ON THE GROWTH OF THE SUPPORT OF POSITIVE VORTICITY
FOR 2D EULER EQUATION IN AN INFINITE CYLINDER

K. CHOI, S. DENISOV

ABSTRACT. We consider the incompressible 2D Euler equation in an infinite cylinder R X T in the case when
the initial vorticity is non-negative, bounded, and compactly supported. We study d(t), the diameter of the
support of vorticity, and prove that it allows the following bound: d(t) < Ccti/3 log2t when t — oo.

1. INTRODUCTION

Consider the incompressible 2D Euler equation in vorticity form on an infinite cylinder S := RxT,
where T = [0, 27) is a unit circle:

8t9+U'V¢9:O, 9|t:0:90~ (1)

The velocity u(x,y,t) is related to the scalar vorticity 6 via a cylindrical Biot-Savart law, which
will be introduced in the next section (see formula (4)). This problem is identical to the Euler
equation in R? with 6y being 27-periodic in y in the sense that we can obtain the two-dimensional
cylinder S from the infinite strip R x [0, 27] by identifying its sides. In the paper, we use notation
z=(z,y), £ = (§&1,&2), and dz = dxdy, d§ = d§1d€s for shorthand.

We assume that 6y has a compact support and 0y(x,y) € L>°(S). For the 2D Euler equation on a
cylinder, the existence and uniqueness of compactly supported solution in the sense of distributions
from the class L*(S) can be proved in a similar manner as in the case of the whole space [14]. We
refer the reader to [9] or Appendix in [3]. If the initial data assumes further C™7-regularity, one
can obtain C"7-regular solution for all time by adapting the method in Chapter 4 of [10]. In this
paper, however, we do not need smoothness that high and from now on a solution means a solution
of (1) in the sense of distributions with u given by (4).

For any function f compactly supported on S, we define
df = sup |z —¢&,

where supp(f) denotes the essential support of f.

In this paper, we are interested in controlling the support of nonnegative vorticity for large time.
The main result is the following upper estimate on dg(y):
Theorem 1.1. Suppose that an initial data Oy is non-negative, compactly supported, and belongs
to L>(S). Then, the corresponding solution 0 satisfies

d(t) := dgy < Ot + 1)% log?(2 +1t) foranyt>0, (2)

where the constant C depends only on dg, and ||0|| e .

An important example of 0y is the characteristic function ygq, of a compact subset €2y of S, a
patch. Then, 0(2,t) = xq() and one can study dynamics of () in time. Note that the periodic
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extension of fy into the whole space R? is not compactly supported, in general.

For the problem when the data is compactly supported in R? (so it’s not periodic in y), the upper
bound d(t) < C(t 4+ 1)/ was obtained in [11]. Later, it was improved to ((t 4+ 1)log(t 4+ 2))*/* in
[8] (see also [13]). The key idea of the proof in [8] was to use the following conserved quantities for
Euler equation in R?:

the total mass 0(z)dz,
R2

the center of mass / 20(z)dz, and
R2

the moment of inertia / 12|%0(2)dz .
R2

In particular, the moment of inertia plays an important role because its conservation in time
shows that, when the initial vorticity is non-negative and compactly supported near the origin, only
a small portion of 6 can concentrate far away from zero at any given time. For exterior domains,
we refer to [7, 12].

In order to have an analogous confinement for the 2D Euler on a cylinder R x T, one needs to
establish conserved quantities first. It does not seem to be the case that the Euler evolution on a
cylinder preserves the second moment

/ 220(x,y, t)dz.
S
However, the following quantity:
ey = / 0(z,t)V(z,t)dz
S

is conserved, where the stream function ¥ will be introduced in the next section. This allows us to
show that

/ 1210z, y, t)d= 3)
S

is uniformly bounded in time if the initial vorticity is non-negative (see Proposition 3.1). This
quantity eg can be regarded as a regularized energy. In fact, the standard kinetic energy given by

/S lu(z,t)|?dz

is not finite for non-negative vorticity, in general.
The second ingredient of the proof is related to the cylindrical Biot-Savart law. It shows that,

for the horizontal component of velocity u; := ki * 0, the kernel k; takes the form

B —sin(y)
b= 2(cosh(z) — cos(y))

Thus, it is smaller than % near 0 and decays exponentially for large |z|. The decay so strong makes

interaction between the distant parts of vorticity essentially negligible. Note that the exponential
bound for the kernel k; has been used in [6] to study 2D Navier-Stokes equation on a cylinder.

Then, our proof proceeds by controlling the integrals

/ 0(z,t)dz
x>r
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for different values of r € R™. Using the strong decay of k;, we establish the following inequality
for r 2 1 (see (11)):

. 2
/ 0(z,t)dz < r2/ / 0(z,7)dz | + small error | dr.
|| >4r 0 || >r

Then, we analyze the sequence of these estimates taking r ~ 4" n € N to obtain a bound for w;.
It shows that u; is very small outside the region |z| > t1/31log?t for t > 1 (see (15)) and this will
imply the main estimate (2).

For stability questions, there were several publications in which stability of steady states on S
was studied. In the paper [2], the Couette flow was considered. In [4], the case of increasing steady
vorticity was studied and, more recently, the stability of a rectangular patch was investigated in

[3].

The structure of the paper is as follows. In the next section, the cylindrical Biot-Savart law
and some conserved quantities of the Euler equation will be introduced. In Section 3, we will
prove the bound for (3) and discuss some of its easy consequences. Section 4 contains the proof of
Theorem 1.1. We collect auxiliary results in the last section.

In this paper, we use the following standard notation. If two non-negative functions f; and fo
satisfy f1 < Cfo with some absolute constant C', we write f1 < fo. If f1 < fo and fo < f1, we use
Ji~ fa. If free)(t) satisfy fi(t) < Cfa(t) for all t > 1, we write f1 = O(f2) as t — oo, here C might
depend on some fixed parameters but not on t. As usual, N denotes the set of natural numbers,
7t :=NU{0}.

2. PRELIMINARIES

In this paper, we use the cylindrical Biot-Savart law (see [1] or [5, 3] for the detail):

u(z,y) = (ur,uz2) =k*0 = / k(z — &,y — €)0(&1,&2)d¢, (4)
S
where the kernel k is given by

(—sin(y), sinh(x))
2(cosh(z) — cos(y)) "

Note that if we define the stream function ¥ of 6 by ¥(z,y) = I' % 6, where

k(z,y) = (k1, k2) =

1
Dz, y) = 5 loa(cosh(r) — cos(y)),
then the function ¥ solves the elliptic problem
(2m)TAT =6, EIJP 0. ¥ (x,y) = — Er_n 0¥ (z,y), |¥(z,y)| <C(lz]+1)

and the velocity can be recovered by u = VW = (-9,¥,,¥). We observe that |T'(z)| ~ |log ||
for small |z| and I'(z) ~ |z| for large |z|.
Remark. The kernel £ can be derived by Poisson’s Summation Formula for
z—&(k))*
> % where  &(k) := (€1, & + 2nk).

For the detail, we refer to Appendix A. in [3].



Remark. The choice of a stream function (so a Biot-Savart law) determines behaviour of the
velocity field at infinity. In particular, our stream function gives

:L'll)r:iloo Ul(m, Y, t) = 07 zgl;noo U2 (1’, Y, t) = - IETOO U2 (;U: Y, t)

when 6(t) is compactly supported and bounded in S. Another natural choice might be to assume
that the velocity field vanishes on one end of the cylinder. For instance, to obtain lim,_, o u(x,y,t) =
0, we just need to change ks, the vertical component of our kernel, up to an additive constant.
Thanks to Galilean invariance, we can get the same conclusion (2). For non-uniqueness of a Biot-
Savart law, we refer to [9] or Appendix A. in [3].

For any bounded and compactly supported 6y, we denote

the total mass mg := / Oo(z)dz,
S

the horizontal center of mass hg := / x0o(z)dz, and
S

the regularized energy eg := / 00(2)¥o(2)dz = / / 00(2)00(&)T(z — £)dEdz=.
S SJS
Remark. Both mg and eq are controlled by diameter dg, and [|0g]|(s). Indeed, we have

Imo| < (|00l z1(sy S doo - |00l Lo (s)- (5)

For the regularized energy eg, we notice that there is [ € R, such that 6y is supported in the
rectangle {z € S||z — | < dp,}. For any such z, the stream function W of 6y satisfies

[Wo(2)] < [l6ollze(s) / I0(z = O)ld& < [0l oo (s) - Cap,
{€eS1161—1|<dg, }
since |z — &| S 1+ dp, and I'(+) is locally integrable thanks to
IC(2)| ~ [log |||
which holds for small |z|. So we have
leol < 100llz(s) - 100]loes) - Cag, S oy 10011 Zes) - Cat - (6)

Remark. The kinetic energy [ |u[?dz is not finite, in general. Indeed, assume that the data 6
is non-negative and non-trivial. Since ko — 3 as x — o0, we get |us| = |ko * 0] — Smg # 0 as
@ — £oo. This implies divergence of the integral [ |ul?dz.

Since we consider an incompressible flow and its vorticity is transported by the flow, the L' —norm
and L —norm of 0(z,t) are preserved in time. In addition to these norms, we have the following
conserved quantities.

Lemma 2.1. For any bounded and compactly supported 0y, the Euler evolution on S preserves the
total mass, the horizontal center of mass, and the reqularized energy:

m():/s9(7:,t)dz, hoZ/SwO(Z,t)dz, eoZ/S S@(z,t)@(&,t)f‘(z—f)d&dz for allt > 0.

Its proof can be found in Proposition 2.1 of [3].

Remark. If 6 is a smooth solution, this lemma easily follows from the following arguments.

The quantity
/ 0(z,t)dz
S
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is time-independent because the velocity u is incompressible. To handle the center of mass, we
multiply equation (1) by x and integrate over S to get

d
— | 20(z,y,t)dz = —/ (=Wl + V,0,)dz,
where 6 is smooth and compactly supported. Integration by parts gives

—sin(y — &)
— | z(—V¥,0,+V,.0 dz:—/\IIOdz:/ 0(z,t)0(&,t)dzdé =0,
I A ¥ e ey LG
because the kernel in this quadratic form is antisymmetric. Consider the regularized energy. Dif-
ferentiation in time gives

% (/SXS 0(z,t)0(&, )T (2 — §)d§dz> =2 /SXS 0:(z,1)0(€, )T (2 — €)dzde

= 2/(%990 —U,0,)Vdz = /(\112)1,9z — (¥?),0,dz =0
S S

after integration by parts. For solutions in the sense of distributions, a mollification argument has
been used in [3].

Remark. For any bounded and compactly supported initial vorticity, we have a trivial bound
d(t)=0(t) ast— oc.
Indeed, since the vorticity in the Euler equation is transported by the corresponding velocity and

our domain is a horizontal cylinder, we only need to estimate the horizontal velocity u; = k1 * 6,
where

— sin(y)
k — .
1(2) 2(cosh(z) — cos(y))
We can use an estimate |k1(z)| < |2|7Te71®1/2 to get the bound |u;| < 10215y + 110]| oo (s)- Since
LP—norms of § are preserved by the Euler evolution, we get

sup |u1(2,t)] S [10ollzi(s) + [10ollo(s) < day - 100l o (s) + (100l Lo (s), (7)

z€S5,t=0

which implies d(t) = O(t).

3. ONE PROPOSITION AND ANOTHER ROUGH BOUND ON d(t)

In the following proposition, the non-negativity of 8 will be crucial.
Proposition 3.1. Suppose that 0y is non-negative, bounded, and compactly supported on S. If the
horizontal center of mass is at 0, then

sup/S |2]0(z,t)dz < C(day, |00 Lo (s)) -

t=>0

Proof. Bounds (5) and (6) show that it is enough to estimate [q|z]|0(z,t)dz by mg, ey, and
100]| oo (s)- Let t > 0. Then, by Lemma 2.1, we write

o= [ [oconenre-gii-Y 3 |

nEZ meZ n<z<n+l

/ 0(z,)0(€, )T (2 — £)ded.
m<&<m—41
For each term in the sum which satisfies |n —m/| < 10, we can write

0(2,£)0(&, )T (2 — §)dEdz| S [10(8)]| poos) - 0(x \ds
/MM+1 /m<§1<m+1 (2,0)0(&, 1)1 (z — §)dEdz| S [10(8)] oo (s) / (2, 0)d2

n<r<n+l
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Indeed, it follows from the logarithmic estimate for the kernel
[T ()] ~ [log ||

Thus, the sum of all terms for which |n —m| < 10 is bounded by

which holds for small |7].
ClO@) | Loo(s) - [¢0(z,t)dz = Cllbo]| oo (s) - ™m0

~ |m| for |m| >

2, all terms for which |n —m| > 10 satisfy

On the other hand, since I'(n)
[ oo orG-gdeiz~ [ f (2, 00(E. Dl — &1]ded
n<x<n+l m<£1<m+1 n<z<n+l Jm<E <m+1

(=, =

and, in particular, they are all positive. Suppose that 6 is non-trivial so that |, g0(z,t)dz =mg >0
Then, we have [ _o0(z,t)dz = mo/2, or [ _,0(z,t)dz = mg/2, or the both estimates are true

Suppose, e.g.,
/ 0(z,t)dz = mg/2.
x>0

Then, we can write
/ / (z,0)0(&,t)|x|ded=
£<—10 J£1>0

mo/ |x|0(z,t)d
2 Ja<—10
< / / 0z, )06, )] — €1]ddz < Jeol +mo - 8o e
rx<—10 J£&1>0

Thus, we get
1
/ |2]0(z, t)dz S — - (leo| +mao - |00l (s)) + [|60] o=
x< mo

0
Since the horizontal center of mass is at zero for all time by Lemma 2.1, we have

/ x0(z,t)dz = / |z|0(z, t)dz
>0 <0

and, therefore,
/ [210(z. 1)z < Cleo,mo, 8ol e (s)) -
]

where the constant is independent of ¢ > 0.
Before proving Theorem 1.1, we will show how Proposition 3.1 can be used to obtain a rough

upper estimate on the diameter. Under its assumptions, we get
C(dg,, ||00]| Lo
(dov. 0]l >(s)) for any r > 0 for any ¢t > 0.  (8)

/ 00, 1)dz < 1/ 2|0, 1)z <
r<|z| T Jr<|al r
e,

Then, we have an estimate for the first component of the velocity

<[ sin(y — &) de < 0 —le=&il g .
SRR /S &) e /lx &1l=1 (& 1)e §+/|x—§1<1 |z = ¢
(9)

cosh(z — &1) — cos(y — &2)
The first integral can be estimated as

0, t)e 1 E1ldg

ol elag =y |
/|x &1)>1 T% lz—&1|>1,n<€1<n+1
Sy el 0E, ) < Cldayy [Bollz=(9) 3 e " (Inl +1)7F < == =2,
n<§1<n+1 nez $’ +
6

ne”



Here we used (8) to bound [, _ _,,., 0d€ forn # {0,—1}. Forn = {0, -1}, we wrote [ . ..,
101 oo ()

The second integral in (9) can be bounded by Holder inequality as follows

ode <

~

1
Y

0(¢ 1)
/l d¢ < ”| _§| 1HLP (lz—&11<1) HGHLP (le—&1]<1) ~ < C(E) </|x_§1|<1 or df) s

z—&1]<1 |Z _£|

where p =2 —¢,e € (0,1), and p’ is defined by p~! + p'~! = 1. Finally, we have
C G,d s 9 oo
|[z—&1]<1 lz—&1]<1 [ +1

Thus, for the first component in the Lagrangian dynamics of a point (x(t),y(t)) in the support of
0(z,t), we have

|| < C(8,day, 100 oe(s) (2] +1)72+0 for ¢ >0
with arbitrary 6 > 0. This gives the bound

d(t) < C (51, dgy, |00l )(1 + )3T for every 5, > 0. (10)

4. PROOF OF THEOREM 1.1
In this section, we show that the bound (10) can be improved to d(t) = O(t'/31og? t). To do that
we will exploit the decay of u; both in z and ¢.

Proof of Theorem 1.1. Without loss of generality, we suppose that 0 < 0y < 1, dg, < 1, fS Oo(z)dz >
0, and [y x0y(z)dz = 0. Then, 6y is supported in [-1,1] x T and [ 6y(z)dz < 27. Indeed, notlce
first that if 0(z, t) is the solution to (1) and if z € R, then §(z — 7, y,t) is the solution to (1) with
the initial data 0y(x — &, y). Thus, choosing Z suitably, we can always assume that hy = 0. Then, if
fp is an arbitrary non-trivial, non-negative, bounded, and compactly supported function satisfying
[ 0o (2)dz = 0 and giving rise to the solution 6, we can rescale 6 as follows. Put M := ||6p|[z>~ > 0

and choose N € N large enough so that N > d(0). Then, define ] by

~ 1 t
0(337y,t) = MQ(N : I‘,N Y, M)

Notice now that 6 is 27 /N-periodic in y, solves the Euler equation (1), and satisfies

0< 50 <1, dgo <1, /50(z)dz >0, /:Bgo(z)dz =0.
S S

We will need the following lemma.

Lemma 4.1. Take a € 2N. We have

; 2
/ 0(z,t)dz < a2/ (/ 9(2,7)dz> + e/ (/ 9(2,7’)d2> dr (11)
|z|>2a 0 |z|>a/2 lz|>a/2

for any t > 0.



Proof. For a € 2N, consider
kq(t) := / (z — a)?0(z,t)dz.
r>a

If 0 is smooth, taking the time derivative of k, gives

K (1) = /> (2 — a)2(30)dz = — /> (2 — a)2(u- V6)d=
_ /> (2 — a) (W, 6, — U,0,)dz — 2/> (x—a)-0-(—0,)dz.

Recall =¥, = u; = k1 * 6. We estimate the time derivative:

|k, | - ’ / T — CL -0 - Ule /> /S :E —a Sln(y 52) (Z,t)@(f,t)dfdz

cosh(z — &) — cos(y — &2)
< / / .. dedz| +
z>a JE€1<a

// ... dedz|.
r>a JE1>a

Using the bound |z — a| < |z — &;| in the first term and symmetrizing in the second one, we get
wols [
x>a

(& — &) sinly — &) — & De"le=61 < gmzle—gil
cosh(:pgl)cos(y&)‘ S+ le—&le Se .

0(z,t)dz by f; 6 for shorthand. The above estimate implies

s S5 () ()

j=—00 l=a

iieélju (/jo 9) (/IZH 9> < (

j=a l=a

()

j=—o0 l=a

< Ea: ie—élj—l< >< Hl ) af ie L1l </]]+1 ></l+1 >

j=a/2 l=a j=—o0 l=a

2
5(/ e) +e—a/4</ 9).
a/2 a/2

Since [*(z — a)?fy = 0, we can write

/;O(x_a)?e,s/: ((/;:9)24—6“/4 (/;:0))0%

8

(z —&)sin(y — &)
cosh(x — &) — cos(y — &2)

0(z,t)0(&,t)dédz.

We observe that

Let us denote fa<£<b

We get

and



and

o] t (o] 2 [ee)
pxa | (/ 9) +e—a/4(/ 9) -
2a 0 a/2 a/2

The estimate for f:;aﬁ can be proved similarly. Thus, we get (11) for smooth solutions. For
solutions in the sense of distributions, one can use the mollification argument following, e.g., [3],

Proposition 2.1.
O

We denote
Folt) = / 0z 8)d> and  fu(t) = / 0(=,8)dz, neN.
S || >4m

So, fo(t) = fo(0) = [4b0(z)dz < 1 for t > 0 and f,(0) = 0 for n € N. Taking a = 2-4" in
Lemma 4.1, we get the bounds

t
frpr(t) S 4_2n/ (F2(7) + 734" fu(r))dr  for any n >0, >0
0

and Proposition 3.1 yields f,(¢) < 47" for any n > 0, > 0. We combine these two estimates into

t
fo(t) = c1, fns1(t) < comin (42"/ (fg(T) + 67%4nfn(7))d7, 4*("+1)> forany n > 0,t >0,
0

where time-independent parameters ¢; and cg satisfy 0 < ¢; S 1,0 < g S 1.
For any bounded and non-negative function h and for n > 0, we define the operator M,, by

t
(My,h)(t) = ¢y min <42n / h(r) - (h(r) + e~ 24" )dr, 4<"+1>> for t > 0.
0

Without loss of generality, we can assume co > 2. Define {g,(t)} recursively by
9o(t) = c1, gn+1 := My (gn)

for all £ > 0. We can use induction argument to show that

fi() < gi(t) forany j 30,130, (12)
From Lemma 5.1, proved in the next section, we know that there exist ng € N and positive constants
cs3, ¢4, c5 such that

() < csd 7 (13)
for all n > ng, j € Z*, and t € [0, c54%"].
We now can estimate the first component of velocity. By (12) and (13), we have

/ O(z,t)dz < cqd e (14)
|z[>4n+

for any n > ng, j > 0, and 0 < t < ¢543". If necessary, redefine ng to satisfy e < 0543(”0*1) and let
T = c5430=1) > ¢,

Now, given any ¢ > T, we choose n to depend on t in such a way that 5431 < t < ¢54%".
Substituting this bound into (14), we get

1 .
0(z,t)dz < c3 <%5> Py

/x|24<ct5)1/34j

forallt > T and j > 0.



For A > 1/2 and for t > T, we can take the integer j = j(A,t) > 0 such that 2771 < Alogt < 2.
Then,
1
. 3\ (5+(calog4)A)
/|r|>16A2<t)l/glothe(th)dz < (63 CE? )t e o8 :
= C5
Introducing

AN ; 1
¢(L) := 16 il d Jcd, cri=c3-cd, L.:§+(C4log4)A,

and assuming that L > Lo := (1/3) + (c4log4)/2, we can rewrite the last inequality in more
convenient form

/ 0(z,t)dz < cpt (15)
|| >¢(L)tL/3 log? t

for all t+ > T. Note that ¢(L) ~ L? for L > Ly.

For L > Ly, we define
Rp(t) := 2((L)t/3 log?t + 1)

for 0 <t < co. We need the following lemma.

Lemma 4.2. There exists L1 > 0 such that
d
ur (2, )] < o Ri(t)
holds whenever L > Ly, |x| = Rr(t), and t > T.

Proof. Let L > Lg. We have a bound

< o(e. t)e—lm=611g 0. 1)
s (2,1)] < /|m_§1l>1 (&, )16l dg 4 /m_&'d e

for any z and for any t. Notice that ¢(L)t'/?log?t < min(Ry(t)/2, Ry (t) — 1). Suppose z = Ry(t),
the case x = —Rp(t) can be handled similarly. Thus, for t > T, we get

lur(R(t), y, 1) S

/ 9(£7t)€_|RL(t)_£lld§+/ 9(£,t)6_|RL(t)_§1|d£—|—/ 9(§7t> df
s >R (0)/2 s (t-6il<1 |2 = €]

Y. / e(g,t)d§+/ 0(¢,t)de + (/ e olde)”
&1<Rr(t)/2 &1>Rr(t)/2 [Rr(t)-&1<1

where we used Hélder inequality to get the last term. Recall that [|0]|pec(g) < 1,[|0][11(5) S 1, s0
[ur(RL(2),y,1)| S

2 1/3
0l [oenacr [ e+ ol ([ (e, 1)1dc)
S &1>RL(t)/2 &1>Rp(t)—1

1/3
S em @D logt ) / 0(¢. g + ( / o(¢, Dldg)
E1>¢(L)t1/3 log? t €1>6(L)t1/3 log? t

We now use (15) to get

u(RL (1), y, )] < g (e ¢LIE P08t 4 y=L 4 y=%
Y

with some constant cg.
10



The derivative of Ry, (t) can be computed explicitly:

%RL(L‘) = 2¢(L)t " **logt (; logt + 2) .

Recalling that ¢(L) ~ L? when L — oo, we can take L large enough to have

cg (efd’(L)tl/g log®t 4 =L 4 tiL/?’) < 4

dtRL(t)

uniformly in ¢ > T and L > L.

O

We are ready to finish the proof of Theorem 1.1. We claim that there is an absolute constant L
such that

do) < 2R (1) (16)
for all t > 0.

Indeed, notice first that Umaes 1= supysq ||u1(t)| e < 0o by (7). Since ¢(L) ~ L?, there is Ly > 0
so that for each L > Lo we get

RL(t) = 14 tmae - t
uniformly in ¢ € [0, 7. Since 6 is supported in [—1,1] x T, the Euler solution 6#(z,t) is supported
in [-Rp(t), R(t)] x T for all ¢t € [0,T] and for all L > Ls.

Take L > max{Lg,L1,Lo}. From Lemma 4.2, we conclude that for any particle trajectory
Ziza) () = (X(2,4)(t), Yz, (t)) in Lagrangian dynamics, satisfying

{jtZ(m,y) (t) =u(Zgy(t),t) fort>T
Zioy)(T) = (2,y) € [=RL(T),RL(T)] x T

we have Z(, y(t) € [-Rp(t), RL(t)] x T for any t > T'. Indeed, we argue by contradiction: if there
is a particle trajectory escaping from the region, then there should be a moment 7y > T and a
point zp = (o, yo) € S such that |vo| = Rr(Tp) and |ui (20, Tp)| > LRy (tp), which contradicts the
lemma.

Estimate (16) finishes the proof of Theorem.

5. SOME AUXILIARY RESULTS

Recall that the operator M, has been defined as
¢
(M,h)(t) = ¢y min (4—2” / h(r) - (h(T) + 6—54")617,4—(”“)) for t >0
0

and cp > 2. Take ¢; > 0 and define {g,(t)} recursively by
go(t) = c1, gnt1 := My (gn) forallt > 0. (17)

Lemma 5.1. There exists an integer ng € N and positive constants cs, cq,cs such that
for any n = ng and for 0 < t < 54", we have

Gnt5(t) < czd—ea? for any j > 0. (18)
11



Proof. Without loss of generality, we assume co > 2. For any bounded and non-negative function
h and for n > 0, M,,h(-) is non-decreasing in t. We denote by T),(h) the first time when M, h(t) =
c247 "1 If h is non-decreasing and if h is not identically zero, we have 0 < T},(h) < co. Moreover,

Tn(h1) < Ty(h2)

if hy > he > 0 for all t. Function g,, defined in (17) satisfies the following properties.

e Forall n € Z*, g, is non-decreasing, bounded, non-negative, and g, (t) > 0 for any ¢ > 0.

e Denote t,, := Tp,—1(gn-1) < 00 for n > 1 and ¢y := 0. In other words, t, = min{7 : g,(7) =
247"} for n > 1 . We will need some estimates on t,, later on so we start with getting a lower
bound.

Since e”® < 1/a for « > 0 and ¢y > 2, we get e_(%)‘ln < 247" < 047", Then, the estimate
gn < 247" yields

t t
In+1(t) < 024_2”/ Cod (A" 4 774" )dr < C24_2n/ 2(c2)?47"dr < 2c3t47".
0 0
Thus,
tnp1 = 4%/ (2¢3), forn € N. (19)

An upper bound on ¢, can be obtained as follows. Since g, > 0 on ¢t € [0,t,] and g,+1 = cod= (1)
for t > t,+1, we have

o1 <tn +4%"71/(c3), n €N. (20)
Indeed, this inequality holds trivially if ¢, 41 < t,,. For the case t,,4+1 > t,,, we have

tn+1 tn+l
024_(n+1) = gn+1(tn+1) = Mp(gn)(tnt1) 2 024—%/ gg(T)dt Z 024_%/ 034_2ndt-
0 tn

Summing up (20) in n, we get
n
fe <t + 3B B) < b+ 4P (B).
k=1

Since t; = (4e1(c1 + 6_%))_1, the last estimate and (19) imply that there are positive constants cs
and cg so that
e <ty < 4™, neN. (21)

e Letn > 1. Since g is non-decreasing in ¢, we can write the following bound for every j € Z™:

—o(ndi tn o
Gy (tn) < 4™ ﬂ)/o It (T) - Gy (1) + €72 dr

< od ™2 g () - Gy (tn) + €2 oty

< 024_2(n+j)g(n+j) (tn) - (Gn+j) (tn) + 6_%4<n+j)) c el

where we used (21) to bound ¢, in the last inequality.

For shorthand, let’s denote an j := gn+j(tn) for j > 0,n € N. Then, we can write
On, (1) S min<62472(n+j)an7j “(an,j + 67%4(“].)) - g4, 624*(n+j+1)) )

Notice also that a, o = c24™". The induction argument gives a, ; < by ; where {b, ;} are introduced
in (22) a few lines below. Since g,+(t) < an; for all t < t, and t, > 543", the estimate (18) now
follows from Proposition 5.1. The proof is finished.

O
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Let co,cg be positive constants and co > 2. For each n € N, define {bn,j}jo‘i() recursively by

bpo = c24™" and
bn,(j+1) = min (024_2("+j)bn,j < (bny + 6_%A‘(nﬂ)) - cgd™", 024_(”+j+1)) for j > 0.

Proposition 5.1. There are positive constants c3,cq and ng € N, such that
bn,j < 034_"_042j for alln >ng,j €ZT.
Proof. For a later use, take ng € N so large that
2e9c643™0 > 4.

From now on, let n > ng. We first claim that
bn,j > 67%4(n+j)
for all j > 0 and for all n > ng. Indeed, it can be shown by an induction in j: we know

n

1
bn’o =4 =224 > e 24

_Llpnty .

because ca > 2. Suppose b, ; > e 4l for some j > 0. We need to show
—Lg(n+j+1)

b (j+1) 2 €2 :

(22)

Recall that b, ;1) is either (024_2(””)1)717]‘ - (bnj +e_%4("+j)) . 0643") or (c24_(”+j+1)). In the

former case,
bn,(j—i—l) > 202C643n(4_(n+j)>2(€_%4(n+j>)2 > 2026643710(4—(n+j))2(e—%4<"+j))2

> 4(4_(n+j))2(e_%4(n+j))2 > (e_%4(n+j))2(e_%4(n+j))2 _ 6_%4(n+j+1) :

where we use (23) for the third inequality. If, however, b, ;1) = o4~ HI+D) - then b, (j+1) =

2. 4= (nti+l) > e~z Thus, (24) is proved.

By the claim, for all n > ng and j > 0, we get

o Gj41) S min (2624_2(n+j)(bn,j)2 - g4, 024—(n+j+1)).

To get the needed bound on by, ;, we again argue by comparison to exact recursion. Define {c,, }?io

by ¢n,0 := bpo = c24™" and by the following iteration:
Cn,(j4+1) = min (2024_2("“)(0717]-)2 gl 624_(”+j+1)> for 7 > 0.
Then, we clearly have ¢, ; > by, j for j > 0 and for n > ny.

To iterate the formula for ¢, ;, it is convenient to rewrite it in the following form

Cn,(j+1) = Min (4ﬁ4”_2j(cn,g’)2,40‘4—(”““)) for j >0,

where real a and S are defined by 2cocg = 4P and ¢y = 4. If we represent ¢, j as ¢, ; = 4P,

then p, 0 =n — a and
Pn,(j+1) Zmax(—5—n+2j+2pn7j,—a+n+j+1> for j > 0.
We further write p, ; = n + ¢, ; and notice that

G, (j+1) = MaAX ( —B+2(j +qnj), —a+j+ 1) for j > 0.
13



Take the smallest jg € N for which jo > o+ 1 and 25y > . Then, we have
Gnjo = —a+(jo—1)+12>1
and, for any j > jo,
An,(j+1) > -3+ 2(] + Qn,j) > =B+ 2jo+ 2C.7n,j = 2‘]n,j-
It implies that, for any j > jg, we get o
nj = 2770
and then o
Pnj=n+2770,
In other words, for any n > ng and for any j >

Cn,j < 4—(n+2j7j0) — 4—(“-‘1‘(2770)2]) (25)

jo, we have

We claim now that for any n > ng and for any j > 0, one has
Cnj < 40T 4= (nH(2770)27), (26)

Indeed, for j > jo, this follows from a > 0 and (25). From the definition of ¢, ;, we get

Cnj < 424=(+3) for any j > 0. Thus, the case j = 0 is trivial. For 1 < j < jo, we use an el-

ementary bound 477 < 4=27)2

Taking c3 := 40+H270) and ¢y 1= 2790 in (26), we finish the proof of the proposition. O
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