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Atomic norm minimization for superresolution

signal of interest can be modeled as a linear superposition
of translated or modulated versions of some template [e.g.,
a point spread function (PSF) or a Green’s function] and the
fundamental problem is to estimate the translation or modula-
tion parameters (e.g., delays, locations, or Dopplers) from noisy
measurements. This problem is centrally important to not only

At the core of many sensing and imaging applications, the
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target localization in radar and sonar, channel estimation in
wireless communications, and direction-of-arrival estimation
in array signal processing, but also modern imaging modalities
such as superresolution single-molecule fluorescence micros-
copy, nuclear magnetic resonance imaging, and spike localiza-
tion in neural recordings, among others.

Typically, the temporal or spatial resolution of the acquired
signal is limited by the sensing or imaging devices, due to factors
such as the numerical aperture of a microscope, the wavelength of
the impinging electromagnetic or optical waves, or the sampling
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rate of an analog-to-digital converter. This resolution limit is well
known and often referred to as the Rayleigh limit (RL) (see “What
Is the Rayleigh Limit?”). The performance of matched filtering, or
periodogram, which creates a correlation map of the acquired sig-
nal against the range of parameters, is limited by the RL, regard-
less of the noise level.

On the other hand, the desired resolution of parameter
estimation can be much higher, a challenge known as super-
resolution. There is a long history of pursuing superresolu-
tion algorithms in the signal processing community [1]-[3].
The oldest one probably dates back to de Prony’s root-
finding method in as early as 1795 [4], and variants of this
method that are better suited for noisy data have also been
proposed over time (see, e.g., [5]). Subspace methods based
on the computation of eigenvector or singular vector decom-
positions, such as MUSIC [6], ESPRIT [7], and matrix pen-
cil [8], have been another class of popular approaches since
their inception in the 1980s. Different forms of maximum
likelihood estimators have also been studied extensively
[9], [10]. Collectively, these algorithms have superresolu-
tion capabilities, that is, they can resolve the parameters of
interest at a resolution below the RL when the noise level is
sufficiently small.

While a plethora of traditional methods already exists,
convex optimization has recently emerged as a compelling

What Is the Rayleigh Limit?

The Rayleigh limit (RL) is an empirical criterion characteriz-
ing the resolution of an optical system due to diffraction. In
a conventional fluorescence microscope, for example, the
observed diffraction patterns of two fluorescent point sourc-
es become visually more difficult to distinguish as the point
sources get closer to each other, as illustrated in Figure S1.
They are no longer resolvable when their separation is
below the RL.

—RL

FIGURE S$1. The combined response for two translated point spread
functions under different separations of the point sources. The RL
is an indication of the separability of the two sources.

framework for performing superresolution, garnering sig-
nificant attention from multiple communities spanning sig-
nal processing, applied mathematics, and optimization.
Due to (the relative) tractability of convex analysis and
convex optimization, the new framework offers several
benefits. First, strong theoretical guarantees are rigor-
ously established to back its performance up, even in the
presence of noise and corruptions. Second, it is versatile
enough to include prior knowledge into the convex program
to handle a wide range of measurement models that are out
of the reach of traditional methods. Third, leveraging the
rapid progress in large-scale convex optimization opens up
the possibility of applying efficient solvers tailored to real-
world applications.

The goal of this article is to offer a friendly exposition
to atomic norm minimization (ANM) [11] as a canonical
convex approach for superresolution. The atomic norm is
first proposed in [12] as a general framework for designing
tight convex relaxations to promote simple signal decompo-
sitions, where one seeks to use a minimal number of atoms
to represent a given signal from an atomic set composed of
an ensemble of signal atoms. Celebrated convex relaxations
such as the ¢; norm approach for cardinality minimization
[13] and the nuclear norm approach for rank minimiza-
tion [14], can be viewed as particular instances of atomic
norms for appropriately defined atomic sets. Specializing
the atomic set to a dictionary containing all translations of
the template signal over the continuous-valued parameter
space, estimating the underlying translation parameters is
then equivalent to identifying a sparse decomposition in an
infinite-dimensional dictionary.

This key observation allows one to recast superresolu-
tion as solving an infinite-dimensional convex program [15],
a special form of ANM considered in this article. We first
highlight its mathematical formulation through a pedagogi-
cal yet useful model of superresolution that amounts to line
spectrum estimation, where this infinite-dimensional convex
program can be equivalently reformulated as a semidefinite
program (SDP). We then demonstrate its versatility by dis-
cussing how it can be adapted to address measurement mod-
els that traditional methods may not apply easily. Finally, we
illustrate its utility in superresolution image reconstruction
for single-molecule fluorescence microscopy [16], where the
infinite-dimensional convex program can be solved efficient-
ly via tailored solvers.

Throughout this article, we use boldface letters to represent
matrices and vectors, e.g., @ and A. We use AT, AH, Tr(A) to
represent the transpose, Hermitian transpose, and trace of A,
respectively. The conjugate of a complex scalar a is denoted as
a’. Weuse A > 0 to represent A is positive semidefinite. The
matrix toep () denotes the Hermitian Toeplitz matrix whose
first column is equal to u, and diag (g) denotes the diagonal
matrix with diagonal entries given as g. The inner product
between two matrices X and Pis defined as (X, P) = Tr(X"P).
Additionally, the notation f(n) = O(g(n)) means that there
exists a constant ¢ > 0 such that | f(n)| < c|g(n)]|.
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What is the atomic norm?

An everlasting idea in signal processing is decomposing a
signal into a linear combination of judiciously chosen basis
vectors and seeking compact and interpretable signal rep-
resentations that are useful for downstream processing. For
example, decomposing time series into sinusoids, speeches
and images into wavelets, total system responses into impulse
responses, and so on.

To fix ideas, consider the task of representing a signal x
in a vector space using atoms from a collection of vectors in
A ={a;} called an atomic set. The set A can contain either a
finite or infinite number of atoms. We wish to expand x using
the atoms in a form of

x= ca, ai€A, (1

where ¢; > 0 specifies the coefficients of the decomposi-
tion. In many applications, the size of A can be much larger
than the dimension of the signal, leading to an overcomplete
representation, and there are an infinite number of possibili-
ties to decompose x. Which representation, then, shall we
pick? Among the many plausible criteria, one meaningful
approach is to pursue the Occam’s razor principle and seek
a parsimonious decomposition of the signal x involving the
smallest possible number of atoms in A, i.e., the sparsest
solution to (1). The corresponding representation is known
as a sparse representation [17]. Many real-world signals ad-
mit sparse representations for appropriately chosen atomic
sets. As a simple example, natural images are approximately
sparse by selecting A as a wavelet frame. Low-rank ma-
trices, another class of signals that have enjoyed wide suc-
cess in signal processing [18], are sparse with respect to an
atomic set A that is the collection of all unit-norm rank-
one matrices.

Given a signal x, how do we find its sparse representation in
the atomic set A ? In general, this problem is nonconvex and
can be NP-hard due to the combinatorial aspect of cardinality
minimization. The key motivation behind ANM, proposed by
Chandrasekaran et al. [12], is to relax the nonconvex sparsity
cost by its tight convex surrogate and instead solve the result-
ing convex relaxation, which is more tractable. This idea is a
generalization of the popular ¢; minimization for sparse vector
recovery [19], [20] when A is a finite set. Therein, one seeks
to solve a linear program that minimizes the sum instead of the
cardinality of the nonzero coefficients.

To extend the same idea to the case where A is an arbitrary
and possibly infinite-dimensional set, we first take the convex
hull of A, denoted as conv(A), and then define its associated
Minkowski functional (or gauge function) as [12]

[ x]l; 2 inf{r>0:x &t conv(A)}, (2)
which is the solution to a convex program. When A is cen-

trally symmetric about the origin, definition (2) leads to a val-
id norm and is called the atomic norm of x. Figure 1 illustrates

-
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FIGURE 1. An atomic set A (in red) and its convex hull conv(A) (in orange).
The atomic norm of a vector x can be interpreted as the smallest dilation
factor ¢ > 0 such that x belongs to tconv(A) (in blue).

this concept, where the atomic norm is the smallest nonnega-
tive scaling of conv(A) until it intersects x. Following defini-
tion (2), a fundamental geometric property is that the atomic
norm ball, i.e., {x:llxlla < 1}, is exactly conv(A).

More interestingly, consider the case when x lies in an
n-dimensional vector space. Carathéodory’s theorem [21]
guarantees that any point in conv(A) can be decomposed
as a convex combination of at most n+ 1 points in A,
where A is not necessarily convex. Therefore, one may
rewrite (2) as

IIxI\m:inf{ZCi:x=ZCia[, ¢i >0, aie.?l}, 3)

as long as the centroid of conv(A) is the origin. The decom-
position X;c;a; that obtains the infimum is referred to as the
atomic decomposition of x onto A. It is not hard to see that the
atomic norm indeed subsumes the {; norm as a special case
but accommodates the more general case where A can be an
infinite-dimensional set.

Several central questions regard how to properly select the
atomic set, compute the atomic norm, and find the atomic
decomposition, and when does the atomic decomposition
coincide with the sparse representation, i.e., the convex relax-
ation is tight. Clearly, the answers highly depend on the atom-
ic set as well as the signal itself. These questions have been
addressed extensively in the study of ¢;-norm minimization
for sparse vector recovery [19], [20], [22]. In the context of
superresolution, we first address these questions under a
simple model that amounts to the classical problem of line
spectrum estimation, which has deep connections to systems
and control theory.

A mathematical model of superresolution,

equivalent to the line spectrum estimation

We first focus on a simple yet widely applicable model of
superresolution that describes the convolution of a se-
quence of point sources with a PSF that is resolution-
limited and is illustrated in Figure 2. Let x(¢) be a spike
signal given as

IEEE SIGNAL PROCESSING MAGAZINE | March 2020 | 4



x(H)— g(t) D y(t)
. Y 1 v 1 Y
e '
I I R | » A/?\«\/\.ﬁ
I Y v
<4 -1 -1
0 0.5 i -1 05 0 05 1 0.5 1 ;
Time (s) Time (s) Time (s) Time (s)

FIGURE 2. The mathematical model of superresolution. The spike signal x(t) is convolved with a point spread function g(t), leading to the degradation of
its resolution, which is further exacerbated by an additive noise €(f), producing an output signal y(f).
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Here, r is the number of spikes, cx € C and 7x € [0,1)
are the complex amplitude and delay of the kth spike. With-
out loss of generality, the maximal delay is normalized to 1.
Such a spike signal can model many physical phenomena,
such as firing times of neurons, locations of fluorescence
molecules, and so on. Let g(f) be the PSF whose bandwidth
is limited due to the RL. Its Fourier transform G(f) satis-
fies G(f)= 0 whenever | f|> B/2 for some bandwidth B > 0.
Its convolution with x(f), contaminated by an additive noise
€(1), can be written as

(O =x(O) g+ = Y crglt—T0)+€(D),
k=1

where * denotes the convolution operator. Sampling the
Fourier transform of the above equation at the frequencies
(=—|B/2},...,0,...,| B/2|, we obtain the measurements

r

®)

Y= Ga'XH-Ea:Ga'( Ckef'iz”ﬂﬂ')-i-Ea,
k=1
where Gy, X¢, E¢, and Y, are the Fourier transforms of g(?),
x(1), €(1), and y(?) evaluated at frequency ¢, respectively. The to-
tal number of samples is n = 2| B/2|+ 1 =~ B. We write (5) in a
vector form as
y = diag(g)x + €, 6)

where y = [Yd], g =[G, x = [X(], and € = [E(]. The prob-
lem of superresolution is then to estimate {ck, Tk} <;<, ac-
curately from y, without knowing the model order r a priori.
Here, the RL is inversely proportional to the bandwidth B and,
roughly speaking, is about 1/n.

When the PSF g(?) is known, one can equalize (5) by multi-
plying G;' to both sides, provided that G¢s are nonzero. The
observation z = [G7' Yq] relates to x as

42

Z=x+E, @)
where € is the additive noise. With a slight abuse of notation,
we map the index of ¢ from |B/2|,...,—|B/2]|t0 0,...,n—1
for convenience, and write x as a superposition of complex si-
nusoids as

x =) cva(ty), ®)
k=1
where a(t) € C" is a vector defined as
a(m)=[1,e"", .. VT refo,). ©)

Notably, the above simplified model (7) also amounts
to the classical problem of line spectrum estimation, which
consists of estimating a mixture of sinusoids (with fre-
quencies 7 € [0,1)) from equispaced time samples (sam-
pled at integers {0,...,n—1}) of the time-domain signal
xis(f) = Zi—1cee’™™ . This finds applications in speech
processing, power system monitoring, systems identification,
and so on. The same model also describes direction-of-arriv-
als estimation using a uniform linear array, which is studied
extensively in the literature of spectrum analysis [1].

Line spectrum superresolution via ANM
In the absence of noise, one could think of superresolution as
estimating the continuous-time spike signal x(r) in (4) from
its discrete-time moment measurements x in (8), which are
related through
1
x =f0 a(t)dx(r). (10)

One can also think of x(#) as the representation of x over a

continuous dictionary

Ao={alr):7€[0,1)}, (11)
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FIGURE 3. A visualization of the continuous-valued atomic set for line spectrum superresolution. (a) The moment curve Ao restricted to three real
moments ({[cos(27T), cos(4zT), cos(6zt)]": T €[0,1)}) and (b) its convex hull. (c) The phased version of the moment curve A restricted to
three real moments ({[cos(2zt + ¢), cos(4zt + ¢), cos(6zT + ¢)]": T <[0,1),¢ €[0,27)}) and (d) its convex hull.

which forms a one-dimensional variety of C" called the mo-
ment curve, illustrated in Figure 3(a). It is well known that the
convex hull of Ay, illustrated in Figure 3(b), is a body of C"
that can be parameterized by a set of linear matrix inequalities
[23] and has close relationships with the positivity of Hermi-
tian Toeplitz matrices. This fundamental property of the mo-
ment curve has many implications in control and signal pro-
cessing [24], [25] and is key for developing a superresolution
theory based on ANM.

It is clearly possible to obtain the same x from different
x(f). However, if we impose some sparsity assumption, namely
constraining how many spikes are allowed in x(f), this repre-
sentation can be ensured to be unique. In particular, the repre-
sentation (8) is unique as long as r <|n/2| and the support set
T = {Tr}1=<k=<r contains distinct elements.

Atomic norm for line spectrum superresolution

To apply the framework of ANM for superresolution, one
must first define the atomic set properly. Since the complex
amplitudes ci’s can take arbitrary phases, we introduce the
following augmented atomic set taking this into account:

A ={e?a(t):7€[0,1),¢ €[0,27)}. (12)

See an illustration of Aip and its convex hull in Figure 3(c)
and (d). Writing cx = | cx |e/?*, x can be represented as a positive
combination of the atoms in A as x = Zf— | cx|e’*a(Ti).
It is easy to verify that Ap is centrally symmetric around the
origin and consequently it induces an atomic norm over C", as
defined in (2) and (3). It is worth noting that minimizing the
atomic norm of x is equivalent to minimizing the total varia-
tion of x(7), i.e.,

min| x|, st x= fo 'a(ndx (1), (13)

and both viewpoints are used frequently in the literature.

Remarkably, this atomic norm admits an equivalent SDP
characterization, thanks to the following Carathéodory—Fejér—
Pisarenko decomposition [26]:

. toep(u) x
[ x)n= glcﬁ{ﬁTr(toep(u))—k %t :[ H t] = 0}. (14)
t>0
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from Bounded Polynomials to Linear Matrix Inequalities

Many applications encountered in signal processing,
systems and control theory involve comparing the
magnitudes of two real trigonometric polynomials,
R(r) =Re (a(z),r) and S(v) = Re ( a(7),s), e.g., bounding
the frequency response of a finite impulse response filter
by a desired shape. Although such inequadlities, in ap-
pearance, require verification over a continuous set of
parameters, they can easily be translated into linear
matrix inequalities of finite dimension, which are amena-
ble to optimization.

Central fo the equivalence is a Gram paramefrization of
real frigonometric polynomials [24], [S1], [S2], by noticing
that every real tfrigonometric polynomial R(z) =Re(a(z),r)
can be equivalently represented as a quadratic form
R(z)=a(7)"Ga(r) for a family of Hermitian matrices
G < G(R), where G is related to r through the following
Gram mapping (Figure S2):

G G(R) = TH(G) =Relr), S Gk =L, k=1,..
i=1

on—1.

(1)

A remarkable property (e.g., [25, Lemma 4.23]) is that
the Gram mapping preserves the partial order between
the polynomials and the Hermitian matrices. Let
G < G(R), then R(7) < S(v) holds for every T €10,1) if
and only if there exists He G(S) such that G< H.

As an example, consider the dual norm constraint
[pllz < 1in (16), which amounts to upper bounding R(7) =
|{a(t),p) by S(t)= 1. Since R(z)=al(r)"pp"al(r), it is
clear that pp" € G(R). The constraint holds if and only
if their exists a matrix He G(S) satistying H> pp".
Rewriting this condition using the Schur’s complement, as
well as expanding the Gram mapping of S(7) = 1, we can
obtain the semidefinite constraint in (17), a consequence
also known as the bounded real lemma.
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FIGURE $2. The Gram mapping for two polynomials satisfying R(z) < S(z) over [0,1), and the corresponding G, H in the respective Gram sets

such that G < H.

Contrary to its abstract definition in (2), the reformulation (14)
provides a tractable approach to compute the quantity | x|,
which can be accomplished using generic off-the-shelf convex
solvers [27]. The Vandermonde decomposition of toep (u), i.e.,
toep(u) = Zi—1| ¢k la(ti)a(ti)! can then be used to identify
the support 7= {7k} of the atomic representation of x, as well
as the atomic norm |x|a = Zi=1| ck|.

Duality and atomic decomposition

The Lagrangian duality theory marks an important aspect in
understanding the atomic norm. The Lagrange dual problem
associated with the ANM (2) reads [11]

max Re(x, p) subjectto || p|x <1, (15)
where the dual atomic norm || p [ of a vector p € C" is de-
fined with respect to the atomic set A1p as

(16)

HPH;(é sup Re(a, p) = sup |(a(7), p)l.
acAp y ————

[0,1
TE P(T)

The last equality of (16) suggests that the dual atomic norm can
be interpreted as the supremum of the modulus of a complex
trigonometric polynomial P(7) ={a(z), p) = ZiZipee "™
with coefficients given by the vector p. Constraints of this type
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are known to be equivalent to linear matrix inequalities in-
volving the positivity of some Hermitian matrices (see “From
Bounded Polynomials to Linear Matrix Inequalities”). The
dual program (15) can be reformulated into an SDP as

ped o REEP)
bi [H Pl
subject to pH 1=

n—k
D Hii+k=0,k=0,....,n—1, 17
=1

where H;; is the (i, j)th entry of the matrix H and the indicator
function & equals 1 if k =0 and O otherwise.

Another merit of the dual formulation is that the support set
of the atomic decomposition can be inferred from the optimal
solution p to the dual problem (15), by examining the dual
polynomial P(7)={a(t),p). We identify the spikes as the
locations of the extreme values of the modulus of P(7):

F={r:|p(o)|=1}. (8)

This is possible, because, under strong duality, both the primal
and the dual problems must share the same optimal objective
value, i.e., |x|a = Zi<i|cil, where x= Zi—icia(ti) is the
atomic decomposition of x. Consequently, the optimal value of
the dual program becomes

Re(x,p)= Re< ic}ca(ﬁ(), i)> =Re ic}{‘f’(ri),
k=1 k=1

indicating P(7}) = sgn(ck) = ci/|ck| whenever the atomic
decomposition is nonvanishing at Tk. This approach is illus-
trated in Figure 4 for a length-33 signal with six spikes, where
the peaks of P(t) match the locations of the true spikes, in-
dicating the atomic decomposition perfectly recovers the true
sparse representation.

The atomic norm offers an approach for line spectrum
superresolution that is drastically different from traditional
methods, which rely heavily on the correctness of model order
estimation. The dual polynomial approach, in contrast, does
not require any prior knowledge of the model order and can
estimate the spikes with an infinitesimal precision.

Exact recovery guarantees
So far, we have explained the algorithmic approach of ANM
for line spectrum superresolution. A central question regards
understanding whether this convex relaxation is tight or not.
More precisely, one would like to identify the conditions un-
der which the estimated support 7 coincides with the true
support 7~ of the signal x and, correspondingly, the atomic
decomposition x = X cta(th) coincides with the sparsest
representation x = Xj—cra(Tk) over the atomic set Ap.
Such questions were extensively addressed in the con-
text of ¢; norm minimization, where the atomic set A has a

Absolute Amplitude
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Time

FIGURE 4. A spike localization via pinpointing the peaks of the dual
polynomial |P(7)| (in blue) associated with the optimal solution p

of the dual program (15) for a signal x of length n =33 with six true
spikes (in black).

finite number of elements. The performance guarantees
often depend on specific structural properties of A, formal-
ized in the notion of restricted isometry property (RIP) [28]
or certain incoherence properties [29]. Unfortunately, these
properties do not hold when considering a continuous dic-
tionary such as Aip, since two atoms a(t) and a (T +6) can
be more and more correlated with each other as their separa-
tion & tends to zero, leading to arbitrarily small RIP or coher-
ence constants.

Nonetheless, one could question for which class of signals is
the relaxation tight. Leveraging duality theory, the atomic norm
approach is tight for a fixed signal x, i.e., T =7, as long as
there exists a dual certificate p., such that P. ()= <a(1:), P
satisfies [11]

P.(ti)=sgn(ck), VieT, (19a)

|P.(7)|<1, VT &T. (19b)
In other words, it amounts to finding an (n — 1)-order trigono-
metric polynomial that interpolates sign patterns of the spike
signal at the spike locations, as well as is bounded in magni-
tude by 1.

Intuitively, the difficulty of interpolation depends on the
separations between the spikes in 7~ and, more precisely
on the minimal separation, or the minimal wrap-around
distance between any pair of distinct spikes in 7, defined
formally as

Ar(77) = inf min|T— 7" +¢]|. (20)
;ric‘zjqez

This metric is illustrated in Figure 5 and reflects the periodic
behavior of the atom a(t + ¢) = a(t) for any integer ¢ € Z.
For instance, if 7" ={0.1, 0.9}, then At (77) = 0.2.

A remarkable result, established by Candes and Fernandez-
Granda in [11], is that for sufficiently large n, a valid certificate
can be constructed in a deterministic fashion, as long as the
separation condition Ar(T7) >4/ (n—1) holds, regardless of
the complex amplitudes of the spikes. Furthermore, this result
does not make any randomness assumptions on the signal.
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FIGURE 5. A representation of the minimal wrap-around distance Ar(77)
for a given set of spikes 7. The distance corresponds to the minimal
gap between any element T € 7~ and any distinct elements in the aliased
set 7+ Z.

Later, this separation condition was further improved by Fer-
nandez-Granda [30] to

2.52

Conversely, there exist some spike signals with At (77) <
2/(n — 1) such that ANM fails to resolve [31].

Atomic norm denoising
In practice, the observations are corrupted by noise and no es-
timator can exactly recover the spike signal x(¢). This raises a
natural question regarding the robustness of the estimate pro-
duced by ANM methods. When the noise is additive and the
observation z obeys the noisy model (7), it has been proposed
to estimate x by searching around the observation z for signals
with small atomic norms [32]:
min 3| x =23+ A x s, @1

where A > 0 is a regularization parameter that draws a trad-
eoff between the fidelity to the observation and the size of the
atomic norm. This method, known as atomic norm denoising,
can be interpreted as a generalization of the celebrated LASSO
estimator [33].

When the noise vector € is composed of independent iden-
tically distributed (i.i.d.) complex Gaussian entries with zero

mean and variance o, the mean square error (MSE) of the
estimate x returned by (21) can be bounded as [32]

1
n

&—xHi = 0(0 logn i |Ck|>

=
with a high probability by setting A = noy/nlogn for some
constant 77 € (1,00), e.g., 7 = 1.2 in practice. This error rate
can be significantly improved when the spikes satisfy the sep-
aration condition At (77) > 4/ (n — 1) where with high prob-
ability one has [34]

Ls—xfi=ofo>121).

This last error rate is near-optimal up to some logarithmic
factor, since no estimator can achieve an MSE below the rate
O(o” rlog(n/r)/n) [34].

A more important performance criteria in superresolution
concerns the stability of the support estimate 77, which has
been studied in [34]-[38]. When the spikes satisfy the sepa-
ration condition At(77) > 5.0018 /(n— 1), and the complex
amplitudes of the coefficients {ck}, < ; < , have approximately
the same modulus, then it is established in [36] that the atomic
decomposition of the output x of (21) is composed of the same
number of spikes, i.e., 7= |7 | = r and that the estimated
parameters satisfy

ck||Tk—Tk|=0l 0 logn ,|ck—ck|=0|o logn
2 n

with high probability. Altogether, it can be seen that atomic
norm denoising achieves near-optimal performance guaran-
tees as long as the spikes are separated by a few times the RL
(see “Is the Separation Condition Necessary?”).

It is natural to wonder how atomic norm denoising fares com-
pared with classical approaches such as Prony and MUSIC for line
spectrum estimation. We examine their ability to resolve close-
located spikes with opposite signs, where the reconstruction per-
formance is measured in terms of the MSE of the estimated spike
locations ‘f', and for different values of separation A (7) = aln.
Figure 6 shows the MSE of atomic norm denoising, Prony’s
method with Cadzow denoising [39], and root-MUSIC [40] with
respect to the SNR defined as | x[3/(no?), benchmarked against
the Cramér-Rao bound (CRB), when the separation parameter
o =12, 175, 1.5, respectively. It is clear that atomic norm denois-
ing outperforms classical approaches and approaches the CRB at
amuch lower SNR.

A faster algorithm via ADMM

While the SDP formulation is tractable, its computational
complexity is prohibitive when solving large-dimensional
problems. Fortunately, it is possible to develop tailored
algorithms that are significantly faster. For conciseness,
we will discuss one approach based on the alternating
direction method of multipliers (ADMM) [32]. The general
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One might wonder if requiring a separation condition
makes atomic norm minimization inferior, since many
methods do not require such a separation in the noise-
free case. However, some form of separation is unavoid-
able for stable recovery in noisy superresolution, no
matter which method is used [S3]. In particular, [S3]
shows that when A1(77) < 2/n, there exists a pair of
spike signals x(t) and x'(t) with the same minimal sep-
aration, such that no estimator can distinguish them.
Figure S3(a) exhibits such a pair of positive spike signals
(see [S3] for its construction) with a minimal separation
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1.7/n, where their observations are very close. Figure S3(b)
further demonstrates the distance between their obser-
vations as the signal dimension increases, for differ-
ent separation parameter @, where At(7)=a/n. It is
clear that their observations are increasingly indistin-
guishable as the signal dimension tends to infinity when
Ar(T) < 2/n.

Reference

[S3] A. Moitra, “Super-resolution, extremal functions and the condition num-
ber of Vandermonde matrices,” in Proc. 47th Annual ACM Symp. Theory of
Computing, 2015, pp. 821-830. doi: 10.1145/2746539.2746561.
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FIGURE 3. (a) A pair of spike signal x(t) and x’(f) with a minimal separation Ax(77)=1.7/n (top), yet their observations produced accord-
ing to (10) are almost indistinguishable (bottom). (b) The Euclidean distance between the observations of x(f), x'(f) with a minimal distance

Ar(T) =

principle of ADMM is to split the quadratically augment-
ed Lagrangian function of an optimization problem into a
sum of separable subfunctions [41]. Each iteration of the
algorithm consists of performing independent local mini-
mization on each of those quantities, while ensuring that
the feasibility constraints are always satisfied. The itera-
tions run until both primal and dual residuals satisfy a pre-
defined tolerance level.

We take atomic norm denoising (21) as an example, which,
in light of (14), can be equivalently rewritten as

min o x—z[3+

( Tr (toep(u))+ t)

toep () x
subjectto S = p )

]S>0

The above program has been “augmented” by introducing
an intermediate variable S for the purpose of decoupling the
positive semidefinite constraint on the matrix S from the lin-
ear constraints on its structure. The augmented Lagrangian
L is given as

a/n as a function of the signal length n, for different values of the separation parameter o.

L(x,u,t, ):,S)Z%Hx—z”i (LTr toep(u))—i—t)
(

n
t
+(ns [ Y)
2
P _toep(u)
+2‘S xH ||

where S and X are (n+ 1)-dimensional Hermitian matrices
and p > 0 is aregularization parameter. The successive update
steps to minimize the augmented Lagrangian are given in Al-
gorithm 1. Closed-form solutions can be found for the first up-
date step, yielding a very efficient implementation. The second
update is the most costly part, as a projection over the cone of
positive semidefinite Hermitian matrices has to be computed.
This computation is typically achieved using power methods
[42], with a computational complexity of O (n*) per iteration.

Can we discretize?

It may be worthwhile to pause and compare ANM to other
approaches based on convex optimization for superreso-
lution, particularly ¢; minimization that is widely popular
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FIGURE 6. The MSE of different methods for estimating two spikes with
opposite signs separated by Ar(7°) = a/n, averaged more than 200
Monte Carlo trials and benchmarked against the CRB for different separa-
tion parameter a =2, 1.75, 1.5. Here, the signal length is n=101. SNR:
signal-to-noise ratio.

Algorithm 1. ADMM for atomic norm denoising [32].

Input: Observation z; parameters A,p > O;
Initialize j =0, and Xo, So to zero matrices
Repeat until stopping criteria
(Xj+1, Uje1, tie1) < argmin L(x,u, 1, X;, §));
X,u,t
Si+1 — argmin £ (xj+1,0j51, 141, X, S);
$-0

i

toep (Uj+1) Xj+1 ])

H
Xj+1

Z[H — Z,—+p(5i+1 -
f,‘+l

j—i+1;

Output: X;

for high-resolution imaging and localization in the recent lit-
erature due to compressed sensing (CS) [43], [44].

The ¢; norm can be seen as a discrete approximation of the
atomic norm. Indeed, taking the atomic set Aip, one can pick
a desired resolution Q and discretize it as

A D, discrete = {e”’a(%) :g=0,..,0-1,¢ € [0,27z)},

and then perform ¢; minimization over A1p,discrete. The con-
vex hull of A discrete approaches that of Aip as the discreti-
zation gets finer, which suggests the performance of ¢; minimi-
zation over the discretized dictionary approaches that of ANM
asymptotically [45]. If the spike signal meets a so-called non-
degenerate source condition [46, Definition 2], this approach
will return a sparse solution supported on the elements of the
discretized Aip.discrete surrounding the ground-truth spikes,
when the noise is small enough [46], [47]. However, it remains
unclear which class of spike signals satisfies the nondegenerate
source condition in practice.

However, this discretization may come with several unde-
sired consequences when the grid size Q is finite in practice.
The theory of ¢; minimization only provides exact recovery
guarantees when the spikes of x(z) lie on the grid, which is unre-
alistic. In fact, there is always an inevitable basis mismatch [48]
between the spikes represented in the discretized dictionary
Aip.discrete and the true spikes, no matter how fine the grid
is. Perfect recovery is not possible in this situation, even in
the absence of noise due to this mismatch. Furthermore, one
can find signals whose representations in A1pdiscrete are not
compressible due to spectral leakage and therefore are poorly
recovered using {1 minimization, e.g., the recovery may con-
tain many spurious spikes. Therefore, cautions are needed to
account for such consequences when applying discretization,
and efforts to mitigate the basis mismatch have been proposed
extensively, e.g., [49] and [50].

Generalizations of atomic sets

The tool of atomic norms can be extended easily to handle a
wide range of scenarios in a unified manner, by properly ad-
justing the atomic set for signal decompositions such as incor-
porating prior information and dealing with multidimensional
settings and multiple measurement vectors, to illustrate a few.

Atomic set for positive spikes

In some applications, there exist additional information about
the spikes, such as the coefficients of the spikes in (8) are posi-
tive, i.e., cx > 0. Examples include neural spike sorting, fluo-
rescence microscopy imaging, or covariance-based spectrum
estimation for noncoherent sources [1].

In this case, the atomic set reduces to the moment curve
Ao in (11). The induced |x|# is no longer a norm, since Ao
is not centrally symmetric but, nonetheless, similar SDP char-
acterization still holds. To be specific, the dual program now
becomes

max Re(x, p) subject to sup Re{a(7), p) <1,
pel” r€[0,1)

where the constraint bounds the real part of the trigonometric
polynomial P(7)={(a(t), p). Using the Fejér-Riesz theorem
(see, e.g., [25, Th. 1.1] and “From Bounded Polynomials to Lin-
ear Matrix Inequalities™), this can be equivalently represented as
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,cmax - Re(x, p)

subject to  Tr(H) + Re(po) =1,

n—k
ZHi,[+k+pk/2:0, k=1,...n—1.
=

It is long established [51], [52] that the spikes can be per-
fectly localized as long as r <|(n—1)/2|, without requiring
any separation between the spikes, as long as they are positive.
The stability of this approach as well as the implications of
nonnegative constraints for other atomic sets are further stud-
ied in [53]-[56]. As a comparison, Figure 7 shows the MSE of
atomic norm denoising with and without positive constraints,
Prony’s method with Cadzow denoising [39], and root-MUSIC
[40] with respect to the SNR defined as | x|3/(nc?) for resolv-
ing two spikes with positive signs, separated by A1(7") = a/n
for ¢ =1,0.75,0.5, respectively. It can be seen that atomic
norm denoising still outperforms classical approaches and, in
particular, incorporating the positive constraint leads to fur-
ther improvements.

Atomic set for multidimensional spikes

When the spikes reside in a multidimensional space, one can
extend the 1D model in a straightforward manner. Here, we
illustrate the setup for the 2D case, where each entry of the
signal X2p € C"*™ can be expressed as a superposition of r
complex sinusoids propagating in two directions:

Xop =Y, crai(tin)az(t2i)’, (22)
k=1

where cx and T¢ =[714 T24]" €[0,1)* are the complex am-
plitude and location of the kth spike, and ai(t) is given by
(9) with the dimension parameter replaced by n;, i=1,2. It
is natural to define the corresponding atomic set as [11], [57]

Ao ={eai(raxt)": T €[0,1)% ¢ €[0,27)},

and the atomic norm according to (2). To localize the spikes,
one could similarly study the associated dual problem

max Re(X, P) subjectto|P|a=<1,

PeCMxn2

where the dual atomic norm can be reinterpreted as the su-
premum of a bivariate complex trigonometric polynomial
P(t1,72) ={ai(t1)ax(t2)", P) with the matrix P as its coef-
ficients. Again, one can localize the spikes by examining the
extremal points of the dual polynomial, which is illustrated
in Figure 8. Cautions need to be taken when attempting to
solve the dual program in two or higher dimensions, since the
bounded real lemma [24], [25] does not hold anymore. Instead,
a precise characterization requires solving a hierarchy of sum-
of-squares relaxations and, fortunately in practice, the first
level usually suffices [24], [57], [58].

The tightness of the ANM approach is closely related to a
separation condition analogous to the 1D case [30]. Namely,
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FIGURE 7. The MSE of different methods for estimating two spikes with
positive signs separated by Ar(7°) = o/n, averaged more than 200 Monte
Carlo trials and benchmarked against the CRB for different separation
parameter o =1, 0.75, 0.5. Here, the signal length is n=101.
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FIGURE 8. The spike localization using the dual polynomial approach for 2D
spikes via ANM. Here, we set m =12, no=10,and r =7.

the atomic decomposition is unique and exact, as soon as there
exists a universal constant C > 0 such that the set of spikes
T ={tr}1<k=, satisfies

c

A7) 2 inf min |t — T + ¢ > ———.
) ;‘;’C‘Z:qezln q min(ni, n2) —1
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Moreover, if the signal X2p is real valued, C = 4.76 suffices to
guarantee exact recovery of the spikes.

Atomic set for multiple measurement vectors

One can collect multiple snapshots of observations, where they
share the same spike locations with varying coefficients. Con-
sider T snapshots, stacked in a matrix, Xmmv =[x1,..., X1],
which is expressed similarly to (8) as

Xumv = ia(Tk)Cll (23)
=1

where ¢v =[c1, ..., cri]l € CT is the coefficient of the kth spike
across the snapshots. Following the recipe of atomic norms, we
define the atoms as

A(t,b)=a(t)b’,

where 7 €[0,1), b€ C” with |b|, =1. The atomic set is de-
fined as

Ammv ={A(T,b): 7 €[0,1),|b|.=1}.

The atomic norm can then be defined following (2), which
turns out sharing similar nice SDP characterizations for primal
and dual formulations as for the single snapshot model [59].
The atomic norm | Xmmv|# can be written equivalently as

1

IXumv|a = inf {Zn

weC™T

Tr(toep(u)) + %Tr(W) :

EO}.

A curious comparison can be drawn to the nuclear norm by
noticing that one recovers the nuclear norm of Xumv by re-
placing the principal block toep(u) in (24) with an arbitrary
positive semidefinite matrix. The fact that toep(u) has signifi-
cantly fewer degrees of freedom (n versus n?) is in parallel to
that a(t) has significantly fewer degrees of freedom than an
arbitrary vector (1 versus n).
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FIGURE 9. The dual polynomial using multiple snapshots (in red) success-
fully localize all of the spikes while the one using a single snapshot (in
blue) fails for the same spike signal. Here, r =6, n=21, and T =6.

Again, one can determine the atomic decomposition and
localize the spikes by resorting to the dual program in a similar
fashion. Figure 9 illustrates how multiple snapshots improve
the performance of localization over the single snapshot case
when the coefficients across snapshots exhibit some kind of
diversity, e.g., generated with i.i.d. complex Gaussian entries.

Generalizations of measurement models

So far, we have seen that ANM provides a means for super-
resolution via convex relaxation in additive Gaussian noise.
The framework of convex optimization is quite versatile and
can be extended to handle models when the measurements are
partially observed, corrupted, contain interfering sources, or
even come from unknown modulations. This is an important
advantage over classical methods such as MUSIC or ESPRIT,
as most of them cannot be extended easily to these variants
of models.

Compressed spectral sensing

CS [43], [44] has suggested that it is possible to recover a signal
using a number of measurements that is proportional to its de-
grees of freedom, rather than its ambient dimension. Consider
the problem where only a subset of entries of x is observed,

ycs = Acsx,

where Acs € C"™", and m < n representing compressive ac-
quisition of the signal x. The goal is to recover x and its spectral
content from ycs € C", the compressive measurements. This
has applications in wide-band spectrum sensing and cognitive
radio [60], for example.

One can easily extend the framework of ANM and recover
x by solving the program

min | x |5 subjectto ycs= Acsx.

When Acs is a partial observation matrix, namely, a sub-
set of m entries of x is observed uniformly at random, then
x can be perfectly recovered with high probability using
m=0(log’n+ rlogrlogn) measurements as long as x satis-
fies the separation condition, and with random signs of the coeffi-
cients c’s [15, Th. IL3]. More generally, a broader class of mea-
surement matrices A cs can be allowed where its rows are drawn
independently from some isotropic and incoherent distribution
[61], [62], and exact recovery is possible under the same separa-
tion condition using a number of measurements on the order of r
up to some logarithmic factors. In addition, quantized measure-
ments are further dealt in [63] with theoretical guarantees.

Demixing sinusoids and spikes

Due to sensor failures or malicious environments, the mea-
surements are susceptible to corruptions that can take arbitrary
magnitudes. To this end, consider the problem when the obser-
vations are contaminated by sparse outliers, where

Ycorrupt = X + 5.
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Here, s is a sparse vector, where its nonzero entries correspond
to corruptions of the observations. The goal is to decompose x
and s from ycorrupt, @ problem intimately related to the uncer-
tainty principle of signal decomposition in [17] and [64] and
sparse error correction in CS [65].

Leveraging low-dimensional structures in both x and s, we
seek x with a small atomic norm and s with a small {; norm
that satisfies the observation constraint [66]

n}ip” X Hm + AH s H, subject to  ycorrupt = X t 5,

where A > 0 is some regularization parameter. As long as the
sample size is sufficiently large [66, Th. 2.2] and the spikes
satisfy the separation condition, then the above algorithm
perfectly localizes the spikes with high probability, even
when the corruption amounts to near a constant fraction of
the measurements.

Demixing inferfering sources

A scenario of increasing interest is when the observation is com-
posed of a mixture of responses from multiple exciting or trans-
mitting sources, and the goal is to simultaneously separate and
localize the sources at a high resolution. For example, an elec-
trode probing the activities in a brain records firing patterns of a
few neighboring neurons, each with a distinct PSF. For pedagogi-
cal reasons, let us consider a generalization of the model (6) with
two interfering sources, where the observation is given as

ymix = diag(g1)x1 + diag(g2)x2,

where g1 and g» correspond to the frequency-domain re-
sponse of the PSFs, and x; = X}~ cixa(Tir), i =1,2. The goal
is to separate and recover the spikes in both x; and x> from
Ymix, Where g1 and g» are assumed to be known.

Using ANM, one seeks to recover both x1 and x> simul-
taneously by minimizing the weighted sum of their atomic
norms [67]:

min | x1 4+ 2] x2 )4

X1,X2

subject to  ymix = diag(g1)x1 + diag(g2)x2,

where A >0 is some regularization parameter. Unlike the
single-source case, the success of demixing critically depends
on how easy it is to tell two PSFs apart; the more similar g
and g» are, the harder it is to separate them. A random model
can be used to generate dissimilar PSFs, namely it is assumed
the entries of g;s are i.i.d. generated from a uniform distribu-
tion over the complex circle [67]. The algorithm then succeeds
with high probability as long as the sample size is sufficiently
large and the spikes within the same signal satisfy the separa-
tion condition [67, Th. 2.1], without requiring any separation
for spikes coming from different sources.

Blind superresolution
So far, all algorithms have assumed the PSF as known, which
is a reasonable assumption for problems where one can design

and calibrate the PSF a priori. In general, one might need to
estimate the PSF at the same time, possibly due to the fact that
the PSF may drift and needs to be calibrated on the fly during
deployment. In this case, we need to revisit (6) and estimate g
and x simultaneously from their bilinear measurements,

yBr = diag(g)x.

This problem is terribly ill-posed, as the number of unknowns
far exceeds the number of observations. One remedy is to
exploit additional structures of g. For example, if g lies in
a known low-dimensional subspace B=[b1,...,b,]T € Crd
with d < n, then the degrees of freedom of g is greatly dropped,
since one only needs to estimate the coefficient h € C? of
g = Bh in that subspace, which has a much smaller dimension.
Even such, the measurement ygR is still bilinear in & and x,
and one cannot directly apply ANM to x as it does not lead to
a convex program.

Interestingly, a lifting trick can be applied [68], which rewrites
yBR = X(Z) as linear measurements of a higher-dimensional
object Z=xh" € C"*? similar to (23):

YBR,i = bl helx ={(xh", e,-b,-H>, i=1,...,n,

where e; is the ith standard basis vector. Consequently, one
can apply ANM to Z with respect to (24), leading to the
algorithm [68]

min |Z]|, subjectto yer=X(Z).

This approach succeeds with high probability; as soon as the
sample size is sufficiently large, the spikes are well separated
and the PSF satisfies certain incoherence properties [68, Th. 1].
Moreover, it can be further extended to demixing a mixture of
sources with unknown PSFEs, where each PSF lies in a distinct
subspace [69].

Beyond line spectrum estimation: Superresolution
imaging for single-molecule fluorescence microscopy
When the atomic set is composed of a family of complex sinu-
soidal signals, an exact implementation of the atomic norm in
SDP is available. In the most general setting, ANM is an in-
finite-dimensional convex program whose computation needs
to be addressed carefully. Encouragingly, tailored solvers have
been proposed and applied successfully to practical applica-
tions such as superresolution imaging for single-molecule fluo-
rescence microscopy, which we now present as a case study to
show its promise.

Imaging principle

The development of superresolution fluorescence microscopy,
which was awarded the 2014 Nobel Prize in Chemistry, is con-
sidered to fundamentally impact biological science and medi-
cine. To date, a partial list of superresolution fluorescence mi-
croscopy technologies includes PALM [70], STORM [71], and
fPALM [72], which share a similar imaging principle. A very
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nice introduction can be found in [73]. While optical micros-
copy is desirable for imaging complex biological processes in
live cells due to its noninvasive nature, due to diffraction limit,
which is about hundreds of nanometers, it cannot image detailed
internal structures of cells, which are often below 100 nm.

To deal with this challenge, biologists have come up with a
clever idea of divide and conquer. To begin, imagine that every
point within a cell is equipped with a photoswitchable fluores-
cent molecule, which means, once excited, the molecule will
emit light stochastically over a duration of time to identify its
location. This allows one to divide the imaging process into
many frames, where in each frame a random and sparse subset of
fluorescent molecules (point sources) are activated and localized
at a resolution below the diffraction limit using imaging algo-
rithms. The final image is thus obtained by superimposing the
localization outcomes of all of the frames. Therefore, the high
spatial resolution is achieved by sacrificing the temporal resolu-
tion. To speed up the imaging process and improve the temporal
resolution, it is desirable to develop localization algorithms that
are capable of identifying more fluorescent molecules per frame,
which is known as the emitter density.

Very interestingly, this imaging principle can be used to
reconstruct a 3D biological structure from 2D image frames
[74]. One way is to introduce a cylindrical lens to modulate
the ellipticity of the PSF based on the depth of the fluorescent
object, which can be modeled as a Gaussian pulse with varying
ellipticity along the x and y directions,

1 B S
glx,yl) = 2716:(2)0,(2) e 26.7 20,

where 0.(z) and oy(z) are functions of the depth in the z di-
rection, and can be calibrated in advance. For a 3D scene of
point sources,

r

Gy, 2) =D, eid(x—xi, y — Vi, 2— 2i),
i=1

its convolution with the PSF g(x,y|z) is given as a 2D image
in the form of

_|a=x)* | 6-3)®

20:(z)7  20,(z)7 -

- ci
(C+)06y) = I.; 270420y (z0) ©

Therefore, to perform superresolution, one needs to decode si-
multaneously the ellipticity as well as the location of the PSF,
which is much more challenging. In practice, the situation is even
more complex, since the continuous spatial function (£ * g) (x,y)

Poisson
Noise

Low-Pass
C(x v, 2) Convolution L g

Pixelization

FIGURE 10. The mathematical model of 3D imaging in superresolution
fluorescence microscopy.
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needs to be further discretized due to pixelization of the detector,
leading to a discretized 2D image, @ € R™*", where each entry
of @ corresponds to the integration of ({ * g)(x,y) over the area
of a pixel. The final image, z, counting the number of photons
hitting the detector at each pixel, is modeled as a Poisson distribu-
tion with rate @. The whole process is summarized in Figure 10.

Applying ANM
Luckily, due to linearity, e can be viewed a sparse superposi-
tion of atoms that are parameterized by the 3D point sources,

= ciaxi,yi,zi) = f”va(x, v, 2)d¢(x, ¥, 2),

i=1

where each atom a(x,y,z) corresponds to the image of a point
source at (x, y, z) after convolution and pixelization. The atomic set
is then given as Asp = {a(x, y, z): x, y, z € imaging range }.
The goal is thus to recover ¢ (x,y,z), or the atomic decomposi-
tion of @, from the observation z~Poisson(w) as accurately
as possible.

A natural approach is to seek the sparsest w such that the
likelihood function of the observation z is maximized. To that
end, we consider a constrained maximum likelihood estima-
tion, where we seek to solve @ via

ngn —logp(zlw) subjectto [|ewla<n, (25)

where p(z | @) is the Poisson likelihood function, [ 0|l is the
induced atomic norm with respect to Asp, and 7 is some regu-
larization parameter that may be tuned in practice.

Early efforts such as CSSTORM [75], which are based on
{1 minimization by directly discretizing the parameter space,
suffer from high computational complexity, due to the need
of storing and manipulating a large dictionary of atoms, as
fine discretization is required along all three spatial dimen-
sions. On the other end, recent algorithmic developments such
as alternating descent conditional gradient (ADCG) [76] and
CoGEnT [77] solve sparse inverse problems over continu-
ous dictionaries with general convex loss functions at much
reduced memory and computation requirements. In a nutshell,
the ADCG method is an acceleration of conditional gradient,
also known as Frank—Wolfe, to solve (25) with a general atom-
ic set A= {a(@) :0 € O}, where 6 is a short-hand notation
for the parameter space. In particular, it directly estimates the
atomic decomposition of w = f a(6)df(6).

The standard Frank—Wolfe adds one new atom at every iter-
ation to reduce the negative log-likelihood function; however,
it will introduce many spurious atoms and lose sparsity as the
iteration increases. To deal with this, ADCG introduces prun-
ing and local refinements with a hope to maintain a sparse rep-
resentation at all iterations. The detailed procedure of ADCG
is given in Algorithm 2. In the jth iteration, denote the support
and coefficient of the current estimate of {(0) as 7 and ¢},
and the current estimate of @ as A(7j)c;. Like Frank-Wolfe,
ADCG starts by adding a spike to the estimated support 7
that maximally correlates with the derivative of logp(z|w)
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with respect to @ at the current estimate, A(7;)c;. Because
the spike location will be refined next, in practice, this step can
be solved approximately by searching over a coarse grid of ©
to save computation.

ADCG then deviates from the standard Frank—Wolfe,
and tries to improve the updated estimate

Another line of work [84]-[86] generalizes the traditional CS
to an infinite-dimensional Hilbert space. In addition, sampling
theorems are developed for signals with a finite rate of innova-
tions together with strategies for perfect reconstruction [87]. More
recently, a sparse functional framework has been proposed as a

variational approach to handle sparsity over

by performing alternating descent over As a topic still under continuous and possibly nonlinear dictionar-
the coefficient and the support. It iter- development, open ies. This category of estimators aims to recov-
ates between coefficients update via {; problems ahound for er functions with minimum support measure
minimization, support pruning, and local hoth theoretical and subject to the observation constraint [88], [89].
refinement of the support by holding the _ As a topic still under development, open
coefficients fixed. The last step leverages Ill'aﬂll!}a! Ile_"ﬂrmallﬂe problems abound for both theoretical and
the fact that a(0) is differentiable with of optimization-based practical performance of optimization-based

respect to 6, and a simple local search
via gradient descent allows one to adjust
the support to further reduce the loss function. Despite the
nonconvexity in this refine step, [76] guarantees the con-
vergence of ADCG with a convergence rate of O(1/€) to
reach e-accuracy in the function value, under some techni-
cal assumptions. In practice, the main computational ben-
efits of ADCG are the absence of semidefinite constraints
and small memory footprints, making it highly suitable for
large-scale implementations.

TVSTORM [78] is a modification of ADCG tailored to
solve (26) for 3D image reconstruction with some domain
adaptations to speed up implementations. TVSTORM out-
performs CSSTORM both in terms of computational time
and reconstruction quality. Figure 11(a) shows the diffrac-
tion-limited imaging using conventional microscopy; in
contrast, the 3D superresolution image reconstructed using
TVSTORM in Figure 11(b) is much clearer, where the
structure of 3D microtubules can be well resolved with the
axial coordinate represented in different colors. Figure 11(c)
and (d) compares the reconstruction quality of an enlarged
region between TVSTORM and CSSTORM, where TVS-
TORM provides a visually more smooth reconstruction of
the line structures in microtubules. Figure 12 shows that
TVSTORM indeed has a higher detection rate and a lower
false discovery rate than CSSTORM, while TVSTORM
executes much faster.

Final remarks

In this article, we presented an overview on how to leverage
sparsity for continuous parameter estimation via the math-
ematical concept of atomic norms, which can be regarded
as a generalization of the principle of ¢; norms for discrete
model selection. We showcased its application in superreso-
lution from low-pass observations in single-molecule fluo-
rescence microscopy. The appeal of the atomic norm ap-
proach is attributed to its elegant mathematical framework,
strong performance guarantees, and promises of scalable
numerical implementations.

The atomic norm is only one of many possible approaches to
exploit sparsity over the continuum. One competitive alternative
is structured low-rank matrix optimization [79]-[82]; see [83] for
its connections and comparisons with the atomic norm approach.

superresolution in general. We conclude by

outlining some exciting future directions.

m Tight performance analysis in noise: Existing analyses of
atomic norm denoising (21) typically only produce bounds
that are tight up to some constant, making them less useful
in practice. For example, attempts to benchmark the theo-
retical bounds against the CRB will be in vain due to the
presence of large constants. It is therefore desirable to
obtain tight performance bounds such as the one available
for matrix denoising [90] that is asymptotically exact.

®m Adaptive selection of regularization parameters: One
benefit of ANM over traditional spectrum estimation
approaches is that it can automatically select the model
order. However, the choice of the regularization parameter
(21) depends on the noise level, which may not be available
in practice. How to optimally set the regularization param-
eters is another problem of great importance; see [91] for
some recent developments.

m Low-rank factorization for SDP formulations of atomic
norms: A popular heuristic to SDP with low-rank solutions
is to apply low-rank matrix factorization and solve the cor-
responding nonconvex optimization problem [92], [93],
with the premise of greatly reducing its computational
cost. It will be interesting to see if this approach can be

Algorithm 2. Alternating descent conditional gradient [76].

Input: Observation z; Parameter 77> 0;
Initialize 70 to an empty set, co 0 0, and j=0;
repeat until stopping criteria
Localize the next spike:

0;+1 € argmax{a(6;), Vo logp(z | A(T))c));
00

Update support: Tj+1 < 77U {6j+15;
Refinement: repeat
1) Update the amplitudes:

¢j+1 — argmin —logp(z | A(Tj+1)¢);
llelh=n
2) Prune support: Tj+1 — support (€j+1);

3) Local descent: improve T7j+1 by performing local descent on
—logpl(z | A(T7+1)¢j+1) holding the coefficient ¢j1 fixed;

f—i+th
Output: (77, ¢;) and x; = A(T))¢;.
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FIGURE 11. (a) Diffraction-limited imaging of microtubules using conventional microscopy and (b) superresolution 3D image reconstruction using

TVSTORM. A comparison of reconstruction quality between (c) TVSTORM and (d) CSSTORM. (bar: 1.5 ym). (Source: [78].)
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applied to speed up the computation of atomic norms with
performance guarantees.

Bridging classical and optimization-based approaches:
There are deep connections between traditional (e.g.
Prony, MUSIC, and so on) and optimization-based (e.g.
ANM and nuclear norm minimization) approaches.
Such connections have already been realized, for
instance in the early works of Fuchs [94], where he pro-
vided an optimization interpretation of the Pisarenko
method [95]. Another recent work [96] provided an opti-
mization view to the MUSIC algorithm. It is hopeful
that a confluence of past and current ideas will likely
deepen our understandings and lead to further algorith-
mic improvements.

ANM for more general measurement models: While
there have been significant advances in the understand-
ing of ANM for line spectrum estimation, its theory and

application to other measurement settings require fur-
ther investigation.

B Applications in communications, sensing, and imaging:
ANM has recently emerged as a popular approach for
many practical applications, such as channel estimation in
massive MIMO [97], [98], radar imaging [99], and nuclear
magnetic resonance spectroscopy [100]. It is our hope that
this article will stir more interest in applying the atomic
norm in applications that call for high-resolution parame-
ter estimation.
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