LOCAL SYSTEMS AND FINITE UNITARY AND SYMPLECTIC GROUPS

NICHOLAS M. KATZ AND PHAM HUU TIEP

ABSTRACT. For powers q of any odd prime p and any integer n > 2, we exhibit explicit local systems,
on the affine line A' in characteristic p > 0 if 2|n and on the affine plane A? if 2 { n, whose geometric
monodromy groups are the finite symplectic groups Sps,,,(¢). When n > 3 is odd, we show that the
explicit rigid local systems on the affine line in characteristic p > 0 constructed in [KT1] do have
the special unitary groups SU,(q) as their geometric monodromy groups as conjectured therein, and
also prove another conjecture of [KT1] that predicted their arithmetic monodromy groups.
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1. OVERALL INTRODUCTION

We first recall from [KT2, §1] the underlined motivation for this work. The solution [Ray] (see
also [Pop]) of Abhyankar’s Conjecture for the affine line in characteristic p > 0 tells us that any
finite group G which is generated by its Sylow p-subgroups occurs as a quotient of the geometric
fundamental group 71 (A!/F,) of the affine line A!/F, over F,. In a series of papers (see e.g. [Ab]),
Abhyankar has written down explicit equations which realize many finite groups of Lie type as such
quotients.

Suppose we are given such a finite group G (i.e., one which is generated by its Sylow p-subgroups),
together with a faithful representation p : G — GL,(C). Because G is finite, there is always some
number field K such that the image of p lands in GL,(K). If we now choose a prime number ¢
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and an embedding of K into Qy, we can view p as a representation p : G — GL,(Qy). Since G is a
quotient of 7 (Al/F,), we can compose

m1(A!/Fp) - G — GLa(Q),

to get a continuous f-adic representation of 71(Al/F,), i.e., an f-adic local system on A!/F,,
whose image is the finite group G.

There are a plethora of local systems on the affine line attached to families of exponential sums.
In the ideal world, we would be able, given the data (G, p) and any ¢ # p, to write down a “simple
to remember” family of exponential sums incarnating a local system which gives (G, p). Needless
to say, we are far from being in the ideal world.

In our earlier paper [KT2, Theorem 3.2], we gave explicit rigid local systems on the affine line A'
in characteristic p > 2 whose geometric monodromy groups were proved to be the finite symplectic
groups Spsy,(q), so long as' n > 2 was itself prime to p and so long as ¢ was a power p® of p such
that the exponent a was prime to p.

Here we develop some new ideas which, when n > 3 is odd, give us rigid local systems incarnating
all the ¢ + 1 irreducible representations of SU,(¢q) of degree either q;:rll (g of these) or q;r—? (one of
these). It turns out a posteriori that these rigid local systems are precisely those occurring in [KT1,
Conjecture 9.2], where they were conjectured to have these monodromy groups for all odd n > 3
but only proven [KT1, Theorem 19.1] to have them when n was 3, with the additional proviso that
3 not divide ¢ + 1. As a result, we are able to determine the arithmetic and geometric monodromy
groups of these local systems and also prove Conjecture 9.2 of [KT1].

These ideas also lead us to local systems on A? whose geometric monodromy groups are the finite
symplectic groups Sps,(q) for every odd n > 3 and every power ¢ of the odd prime p. In contrast
to [KT2], there are no “prime to p” hypotheses on either n or on logp(q).

Another chain of ideas leads us to local systems on A! whose geometric monodromy groups are
the finite symplectic groups Sp,,,(¢q) for every even n and every power ¢ of the odd prime p. Again
here there are no “prime to p” hypotheses on either n or on log,(q).

In both of the n even and n odd cases, a key new idea is to study certain two-parameter local
systems and their monodromy groups first, and then descend to our target one-parameter systems
by specialization.

2. INTRODUCTION TO THE n ODD CASE

For an odd integer n > 3, and a prime power ¢ > 2, the irreducible representations (over C) of
lowest degree after the trivial representation of the group SU,(gq) are a symplectic representation
of dimension % —-1= %, and ¢ representations of dimension %. When ¢ is odd, exactly
one of these ¢ representations is orthogonal, otherwise none is. The direct sum of these ¢ + 1
representations is called the big Weil representation of SU,(q).

In the paper [KT1], we wrote down ¢ + 1 rigid local systems on the affine line A'/F, whose geo-
metric monodromy groups we conjectured to be the images of SU,,(¢q) in these ¢+ 1 representations.
We were able to prove this only in the case when n = 3 and ged(n,q+ 1) = 1 (the condition that
SU,(q) = PSU,(q)), where we made use of the results of Dick Gross [Gr]. In this paper, we use a
completely different method, which also starts? with results of Gross, to prove these conjectures for

any odd n > 3 and for any odd prime power ¢, see Theorem 4.4.

IThe case n = 1 of SLa(g) was done in [KT1].
2The results here use the results of [KT2], which in turn uses the resuts of [KT1] for SLa(q), and those use [Gr] in
an essential way.
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The method used here, which requires that ¢ be odd, is based on a striking group-theoretic
relation between the Weil representations of SU,(q) and Sp,,(¢), and on the determination of
those subgroups of Spy,(¢) to which the Weil representation restricts “as though” it were the
Weil representation of SU,(q), c¢f. Theorem 3.4. We are able to apply this result to our local
systems, in Section 3, by invoking results of [KT2], which was devoted to questions around Spy,,(q).
Furthermore, our Theorem 4.3 also improves the main results Theorems 3.1 and 6.8 of [KT2] in the
case 2 1 n, by removing the condition that p {n -log,(q) for the prime plq.

The main results in the n odd case are Theorems 4.2, 4.3, 4.4, 5.1, and 5.2 that determine the
arithmetic and geometric monodromy groups of the constructed local systems, and Theorem 5.3
that establishes Conjecture 9.2 of [KT1].

3. UNITARY-TYPE SUBGROUPS OF FINITE SYMPLECTIC GROUPS

Let ¢ = p* be any power of a prime p and n > 2. It is well known, see e.g. [Ge, Theorem 4.9.2],

that the function . Ket(g—1oy)
1m er(g—
Grg=Cnigm ()" (=g) Y
defines a complex character, called the (reducible) Weil character, of the general unitary group
GUn(q) = GU(W), where W = F7, is a non-degenerate Hermitian space with Hermitian product

o. Note that the Fg-bilinear form
(ulv) = Trace]qu Jr,(Ouov)
on W, for a fixed 6 € IF‘qX2 with #9=1 = —1, is non-degenerate symplectic. This leads to an embedding

G = GUn(g) = Span(9)-

Similarly, the function

Tng =Tn : g qdim]yq Ker(g—1v)
defines a complex character, called the (reducible) Weil character, of the general linear group
GLn(q) = GL(U), where U = Fy, see e.g. [Ge, Corollary 1.4]. Again we can embed GLy(g) into
Spa, (q) so that GL,,(q) stabilizes a complementary pair (U,U’) of maximal totally isotropic sub-
spaces of the symplectic space Fg”. For the reader’s convenience, we record the following statement,

which follows from [Ge, Theorem 2.4(c)] in the GL-case, and from [Ge, Theorem 3.3] in the GU-case:

Theorem 3.1. Let g be an odd prime power and let n € Z>1. Then the following statements hold.

(i) Let xo2 denote the unique complex character of degree 1 and of order 2 of GU,(q). Then the
restriction of any of the two big Weil characters (of degree q", and denoted Weil; and Weily in

[KT2, §2]) of Spy,(q) to GU,(q) is Cn := Xaln-
(ii) Let x2 denote the unique complex character of degree 1 and of order 2 of GLy(q). Then the
restriction of any of the two big Weil characters Weily, Weila of Sps,,(q) to GL,(q) is x27n.

Fix a generator o of IFqXQ and set p := 097!, We also fix a primitive (¢> — 1) root of unity & € C*

and let p = 097!, By Theorem 3.1(i),
q

(3.1.1) (Weily)|z = G = Zﬁz‘,n

decomposes as the sum of ¢ + 1 characters of G, where

(3.1.2) Cn(g) = U 2(9) i il (—g)dimKer(g—p' 1),
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this formula is obtained by applying [TZ2, Lemma 4.1] to the “untwisted” character (,. In partic-
ular, ., has degree (¢" — (=1)")/(¢+ 1) if i > 0 and (¢" + (=1)"q)/(¢ + 1) if i = 0. (Note that
formula (3.1.2) also holds for 2|q, where we define ¢, = ¢, X2 = 15 in that case.)

We will let ¢;,, denote the restriction of fi,n to G = SU,(q), for 0 < i < q. If n > 3, then these
g + 1 characters are all irreducible and distinct. If n = 2, then (;,, is irreducible, unless ¢ is odd
and i = (¢ + 1)/2, in which case it is a sum of two irreducible characters of degree (¢ — 1)/2, see
[TZ2, Lemma 4.7]. Formula (3.1.2) implies that Weil characters ¢;,, enjoy the following branching
rule while restricting to the natural subgroup H := Stabg(w) = SU,,—1(¢) (w € W any anisotropic
vector):

q
(3.1.3) Gl = D G
J=0, j#i
Furthermore, complex conjugation fixes 50,,1 and sends 5]-,” to §q+1,j7n when 1 < j <q. Asn >3 is
odd, it is also known that (o, is of symplectic type; let

Yy : é — Sp(V)
be a complex representation affording this character. If 2 1 ¢, then Q:(QH) /2.n 18 of orthogonal type;
let
\If(q+1)/2 : é — O(V)
be a complex representation affording this character. In the remaining cases, let
W, : G — GL(V)
be a complex representation affording the character @n

Lemma 3.2. Assume n > 3 is odd and q is odd.
(i) Wo(GUn(q)) = GUw(q)/Cg41y/2 is contained in Sp(V') and contains Wo(SUy(q)) = PSU,(q)
with index 2d, where d := ged(n,q + 1).
(i) If 1 < i < q, then Ker(¥;) is a central subgroup of order ged(i + (¢ +1)/2,q + 1), and
Ker(¥;lgu, (q)) s a central subgroup of order ged(i + (¢ +1)/2,n,q+ 1).
(i) PGUn(q) = ¥ (441)/2(GUn(q)) < SO(V) contains ¥ 441y/2(SUn(q)) = PSU,(q) with indez d.
(iv) If 1 <i < qandi # (q+1)/2, then ¥;(GU,(q)) N SL(V) contains ¥;(SU,(q)) with index
ged(i+ (¢+1)/2,n,q + 1).
(v) Suppose H < GU,(q). Then V;(H) < SL(V) for all 0 <1i < q if and only if H < SU,(q).

Proof. According to [TZ2, §4], one can label ¥; in such a way that
(3.2.1) Ui(2) = —pt - 1y = piHaD2 g,

for the generator z = p- 1y of Z(é) = (Cg+1. Note that we need to add the minus-sign, because o
is obtained from ¢, by the quadratic twist x2. In particular, Ker(¥o)NZ(G) = (22), and (i) follows.

Now we can assume 1 < i < ¢. By (3.2.1), 2/ € Ker(¥;) if and only if j is divisible by
(q+1)/ged(i+ (¢ +1)/2,q+1). Furthermore, 27(a+1)/d ¢ Ker(V;|gu, (g)) if and only if j is divisible
by d/gcd(i,d) = d/ged(i + (¢ + 1)/2,n,q + 1) for d = ged(n,q + 1), equivalently, if j(¢ +1)/d is
divisible by (¢ +1)/ged(i + (¢ +1)/2,n,q9+ 1). Hence (ii) follows.

Consider the element g := diag(p,1,1,...,1) € G; note that G = (G, g) and ¥2(g) = —1. Then
(3.1.2) implies that

qnfl o (_1)7171
g+1

Ginleh) = (-1~ )
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when 1 < k < ¢. It follows that W;(g) has eigenvalues —p/, 1 < j < ¢, with multiplicity (¢"~! —
D/(g+1)ifj#diand 1+ (¢" ' —1)/(¢g+1)if j =4, and so

det(W;(g)) = —p' = p' V2,

In particular, ¥;(¢g?) € SL(V) if and only if j is divisible by (g4 1)/ ged(i + (¢ + 1)/2,¢+1). Since
SU,(q) is perfect, (iii), (iv), and the “if” direction of (v) follow.

For the “only if” direction of (v), assume that ¥;(H) < SL(V), and consider any h € H. If
det(h) = p/ for 0 < j < q, then hg™7 € SU,(q) and so W, 3 /2(hg™7) € SL(V) by the previous
statement. It follows that

1= det(W(g13)/2(h) = det(V(443)/2(hg ™)) det(¥(g13)/2(97)) = det(¥(443)2(¢7)) = 7,
whence j = 0 and det(h) = 1, as stated. O

We will now show that, when n > 3 is odd and ¢ is odd, the splitting (3.1.1) of a big Weil
character Weil; of Spy,,(¢) on its restriction to SU,(¢) into a sum of ¢ + 1 irreducible constituents
of prescribed degrees characterizes SU, (q) uniquely (up to conjugacy).

Recall [Zs] that if @ > 2 and n > 2 are any integers with (a,n) # (2,6), (2% — 1,2), then a” — 1
has a primitive prime divisor, that is, a prime divisor £ that does not divide H?;ll (a* — 1); write
¢ = ppd(a,n) in this case. Furthermore, if in addition a,n > 3 and (a,n) # (3,4), (3,6), (5,6), then
a™ — 1 admits a large primitive prime divisor, i.e. a primitive prime divisor £ where either £ > n+1
(whence ¢ > 2n + 1), or £2|(a™ — 1), see [F].

We will need the following recognition theorem [KT2, Theorem 4.6], which was obtained relying
on [GPPS].

Theorem 3.3. Let ¢ = p! be a power of an odd prime p and let d > 2. If d = 2, suppose that
p¥ — 1 admits a primitive prime divisor £ > 5 with (p¥ — 1), > 7. If d > 3, suppose in addition
that (p,df) # (3,4), (3,6), (5,6), so that p¥ — 1 admits a large primitive prime divisor €. In either
case, we choose such an ¢ to mazimize the (-part of p% —1. Let W = Fg and let G be a subgroup of
CL(W) = GLy(q) of order divisible by the f-part Q := (¢* — 1)¢ of ¢* — 1. Also, let L := O'(G) be
the smallest among normal subgroups of G of index coprime to £. Then either L is a cyclic £-group
of order Q, or there is a divisor j < d of d such that one of the following statements holds.
(i) L = SL(W;) = SLyy;(¢’), d/j > 3, and W; is W viewed as a d/j-dimensional vector space
over qu .
(ii) 2j]d, W; is W wviewed as a d/j-dimensional vector space over F,; endowed with a non-
degenerate symplectic form, and L = Sp(W;) = Spd/j(qj).
(iii) 2|jf, 2 1 d/j, W; is W viewed as a d/j-dimensional vector space over F,; endowed with a
non-degenerate Hermitian form, and L = SU(W}) = SUd/j(qj/2).
(iv) 2j|d, d/j > 4, W; is W wiewed as a d/j-dimensional vector space over F ; endowed with a
non-degenerate quadratic form of type —, and L = Q(W;) = Q;/j(qj).

The main result of this section is the following theorem:

Theorem 3.4. Let ¢ = p* be a power of an odd prime p and let n > 3 be an odd integer. Let
W = Fg" be a non-degenerate symplectic space, and H := Sp(W') = Sp,,,(q), and let ® be a complex
Weil representation Weil; of H of degree q" for some i = 1,2 as in [KT2, §2]. Suppose that G < H is
a subgroup such that ®|g = @?:0 is a sum of g+1 irreducible summands, ®¢ of degree (¢"—q)/(q+1)
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and ®; of degree (¢" +1)/(¢+1) for 1 < j <q. Then W can be viewed as an n-dimensional vector
space over F 2 endowed with a G-invariant non-degenerate Hermitian form such that

SU,(q) = SU(W) < G < GU(W) = GU,(q).

Proof. (a) First we assume that (n,q) # (3,3) and (3,5); in particular, so that p>*® — 1 admits a
large primitive prime divisor ¢, in which case we choose such an ¢ to maximize the ¢-part of p*™® —1.
Note the assumptions imply that |G| is divisible by both (¢" —¢)/(¢ + 1) and (¢" +1)/(¢+ 1). In
particular, G < GL(W) has order divisible by

(3.4.1) qQ = q(p*™* = 1)s.

Let L := OY(G) and d(L) denote the smallest degree of nontrivial complex irreducible characters
of L. Note that

(3.4.2) d(L) < (¢"+1)/(g+1) < (¢"+1)/4

(Otherwise L < Ker(®;), whence ®; could be viewed as an irreducible representation of G/L and
so would have been of ¢'-degree.) Furthermore, if L is cyclic of order @, then by Ito’s theorem
(6.15) of [Is], the degree of any irreducible character of G divides |G/L|, an integer coprime to ¢,
and so again GG cannot be irreducible on ®;. Now we can apply Theorem 3.3 to arrive at one of the
following cases.

i 2 SL,,/:(¢’) for some divisor 1 < j < n of 2n. In this case, if j < 2n/3 then by ,
i) L = SLg,/(¢’) f d 1 f 2n. In th f 2n/3 then by [TZ1
Theorem 3.1] we have
A(L) > O = I > g,
contradicting (3.4.2). If j = n, then ¢/ = ¢" > 27 and so
d(L) > (¢"—1)/2> (¢" +1)/4,
again contradicting (3.4.2).
(ii) L = Spy,/;(¢’) for some divisor 1 < j < n/2 of n. Then by [TZ1, Theorem 1.1] we have

d(L) = (¢" =1)/2> (¢" + 1) /4,
contradicting (3.4.2).

(iii) There is some even divisor j = 2k of 2n with k|n and 2 1 n/k > 1, such that W can be
viewed as a 2n/j-dimensional vector space over IF,; endowed with a non-degenerate Hermitian form

and L = SU(W) = SU,, 4, (¢*). Suppose first that k > 1, and let ¢ be an irreducible constituent of
the L-character afforded by ®g, so that ¢(1) < (¢" + 1)/4. By [TZ1, Theorem 4.1],

qn +1 qn _ qk
1 1, ——,—/—— .
vy e {1,551 L0
The proof of (3.4.2) rules out the possibility ¥(1) = 1. Next,
(1) dim @ = (¢" —q)/(q+1)

by Clifford’s theorem, implying ¥(1) # (¢" — ¢*)/(¢* + 1) as k > 1. The remaining possibility
P(1) = (¢" + 1)/(¢* + 1) is also ruled out since £ { dim ®y. We have shown that k = 1, i.e.
L =SU(W) = SU,(q). This implies that

L <G < Ngywy(L) = GUW) x (o) = GU,(q) x Co.
Here, o is an involutive automorphism of GU(WW) that acts as inversion on

(3.4.3) (z) = Z(GU(W)) 2 Cyyp1.
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Recall the decomposition
(3.4.4) (I’|GU(W) =0V,

with Wy of degree (¢" —q)/(g+1) and ¥, of degree (¢" +1)/(¢+1) for 1 <1i < g, see the discussion
preceding Lemma 3.2. In fact, one can find a primitive (¢ + 1) root of unity & € C* such that
W;(2) is the multiplication by ¢'. In particular, o fuses W3 and ¥,. The assumption on ®|g now
implies that G < GU(W), as stated.

(iv) L = Q;n/j(qj) for some divisor 1 < j < n/2 of the odd integer n. If j < n/5, then by [TZ1,
Theorem 1.1] we have

d(L) > q" +1,
contradicting (3.4.2). If j = n/3, then L is a quasisimple quotient of PSUy(¢"/?) with ¢"/® > 5,
and so by [TZ1, Theorem 1.1] we have
in/3 _q

q
d(L)=*— = > q"/2,
(0=t >

again contradicting (3.4.2).

(v) (p,na,L/Z(L)) = (3,9,PSLy(37)). Note that the smallest dimension of a nontrivial irre-
ducible representation of L over F3 is 18 (see e.g. [TZ1, Table I]), so (¢,n) = (3,9) and L = SLy(37)
acts absolutely irreducibly on W = IF},)S. This in turn implies that

Cspny (L) = Z(L) = Oy,

and so L 9 G < Ngpy)(L) < L-Cy. But in this case, G cannot have an irreducible complex
representation of degree
dim®; = (¢" +1)/(¢+1) = (3° +1)/4.

(vi) (p,na,L/Z(L)) = (17,6,PSLy(13)). In this case (¢,n) = (17,3) and L = SL9(13) acts
absolutely irreducibly on W = F$.. As in (v), this implies that

Cspw)(L) = Z(L) = Cy,

and L <G < NSP(W)(L) < L - (9, whence G cannot have an irreducible complex representation of
degree
dim ®; = (¢" +1)/(g+ 1) = (17° + 1)/18.

(b) It remains to consider the two cases (n,q) = (3,3) and (3,5). Let M be a maximal subgroup
of Sp(W) that contains G. Then condition (3.4.1) also holds for |M|; furthermore, the maximal
degree of complex irreducible characters of M must be at least (¢" + 1)/(¢ + 1) = 7, respectively
21, since ®; € Irr(G). First suppose that ¢ = 5. Then, according to Tables 8.27 and 8.28 of [BHR],
one of the following possibilities occurs.

e M = 2J5. In this case, since |G| is divisible by 3 -5 -7, see (3.4.1), we see by inspecting
maximal subgroups of J» [Atlas| that G = M. But then G does not admit any complex irreducible
representation of degree dim @4 = 20.

o M = SLy(125) x C3. In this case, since |G N [M, M]| is divisible by 5 - 7, see (3.4.1), we see
by inspecting maximal subgroups of PSLy(125) [BHR, Table 8.1] that G > SLy(125). But then
d(G) > 62 (see e.g. [TZ1, Table I]), violating (3.4.2).

o M = GU3(5) x Cy. If G > N :=SU3(5), then we can argue as in (iii) above. Suppose G # N.
Since L := GNN <G has order divisible by 5-7, see (3.4.1), we see by inspecting maximal subgroups
of PSL3(5) and Alt; [Atlas] that L = 3Alty, and Z(L) = (z2) with (2) = Z(GUs3(5)) as defined
in (3.4.3). Using the decomposition (3.4.4), we may assume that ®; = (V;)|g for 0 < i < ¢. As
mentioned in (iii), the subgroup Cy fuses ¥; with W5, hence ®; with ®5. Thus G < GU3(5), and so
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|G/L| and [Ngu,5)(L)/L| both divide 6. Note that Ny, (5)(L) contains the central involution of
GUs3(5) which lies outside of SU3(5). It follows that G induces a subgroup X of outer automorphisms
of L of order dividing 3, whence X = 1 as |Out(Alt7)| = 2 [Atlas]. Now let g € L be of order 7. Then
®o(g) = Yo(g) has trace —1. On the other hand, as G induces only inner automorphisms on L, we
see that (®p)|z must be a direct sum of two copies of a single irreducible complex representation @’
(of dimension 10) of L and we arrive at the contradiction that ®'(g) has trace —1/2.

(c) Finally, we consider the case ¢ = 3. Inspecting the list of maximal subgroups of PSp4(3) in
[Atlas], we arrive at the following possibilities for M. By (3.4.1), G contains an element g € G of
order 7. According to [Atlas], we may assume that &g @ ®o = Alg, where A is an irreducible Weil
representation of degree 13 of Spg(3) and contains the central involution ¢ of Spg(3) in its kernel,
and that A(g) has trace —1.

e M = SLo(13). In this case, since |G| is divisible by 3 - 7, see (3.4.1), we see by inspecting
maximal subgroups of PSLy(13) [Atlas] that G = M. Note that ¢ is the central involution of G.
Now the conditions that ¢t € Ker(A) and A(g) has trace —1 imply by [Atlas] that A|g is irreducible,
a contradiction.

e M = SL5(27)-3. In this case, since |G| is divisible by 7, we see by inspecting maximal subgroups
of PSLo(27) [Atlas] that either G > [M, M| = SL9(27) or G N [M, M] is contained in a dihedral
group Dog. It is easy to see that in the former case d(G) > 13 contradicting (3.4.2), and in the
latter case G does not admit any complex irreducible representation of dimension dim ®; = 7.

o M = GU3(3) x Cy. If G > N := SU3(3), then we can argue as in (iii) above. Suppose G ? N.
Since L := GNN <G has order divisible by 3-7, see (3.4.1), we see by inspecting maximal subgroups
of SU3(3) and PSLa(7) [Atlas] that either L is of order 21 or L = PSLy(7). The former case is ruled
out since (®1)|r is irreducible of dimension 7. In the latter case, fix an involution s € L. We may
assume that

(@)1 = ()]s
for the representations ¥; defined in (3.4.4), and furthermore Wy is self-dual of dimension 7. Using
[Atlas] we see that Wy(s) has trace 3 and Wi(g) has trace 0, whence (®1)|z = (¥1)|r is the sum
of two irreducible representations of dimensions 1 and 6, contradicting the irreducibility of ®; on
G > L. O

In the next statement, we consider a non-degenerate symplectic space W = IE‘?,N , a (reducible)

big Weil representation of degree p”¥ of G = Sp(W) = Spyx(p) with character w as in [KT2]; in
particular,

(3.4.5) [w(9)] = |Cw(g)|"/?

for any g € G. Let N = AB and B = bj for some positive integers A, B, b, 7. We may then assume
that W is obtained from the symplectic space W7 := Fi‘;‘ (with a Witt basis (e1,...,ea, f1,..., f4))
by base change from F,s to F,. Using this basis we can consider the transformation

A A
o: Z(l‘i@i +yifi) = Z(wfez‘ +yi fi)
i=1 =1

induced by the Galois automorphism x + " for r := p/. Then, as in [KT2, §4] we can consider the
standard subgroup

H = Sp(24,p%) x ¢,
of G, where Cj, = (o).

Theorem 3.5. Each value |w(z)?, © € H, is a power of r = p’. Furthermore, there is some h € H
such that |w(h)|? = 7.
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Proof. Note that H embeds in Sp(2Ab, p?), and so the first statement follows by applying (3.4.5) to
a big Weil representation of Sp(2A4b,p’). To define h, consider the F,-linear map

. T
J:Fp = Fp, o—x—2a".

Viewed as a vector space over F,, Ker(f) has dimension 1. Hence f cannot be surjective, and so
we can find

a € F,s \ Im(f).
Let J denote the Jordan block of size A x A with eigenvalue o', and let ¢ € H have the following

matrix
fa)=t a?J
0 aJ

in the chosen basis (e1,...,ea, f1,...,fa) of Wi. We will show that h = go satisfies |w(h)|? = 7.
According to (3.4.5), it suffices to show that h fixes exactly r vectors in Wj. To this end, suppose
that w = Z?:l(xiei + yifi) is fixed by h, where z;,y; € F,5. Comparing the coefficient for fa we
have

Ya=yA
implying y4 € F,.. Next, comparing the coefficient for f4_; we see that
Ya1 oy =ya-1,

and so aya = f(ya—1). By the choice of o, y4 = 0, whence y4—1 € F,. Continuing in the same
fashion, we conclude that

y1 €F, yo=9ys=...=ya =0.
Thus we have shown that v := Zf‘zl yifi = y1f1. Letting u:=w —v = 22421 x;e;, we have
) o(u) + a?Jo(v) = u,
ie.
o(u) + {aJ)a?Jo(v) = (o) (u).
Comparing the coefficient for e;, we get
Ty + ayr = 71,

and so ay; = f(z1). Again by the choice of «, we must have that y; = 0 and z; € F,. Next,
comparing the coefficient for ey, we get

xrh = axy + T2,

and so —ax; = f(z2). By the choice of o, we must have that x; = 0 and zy € F,. Continuing in
the same fashion, we conclude that

zpa€EF,., z1=20=...=24_1=0.
Thus w = zpe4 with x4 € F,., as desired. O

Lemma 3.6. Let ¢ = p® > 3 be a prime power and let A, B,b,c be positive integers, and let
H = Spy4(p®) x Cy as above. Then the following statements hold.

(i) If ¢ > 3, then SU 4.(q) cannot embed in H.
(ii) Assume in addition that (p, A, B) # (3,1,1). Then the only quotient groups of H are H,
H/Z(H) = PSpys(p®) x Cy, and quotients of Cy,.
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Proof. (i) Assume the contrary. Since c,q > 3, SUac(q) is perfect, and so it embeds in Spy4(p?) <
Spoa(Fp). In particular, SU4.(¢q) has a nontrivial absolutely irreducible representation in charac-
teristic p of dimension < 24 < Ac — 1. But this contradicts [KIL, Proposition 5.4.11].

(ii) The assumption on (p, A, B) ensures that L := [H, H] = Spy,(p?) is quasisimple, with
S = L/Z(H) = PSpy,(p®) being simple. Furthermore, H/Z(H) acts faithfully on S.

Suppose that N < H. If N > L, then H/N is a quotient of H/L = Cj. In the remaining case,
we have that N N L is a proper normal subgroup of L, and so contained in Z(H). In particular,
[N,L] < NN L centralizes L, i.e. [[N,L],L] = 1. Since L = [L, L], the Three Subgroups Lemma
implies that [N, L] = 1, whence

N < Cpg(L) <Cpy(S)=7Z(H).

Thus either N =1 or N = Z(H). O

4. LOCAL SYSTEMS FOR SU,(q) AND Sp,,(¢) WITH n ODD

In this section, we fix an odd prime p, and a prime ¢ # p, so that we can avail ourselves of Q-adic
cohomology. We also fix a nontrivial additive character ¢ of F,. We denote by x2 the quadratic
character of F);. Given a power ¢ = p® of p, and a power ¢" of g, we define

(4.0.1) A= Ap, g = — Z (1) "D222) o ().

z€Fy
For k/F), a finite extension, we define

Ay = Adeg(k/Fp)
We denote by 1 the additive character of k given by

Y =9 o Traceyp,, .
In [KT2, §3], we introduced, for each integer n > 2 and each power g = p® of the odd prime p,
the 2-parameter local system
WQ—param (wa n, Q)

on A%/F, whose trace function at a point (s,t) € A%(k), k a finite extension of Fp, is the sum

(—1/AR) Y (@ 4 52t 4 ta?).
z€k
Here the normalizing factor Ay is the one built from Ap, 4~ as defined in the previous paragraph.
We proved there [KT2, Theorems 3.1, 6.8] that when both n and a := log,(q) are prime to
p, the geometric monodromy group Ggeom of Wa-param (¥, 1, q) was Spy,(¢) in one of its big Weil
representations (of degree ¢"), and that after extension of scalars from A2 /F,, to A?/F,, its arithmetic
monodromy group G, coincided with G geom.

Without these “prime to p” hypotheses, we have the following result.

Theorem 4.1. Forn > 2 and g = p® a power of the odd prime p, we have the following results.

(i) There exists a factorization na = AB and a factorization B = bj such that the geometric
monodromy group G geom 2-param Of Wa-param (¥, 1, q) is Spoa(p?) x Cy in one of its big Weil
representations.

(ii) Moreover, p’ is a power of q, say p’ = q" (so that j = ar,B = arb), and hence we have
inclusions of groups

Spaa(P®) % Ch = Spaa (™) 1 Cp = SPaap(q”) = SPoap-(@) = SPan(a)-
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Proof. To prove (i), we argue as follows. From [KT2, Theorems 4.1, 4.2, and the proof of Proposition
6.6], we see that there exist factorizations na = AB,B = bj and na = CD,D = dk such that
G geom,2-param 15 @ subgroup of the product group

(SP2a(p”) x Cb) % (PSpyc:(p”) x Ca)

which maps onto each factor.
We apply Goursat’s lemma. Note that AB = na > 2, so by Lemma 3.6(ii), the only quotient
groups of Spy 4 (p?) x Oy, are

Spos () % Cy, PSpyu(p®) x Cy, and quotients of C.

Their commutator subgroups are

Spaa(P”), PSpaa (@), {1}
respectively. Similarly, the only quotient groups of PSpyq(p?) x Cy are

PSpQC(pD) x Cg4, and quotients of Cy,

and their commutator subgroups are
D
PSpQC(p )7{1}

respectively.

We first rule out the case when Gyeom,2-param is the pullback by the quotient maps of the graph
of an isomorphism between a quotient of Cj, with a quotient of Cy. In this case, G jeom,2-param Would
contain the product group Spy4(p?) x PSpyc(p”). This group contains elements of trace zero in the
representation at hand, whereas every element of the arithmetic monodromy group Ggpith,2-param,
and a fortiori every element of Ggeom,2-param has nonzero trace, cf. [KT2, Proposition 6.6] and its
proof.

The only remaining possibility is that Ggeom,2-param is the graph of an isomorphism between
PSpy4(p?) x Cy and PSpye(p?) x Cy. Such an isomorphism induces an isomorphism of commutator
subgroups. Hence (A,B) = (C,D). Comparing cardinalities, we then infer that b = d. Thus
G geom,2-param 1 as asserted.

To prove (ii), we use Theorem 3.5, according to which p/ = pB/b is the lowest value attained as the
square absolute value of the trace of an element of Spy4(p?) x Cy in either big Weil representation.
On the other hand, from [KT2, Theorem 5.5], the group Grith,2-param is also finite. The quotient
Garith,2-param / G geom,2-param 15 then a finite quotient of Gal(E/Fp). Hence over some Fg/F,, we
have Ggeom,2-param = Garith,2-param- From [KT2, Lemma 5.2], exploiting an idea of van der Geer
and van der Flugt, we see that for any finite extension ky/Fg, all square absolute values of traces
are powers of ¢, and that for any point (s,t) € A?(kg), there is a finite extension k; /kq for which the
same point, now viewed in A?(k;) has trace of square absolute value ¢?*. In particular, the least
square absolute value attained is some strictly positive power ¢",r > 1 of gq. O

We now introduce a new local system W(,n,q) when n > 3 is odd, which we get by setting
t = 0 in Wa param (¢, n, ¢). Thus the trace function of W(v, n, q) at a point s € Al(k), k/F, a finite
extension, is
(—1/Ap) Y (@ F! 4 sat).
z€k

On Al/ [Fy2, we can break up this local system as the direct sum of g+ 1 local systems, by making
use of the ¢+ 1 multiplicative characters, including the trivial one, of order dividing ¢+ 1. We have

Wehng= @B GWnex).

x with xat1=1
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The trace function of G(¥,n,q, x) at a point s € Al(k), k/F,2 a finite extension, is

(—1/AR) > vu(x T+ sa)y(a).

zek
Here we write xj for x o Normy r ,, and adopt the usual convention that for x nontrivial, we have
q
Xxx(0) =0, but 1(0) = 1.
These G(v, n, ¢, ) are pairwise non-isomorphic, geometrically irreducible local systems on A!/ Fg2

(thanks to their descriptions as Fourier Transforms, cf. [KT1, Section 2]). The ranks of these local
Systems are

_aFl
rank(g<wun7Q71)) - q+ 1 ’
_H!
fank(g(%na% X)) - q+ 1 ' X ?é 1

Recall that for any n, and ¢ any power of the odd prime p, there are inclusions
SUn(q) < GUn(q) < Spa,(9),

Theorem 4.2. For n > 3 odd, and g = p® a power of the odd prime p, the geometric monodromy
group Ggeom,w for W(,n, q) is SU,(q) in its big Weil representation (of degree ¢").

Proof. Because W(1, n, q) is the pullback (by (s,t) — (s,0)) of the local system Wa_param (¥, 1, q),
its G geom,v is a subgroup of Ggeom,2-param- By Theorem 4.1, we have

Ggeom,?—param — Sp2n (Q)

Thus Ggeom,v is a subgroup of szn( ) under Which a big Weil representation of Spy,(g) breaks up

into ¢ + 1 pieces, one of rank % 71 and ¢ of rank £ By Theorem 3.4, we have inclusions

q+1
SUn(Q) < Ggeom,W < GUn(q)

The group GU,,(¢) has a quotient, via the determinant, of order g+ 1, which is prime to p. Because
Ggeom,w is the monodromy group of a local system on A'/F,, it has no nontrivial prime to p
quotients. Thus we have Ggeom,w = SUn(q). O

Theorem 4.3. For n > 3 odd and q an odd prime power, the geometric monodromy group
Ggeom,2-param Of Wo_param (¥, 1, q) is Spo,(q) in one of its big Weil representations (of degree ¢™).
Moreover, after extension of scalars to AQ/Fq, we have G geom,2-param = Garith,2-param -

Proof. Recall the inclusion

SUn(Q) = Ggeom,W < Ggeom,2—param - SPQA(pB) x Cy

and the relation n = Abr of Theorem 4.1. By Lemma 3.6(i), br < 2, but 2 { n, hence br = 1 and
(A,pB,b) = (n,q,1), yielding the first assertion.

Since G geom,2-param = SPan (¢) = SPan (P*), Garith,2-param 1S contained in Spy, (p®) % Cy, cf. [KT2,
proof of Lemma 6.7]. Thus the quotient Gy ith 2-param/Ggeom,2-param has order dividing a, so after
extension of scalars from A2/ [, to A? JFpa = A?/ F, we have G geom,2-param = Garith,2-param- O

Theorem 4.4. Forn > 3 odd and q a power of the odd prime p, the geometric monodromy group of
the local system G(¥,n,q,1) isPSU,(q), the image of SU,(q) in its unique irreducible representation
of dimension % +71 , with character (o . The geometric monodromy group of G(1,n,q, x2) (where x2
is the quadratic character) is PSU,(q), the image of SU,(q) in its unique orthogonal representation

of dimension % :11 , with character ((gy1y/2,.,n- For the remaining q—1 local systems G(Y,n,q, x) with
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X2 nontrivial, x94T = 1, their geometric monodromy groups are the images of SUy(q) in its ¢ — 1

non-selfdual irreducible representations of dimension qull.

Proof. Because Ggeom,w is SUp(q), the geometric monodromy groups in question are the images of
SU,(q) in various of its irreducible representations. Recall the fact [TZ1, Theorem 4.1] that SU,(q)

qn;I (with character (p,,) and ¢

(with character (j,, 1 < j < g), with exactly one of

has, up to equivalence, one irreducible representation of dimension
q"+1

q+1
the ¢ latter representations being self-dual (and necessarily orthogonal, as it has odd dimension).

Using this fact and looking at the dimensions, we get the asserted matching. O

irreducible representations of dimension %

5. ARITHMETIC MONODROMY GROUPS OF LOCAL SYSTEMS FOR SU,(q) WITH n ODD

Theorem 5.1. Let n > 3 be odd and q be a power of the odd prime p. After extension of scalars
to Al/Fq4, the arithmetic monodromy group Garithw 5 equal to Ggeomww = SUp(q). Furthermore,
the arithmetic monodromy group Garithy of each of the g + 1 local systems G(¢,n,q,x) is equal to
its geometric monodromy group Ggeom,y, as described in Theorem 4.4.

Proof. For k/IF‘qz, let Hj, denote the arithmetic monodromy group Gyritn)yv of the local system
W(ib,n,q) after extension of scalars to Al/k. By Theorem 4.3, Hy < Sp,,(q), and by Theorem
4.4, H, > SU,(q). As in the proof of Theorem 4.2, Hy, is a subgroup of Sps,,(¢) under which a big

Weil representation of Sp2n( ) breaks up into ¢ + 1 pieces ¥;, 0 < i < ¢, with ¥ of rank % and
Uy, ..., ¥, of rank 2=, By Theorem 3.4, we have Hj, < GU,(q).

Now we pay partlcular attention to the situation over F 4. The normalizing factor A := Ap, ¢
used for W is minus a choice of quadratic Gauss sum over [, so its square is either p, if p is 1 mod
4, or it is —p. Taken over Fg4, the normalizing factor AFq , is thus ¢2. On the other hand, according

to [KT1, Lemma 8.3], this same normalizing factor ¢* insures that each of the ¢ + 1 local systems
G(¢,n,q,x) on A'/F i has its Ggpith,y contained in SLiank G(v,m,q,x) (C)- Applying Lemma 3.2(v) to
H]Fq4, we conclude that HFq4 = SU,(q).

Once we have Ggritn v = SUp(q), it follows that each Ggpithy is the image of SU,(q). O

Theorem 5.2. Let n > 3 be odd and q be a power of the odd prime p. Denote by Garith,W/]Fq2 the
arithmetic monodromy group of the local system W(¢,n,q) after extension of scalars to Al/qu.
We have

Garithows,, = SUE(g) := {X € QU(W) | det(X) = 1} = SUW) x {~Lw) = SU,(q) x Cb.

Furthermore, the arithmetic monodromy groups Garith y of the local system G(¢,n,q, x) with it =
1 are described as follows.

(a) If ¢ = 3(mod4), Gamh 1 15 PSU,(q), the image of SU,(q) in its unique irreducible represen-
tation of dimension % J:l , with character (o . If ¢ = 1(mod4), Gamh]l is PSU,,(q) x Cy, the
image of SU,(q) x Cy in its irreducible representation of dimension 1

where v is the unique nontrivial irreducible character of Cs.
(b) Garith,x. (where x2 is the quadratic character) is the image of SUy(q) in its unique orthogonal

+1 , with character (o, @V,

representation of dimension % :11, with character Cg11)/2,n-
(c) For the remaining q — 1 characters x with x? nontrivial, x4 = 1, the groups Garith,y are the
images of SU%( ) x Cy in its ¢ — 1 non-selfdual irreducible representations of dimension ++11)

obtained by restricting down V¥;, 1 <i < q and i # (q¢+1)/2, from GU,(q).
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Proof. The key point here is that the normalizing factor for W over F 2, being a power of a quadratic
Gauss sum over the prime field, is ¢ when ¢ = 1( mod 4) and —g when ¢ = 3( mod 4). But according
to [KT1, Lemma 8.3], the normalizing factors for the various G(4,n,q, x) on A'/F, which force
their Gyrith,y to lie in SL are not all the same: some are ¢ and some are —q. [The exact recipe is
that for y of order m dividing ¢ + 1, one should use —(—1)@*1/™¢ as the normalizing factor.]
Since SUy (q) is perfect, this implies that G;p /F 2 contains SU,,(q) strictly. On the other hand,
SU,(q) is Cr‘a”-tm,\;/pq47 as proven above, hence SU,,(¢) has index at most 2 in Garith’W/]FqZ < GU,(q).

As n is odd, we also observe that det(z(¢71)/2) = —1, where z is the generator of Z(GU,(q))
introduced in the proof of Lemma 3.2; in particular, z2(971/2 = —1y,. Hence

Garithw/k s = SUp (@) = {X € QUn(q) | det(X) = £1} = SUn(q) x (2117/2) 28U, () x O,

and Gyprith,y is the image of SUTiL(q) under some V¥;. If y = x2, we know that ¥, is of dimension
(¢" +1)/(¢ + 1) and self-dual, whence i = (¢ + 1)/2 and ¥;(2(@+D/2) = 1y, by (3.2.1), yielding
(b). Suppose x = 1. Then i = 0 by dimension comparison, and Wo(z(@+1)/2) = (—1)@t)/2. 1}, by
(3.2.1), leading to (a). For the remaining ¢ = 1 characters x with x? # 1, we arrive at (c). O

With this information in hand, we can prove Conjecture 9.2 of [KT1].

Theorem 5.3. Let n > 3 be odd and q be a power of the odd prime p. For each multiplicative
character x of ]F';2 of order denoted m,, dividing q + 1, define

B, = —(=1)la+D/mxg,

Denote by H, the local system on Al/qu whose trace function at a point s € K, K/Fp2 a finite
extension, 1S
PR (_1/(Bx)deg(K/Fq2)) Z Wi (2D 4 gy ().
zeK
[Thus H, is the constant field twist of G(1,n,q,x) by the unique choice of sign £1 for which
Garith sy, < SLlrankw, (C), cf. [KT1, Lemma 8.3].] Then Garithg, = Ggeom, 15 the image of
SU,(q) in the given representation.

Proof. Pick a faithful character A : ,uq+1(IF;2) = pg+1(C*). The indexing of the small Weil repre-
sentations ¥; of GU,(q) is by the powers of A. For each power A’ of A, the multiplicative character
xi of IFqXQ given by

Xi : @ A(z77h)
has order dividing ¢ + 1, and we get all the ¢ + 1 such characters this way. In view of the previous
result, what we must show is that the scalar —1y € SUE(g) acts trivially on each H,. We know
this element acts trivially after quadratic extension of the ground field from Fg2 to F4, so it must
be attained by a Frobenius in a odd degree extension of F 2. In the representation G(1,n, ¢, x), we
have '

i(—1w) = €g(=1)" - 1y,

where ¥; : SUZ(q) — GL(V;), and

g = (—1)7V/2
the sign ¢; being 1 or —1 depending on whether —1 is a square or not in the group jg41(F2), cf.
(3.2.1).

Thus ¢, = 1 if ¢ = 3(mod 4), and ¢, = —1 if ¢ = 1(mod 4). Now the clearing factor used for W,

and hence also for G(¢¥,n, q, x), was —e,q, whereas the clearing factor for #, is —(—1)(q+1)/qu. So
the change of clearing factor for H, is e,(—1)@+1)/mx,
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Consider the case x =1, i.e. m, = 1. By dimension comparison, we see that the representation
on G(¢,n,q,1) is Wy, i.e. i = 0. Hence the action of —1y in the representation Hy is

(€)*(=1)T1 - 1y, = 1y,

Now assume that xy # 1. Then i # 0, and dimV; = (¢" + 1)/(¢ + 1) is odd. As we mentioned
above, the action of —1y on H, has determinant 1. As the central involution —1y of SUE(q) acts
as 7y - 1y, for some v = £1, the oddness of dim V; implies that v = 1.

Thus in either case, —1y acts trivially on H,, as stated. O

6. INTRODUCTION TO THE n EVEN CASE

The key insight in the n odd case was to start with the 2-parameter local system

WQ—param (¢7 n, Q)

on A?/F, whose trace function at a point (s,t) € A%(k), k a finite extension of F,, was the sum
(~1/40) 3 (@ 4 52t 4 ta?),
z€k

and then study the one-parameter local system obtained by setting ¢ = 0.

In the n even case, it is precisely the “same” one parameter local system, the one obtained by
setting ¢ = 0 in Wha_param (¥, 1, @), that is the key object of study. Because n is even, the gcd of
q+ 1 and ¢" + 1 is just 2, so this one parameter system only breaks up into two visible pieces.
Each of these two pieces itself turns out to be a suitable Kummer pullback to Al of a particular
hypergeometric sheaf on G,,. It is this fact, and the group-theoretic analysis it makes possible, that
leads to our results in this n even case.

The main results about monodromy groups in the n even case are Theorems 10.3, 10.4, 10.6, and
10.7.

7. A SPECIAL CLASS OF HYPERGEOMETRIC SHEAVES

We fix an odd prime p, a prime ¢ # p, and two integers A > B > 0 with gcd(A,B) = 1 and AB

prime to p. We also fix a nontrivial additive character v : F,, — @X. For K/F), a finite extension,
we denote by 1k the additive character of K given by z — ¢ (Traceg p, ().
We denote by H (v, Antrivs Bniriv) the hypergeometric sheaf

H(% Ant’riv; Bnt’riv) =
Hyp(1, all nontrivial characters of order dividing A, all nontrivial characters of order dividing B).

Lemma 7.1. Up to a constant field twist, H(1, Antriv, Brtriv) is the lisse sheaf on Gy, /F, whose
trace function at u € G, (K), K a finite extension of Fp, is

U — Z Y (Az — By).
z,y€K with yB=zA/u
Proof. By definition, H (v, Aptrivs Bririv) is the multiplicative ! convolution of
KI(, Antriv) = H(, Antrivs Lntriv)
with the pullback by multiplicative inversion of

Kl (@7 Bntriv) = H(%, Bntriva 1ntriv)-
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As explained in [Ka-RL-T-Co2, Lemma 1.2], up to a constant field twist, KI(1), Aptriv) has a descent
to G, /F, whose trace function is given at s € G,,,(K), K a finite extension of F,, by

S — Z V(=2 /s + Az).
reK

If B =1, there is nothing more to prove. Suppose now B > 1.
Then the pullback by multiplicative inversion of Kl(v), Byiriv) has, up to a constant field twist, a
descent to Gy, /F, whose trace function is given at t € G,,(K), K a finite extension of F,, by

te = dr(ty® —By).
yeK
Their multiplicative convolution then has trace function at u € G,,(K) given by

— Y Y uk(—aMs+Ar) S wk(ty® — By) =

s, te KX T€K yeK
st=mu

(solving for 1/s = t/u)
—— Y vr(Az—By) > vx(ty® —at/u) =
z,yeK te KX
(the inner sum may as well be over all ¢ € K, since for ¢ = 0 the sum }, - x ¥k (Az—By) vanishes)
= —(#K) > Y (Az — By),
z,y€K with yB=zA/u
as asserted. g

Corollary 7.2. The pullback [A]*/HWJ, Antrivs Bntriv) of H(¢7Antriv7 Bntriv) by x A has, up to a
constant field twist, a descent to (the restriction to Gy, /F, of ) the lisse sheaf

G(A,B)
on AI/FP whose trace function at t € K s given by
ter = hr(—B2A +tAZP),
z€EK

Proof. After pullback, write u = t*. Then the summation range 4 = 2 /u becomes yB = (z/t)”.
As A, B are relatively prime, 48 = (2/t)" means precisely that y = 2*, z/t = 2B for a unique
ze K. ]

Lemma 7.3. The lisse sheaf G(A, B) is geometrically isomorphic to a multiplicative translate of the
lisse sheaf
Go(A, B)
on Al/F, whose trace function at t € K is given by
t— — Z wK(ZA + tZB).
zeK

Proof. Geometrically, take the A™ root of —B, say fA = —B, and make the substitution z + z/f.

The trace sum becomes
=) (2P + (tA/B°)28).
zeK
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Lemma 7.4. The lisse sheaves G(A,B) and Go(A,B) on A'/F, are geometrically irreducible.

Proof. Since multiplicative translation does not affect geometric irreducibility, it suffices to treat
Go(A,B). Tts trace function is

= (PR = =D uk(tu) > dk(P),
zeK ueK 2€K,2B=u

which is to say that Go(A, B) is the Fourier transform FTy of [B],Ly.a). This FT' is geometrically
irreducible, because the input [B]«Ly.a) is geometrically irreducible, indeed I(co)-irreducible, be-
cause at oo it is totally wild with all of its B slopes equal to A/B, a fraction with exact denominator
B, cf. [Ka-GKM, 1.14, 1.14.1].

Here is another proof of this result. It is equivalent to prove that [A]*H (1, Antriv, Bntriv) 18
geometrically irreducible. By Frobenius reciprocity, we have

<[A]*H(1/f, Antriva Bntriv)v [A]*H(l/f, Antriva Bntriv)) -
= <H(¢7 Ant?"im Bntriv)7 [A]*[A]*H(lb, Antriv; Bnt’riv)>~

But
[A]*[A]*H(@b, Antm’v, Bntm’v) = @ H(% Antm’v, Bntm’v) ® *Cx-
xixA=1
Of these summands, only the y = 1 summand is isomorphic to H (1, Antriv, Bniriv), all the others
have the wrong “downstairs” characters (precisely because B is relatively prime to A). O

Lemma 7.5. The wild part of the I(c0)-representation of G(A,B) (or of Go(A, B)) is I(c0)-irreducible,
of dimension A — B, with all slopes ﬁ.

Proof. This wild part is the pullback by [A] of the wild part of H(v, Antriv, Butriv), which has rank

A — B and all slopes 5. Because ged(A, A — B) = 1, its [A] pullback, which has dimension A — B,

with all slopes A%AB, is itself I(oo)-irreducible. O
8. A SECOND SPECIAL CLASS OF HYPERGEOMETRIC SHEAVES

In this section, we continue with p, 1, A, B as in the previous section; A > B > 0 are integers with
gcd(A,B) = 1 and AB prime to p, but now assume in addittion that A is odd. We denote by

H(Aau, Baxz)
the hypergeometric sheaf
Hyp(tp, all x with x* =1, all p with pB = o).

Lemma 8.1. Up to a constant field twist, H(Aau, Bix2) is the lisse sheaf on Gy, /F, whose trace
function at u € G, (K), K a finite extension of Fp, is

u—— Y r(Az—By)xa(y).
z,yc K, xA=uyB
Proof. By definition, H (), Aay, Bix2) is the multiplicative ! convolution of
KU, Aanr)
with the pullback by multiplicative inversion of
Ki(h, Bixa).
We have geometric isomorphisms

KU, Aan) = [Al«Ly(az),
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ICZ(E» B*X2) = [B]*('Cw(—Bx) ® ‘ng(x))

The multiplicative convolution of [A]4Lya,) With the pullback by multiplicative inversion of
[Bli(Ly(—Bz) ® Ly, (z)) thus has trace function at u € G,,(K) given by

- ¥ S owk(Az) Y vk(-By)xaly) =

ste KX st=u  zeK,xh=s yeK,yB=1/t

=— Y Yx(Az—By)xa(y).

z,ye K, xh=uyB
[We do not need to specify that z,y are nonzero, since x2(y) vanishes unless y # 0, and once y # 0,
the equation 2 = uy® forces = # 0 as well.] O
Exactly as in the previous section, we get the following results.

Corollary 8.2. The pullback [A*H(Aau, Bix2) of H(Aur, Bix2) by x +— ™ has, up to a constant
field twist, a descent to (the restriction to G, /F, of) the lisse sheaf
G(Aar, Bixa)
on Al /T, whose trace function at t € K is given by
t— — Z Vi (—B2™ + tAZB)xa(2).
z€EK

Lemma 8.3. The lisse sheaf G(Aq, Bix2) is geometrically isomorphic to a multiplicative translate
of the lisse sheaf

Go(Aaut; Bix2)
on Al/IFp whose trace function at t € K is given by

tr = Y (2P +2%)xa(2).

zeK

Lemma 8.4. The lisse sheaves G(Aay, Bix2) and Go(Aau, Bix2) on Al/F, are geometrically irre-
ducible.

Lemma 8.5. The wild part of the I(co)-representation of G(Aa, Bix2) (or of Go(Aau, Bxx2)) is
I(c0)-irreducible, of dimension A — B, with all slopes ﬁ.

9. LOCAL SYSTEMS FOR Spy,(q)

In this section, with the odd prime p and its 1 fixed, we denote by a := ap, the negative of the
Gauss sum
o= Ap, g = — Z ¥(22)x2(2)
z€F)
cf. (4.0.1). For K/, a finite extension, we define
=— > Ur(22)x2x(2).
ze KX
One knows (Hasse-Davenport relation) that

ok = (o, )80/ E).

We fix also an even integer 2n > 2 and

q := a power of p, A := , B:=—.
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We now work with the two local systems on A!/F,,

geven(wa 2n7 q) = gO(Aa B) K a deg7 godd(d}a 2”, Q) = gO(Aalb B*X2) Qa dega
and their direct sum

W(?/), 2n, Q) = geven(d)v 2n, Q) D godd(wa 2n, Q)a
whose trace function at s € A!(K), K/F, a finite extension, is given by

s— (—1/ak) Z 1,/1K(:Bq2n+1 + sz,
zeK

These local systems are the pullbacks to the line £ = 0 on the local systems of the same name in
[KT2, §3] on A?/F, with coordinates (s,t). To avoid confusion, we will denote by

geven,Q—param (7/}7 2n, Q)7 godd,2—param(¢7 2n, Q)7 WQ—param (¢7 2n, Q)

the two-parameter local systems. Thus the trace function of Wa_param (¥, 21, q) at a point (s,t) €
A?%(K), K/F, a finite extension, is given by
(5,8) = (—1fak) Y vr(a® + + s2T 4 ta?).
zeK
This pullback relation gives us the following inclusions.

Lemma 9.1. We have the following inclusions.
(i) For the local systems Geven (1,21, q) and Geven,2-param (¥, 211, q), their geometric and arithmetic
monodromy groups satisfy the inclusions
Ggeom,even < Ggeom,even,Q—param7 Gam’th,even < Garith,even,Z-param-
(i) For the local systems Goqd (v, 2n,q) and Godd 2-param (¥, 21, q), their geometric and arithmetic
monodromy groups satisfy the inclusions
Ggeom,odd < Ggeom,odd,Q—param7 Garith,odd < Garith,odd,Q—param-
(iii) For the local systems W(1,2n,q) and Wa-param (¢, 21, q), their geometric and arithmetic mon-
odromy groups satisfy the inclusions

Ggeom,sum < Ggeom,sum,Q—param; Garith,sum < Garith,sum,Z—param'

Lemma 9.2. For ¢, := (_1)(1)—1)/2’ the local systems Geyen (¥, 21,q), and Goaq (¥, 2n,q) have all
their Frobenius traces in the quadratic field Q(,/€p).

Proof. This is proved in [KT2, Lemma 6.1] for the two parameter versions. O
Lemma 9.3. Suppose ¢ = 1(mod4). Then we have the following results about our local systems on
Al/F,.

(i) Let k/F, be a finite extension in which —1 is a square. After pullback to A'/k, the arithmetic

monodromy group Garith.even for Geven (¥, 21, q) lies in Sp(q2n71)/2(c).
(ii) The arithmetic monodromy group Garithodd for Goad (¥, 2n, q) lies in SO (g2n 1y /2(C).

Proof. This is proved in [KT2, Lemma 6.2] for the two parameter versions. U

Lemma 9.4. We have the following results results about our local systems on Al/Fp.

(i) The arithmetic monodromy group Garith.even fOT Geven (¥, 21, q) lies in SL(qzn_l)/Q(C).
(ii) The arithmetic monodromy group Garith.odd for Goad(¥,2n, q) lies in SLgn1y/2(C).
(iii) The arithmetic monodromy group Garithsum for W(1,2n, q) lies in SLgan (C).

Proof. This is proved in [KT2, Lemma 6.3] for the two parameter versions. O
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Corollary 9.5. The geometric and arithmetic monodromy groups of the local systems Geyen (¢, 210, q)
on Al and Geven,2-param (¢, 21, q) on A2/Fp are irreducible subgroups of SL(qzn,l)/Q(C). The geomet-
ric and arithmetic monodromy groups of the local systems Goada (¥, 2n, q) on Al and Goad 2-param (¥, 21, @)
on A%/F, are irreducible subgroups of SLg2n41)/2(C).

Proof. Because we have the inclusion Ggeom < Garith, it suffices to prove the irreducibility for the
geometric monodromy groups. For the local systems on A!, this was proven in Lemmas 7.4 and 8.4.
Because these local systems on A! /Fp, are pullbacks, by t — 0, of the local systems on A2, these
latter local systems on A? are a fortiori geometrically irreducible. 0

From van der Geer-van der Vlugt [vdG-vdV], we get

Theorem 9.6. The groups Gyeom and Garitn, for W(1,2n,q) on Al/F,, are finite, as are the groups
Ggeom and Gari, for each of its direct summands Goaa (1, 2n,q) and Geven (¥, 21, q).

Proof. This is proved in [KT2, Theorem 5.5] for the two parameter versions. ]

Lemma 9.7. The order of Ggeom for Geven(¥, 21, q) is divisible by both (¢** —1)/2 and (¢*™ —q)/2.
The order of Ggeom for Goad (¥, 2n,q) is divisible by both (¢*" +1)/2 and (¢*" — q)/2.

Proof. The divisibilites are instances of the fact that for a finite group, the degree of an irreducible
representation divides the order of the group, applied first to Ggeom and its given representation,
and second to the image in Ggeom of 1(00) acting on the wild part of the I(oco) representation. [

Lemma 9.8. The image of the wild inertia group P(c0) in the geometric monodromy group G geom
of each of Geven (¥, 2n,q) and Goqq (¥, 2n,q) is a p-group, whose action on the wild part of the given
representation is the direct sum of (¢*"~' —1)/2 pairwise inequivalent irreducible representations of
dimension q.

Proof. In each case, the wild part of the I(oco)-representation is irreducible (by Lemma 7.5 and
Lemma 8.5), of dimension (¢?" — q)/2. So the assertion results from [Ka-GKM, 1.14 (3) and
1.14.1]. O

Corollary 9.9. The geometric monodromy group Ggeomsum 0f the local system W(1),2n,q) contains
a p-group that admits a representation which is the direct sum of (¢*"~' —1)/2 pairwise inequivalent
wrreducible representations of dimension q.

Proof. We will show that the image P(00)sum of P(00) in Ggeomsum is such a group. The group

Ggeom,sum is a subgroup of the product Ggeom,even X Ggeom,0dd Which maps onto each factor. Viewing

all these groups as quotients of m; (AIIF—), we see that P(00)sum maps onto the image of P(00) in, say,
r

the first factor Ggeom,even- Via this quotient, we see from Lemma 9.8 that P(c0)sum admits a repre-
sentation which is the direct sum of (¢?"~! — 1)/2 pairwise inequivalent irreducible representations
of dimension gq. O

Corollary 9.10. Fach of the arithmetic and geometric monodromy groups for each of the six local
systems

godd <¢; 2n7 q); geven (1/}7 2n7 Q)a W(,l/}7 2n7 Q)7

godd,?—param (’(/}, 2”7 Q)a geven,Z-param(dja 2’/L, Q)a WZ-param(Q;Z)a 2TL, Q)
contain a p-group that admits an irreducible representation of dimension q.

Proof. By Lemma 9.8 and Corollary 9.9, the assertion holds for the one-parameter local systems.
The assertion for the two-parameter local systems results from the one-parameter case and the
inclusions of Lemma 9.1. g
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Corollary 9.11. The geometric monodromy group G geom,even,2-param fOT Geven,2-param (¢, 21, q) has
order divisible by both (¢*"—1)/2 and (¢*"—q)/2. The geometric monodromy group G geom,0dd 2-param
for Godd 2-param (¥, 21, q) has order divisible by both (¢®" +1)/2 and (¢** — q)/2.

Proof. Immediate from Lemma 9.7 and the inclusions of Lemma 9.1. O

Theorem 9.12. Write ¢ = p*. Then we have the following results.

(i) The arithmetic monodromy group Garith.even fOT Geven (¥, 21, q) lies in Spy,, (p), the latter group
viewed inside SLg2n_1)/2(C) by one of its even Weil representations.

(ii) The arithmetic monodromy group Garithodd for Godd(¥,2n,q) lies in PSpy,,(p), the latter
group viewed inside SL(qan)/Q(C) by one of its odd Weil representations.

Proof. In the two parameter versions, the named groups contain SLa(p?*™) (respectively PSLa(p?™™)),
so the asserted inclusions for them result from [KT2, Theorem 4.1]. Our local systems are pullbacks
of these by t — 0. U

Theorem 9.13. Suppose that (q,2n) # (3,2). Then each of the arithmetic Ggrith odd and geometric
G geom,oda monodromy groups for Geaa (v, 2n, q) is (separately) of the form PSpya(p?) x Cy for some
factorization 2an = AB and some divisor b of B.

Proof. This is part (ii) of [KT2, Theorem 4.7]. O

Theorem 9.14. Write ¢ = p*. We have the following results.

(i) For the local system Geven2-param (¥, 21, q), each of its geometric G geom,even,2-param and arith-
metic Garith,even,2-param Mmonodromy groups is (separately) of the form Spya(p?) x Cy for some
factorization 2an = AB and some p-power divisor b of B.

(ii) For the local system Godd 2-param(¥,2n,q), each of its geometric G geom,o0dd,2-param and arith-
metic Garith,odd,2-param monodromy groups is (separately) of the form PSps 4 (pP) x Cy for
some factorization 2an = AB and some p-power divisor b of B.

Proof. This is proved inside the proof of [KT2, Corollary 6.5]. O

Theorem 9.15. Write ¢ = p*. For the local system Wa param (¢, 2n,q), we have the following
results.

(i) Its geometric monodromy group G geom,sum,2-param @5 1somorphic to the diagonal image of
Spoa(p?) x Cp in Spay,(p) X PSpay,(p) for some factorization 2an = AB and some p-power
divisor b of B.

(ii) Its arithmetic monodromy group Garithsum 2-param 1S isomorphic to the diagonal image of
Spoa(p?) x Cp in Spyy,(P) X PSpPay,(p) for some factorization 2an = AB and some p-power
divisor b of B.

Proof. Let us begin with the geometric group. From Theorem 9.14, we get that G geom sum,2-param iS
a subgroup of a product group

(Sp2a(P”) % Cb) x (PSpac(p”) % Ca),

for some factorizations 2an = AB, 2an = C' D, with b some p-power divisor of B and d some p-power
divisor of D, which maps onto each factor. By Goursat’s lemma, G geom,sum,2-param is the inverse
image of the graph of an isomorphism of some quotient of the first factor with some quotient of the
second factor. The only quotients of the first factor are itself, PSpy 4 (p”) x Cj, and the quotients of
Cp. The only quotients of the second factor are itself and quotients of Cj.

There are no isomorphisms between any Sps 4(p?) x Cj, and any PSpy(p”) x Cy, because their
derived groups, namely Spy4(p?) and PSpyq(pP), are not isomorphic.
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There is an isomorphism between PSps 4 (p?) x Cj, and PSpy(p”) x Cy precisely when (A, B) =
(C,D) and b = d.

The are no isomorphisms of any nonabelian quotient of one factor with an abelian quotient of
the other.

The only remaining possibilities are isomorphisms between quotients of Cj, with quotients of Cj.
But in this case, the group G gyeom,sum,2-param Would contain the entire product

SP2A(pB) X PSPQC(I?D),

and this is ruled out by the trace zero argument of [KT2, Proposition 6.6].
Repeat the same argument for the arithmetic group Garith sum,2-param- O

Lemma 9.16. At the point s = —1 € A(F,), we have
| Trace(Frob_1 g, [W(¥,2n,q))* = q.
Moreover, for any finite extension K/F,, and any s € AY(K), we have
\Trauce(FTOb&K]VV(@b,271,q))]2 e{l,q,¢%...,¢"}.

Proof. From [KT2, §5], with ¢ set to 0, we see that, for K/F, a finite extension, and s € A}(K),
this square absolute value
| Trace(Frobs x| W(1, 2n, q))|?

is the number of zeroes in K of the polynomial

4

n 2n 2n+1
s 2t

1
+ x.

When K is a finite extension of F,, the set of its zeroes in K is an F, vector space (under addition
and scalar multiplication by Fy) of dimension < 4n. With s = —1, this becomes the polynomial

+ San—lqun

4n 2n+1 2n—1
! —zt —2T +u

Every x € [F, is a zero of this polynomial. O
In fact, we have the following result.
Lemma 9.17. Let K C F, be a subfield. At the point s = —1 € A1(K), we have
|Trace(Frob_1 x|W(,2n,q))|* = #K.
In particular,
|Trace(F7“ob_17Fp\W(1/J, 2n, q))\2 =p.

Proof. As noted at the beginning of this section, the local system W(#,2n,q) on AI/IFp has trace
function at s € A'(K), K/F, a finite extension, given by

s— (—1/ak) Z T,ZJK(:Eq2n+1 + sz,
zeK
Taking s = —1, we get
Trace(Frobyx W, 2n,q)) = (~1/ax) Y vx (@’ —att).
rzeK
When K is a subfield of F,, for each z € K we have

2n
pOTL gl 2

)

so that the sum

> k(@™ =) = 3 gi(0) = #K.

zeK rzeK



LOCAL SYSTEMS AND FINITE UNITARY AND SYMPLECTIC GROUPS 23

Thus for K a subfield of F,
TI'aCe(FTOb,17K|W(1/}, 2”7 q)) = (*1/QK)#K,
whose square absolute value is indeed # K. O

Corollary 9.18. For the 2-parameter local system Wa_param (¥, 21, q), we have the following results.
(i) At the point (s,t) = (—1,0) € A%(F,), we have

\Tface(FTOb(fl,o),qu|W2—param(¢7 2n, Q))P =q.
Moreover, for any finite extension K/F,, and any (s,t) € A%(K), we have
\Trace(Frob(S’t)vK|W2_param(¢,2n,q))\2 e{l,q,¢% ..., ¢"}.
(ii) Let K C F, be a subfield. At the point (s,t) = (—1,0) € A*(K), we have
[ Trace(Frob(_1 gy 5| Wa-param (¥, 20, @))|* = #K.

In particular,
’Trace(FrOb(—LO),le|W2—param(7/’> 2n, Q))P =p

Proof. The statements about the point (—1,0) are the statements about the point s = —1 in Lemmas
9.16 and 9.17. The second assertion of (i) is the fact [KT2, §5] that the square absolute value in
question is the number of zeroes in K of the polynomial

1 2n—1

2n+1 2n 2n 2n—
+ 2t 29 5T + .

4n 2n
A

10. IDENTIFICATIONS OF MONODROMY GROUPS WITH Spy,,(q)

Recall, see [Zs], that if a > 2 and m > 3, then o™ — 1 admits a primitive prime divisor ppd(a,m),
that is, a prime divisor that does not divide H?:ll(ai -1).

Theorem 10.1. Let A, B,a,n,b > 1 be some integers with b|B and AB = 2an. Suppose that
H = Spy4(p?) % Cyp < Spyy,(p) as in §3 and that H satisfies the following conditions:
(i) If n > 2 then |H| is divisible by a primitive prime divisor {2 = ppd(p, (2n — 1)a).
(ii) Ifn =1, then a p-subgroup of H is acting irreducibly on a complex space of dimension q := p®.
(iii) If w denotes one of the two big Weil characters (of degree p*™) of Spyan(p), then |w(h)|? is a
power of q for any h € H.

Then (A, B,b) = (2n,a, 1), that is, H = Spy,, (p®).

Proof. First we note by Theorem 3.5 that pB/® = |w(g)|? for some g € H. Hence condition (iii)
implies that

(10.1.1) B = bas

for some integer s > 1.

(a) Consider the case n > 2. Note that fo > (2n — 1)a + 1 by the choice of ¢5. On the other
hand, any odd prime divisor of b divides AB = 2an and so is at most an < (2n — 1)a. Hence #5 1 b,
whence £ divides |Sps4(p?)|. Thus there is some 1 < j < A such that ¢3 divides p?27 — 1, whence

(10.1.2) (2n — 1)a divides 2Bj

again by the choice of /5.
Suppose 1 < j < A/2. Then 2Bj < AB = 2an. As 2(2n — 1)a > 2an, (10.1.2) implies that
2Bj = (2n—1)a = AB — a, and so a = B(A — 2j) is divisible by B.
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Suppose A/2 < j < A. Then
(2n —1)a < 2an = AB < 2Bj < 2AB = 4an < 3(2n — 1)a.

Now (10.1.2) implies that 2Bj = 2(2n — 1)a = 2AB — 2a, and so a = B(A — j) is again divisible by
B. Thus we have shown that Bla in either case. Now using (10.1.1) we conclude that b = s = 1,
B =a, and A = 2n as stated.

(b) Now assume that n = 1. Then (10.1.1) implies that Abs = 2. If furthermore A = 2, then
again b = s = 1 and we are done. So assume that A = 1, i.e. H = Spy(p??) x Cy, with bs = 2. In
this case, Sylow p-subgroups of H are abelian, contradicting (ii). O

Lemma 10.2. Let ¢ = p®, and let G be such that G := Spun(q) < G < SPaan(p) and |w(g)|> = p
for some g € G, where w is one of the big Weil representation of degree P? of Spyun(p). Then
G = Nsp,,, () (G) = SPan(a) % Co.

Proof. Note that Ng, (,)(G) = (G,0), where o is the automorphism of G induced by the map
z +— o, of order a. It follows that G = (G, ¢7) for some jla. By Theorem 3.5, |w(h)|? is always a
power of p’ for any h € G. Hence we conclude that j = 1. O

Theorem 10.3. Let g = p®. For the local system Wa_param (¥, 21, q), we have the following results.

(i) The geometric monodromy group G geom sum,2-param 5 1somorphic to Spy,(q).
ii) For any finite extension , the arithmetic monodromy group Garith sum.2-param 1S 180MoT-
i) F te extension K/Fy, th ithmeti d G sum,2-p IS 1
phic to Spy,(q).
(iii) If K =), then the arithmetic monodromy group Garith sum 2-param 5 isomorphic to Spy,(q) x
C,.

Proof. (a) First we consider H = Ggeom,sum,2-param- By Theorem 9.15, H has the shape specified in
Theorem 10.1. Note that H projects onto (in fact, isomorphic to) G geom,even,2-param- Therefore, by
Corollaries 9.10 and 9.11, H satisfies conditions (i) and (ii) of Theorem 10.1. Condition 10.1(iii) is
fulfilled by Corollary 9.18. Hence, we conclude by Theorem 10.1 that G geom sum,2-param = SP4y,(q)-

b) If K is any finite extension of F,, then the same arguments as in (a), but applied to
q

Garith,sum,2—param7 show that~Garith,sum,2—param = Sp4n(Q)'
Finally, let K =F, and H = Ggyith sum 2-param- By Theorem 9.15 and by (i) we know that

Sp4n(‘]) = Ggeom,sum,2—param < H < Sp4(m (p)
Applying Corollaries 9.18 and Lemma 10.2, we conclude that H = Sp,, (¢q) x C,. O

Theorem 10.4. Let ¢ = p*. For the local system Geyven 2-param (¥, 21, q), we have the following
results.

(i) The geometric monodromy group G geom,even,2-param 1S isomorphic to Spy,(q).
(ii) For any finite extension K/F,, the arithmetic monodromy group Garith.even,2-param 1S isomor-
phic to Spy,(q).
(ili) If K =Ty, then the arithmetic monodromy group Garith even,2-param 1S 1somorphic to Spy,(q) x
Cs.
For the local system Godd 2-param (¥, 210, q), we have the following results.

(i) The geometric monodromy group G geom odd 2-param 15 isomorphic to PSpy, (q).
(ii) For any finite extension K/Fy, the arithmetic monodromy group G arith odd,2-param 5 isomorphic
to PSp4n(Q)‘
(iii) If K =T, then the arithmetic monodromy group Garith,odd,2-param 15 isomorphic to PSpy, (q) x
C,.
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Proof. Note that each of the arithmetic and geometric monodromy groups of each of the two
local systems Geven,2-param (¥, 21, q) and Godd 2-param (¥, 27, q) is a quotient of the corresponding
group for the local system W param (¢, 2n,q). Also, observe that Spy,(q) acts faithfully on the
even-dimensional Weil representations of degree (¢>® — 1)/2, and acts with kernel Cy on the odd-
dimensional Weil representations of degree (¢?" + 1)/2. Now using Corollary 7.4 and Theorem
103(1)7 we conclude that Ggeom,even,Q—param = Sp4n(Q) and Ggeom,odd,Q—param = PSp4n (Q)

The same arguments, but now using Theorem 10.3(ii) show that Ggrith even,2-param = SPy4,, (¢) and
Garith,odd,2-param = PSpy, (q) for any finite extension K /F.

In the case K = I, we use in addition the fact that the arithmetic group contains the geometric
group as a normal subgroup and Theorem 10.3(iii) to see that G gy ith even,2-param = SPyy(q) ¥ Cq and

Garith,odd,Q—param = PSp4n(Q) A Ca' U

Theorem 10.5. Suppose that ¢ = p* as before and that a subgroup G of H = Spy,,(q) satisfies the
following conditions:

(i) G is irreducible on a Weil module V of dimension (¢°" +1)/2 of H.
(ii) If n > 2 then |G| is divisible by a primitive prime divisor £2 = ppd(p, (2n — 1)a).
(iii) If n =1, then a p-subgroup of G is acting irreducibly on a complex space of dimension p®.

Then G = H = Spy,(q).

Proof. (a) First we consider the case (n,¢) = (1,3). Then (i) implies that 5 divides |G|. Furthermore,
Sylow 3-subgroups of G' are non-abelian by (iii), whence 3% divides |G|. Since no maximal subgroup
of H = Sp,(3) can have order divisible by 32 - 5, see [Atlas], we conclude that G = H.

From now on, we may assume that (n,q) # (1, 3). Hence, p*® — 1 admits a large primitive prime
divisor £ = ppd(p, 4an) by [F], and we choose such an ¢ to maximize the /-part Q of pi®"—1 = ¢*"—1.
By (i), |G| is divisible by @, and we can apply [KT2, Theorem 4.6] (with d = 4n and f = a) to
G. Let L := OY(G). Note that L % Cg, as otherwise by Ito’s theorem [Is, (6.15)] any irreducible
complex character of G has degree coprime to ¢, violating (i). In what follows we will consider the
possibilities for L as listed in [KT2, Theorem 4.6]. We also denote by dc(L) the smallest degree
> 1 of complex irreducible representations of L, and freely use lower bounds for d¢(L) as listed in
[TZ1].

(b) L 2 SLy,/;(¢?) for some j|4n with 4n/j > 3. Then
de(L) > U7 = ¢ > (¢ +1)/2 = dim(V).

It follows that the quasisimple group L acts trivially on V. But in this case G cannot be irreducible
on V as G/L is an {'-group.

(¢) L = SUy,,;(¢?) for some j|4n with 4n/j > 3 being odd; in particular, 4|j and n > 3. Recall
that L <G < GLy4y(q). Now part (e) of the proof of [KT2, Theorem 4.7] (with N = 2an > 6) shows
that no such subgroup G can be irreducible on V.

d) L=Qr

4n/j(qj) with j|2n and j < n. If, moreover, j < n/2, then

d([:(L) > qj(4n/]—3) — q4n—3j > q2n > dlm(V),

whence L acts trivially on V' and we arrive at a contradiction as in (b). If j = 2n/3 (and so 3|n),
then L is a cover of PSU4((]2"/3)7 and so

8n/3 _ 2n
q I _¢"+1
= e >y = dim(V),

de (L)
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and we again arrive at a contradiction. In the remaining case we have j = n, L = PSLa(¢?*"), and
dc(L) = (¢*™ + 1)/2. This possibility cannot however occur, since L < H = Sp,,,(¢) has a faithful
representation of degree (¢%" — 1)/2.

(e) L = Sp(W;) = Spyy; (¢7) for some j|2n (and the natural module W; = F;l?/] for L is obtained
from the natural module Fg” of H by base change). Arguing as in part (d) of the proof of [KT2,
Theorem 4.7], we see that G = (L,0), where o is a field automorphism of L order say b|j. If
furthermore j = 1, then we obtain G = L = Sp,,,(q), as stated.

Assume furthermore that n > 2. Note any odd prime divisor of b is < n < (2n — 1)a < {2, hence
{a divides |L| = [Spy,,/;(¢7)| by (ii). Tt follows that £5 divides q* —1 for some integer 1 < i < 2n/j,
whence 2n —1 divides 2ij. This is possible only when ij = 2n—1 as n > 2. But j|2n, so we conclude
j =1, as desired.

Finally, we consider the case n = 1, but j > 1. Then Sp,y(¢?) = L << G < Spy(q?) x C3. In
particular, the Sylow p-subgroups of G are abelian, contradicting (iii). O

Theorem 10.6. Let g = p®. For the local system W(1),2n,q), we have the following results.

(i) The geometric monodromy group Ggeom sum 5 tsomorphic to Spy,(q).
(ii) For any finite extension K/F,, the arithmetic monodromy group Garithsum @S isomorphic to

Sp4n(Q)'
(iii) If K =Ty, then the arithmetic monodromy group Garith sum 15 tsomorphic to Spy,(q) % Cq.

Proof. (a) First we consider G = G geom sum- By Theorem 10.3(i) and Lemma 9.1,
G <H:= Ggeom,sum,2—param = Sp4n(Q)‘

Next, by Corollary 7.4 we have that G acts irreducibly on a Weil module of dimension (g2 + 1)/2
of H and thus fulfills condition 10.5(i). Furthermore, Lemma 9.7 and Corollary 9.10 show that G
satisfies conditions (ii) and (iii) of Theorem 10.5. Hence, applying Theorem 10.5 to G, we obtain
that Ggeom,sum =H<= Sp4n(Q)-

(b) If K is any finite extension of Fy, then the same arguments as in (a), but applied to Ggrith, sum
show that Garith,sum = Sp4n(q)'

Finally, let K =F, and G = Gapithsum- By Theorem 9.15, Lemma 9.15 and by (i) we know that

Sp4n(q) = Ggeom,sum < é S Garith,sum,2-param S Sp4an (p)
Applying Lemmas 9.17 and 10.2, we conclude that G 2 Sp,,,(¢) x C,. O

Theorem 10.7. Let g = p®. For the local system Geyen (¥, 21, q), we have the following results.

(i) The geometric monodromy group Ggeom,even @S isomorphic to Spy,(q).
(ii) For any finite extension K/F,, the arithmetic monodromy group Gayrith.even @S isomorphic to

Sp4n(Q)'
(iii) If K =TF), then the arithmetic monodromy group Gayrith.even 1S isomorphic to Spy,(q) % Cq.

For the local system Goqqa (¥, 2n,q), we have the following results.

(i) The geometric monodromy group G geom,odd 15 1somorphic to PSpy,(q).
ii) For any finite extension K/F,, the arithmetic monodromy group Garithodd S isomorphic to
q K

PSp4n<Q)'
(iii) If K =Ty, then the arithmetic monodromy group Garithodd 1S isomorphic to PSpy, (q) x Cq.

Proof. Argue similarly to the proof of Theorem 10.4, but using Theorem 10.6 instead of Theorem
10.3. g
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