM, where TVS-
TORM provides a visually more smooth reconstruction of 
the line structures in microtubules. Figure 12 shows that 
TVSTORM indeed has a higher detection rate and a lower 
false discovery rate than CSSTORM, while TVSTORM 
executes much faster.

Final remarks
In this article, we presented an overview on how to leverage 
sparsity for continuous parameter estimation via the math-
ematical concept of atomic norms, which can be regarded 
as a generalization of the principle of 1,  norms for discrete 
model selection. We showcased its application in superreso-
lution from low-pass observations in single-molecule fluo-
rescence microscopy. The appeal of the atomic norm ap-
proach is attributed to its elegant mathematical framework, 
strong performance guarantees, and promises of scalable 
numerical implementations.

The atomic norm is only one of many possible approaches to 
exploit sparsity over the continuum. One competitive alternative 
is structured low-rank matrix optimization [79]–[82]; see [83] for 
its connections and comparisons with the atomic norm approach. 

Another line of work [84]–[86] generalizes the traditional CS 
to an infinite-dimensional Hilbert space. In addition, sampling 
theorems are developed for signals with a finite rate of innova-
tions together with strategies for perfect reconstruction [87]. More 
recently, a sparse functional framework has been proposed as a 

variational approach to handle sparsity over 
continuous and possibly nonlinear dictionar-
ies. This category of estimators aims to recov-
er functions with minimum support measure 
subject to the observation constraint [88], [89].

As a topic still under development, open 
problems abound for both theoretical and 
practical performance of optimization-based 
superresolution in general. We conclude by 
outlining some exciting future directions.

 ■ Tight performance analysis in noise: Existing analyses of 
atomic norm denoising (21) typically only produce bounds 
that are tight up to some constant, making them less useful 
in practice. For example, attempts to benchmark the theo-
retical bounds against the CRB will be in vain due to the 
presence of large constants. It is therefore desirable to 
obtain tight performance bounds such as the one available 
for matrix denoising [90] that is asymptotically exact.

 ■ Adaptive selection of regularization parameters: One 
benefit of ANM over traditional spectrum estimation 
approaches is that it can automatically select the model 
order. However, the choice of the regularization parameter 
(21) depends on the noise level, which may not be available 
in practice. How to optimally set the regularization param-
eters is another problem of great importance; see [91] for 
some recent developments.

 ■ Low-rank factorization for SDP formulations of atomic 

norms: A popular heuristic to SDP with low-rank solutions 
is to apply low-rank matrix factorization and solve the cor-
responding nonconvex optimization problem [92], [93], 
with the premise of greatly reducing its computational 
cost. It will be interesting to see if this approach can be 

Algorithm 2. Alternating descent conditional gradient [76].

Input: Observation ;z  Parameter ;02h
 Initialize T0  to an empty set, c0  to 0, and ;j 0=
 repeat until stopping criteria
 Localize the next spike:

, ( | ) ;a cargmax logp z A Tj j j j1 d!i i
!

~

i H

+ ^ ^h h
 Update support: ;T Tj j j1 1! i+ +, " ,
 Refinement: repeat
  1) Update the amplitudes:

( | ( ) );c z cargmin logp A T
c

j j1 1

1

! -

# h

+ +

  2) Prune support:  ;csupportTj j1 1!+ +^ h
  3)  Local descent: improve Tj 1+  by performing local descent on

( | )z clogp A Tj j1 1- + +^ h  holding the coefficient c j 1+  fixed;

 ;j j 1! +

Output: ,cTj j^ h and .x cA Tj j j= ^ h

As a topic still under 

development, open 

problems abound for 

both theoretical and 

practical performance 

of optimization-based 

superresolution in general.
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applied to speed up the computation of atomic norms with 
performance guarantees.

 ■ Bridging classical and optimization-based approaches: 
There are deep connections between traditional (e.g. 
Prony, MUSIC, and so on) and optimization-based (e.g. 
ANM and nuclear norm minimization) approaches. 
Such connections have already been realized, for 
instance in the early works of Fuchs [94], where he pro-
vided an optimization interpretation of the Pisarenko 
method [95]. Another recent work [96] provided an opti-
mization view to the MUSIC algorithm. It is hopeful 
that a confluence of past and current ideas will likely 
deepen our understandings and lead to further algorith-
mic improvements.

 ■ ANM for more general measurement models: While 
there have been significant advances in the understand-
ing of ANM for line spectrum estimation, its theory and 

application to other measurement settings require fur-
ther investigation.

 ■ Applications in communications, sensing, and imaging: 
ANM has recently emerged as a popular approach for 
many practical applications, such as channel estimation in 
massive MIMO [97], [98], radar imaging [99], and nuclear 
magnetic resonance spectroscopy [100]. It is our hope that 
this article will stir more interest in applying the atomic 
norm in applications that call for high-resolution parame-
ter estimation.
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