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Abstract. For powers q of any odd prime p and any integer n ≥ 2, we exhibit explicit local systems,
on the affine line A1 in characteristic p > 0 if 2|n and on the affine plane A2 if 2 - n, whose geometric
monodromy groups are the finite symplectic groups Sp2n(q). When n ≥ 3 is odd, we show that the
explicit rigid local systems on the affine line in characteristic p > 0 constructed in [KT1] do have
the special unitary groups SUn(q) as their geometric monodromy groups as conjectured therein, and
also prove another conjecture of [KT1] that predicted their arithmetic monodromy groups.
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1. Overall introduction

We first recall from [KT2, §1] the underlined motivation for this work. The solution [Ray] (see
also [Pop]) of Abhyankar’s Conjecture for the affine line in characteristic p > 0 tells us that any
finite group G which is generated by its Sylow p-subgroups occurs as a quotient of the geometric
fundamental group π1(A

1/Fp) of the affine line A1/Fp over Fp. In a series of papers (see e.g. [Ab]),
Abhyankar has written down explicit equations which realize many finite groups of Lie type as such
quotients.

Suppose we are given such a finite group G (i.e., one which is generated by its Sylow p-subgroups),
together with a faithful representation ρ : G → GLn(C). Because G is finite, there is always some
number field K such that the image of ρ lands in GLn(K). If we now choose a prime number `

The second author gratefully acknowledges the support of the NSF (grants DMS-1839351 and DMS-1840702), and
the Joshua Barlaz Chair in Mathematics. The paper is partially based upon work supported by the NSF under grant
DMS-1440140 while the second author was in residence at the Mathematical Sciences Research Institute in Berkeley,
California, during the Spring 2018 semester. It is a pleasure to thank the Institute for support, hospitality, and
stimulating environments.

The authors are grateful to the referee for careful reading and helpful comments on the paper.

1



2 NICHOLAS M. KATZ AND PHAM HUU TIEP

and an embedding of K into Q`, we can view ρ as a representation ρ : G→ GLn(Q`). Since G is a
quotient of π1(A

1/Fp), we can compose

π1(A
1/Fp) � G→ GLn(Q`),

to get a continuous `-adic representation of π1(A
1/Fp), i.e., an `-adic local system on A1/Fp,

whose image is the finite group G.
There are a plethora of local systems on the affine line attached to families of exponential sums.

In the ideal world, we would be able, given the data (G, ρ) and any ` 6= p, to write down a “simple
to remember” family of exponential sums incarnating a local system which gives (G, ρ). Needless
to say, we are far from being in the ideal world.

In our earlier paper [KT2, Theorem 3.2], we gave explicit rigid local systems on the affine line A1

in characteristic p > 2 whose geometric monodromy groups were proved to be the finite symplectic
groups Sp2n(q), so long as1 n ≥ 2 was itself prime to p and so long as q was a power pa of p such
that the exponent a was prime to p.

Here we develop some new ideas which, when n ≥ 3 is odd, give us rigid local systems incarnating
all the q+1 irreducible representations of SUn(q) of degree either qn+1

q+1 (q of these) or qn−q
q+1 (one of

these). It turns out a posteriori that these rigid local systems are precisely those occurring in [KT1,
Conjecture 9.2], where they were conjectured to have these monodromy groups for all odd n ≥ 3
but only proven [KT1, Theorem 19.1] to have them when n was 3, with the additional proviso that
3 not divide q + 1. As a result, we are able to determine the arithmetic and geometric monodromy
groups of these local systems and also prove Conjecture 9.2 of [KT1].

These ideas also lead us to local systems on A2 whose geometric monodromy groups are the finite
symplectic groups Sp2n(q) for every odd n ≥ 3 and every power q of the odd prime p. In contrast
to [KT2], there are no “prime to p” hypotheses on either n or on logp(q).

Another chain of ideas leads us to local systems on A1 whose geometric monodromy groups are
the finite symplectic groups Sp2n(q) for every even n and every power q of the odd prime p. Again
here there are no “prime to p” hypotheses on either n or on logp(q).

In both of the n even and n odd cases, a key new idea is to study certain two-parameter local
systems and their monodromy groups first, and then descend to our target one-parameter systems
by specialization.

2. Introduction to the n odd case

For an odd integer n ≥ 3, and a prime power q ≥ 2, the irreducible representations (over C) of
lowest degree after the trivial representation of the group SUn(q) are a symplectic representation

of dimension qn+1
q+1 − 1 = qn−q

q+1 , and q representations of dimension qn+1
q+1 . When q is odd, exactly

one of these q representations is orthogonal, otherwise none is. The direct sum of these q + 1
representations is called the big Weil representation of SUn(q).

In the paper [KT1], we wrote down q + 1 rigid local systems on the affine line A1/Fp whose geo-
metric monodromy groups we conjectured to be the images of SUn(q) in these q+1 representations.
We were able to prove this only in the case when n = 3 and gcd(n, q + 1) = 1 (the condition that
SUn(q) = PSUn(q)), where we made use of the results of Dick Gross [Gr]. In this paper, we use a
completely different method, which also starts2 with results of Gross, to prove these conjectures for
any odd n ≥ 3 and for any odd prime power q, see Theorem 4.4.

1The case n = 1 of SL2(q) was done in [KT1].
2The results here use the results of [KT2], which in turn uses the resuts of [KT1] for SL2(q), and those use [Gr] in

an essential way.
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The method used here, which requires that q be odd, is based on a striking group-theoretic
relation between the Weil representations of SUn(q) and Sp2n(q), and on the determination of
those subgroups of Sp2n(q) to which the Weil representation restricts “as though” it were the
Weil representation of SUn(q), cf. Theorem 3.4. We are able to apply this result to our local
systems, in Section 3, by invoking results of [KT2], which was devoted to questions around Sp2n(q).
Furthermore, our Theorem 4.3 also improves the main results Theorems 3.1 and 6.8 of [KT2] in the
case 2 - n, by removing the condition that p - n · logp(q) for the prime p|q.

The main results in the n odd case are Theorems 4.2, 4.3, 4.4, 5.1, and 5.2 that determine the
arithmetic and geometric monodromy groups of the constructed local systems, and Theorem 5.3
that establishes Conjecture 9.2 of [KT1].

3. Unitary-type subgroups of finite symplectic groups

Let q = pa be any power of a prime p and n ≥ 2. It is well known, see e.g. [Ge, Theorem 4.9.2],
that the function

ζn,q = ζn : g 7→ (−1)n(−q)dimF
q2

Ker(g−1W )

defines a complex character, called the (reducible) Weil character, of the general unitary group
GUn(q) = GU(W ), where W = Fnq2 is a non-degenerate Hermitian space with Hermitian product

◦. Note that the Fq-bilinear form

(u|v) = TraceF
q2
/Fq

(θu ◦ v)

onW , for a fixed θ ∈ F×
q2

with θq−1 = −1, is non-degenerate symplectic. This leads to an embedding

G̃ := GUn(q) ↪→ Sp2n(q).

Similarly, the function

τn,q = τn : g 7→ qdimFq Ker(g−1U )

defines a complex character, called the (reducible) Weil character, of the general linear group
GLn(q) = GL(U), where U = Fnq , see e.g. [Ge, Corollary 1.4]. Again we can embed GLn(q) into
Sp2n(q) so that GLn(q) stabilizes a complementary pair (U,U ′) of maximal totally isotropic sub-
spaces of the symplectic space F2n

q . For the reader’s convenience, we record the following statement,
which follows from [Ge, Theorem 2.4(c)] in the GL-case, and from [Ge, Theorem 3.3] in the GU-case:

Theorem 3.1. Let q be an odd prime power and let n ∈ Z≥1. Then the following statements hold.

(i) Let χ̃2 denote the unique complex character of degree 1 and of order 2 of GUn(q). Then the
restriction of any of the two big Weil characters (of degree qn, and denoted Weil1 and Weil2 in

[KT2, §2]) of Sp2n(q) to GUn(q) is ζ̃n := χ̃2ζn.
(ii) Let χ2 denote the unique complex character of degree 1 and of order 2 of GLn(q). Then the

restriction of any of the two big Weil characters Weil1, Weil2 of Sp2n(q) to GLn(q) is χ2τn.

Fix a generator σ of F×
q2

and set ρ := σq−1. We also fix a primitive (q2−1)th root of unity σ ∈ C×

and let ρ = σq−1. By Theorem 3.1(i),

(3.1.1) (Weil1)|G̃ = ζ̃n =

q
∑

i=0

ζ̃i,n

decomposes as the sum of q + 1 characters of G̃, where

(3.1.2) ζ̃i,n(g) =
(−1)nχ̃2(g)

q + 1

q
∑

l=0

ρil(−q)dimKer(g−ρl·1W );
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this formula is obtained by applying [TZ2, Lemma 4.1] to the “untwisted” character ζn. In partic-

ular, ζ̃i,n has degree (qn − (−1)n)/(q + 1) if i > 0 and (qn + (−1)nq)/(q + 1) if i = 0. (Note that

formula (3.1.2) also holds for 2|q, where we define ζ̃n = ζn, χ̃2 = 1G̃ in that case.)

We will let ζi,n denote the restriction of ζ̃i,n to G = SUn(q), for 0 ≤ i ≤ q. If n ≥ 3, then these
q + 1 characters are all irreducible and distinct. If n = 2, then ζi,n is irreducible, unless q is odd
and i = (q + 1)/2, in which case it is a sum of two irreducible characters of degree (q − 1)/2, see
[TZ2, Lemma 4.7]. Formula (3.1.2) implies that Weil characters ζi,n enjoy the following branching
rule while restricting to the natural subgroup H := StabG(w) ∼= SUn−1(q) (w ∈W any anisotropic
vector):

(3.1.3) ζi,n|H =

q
∑

j=0, j 6=i

ζj,n−1.

Furthermore, complex conjugation fixes ζ̃0,n and sends ζ̃j,n to ζ̃q+1−j,n when 1 ≤ j ≤ q. As n ≥ 3 is

odd, it is also known that ζ̃0,n is of symplectic type; let

Ψ0 : G̃→ Sp(V )

be a complex representation affording this character. If 2 - q, then ζ̃(q+1)/2,n is of orthogonal type;
let

Ψ(q+1)/2 : G̃→ O(V )

be a complex representation affording this character. In the remaining cases, let

Ψi : G̃→ GL(V )

be a complex representation affording the character ζ̃i,n.

Lemma 3.2. Assume n ≥ 3 is odd and q is odd.

(i) Ψ0(GUn(q)) ∼= GUn(q)/C(q+1)/2 is contained in Sp(V ) and contains Ψ0(SUn(q)) ∼= PSUn(q)
with index 2d, where d := gcd(n, q + 1).

(ii) If 1 ≤ i ≤ q, then Ker(Ψi) is a central subgroup of order gcd(i + (q + 1)/2, q + 1), and
Ker(Ψi|SUn(q)) is a central subgroup of order gcd(i+ (q + 1)/2, n, q + 1).

(iii) PGUn(q) ∼= Ψ(q+1)/2(GUn(q)) ≤ SO(V ) contains Ψ(q+1)/2(SUn(q)) ∼= PSUn(q) with index d.
(iv) If 1 ≤ i ≤ q and i 6= (q + 1)/2, then Ψi(GUn(q)) ∩ SL(V ) contains Ψi(SUn(q)) with index

gcd(i+ (q + 1)/2, n, q + 1).
(v) Suppose H ≤ GUn(q). Then Ψi(H) ≤ SL(V ) for all 0 ≤ i ≤ q if and only if H ≤ SUn(q).

Proof. According to [TZ2, §4], one can label Ψi in such a way that

(3.2.1) Ψi(z) = −ρi · 1V = ρi+(q+1)/2 · 1V
for the generator z = ρ · 1W of Z(G̃) ∼= Cq+1. Note that we need to add the minus-sign, because ζ̃n
is obtained from ζn by the quadratic twist χ̃2. In particular, Ker(Ψ0)∩Z(G̃) = 〈z2〉, and (i) follows.

Now we can assume 1 ≤ i ≤ q. By (3.2.1), zj ∈ Ker(Ψi) if and only if j is divisible by

(q+1)/ gcd(i+(q+1)/2, q+1). Furthermore, zj(q+1)/d ∈ Ker(Ψi|SUn(q)) if and only if j is divisible
by d/ gcd(i, d) = d/ gcd(i + (q + 1)/2, n, q + 1) for d = gcd(n, q + 1), equivalently, if j(q + 1)/d is
divisible by (q + 1)/ gcd(i+ (q + 1)/2, n, q + 1). Hence (ii) follows.

Consider the element g := diag(ρ, 1, 1, . . . , 1) ∈ G̃; note that G̃ = 〈G, g〉 and χ̃2(g) = −1. Then
(3.1.2) implies that

ζ̃i,n(g
k) = (−1)k

(

−q
n−1 − (−1)n−1

q + 1
+ (−1)n−1ρik

)
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when 1 ≤ k ≤ q. It follows that Ψi(g) has eigenvalues −ρj , 1 ≤ j ≤ q, with multiplicity (qn−1 −
1)/(q + 1) if j 6= i and 1 + (qn−1 − 1)/(q + 1) if j = i, and so

det(Ψi(g)) = −ρi = ρi+(q+1)/2.

In particular, Ψi(g
j) ∈ SL(V ) if and only if j is divisible by (q+ 1)/ gcd(i+ (q+ 1)/2, q+ 1). Since

SUn(q) is perfect, (iii), (iv), and the “if” direction of (v) follow.
For the “only if” direction of (v), assume that Ψ1(H) ≤ SL(V ), and consider any h ∈ H. If

det(h) = ρj for 0 ≤ j ≤ q, then hg−j ∈ SUn(q) and so Ψ(q+3)/2(hg
−j) ∈ SL(V ) by the previous

statement. It follows that

1 = det(Ψ(q+3)/2(h)) = det(Ψ(q+3)/2(hg
−j)) det(Ψ(q+3)/2(g

j)) = det(Ψ(q+3)/2(g
j)) = ρj ,

whence j = 0 and det(h) = 1, as stated. �

We will now show that, when n ≥ 3 is odd and q is odd, the splitting (3.1.1) of a big Weil
character Weili of Sp2n(q) on its restriction to SUn(q) into a sum of q + 1 irreducible constituents
of prescribed degrees characterizes SUn(q) uniquely (up to conjugacy).

Recall [Zs] that if a ≥ 2 and n ≥ 2 are any integers with (a, n) 6= (2, 6), (2k − 1, 2), then an − 1

has a primitive prime divisor, that is, a prime divisor ` that does not divide
∏n−1
i=1 (a

i − 1); write
` = ppd(a, n) in this case. Furthermore, if in addition a, n ≥ 3 and (a, n) 6= (3, 4), (3, 6), (5, 6), then
an− 1 admits a large primitive prime divisor, i.e. a primitive prime divisor ` where either ` > n+1
(whence ` ≥ 2n+ 1), or `2|(an − 1), see [F].

We will need the following recognition theorem [KT2, Theorem 4.6], which was obtained relying
on [GPPS].

Theorem 3.3. Let q = pf be a power of an odd prime p and let d ≥ 2. If d = 2, suppose that
pdf − 1 admits a primitive prime divisor ` ≥ 5 with (pdf − 1)` ≥ 7. If d ≥ 3, suppose in addition
that (p, df) 6= (3, 4), (3, 6), (5, 6), so that pdf − 1 admits a large primitive prime divisor `. In either
case, we choose such an ` to maximize the `-part of pdf − 1. Let W = Fdq and let G be a subgroup of

GL(W ) ∼= GLd(q) of order divisible by the `-part Q := (qd − 1)` of q
d − 1. Also, let L := O`′(G) be

the smallest among normal subgroups of G of index coprime to `. Then either L is a cyclic `-group
of order Q, or there is a divisor j < d of d such that one of the following statements holds.

(i) L = SL(Wj) ∼= SLd/j(q
j), d/j ≥ 3, and Wj is W viewed as a d/j-dimensional vector space

over Fqj .
(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with a non-

degenerate symplectic form, and L = Sp(Wj) ∼= Spd/j(q
j).

(iii) 2|jf , 2 - d/j, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with a

non-degenerate Hermitian form, and L = SU(Wj) ∼= SUd/j(q
j/2).

(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with a

non-degenerate quadratic form of type −, and L = Ω(Wj) ∼= Ω−
d/j(q

j).

(v) (p, df, L/Z(L)) = (3, 18,PSL2(37)), (17, 6,PSL2(13)).

The main result of this section is the following theorem:

Theorem 3.4. Let q = pa be a power of an odd prime p and let n ≥ 3 be an odd integer. Let
W = F2n

q be a non-degenerate symplectic space, and H := Sp(W ) ∼= Sp2n(q), and let Φ be a complex
Weil representation Weili of H of degree qn for some i = 1, 2 as in [KT2, §2]. Suppose that G ≤ H is
a subgroup such that Φ|G = ⊕q

j=0 is a sum of q+1 irreducible summands, Φ0 of degree (q
n−q)/(q+1)
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and Φj of degree (qn+1)/(q+1) for 1 ≤ j ≤ q. Then W can be viewed as an n-dimensional vector
space over Fq2 endowed with a G-invariant non-degenerate Hermitian form such that

SUn(q) ∼= SU(W )CG ≤ GU(W ) ∼= GUn(q).

Proof. (a) First we assume that (n, q) 6= (3, 3) and (3, 5); in particular, so that p2na − 1 admits a
large primitive prime divisor `, in which case we choose such an ` to maximize the `-part of p2na−1.
Note the assumptions imply that |G| is divisible by both (qn − q)/(q + 1) and (qn + 1)/(q + 1). In
particular, G < GL(W ) has order divisible by

(3.4.1) qQ := q(p2na − 1)`.

Let L := O`′(G) and d(L) denote the smallest degree of nontrivial complex irreducible characters
of L. Note that

(3.4.2) d(L) ≤ (qn + 1)/(q + 1) ≤ (qn + 1)/4.

(Otherwise L ≤ Ker(Φ1), whence Φ1 could be viewed as an irreducible representation of G/L and
so would have been of `′-degree.) Furthermore, if L is cyclic of order Q, then by Ito’s theorem
(6.15) of [Is], the degree of any irreducible character of G divides |G/L|, an integer coprime to `,
and so again G cannot be irreducible on Φ1. Now we can apply Theorem 3.3 to arrive at one of the
following cases.

(i) L ∼= SL2n/j(q
j) for some divisor 1 ≤ j ≤ n of 2n. In this case, if j ≤ 2n/3 then by [TZ1,

Theorem 3.1] we have

d(L) > qj(2n/j−1) = q2n−j > qn,

contradicting (3.4.2). If j = n, then qj = qn ≥ 27 and so

d(L) ≥ (qn − 1)/2 > (qn + 1)/4,

again contradicting (3.4.2).

(ii) L ∼= Sp2n/j(q
j) for some divisor 1 ≤ j < n/2 of n. Then by [TZ1, Theorem 1.1] we have

d(L) ≥ (qn − 1)/2 > (qn + 1)/4,

contradicting (3.4.2).

(iii) There is some even divisor j = 2k of 2n with k|n and 2 - n/k > 1, such that W can be
viewed as a 2n/j-dimensional vector space over Fqj endowed with a non-degenerate Hermitian form

and L = SU(W ) ∼= SUn/k(q
k). Suppose first that k > 1, and let ψ be an irreducible constituent of

the L-character afforded by Φ0, so that ψ(1) < (qn + 1)/4. By [TZ1, Theorem 4.1],

ψ(1) ∈
{

1,
qn + 1

qk + 1
,
qn − qk

qk + 1

}

.

The proof of (3.4.2) rules out the possibility ψ(1) = 1. Next,

ψ(1)| dimΦ0 = (qn − q)/(q + 1)

by Clifford’s theorem, implying ψ(1) 6= (qn − qk)/(qk + 1) as k > 1. The remaining possibility
ψ(1) = (qn + 1)/(qk + 1) is also ruled out since ` - dimΦ0. We have shown that k = 1, i.e.
L = SU(W ) ∼= SUn(q). This implies that

LCG ≤ NSp(W )(L) = GU(W )o 〈σ〉 ∼= GUn(q)o C2.

Here, σ is an involutive automorphism of GU(W ) that acts as inversion on

(3.4.3) 〈z〉 = Z(GU(W )) ∼= Cq+1.
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Recall the decomposition

(3.4.4) Φ|GU(W ) = ⊕q
i=0Ψi,

with Ψ0 of degree (qn− q)/(q+1) and Ψi of degree (q
n+1)/(q+1) for 1 ≤ i ≤ q, see the discussion

preceding Lemma 3.2. In fact, one can find a primitive (q + 1)th root of unity ξ ∈ C× such that
Ψi(z) is the multiplication by ξi. In particular, σ fuses Ψ1 and Ψq. The assumption on Φ|G now
implies that G ≤ GU(W ), as stated.

(iv) L ∼= Ω−
2n/j(q

j) for some divisor 1 ≤ j < n/2 of the odd integer n. If j ≤ n/5, then by [TZ1,

Theorem 1.1] we have
d(L) > qn + 1,

contradicting (3.4.2). If j = n/3, then L is a quasisimple quotient of PSU4(q
n/3) with qn/3 > 5,

and so by [TZ1, Theorem 1.1] we have

d(L) =
q4n/3 − 1

qn/3 + 1
> qn/2,

again contradicting (3.4.2).

(v) (p, na, L/Z(L)) = (3, 9,PSL2(37)). Note that the smallest dimension of a nontrivial irre-
ducible representation of L over F3 is 18 (see e.g. [TZ1, Table I]), so (q, n) = (3, 9) and L = SL2(37)
acts absolutely irreducibly on W = F18

3 . This in turn implies that

CSp(W )(L) = Z(L) = C2,

and so L C G ≤ NSp(W )(L) ≤ L · C2. But in this case, G cannot have an irreducible complex
representation of degree

dimΦ1 = (qn + 1)/(q + 1) = (39 + 1)/4.

(vi) (p, na, L/Z(L)) = (17, 6,PSL2(13)). In this case (q, n) = (17, 3) and L = SL2(13) acts
absolutely irreducibly on W = F6

17. As in (v), this implies that

CSp(W )(L) = Z(L) = C2,

and LCG ≤ NSp(W )(L) ≤ L · C2, whence G cannot have an irreducible complex representation of
degree

dimΦ1 = (qn + 1)/(q + 1) = (173 + 1)/18.

(b) It remains to consider the two cases (n, q) = (3, 3) and (3, 5). Let M be a maximal subgroup
of Sp(W ) that contains G. Then condition (3.4.1) also holds for |M |; furthermore, the maximal
degree of complex irreducible characters of M must be at least (qn + 1)/(q + 1) = 7, respectively
21, since Φ1 ∈ Irr(G). First suppose that q = 5. Then, according to Tables 8.27 and 8.28 of [BHR],
one of the following possibilities occurs.

• M = 2J2. In this case, since |G| is divisible by 3 · 5 · 7, see (3.4.1), we see by inspecting
maximal subgroups of J2 [Atlas] that G =M . But then G does not admit any complex irreducible
representation of degree dimΦ0 = 20.

• M = SL2(125) o C3. In this case, since |G ∩ [M,M ]| is divisible by 5 · 7, see (3.4.1), we see
by inspecting maximal subgroups of PSL2(125) [BHR, Table 8.1] that G B SL2(125). But then
d(G) ≥ 62 (see e.g. [TZ1, Table I]), violating (3.4.2).

• M = GU3(5)o C2. If G ≥ N := SU3(5), then we can argue as in (iii) above. Suppose G 6≥ N .
Since L := G∩NCG has order divisible by 5 ·7, see (3.4.1), we see by inspecting maximal subgroups
of PSL3(5) and Alt7 [Atlas] that L = 3Alt7, and Z(L) = 〈z2〉 with 〈z〉 = Z(GU3(5)) as defined
in (3.4.3). Using the decomposition (3.4.4), we may assume that Φi = (Ψi)|G for 0 ≤ i ≤ q. As
mentioned in (iii), the subgroup C2 fuses Ψ1 with Ψ5, hence Φ1 with Φ5. Thus G ≤ GU3(5), and so
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|G/L| and |NGU3(5)(L)/L| both divide 6. Note that NGU3(5)(L) contains the central involution of
GU3(5) which lies outside of SU3(5). It follows that G induces a subgroupX of outer automorphisms
of L of order dividing 3, whence X = 1 as |Out(Alt7)| = 2 [Atlas]. Now let g ∈ L be of order 7. Then
Φ0(g) = Ψ0(g) has trace −1. On the other hand, as G induces only inner automorphisms on L, we
see that (Φ0)|L must be a direct sum of two copies of a single irreducible complex representation Φ′

(of dimension 10) of L and we arrive at the contradiction that Φ′(g) has trace −1/2.

(c) Finally, we consider the case q = 3. Inspecting the list of maximal subgroups of PSp6(3) in
[Atlas], we arrive at the following possibilities for M . By (3.4.1), G contains an element g ∈ G of
order 7. According to [Atlas], we may assume that Φ0 ⊕ Φ2 = Λ|G, where Λ is an irreducible Weil
representation of degree 13 of Sp6(3) and contains the central involution t of Sp6(3) in its kernel,
and that Λ(g) has trace −1.

• M = SL2(13). In this case, since |G| is divisible by 3 · 7, see (3.4.1), we see by inspecting
maximal subgroups of PSL2(13) [Atlas] that G = M . Note that t is the central involution of G.
Now the conditions that t ∈ Ker(Λ) and Λ(g) has trace −1 imply by [Atlas] that Λ|G is irreducible,
a contradiction.

•M = SL2(27)·3. In this case, since |G| is divisible by 7, we see by inspecting maximal subgroups
of PSL2(27) [Atlas] that either G ≥ [M,M ] = SL2(27) or G ∩ [M,M ] is contained in a dihedral
group D28. It is easy to see that in the former case d(G) ≥ 13 contradicting (3.4.2), and in the
latter case G does not admit any complex irreducible representation of dimension dimΦ1 = 7.

• M = GU3(3)o C2. If G ≥ N := SU3(3), then we can argue as in (iii) above. Suppose G 6≥ N .
Since L := G∩NCG has order divisible by 3 ·7, see (3.4.1), we see by inspecting maximal subgroups
of SU3(3) and PSL2(7) [Atlas] that either L is of order 21 or L = PSL2(7). The former case is ruled
out since (Φ1)|L is irreducible of dimension 7. In the latter case, fix an involution s ∈ L. We may
assume that

(Φi)|L = (Ψi)|L
for the representations Ψi defined in (3.4.4), and furthermore Ψ2 is self-dual of dimension 7. Using
[Atlas] we see that Ψ1(s) has trace 3 and Ψ1(g) has trace 0, whence (Φ1)|L = (Ψ1)|L is the sum
of two irreducible representations of dimensions 1 and 6, contradicting the irreducibility of Φ1 on
GB L. �

In the next statement, we consider a non-degenerate symplectic space W = F2N
p , a (reducible)

big Weil representation of degree pN of G = Sp(W ) ∼= Sp2N (p) with character ω as in [KT2]; in
particular,

(3.4.5) |ω(g)| = |CW (g)|1/2

for any g ∈ G. Let N = AB and B = bj for some positive integers A,B, b, j. We may then assume
thatW is obtained from the symplectic spaceW1 := F2A

pB
(with a Witt basis (e1, . . . , eA, f1, . . . , fA))

by base change from FpB to Fp. Using this basis we can consider the transformation

σ :
A
∑

i=1

(xiei + yifi) 7→
A
∑

i=1

(xri ei + yri fi)

induced by the Galois automorphism x 7→ xr for r := pj . Then, as in [KT2, §4] we can consider the
standard subgroup

H = Sp(2A, pB)o Cb

of G, where Cb = 〈σ〉.
Theorem 3.5. Each value |ω(x)|2, x ∈ H, is a power of r = pj. Furthermore, there is some h ∈ H
such that |ω(h)|2 = r.
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Proof. Note that H embeds in Sp(2Ab, pj), and so the first statement follows by applying (3.4.5) to
a big Weil representation of Sp(2Ab, pj). To define h, consider the Fr-linear map

f : FpB → FpB , x 7→ x− xr.

Viewed as a vector space over Fr, Ker(f) has dimension 1. Hence f cannot be surjective, and so
we can find

α ∈ FpB r Im(f).

Let J denote the Jordan block of size A×A with eigenvalue α−1, and let g ∈ H have the following
matrix

(

t(αJ)−1 α2J
0 αJ

)

in the chosen basis (e1, . . . , eA, f1, . . . , fA) of W1. We will show that h = gσ satisfies |ω(h)|2 = r.
According to (3.4.5), it suffices to show that h fixes exactly r vectors in W1. To this end, suppose

that w =
∑A

i=1(xiei + yifi) is fixed by h, where xi, yi ∈ FpB . Comparing the coefficient for fA we
have

yrA = yA

implying yA ∈ Fr. Next, comparing the coefficient for fA−1 we see that

yrA−1 + αyrA = yA−1,

and so αyA = f(yA−1). By the choice of α, yA = 0, whence yA−1 ∈ Fr. Continuing in the same
fashion, we conclude that

y1 ∈ Fr, y2 = y3 = . . . = yA = 0.

Thus we have shown that v :=
∑A

i=1 yifi = y1f1. Letting u := w − v =
∑A

i=1 xiei, we have

t(αJ)−1σ(u) + α2Jσ(v) = u,

i.e.

σ(u) + t(αJ)α2Jσ(v) = t(αJ)(u).

Comparing the coefficient for e1, we get

xr1 + αy1 = x1,

and so αy1 = f(x1). Again by the choice of α, we must have that y1 = 0 and x1 ∈ Fr. Next,
comparing the coefficient for e2, we get

xr2 = αx1 + x2,

and so −αx1 = f(x2). By the choice of α, we must have that x1 = 0 and x2 ∈ Fr. Continuing in
the same fashion, we conclude that

xA ∈ Fr, x1 = x2 = . . . = xA−1 = 0.

Thus w = xAeA with xA ∈ Fr, as desired. �

Lemma 3.6. Let q = pa ≥ 3 be a prime power and let A,B, b, c be positive integers, and let
H = Sp2A(p

B)o Cb as above. Then the following statements hold.

(i) If c ≥ 3, then SUAc(q) cannot embed in H.
(ii) Assume in addition that (p,A,B) 6= (3, 1, 1). Then the only quotient groups of H are H,

H/Z(H) = PSp2A(p
B)o Cb, and quotients of Cb.
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Proof. (i) Assume the contrary. Since c, q ≥ 3, SUAc(q) is perfect, and so it embeds in Sp2A(p
B) <

Sp2A(Fp). In particular, SUAc(q) has a nontrivial absolutely irreducible representation in charac-
teristic p of dimension ≤ 2A ≤ Ac− 1. But this contradicts [KlL, Proposition 5.4.11].

(ii) The assumption on (p,A,B) ensures that L := [H,H] = Sp2A(p
B) is quasisimple, with

S = L/Z(H) ∼= PSp2A(p
B) being simple. Furthermore, H/Z(H) acts faithfully on S.

Suppose that N CH. If N ≥ L, then H/N is a quotient of H/L ∼= Cb. In the remaining case,
we have that N ∩ L is a proper normal subgroup of L, and so contained in Z(H). In particular,
[N,L] ≤ N ∩ L centralizes L, i.e. [[N,L], L] = 1. Since L = [L,L], the Three Subgroups Lemma
implies that [N,L] = 1, whence

N ≤ CH(L) ≤ CH(S) = Z(H).

Thus either N = 1 or N = Z(H). �

4. Local systems for SUn(q) and Sp2n(q) with n odd

In this section, we fix an odd prime p, and a prime ` 6= p, so that we can avail ourselves of Q`-adic
cohomology. We also fix a nontrivial additive character ψ of Fp. We denote by χ2 the quadratic
character of F×

p . Given a power q = pa of p, and a power qn of q, we define

(4.0.1) A := AFp,qn := −
∑

x∈F×

p

ψ((−1)(q
n−1)/22x)χ2(x).

For k/Fp a finite extension, we define

Ak := Adeg(k/Fp).

We denote by ψk the additive character of k given by

ψk := ψ ◦ Tracek/Fp
.

In [KT2, §3], we introduced, for each integer n ≥ 2 and each power q = pa of the odd prime p,
the 2-parameter local system

W2-param(ψ, n, q)

on A2/Fp whose trace function at a point (s, t) ∈ A2(k), k a finite extension of Fp, is the sum

(−1/Ak)
∑

x∈k

ψk(x
qn+1 + sxq+1 + tx2).

Here the normalizing factor Ak is the one built from AFp,qn as defined in the previous paragraph.
We proved there [KT2, Theorems 3.1, 6.8] that when both n and a := logp(q) are prime to

p, the geometric monodromy group Ggeom of W2-param(ψ, n, q) was Sp2n(q) in one of its big Weil
representations (of degree qn), and that after extension of scalars from A2/Fp to A

2/Fq, its arithmetic
monodromy group Garith coincided with Ggeom.

Without these “prime to p” hypotheses, we have the following result.

Theorem 4.1. For n ≥ 2 and q = pa a power of the odd prime p, we have the following results.

(i) There exists a factorization na = AB and a factorization B = bj such that the geometric
monodromy group Ggeom,2-param of W2-param(ψ, n, q) is Sp2A(p

B) o Cb in one of its big Weil
representations.

(ii) Moreover, pj is a power of q, say pj = qr (so that j = ar,B = arb), and hence we have
inclusions of groups

Sp2A(p
B)o Cb = Sp2A(q

rb)o Cb ↪→ Sp2Ab(q
r) ↪→ Sp2Abr(q) = Sp2n(q).
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Proof. To prove (i), we argue as follows. From [KT2, Theorems 4.1, 4.2, and the proof of Proposition
6.6], we see that there exist factorizations na = AB,B = bj and na = CD,D = dk such that
Ggeom,2-param is a subgroup of the product group

(Sp2A(p
B)o Cb)× (PSp2C(p

D)o Cd)

which maps onto each factor.
We apply Goursat’s lemma. Note that AB = na ≥ 2, so by Lemma 3.6(ii), the only quotient

groups of Sp2A(p
B)o Cb are

Sp2A(p
B)o Cb,PSp2A(p

B)o Cb, and quotients of Cb.

Their commutator subgroups are

Sp2A(p
B),PSp2A(p

B), {1}
respectively. Similarly, the only quotient groups of PSp2C(p

D)o Cd are

PSp2C(p
D)o Cd, and quotients of Cd,

and their commutator subgroups are
PSp2C(p

D), {1}
respectively.

We first rule out the case when Ggeom,2-param is the pullback by the quotient maps of the graph
of an isomorphism between a quotient of Cb with a quotient of Cd. In this case, Ggeom,2-param would
contain the product group Sp2A(p

B)×PSp2C(p
D). This group contains elements of trace zero in the

representation at hand, whereas every element of the arithmetic monodromy group Garith,2-param,
and a fortiori every element of Ggeom,2-param has nonzero trace, cf. [KT2, Proposition 6.6] and its
proof.

The only remaining possibility is that Ggeom,2-param is the graph of an isomorphism between
PSp2A(p

B)oCb and PSp2C(p
D)oCd. Such an isomorphism induces an isomorphism of commutator

subgroups. Hence (A,B) = (C,D). Comparing cardinalities, we then infer that b = d. Thus
Ggeom,2-param is as asserted.

To prove (ii), we use Theorem 3.5, according to which pj = pB/b is the lowest value attained as the
square absolute value of the trace of an element of Sp2A(p

B)oCb in either big Weil representation.
On the other hand, from [KT2, Theorem 5.5], the group Garith,2-param is also finite. The quotient

Garith,2-param/Ggeom,2-param is then a finite quotient of Gal(Fp/Fp). Hence over some FQ/Fq, we
have Ggeom,2-param = Garith,2-param. From [KT2, Lemma 5.2], exploiting an idea of van der Geer
and van der Flugt, we see that for any finite extension k0/FQ, all square absolute values of traces
are powers of q, and that for any point (s, t) ∈ A2(k0), there is a finite extension k1/k0 for which the
same point, now viewed in A2(k1) has trace of square absolute value q2n. In particular, the least
square absolute value attained is some strictly positive power qr, r ≥ 1 of q. �

We now introduce a new local system W(ψ, n, q) when n ≥ 3 is odd, which we get by setting
t = 0 in W2-param(ψ, n, q). Thus the trace function of W(ψ, n, q) at a point s ∈ A1(k), k/Fp a finite
extension, is

(−1/Ak)
∑

x∈k

ψk(x
qn+1 + sxq+1).

On A1/Fq2 , we can break up this local system as the direct sum of q+1 local systems, by making
use of the q+1 multiplicative characters, including the trivial one, of order dividing q+1. We have

W(ψ, n, q) =
⊕

χ with χq+1=1

G(ψ, n, q, χ).
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The trace function of G(ψ, n, q, χ) at a point s ∈ A1(k), k/Fq2 a finite extension, is

(−1/Ak)
∑

x∈k

ψk(x
qn+1

q+1 + sx)χk(x).

Here we write χk for χ ◦Normk/F
q2
, and adopt the usual convention that for χ nontrivial, we have

χk(0) = 0, but 1(0) = 1.
These G(ψ, n, q, χ) are pairwise non-isomorphic, geometrically irreducible local systems on A1/Fq2

(thanks to their descriptions as Fourier Transforms, cf. [KT1, Section 2]). The ranks of these local
systems are

rank(G(ψ, n, q,1)) = qn + 1

q + 1
− 1,

rank(G(ψ, n, q, χ)) = qn + 1

q + 1
, χ 6= 1.

Recall that for any n, and q any power of the odd prime p, there are inclusions

SUn(q)CGUn(q) ↪→ Sp2n(q),

Theorem 4.2. For n ≥ 3 odd, and q = pa a power of the odd prime p, the geometric monodromy
group Ggeom,W for W(ψ, n, q) is SUn(q) in its big Weil representation (of degree qn).

Proof. Because W(ψ, n, q) is the pullback (by (s, t) 7→ (s, 0)) of the local system W2-param(ψ, n, q),
its Ggeom,W is a subgroup of Ggeom,2-param. By Theorem 4.1, we have

Ggeom,2-param ↪→ Sp2n(q).

Thus Ggeom,W is a subgroup of Sp2n(q) under which a big Weil representation of Sp2n(q) breaks up

into q + 1 pieces, one of rank qn−q
q+1 and q of rank qn+1

q+1 . By Theorem 3.4, we have inclusions

SUn(q) ≤ Ggeom,W ≤ GUn(q).

The group GUn(q) has a quotient, via the determinant, of order q+1, which is prime to p. Because
Ggeom,W is the monodromy group of a local system on A1/Fp, it has no nontrivial prime to p
quotients. Thus we have Ggeom,W = SUn(q). �

Theorem 4.3. For n ≥ 3 odd and q an odd prime power, the geometric monodromy group
Ggeom,2-param of W2-param(ψ, n, q) is Sp2n(q) in one of its big Weil representations (of degree qn).
Moreover, after extension of scalars to A2/Fq, we have Ggeom,2-param = Garith,2-param.

Proof. Recall the inclusion

SUn(q) = Ggeom,W ≤ Ggeom,2-param = Sp2A(p
B)o Cb

and the relation n = Abr of Theorem 4.1. By Lemma 3.6(i), br ≤ 2, but 2 - n, hence br = 1 and
(A, pB, b) = (n, q, 1), yielding the first assertion.

Since Ggeom,2-param = Sp2n(q) = Sp2n(p
a), Garith,2-param is contained in Sp2n(p

a)o Ca, cf. [KT2,
proof of Lemma 6.7]. Thus the quotient Garith,2-param/Ggeom,2-param has order dividing a, so after
extension of scalars from A2/Fp to A2/Fpa = A2/Fq we have Ggeom,2-param = Garith,2-param. �

Theorem 4.4. For n ≥ 3 odd and q a power of the odd prime p, the geometric monodromy group of
the local system G(ψ, n, q,1) is PSUn(q), the image of SUn(q) in its unique irreducible representation

of dimension qn−q
q+1 , with character ζ0,n. The geometric monodromy group of G(ψ, n, q, χ2) (where χ2

is the quadratic character) is PSUn(q), the image of SUn(q) in its unique orthogonal representation

of dimension qn+1
q+1 , with character ζ(q+1)/2,n. For the remaining q−1 local systems G(ψ, n, q, χ) with
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χ2 nontrivial, χq+1 = 1, their geometric monodromy groups are the images of SUn(q) in its q − 1

non-selfdual irreducible representations of dimension qn+1
q+1 .

Proof. Because Ggeom,W is SUn(q), the geometric monodromy groups in question are the images of
SUn(q) in various of its irreducible representations. Recall the fact [TZ1, Theorem 4.1] that SUn(q)

has, up to equivalence, one irreducible representation of dimension qn−q
q+1 (with character ζ0,n) and q

irreducible representations of dimension qn+1
q+1 (with character ζj,n, 1 ≤ j ≤ q), with exactly one of

the q latter representations being self-dual (and necessarily orthogonal, as it has odd dimension).
Using this fact and looking at the dimensions, we get the asserted matching. �

5. Arithmetic monodromy groups of local systems for SUn(q) with n odd

Theorem 5.1. Let n ≥ 3 be odd and q be a power of the odd prime p. After extension of scalars
to A1/Fq4, the arithmetic monodromy group Garith,W is equal to Ggeom,W = SUn(q). Furthermore,
the arithmetic monodromy group Garith,χ of each of the q + 1 local systems G(ψ, n, q, χ) is equal to
its geometric monodromy group Ggeom,χ, as described in Theorem 4.4.

Proof. For k/Fq2 , let Hk denote the arithmetic monodromy group Garith,W of the local system

W(ψ, n, q) after extension of scalars to A1/k. By Theorem 4.3, Hk ≤ Sp2n(q), and by Theorem
4.4, Hk B SUn(q). As in the proof of Theorem 4.2, Hk is a subgroup of Sp2n(q) under which a big

Weil representation of Sp2n(q) breaks up into q + 1 pieces Ψi, 0 ≤ i ≤ q, with Ψ0 of rank qn−q
q+1 and

Ψ1, . . . ,Ψq of rank
qn+1
q+1 . By Theorem 3.4, we have Hk ≤ GUn(q).

Now we pay particular attention to the situation over Fq4 . The normalizing factor A := AFp,qn

used for W is minus a choice of quadratic Gauss sum over Fp, so its square is either p, if p is 1 mod
4, or it is −p. Taken over Fq4 , the normalizing factor AF

q4
is thus q2. On the other hand, according

to [KT1, Lemma 8.3], this same normalizing factor q2 insures that each of the q + 1 local systems
G(ψ, n, q, χ) on A1/Fq4 has its Garith,χ contained in SLrankG(ψ,n,q,χ)(C). Applying Lemma 3.2(v) to
HF

q4
, we conclude that HF

q4
= SUn(q).

Once we have Garith,W = SUn(q), it follows that each Garith,χ is the image of SUn(q). �

Theorem 5.2. Let n ≥ 3 be odd and q be a power of the odd prime p. Denote by Garith,W/F
q2

the

arithmetic monodromy group of the local system W(ψ, n, q) after extension of scalars to A1/Fq2.
We have

Garith,W/F
q2

= SU±
n (q) := {X ∈ GU(W ) | det(X) = ±1} = SU(W )× 〈−1W 〉 ∼= SUn(q)× C2.

Furthermore, the arithmetic monodromy groups Garith,χ of the local system G(ψ, n, q, χ) with χq+1 =
1 are described as follows.

(a) If q ≡ 3(mod 4), Garith,1 is PSUn(q), the image of SUn(q) in its unique irreducible represen-

tation of dimension qn−q
q+1 , with character ζ0,n. If q ≡ 1(mod 4), Garith,1 is PSUn(q) × C2, the

image of SUn(q)×C2 in its irreducible representation of dimension qn−q
q+1 , with character ζ0,n⊗ν,

where ν is the unique nontrivial irreducible character of C2.
(b) Garith,χ2

(where χ2 is the quadratic character) is the image of SUn(q) in its unique orthogonal

representation of dimension qn+1
q+1 , with character ζ(q+1)/2,n.

(c) For the remaining q − 1 characters χ with χ2 nontrivial, χq+1 = 1, the groups Garith,χ are the

images of SU±
n (q)× C2 in its q − 1 non-selfdual irreducible representations of dimension qn+1

q+1 ,

obtained by restricting down Ψi, 1 ≤ i ≤ q and i 6= (q + 1)/2, from GUn(q).
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Proof. The key point here is that the normalizing factor for W over Fq2 , being a power of a quadratic
Gauss sum over the prime field, is q when q ≡ 1( mod 4) and −q when q ≡ 3( mod 4). But according
to [KT1, Lemma 8.3], the normalizing factors for the various G(ψ, n, q, χ) on A1/Fq2 which force
their Garith,χ to lie in SL are not all the same: some are q and some are −q. [The exact recipe is

that for χ of order m dividing q + 1, one should use −(−1)(q+1)/mq as the normalizing factor.]
Since SUn(q) is perfect, this implies that Garith,W/F

q2
contains SUn(q) strictly. On the other hand,

SUn(q) is Garith,W/F
q4
, as proven above, hence SUn(q) has index at most 2 in Garith,W/F

q2
≤ GUn(q).

As n is odd, we also observe that det(z(q+1)/2) = −1, where z is the generator of Z(GUn(q))

introduced in the proof of Lemma 3.2; in particular, z(q+1)/2 = −1W . Hence

Garith,W/F
q2

= SU±
n (q) = {X ∈ GUn(q) | det(X) = ±1} = SUn(q)× 〈z(q+1)/2〉 ∼= SUn(q)× C2,

and Garith,χ is the image of SU±
n (q) under some Ψi. If χ = χ2, we know that Ψi is of dimension

(qn + 1)/(q + 1) and self-dual, whence i = (q + 1)/2 and Ψi(z
(q+1)/2) = 1V by (3.2.1), yielding

(b). Suppose χ = 1. Then i = 0 by dimension comparison, and Ψ0(z
(q+1)/2) = (−1)(q+1)/2 · 1V by

(3.2.1), leading to (a). For the remaining q = 1 characters χ with χ2 6= 1, we arrive at (c). �

With this information in hand, we can prove Conjecture 9.2 of [KT1].

Theorem 5.3. Let n ≥ 3 be odd and q be a power of the odd prime p. For each multiplicative
character χ of F×

q2
of order denoted mχ dividing q + 1, define

Bχ := −(−1)(q+1)/mχq.

Denote by Hχ the local system on A1/Fq2 whose trace function at a point s ∈ K, K/Fq2 a finite
extension, is

s 7→
(

−1/(Bχ)
deg(K/F

q2
))

∑

x∈K

ψK(x(q
n+1)/(q+1) + sx)χ(x).

[Thus Hχ is the constant field twist of G(ψ, n, q, χ) by the unique choice of sign ±1 for which
Garith,Hχ

< SLrankHχ
(C), cf. [KT1, Lemma 8.3].] Then Garith,Hχ

= Ggeom,Hχ is the image of
SUn(q) in the given representation.

Proof. Pick a faithful character Λ : µq+1(F
×
q2
) ∼= µq+1(C

×). The indexing of the small Weil repre-

sentations Ψi of GUn(q) is by the powers of Λ. For each power Λi of Λ, the multiplicative character
χi of F

×
q2

given by

χi : x 7→ Λi(xq−1)

has order dividing q + 1, and we get all the q + 1 such characters this way. In view of the previous
result, what we must show is that the scalar −1W ∈ SU±

n (q) acts trivially on each Hχ. We know
this element acts trivially after quadratic extension of the ground field from Fq2 to Fq4 , so it must
be attained by a Frobenius in a odd degree extension of Fq2 . In the representation G(ψ, n, q, χ), we
have

Ψi(−1W ) = εq(−1)i · 1Vi ,
where Ψi : SU

±
n (q) → GL(Vi), and

εq := (−1)q+1)/2,

the sign εq being 1 or −1 depending on whether −1 is a square or not in the group µq+1(Fq2), cf.
(3.2.1).

Thus εq = 1 if q ≡ 3(mod 4), and εq = −1 if q ≡ 1(mod 4). Now the clearing factor used for W,

and hence also for G(ψ, n, q, χ), was −εqq, whereas the clearing factor for Hχ is −(−1)(q+1)/mχq. So

the change of clearing factor for Hχ is εq(−1)(q+1)/mχ .
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Consider the case χ = 1, i.e. mχ = 1. By dimension comparison, we see that the representation
on G(ψ, n, q,1) is Ψ0, i.e. i = 0. Hence the action of −1W in the representation H1 is

(εq)
2(−1)q+1 · 1V0 = 1V0 .

Now assume that χ 6= 1. Then i 6= 0, and dimVi = (qn + 1)/(q + 1) is odd. As we mentioned
above, the action of −1W on Hχ has determinant 1. As the central involution −1W of SU±

n (q) acts
as γ · 1Vi for some γ = ±1, the oddness of dimVi implies that γ = 1.

Thus in either case, −1W acts trivially on Hχ, as stated. �

6. Introduction to the n even case

The key insight in the n odd case was to start with the 2-parameter local system

W2-param(ψ, n, q)

on A2/Fp whose trace function at a point (s, t) ∈ A2(k), k a finite extension of Fp, was the sum

(−1/Ak)
∑

x∈k

ψk(x
qn+1 + sxq+1 + tx2),

and then study the one-parameter local system obtained by setting t = 0.
In the n even case, it is precisely the “same” one parameter local system, the one obtained by

setting t = 0 in W2-param(ψ, n, q), that is the key object of study. Because n is even, the gcd of
q + 1 and qn + 1 is just 2, so this one parameter system only breaks up into two visible pieces.
Each of these two pieces itself turns out to be a suitable Kummer pullback to A1 of a particular
hypergeometric sheaf on Gm. It is this fact, and the group-theoretic analysis it makes possible, that
leads to our results in this n even case.

The main results about monodromy groups in the n even case are Theorems 10.3, 10.4, 10.6, and
10.7.

7. A special class of hypergeometric sheaves

We fix an odd prime p, a prime ` 6= p, and two integers A > B > 0 with gcd(A,B) = 1 and AB

prime to p. We also fix a nontrivial additive character ψ : Fp → Q`
×
. For K/Fp a finite extension,

we denote by ψK the additive character of K given by x 7→ ψ(TraceK/Fp
(x)).

We denote by H(ψ,Antriv,Bntriv) the hypergeometric sheaf

H(ψ,Antriv,Bntriv) :=

Hyp(ψ, all nontrivial characters of order dividing A, all nontrivial characters of order dividing B).

Lemma 7.1. Up to a constant field twist, H(ψ,Antriv,Bntriv) is the lisse sheaf on Gm/Fp whose
trace function at u ∈ Gm(K), K a finite extension of Fp, is

u 7→ −
∑

x,y∈K with yB=xA/u

ψK(Ax− By).

Proof. By definition, H(ψ,Antriv,Bntriv) is the multiplicative ! convolution of

Kl(ψ,Antriv) = H(ψ,Antriv, 1ntriv)

with the pullback by multiplicative inversion of

Kl(ψ,Bntriv) = H(ψ,Bntriv, 1ntriv).
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As explained in [Ka-RL-T-Co2, Lemma 1.2], up to a constant field twist, Kl(ψ,Antriv) has a descent
to Gm/Fp whose trace function is given at s ∈ Gm(K), K a finite extension of Fp by

s 7→ −
∑

x∈K

ψK(−xA/s+ Ax).

If B = 1, there is nothing more to prove. Suppose now B > 1.
Then the pullback by multiplicative inversion of Kl(ψ,Bntriv) has, up to a constant field twist, a

descent to Gm/Fp whose trace function is given at t ∈ Gm(K), K a finite extension of Fp by

t 7→ −
∑

y∈K

ψK(tyB − By).

Their multiplicative convolution then has trace function at u ∈ Gm(K) given by

−
∑

s, t ∈ K×

st = u

∑

x∈K

ψK(−xA/s+ Ax)
∑

y∈K

ψK(tyB − By) =

(solving for 1/s = t/u)

= −
∑

x,y∈K

ψK(Ax− By)
∑

t∈K×

ψK(t(yB − xA/u)) =

(the inner sum may as well be over all t ∈ K, since for t = 0 the sum
∑

x,y∈K ψK(Ax−By) vanishes)

= −(#K)
∑

x,y∈K with yB=xA/u

ψK(Ax− By),

as asserted. �

Corollary 7.2. The pullback [A]?H(ψ,Antriv,Bntriv) of H(ψ,Antriv,Bntriv) by x 7→ xA has, up to a
constant field twist, a descent to (the restriction to Gm/Fp of) the lisse sheaf

G(A,B)
on A1/Fp whose trace function at t ∈ K is given by

t 7→ −
∑

z∈K

ψK(−BzA + tAzB).

Proof. After pullback, write u = tA. Then the summation range yB = xA/u becomes yB = (x/t)A.
As A,B are relatively prime, yB = (x/t)A means precisely that y = zA, x/t = zB for a unique
z ∈ K. �

Lemma 7.3. The lisse sheaf G(A,B) is geometrically isomorphic to a multiplicative translate of the
lisse sheaf

G0(A,B)

on A1/Fp whose trace function at t ∈ K is given by

t 7→ −
∑

z∈K

ψK(zA + tzB).

Proof. Geometrically, take the A
th root of −B, say βA = −B, and make the substitution z 7→ z/β.

The trace sum becomes
−

∑

z∈K

ψK(zA + (tA/βB)zB).

�
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Lemma 7.4. The lisse sheaves G(A,B) and G0(A,B) on A1/Fp are geometrically irreducible.

Proof. Since multiplicative translation does not affect geometric irreducibility, it suffices to treat
G0(A,B). Its trace function is

−
∑

z∈K

ψK(zA + tzB) = −
∑

u∈K

ψK(tu)
∑

z∈K,zB=u

ψK(zA),

which is to say that G0(A,B) is the Fourier transform FTψ of [B]?Lψ(zA). This FT is geometrically

irreducible, because the input [B]?Lψ(zA) is geometrically irreducible, indeed I(∞)-irreducible, be-

cause at ∞ it is totally wild with all of its B slopes equal to A/B, a fraction with exact denominator
B, cf. [Ka-GKM, 1.14, 1.14.1].

Here is another proof of this result. It is equivalent to prove that [A]?H(ψ,Antriv,Bntriv) is
geometrically irreducible. By Frobenius reciprocity, we have

〈[A]?H(ψ,Antriv,Bntriv), [A]
?H(ψ,Antriv,Bntriv)〉 =

= 〈H(ψ,Antriv,Bntriv), [A]?[A]
?H(ψ,Antriv,Bntriv)〉.

But
[A]?[A]

?H(ψ,Antriv,Bntriv) ∼=
⊕

χ;χA=1

H(ψ,Antriv,Bntriv)⊗ Lχ.

Of these summands, only the χ = 1 summand is isomorphic to H(ψ,Antriv,Bntriv), all the others
have the wrong “downstairs” characters (precisely because B is relatively prime to A). �

Lemma 7.5. The wild part of the I(∞)-representation of G(A,B) (or of G0(A,B)) is I(∞)-irreducible,
of dimension A− B, with all slopes A

A−B
.

Proof. This wild part is the pullback by [A] of the wild part of H(ψ,Antriv,Bntriv), which has rank
A− B and all slopes 1

A−B
. Because gcd(A,A− B) = 1, its [A] pullback, which has dimension A− B,

with all slopes A

A−B
, is itself I(∞)-irreducible. �

8. A second special class of hypergeometric sheaves

In this section, we continue with p, ψ,A,B as in the previous section; A > B > 0 are integers with
gcd(A,B) = 1 and AB prime to p, but now assume in addittion that A is odd. We denote by

H(Aall,B?χ2)

the hypergeometric sheaf

Hyp(ψ, all χ with χA = 1, all ρ with ρB = χ2).

Lemma 8.1. Up to a constant field twist, H(Aall,B?χ2) is the lisse sheaf on Gm/Fp whose trace
function at u ∈ Gm(K), K a finite extension of Fp, is

u 7→ −
∑

x,y∈K,xA=uyB

ψK(Ax− By)χ2(y).

Proof. By definition, H(ψ,Aall,B?χ2) is the multiplicative ! convolution of

Kl(ψ,Aall)
with the pullback by multiplicative inversion of

Kl(ψ,B?χ2).

We have geometric isomorphisms

Kl(ψ,Aall) ∼= [A]?Lψ(Ax),
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Kl(ψ,B?χ2) ∼= [B]?(Lψ(−Bx) ⊗ Lχ2(x)).

The multiplicative convolution of [A]?Lψ(Ax) with the pullback by multiplicative inversion of
[B]?(Lψ(−Bx) ⊗ Lχ2(x)) thus has trace function at u ∈ Gm(K) given by

−
∑

s,t∈K×,st=u

∑

x∈K,xA=s

ψK(Ax)
∑

y∈K,yB=1/t

ψK(−By)χ2(y) =

= −
∑

x,y∈K,xA=uyB

ψK(Ax− By)χ2(y).

[We do not need to specify that x, y are nonzero, since χ2(y) vanishes unless y 6= 0, and once y 6= 0,
the equation xA = uyB forces x 6= 0 as well.] �

Exactly as in the previous section, we get the following results.

Corollary 8.2. The pullback [A]?H(Aall,B?χ2) of H(Aall,B?χ2) by x 7→ xA has, up to a constant
field twist, a descent to (the restriction to Gm/Fp of) the lisse sheaf

G(Aall,B?χ2)

on A1/Fp whose trace function at t ∈ K is given by

t 7→ −
∑

z∈K

ψK(−BzA + tAzB)χ2(z).

Lemma 8.3. The lisse sheaf G(Aall,B?χ2) is geometrically isomorphic to a multiplicative translate
of the lisse sheaf

G0(Aall,B?χ2)

on A1/Fp whose trace function at t ∈ K is given by

t 7→ −
∑

z∈K

ψK(zA + tzB)χ2(z).

Lemma 8.4. The lisse sheaves G(Aall,B?χ2) and G0(Aall,B?χ2) on A1/Fp are geometrically irre-
ducible.

Lemma 8.5. The wild part of the I(∞)-representation of G(Aall,B?χ2) (or of G0(Aall,B?χ2)) is
I(∞)-irreducible, of dimension A− B, with all slopes A

A−B
.

9. Local systems for Sp4n(q)

In this section, with the odd prime p and its ψ fixed, we denote by α := αFp
the negative of the

Gauss sum
α := AFp,q2n = −

∑

x∈F×

p

ψ(2x)χ2(x),

cf. (4.0.1). For K/Fp a finite extension, we define

αK := −
∑

x∈K×

ψK(2x)χ2,K(x).

One knows (Hasse-Davenport relation) that

αK = (αFp
)deg(K/Fp).

We fix also an even integer 2n ≥ 2 and

q := a power of p, A :=
q2n + 1

2
, B :=

q + 1

2
.
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We now work with the two local systems on A1/Fp,

Geven(ψ, 2n, q) := G0(A,B)⊗ α− deg, Godd(ψ, 2n, q) := G0(Aall,B?χ2)⊗ α− deg,

and their direct sum
W(ψ, 2n, q) := Geven(ψ, 2n, q)⊕ Godd(ψ, 2n, q),

whose trace function at s ∈ A1(K), K/Fp a finite extension, is given by

s 7→ (−1/αK)
∑

x∈K

ψK(xq
2n+1 + sxq+1).

These local systems are the pullbacks to the line t = 0 on the local systems of the same name in
[KT2, §3] on A2/Fp with coordinates (s, t). To avoid confusion, we will denote by

Geven,2-param(ψ, 2n, q), Godd,2-param(ψ, 2n, q), W2-param(ψ, 2n, q)

the two-parameter local systems. Thus the trace function of W2-param(ψ, 2n, q) at a point (s, t) ∈
A2(K), K/Fp a finite extension, is given by

(s, t) 7→ (−1/αK)
∑

x∈K

ψK(xq
2n+1 + sxq+1 + tx2).

This pullback relation gives us the following inclusions.

Lemma 9.1. We have the following inclusions.

(i) For the local systems Geven(ψ, 2n, q) and Geven,2-param(ψ, 2n, q), their geometric and arithmetic
monodromy groups satisfy the inclusions

Ggeom,even ≤ Ggeom,even,2-param, Garith,even ≤ Garith,even,2-param.

(ii) For the local systems Godd(ψ, 2n, q) and Godd,2-param(ψ, 2n, q), their geometric and arithmetic
monodromy groups satisfy the inclusions

Ggeom,odd ≤ Ggeom,odd,2-param, Garith,odd ≤ Garith,odd,2-param.

(iii) For the local systems W(ψ, 2n, q) and W2-param(ψ, 2n, q), their geometric and arithmetic mon-
odromy groups satisfy the inclusions

Ggeom,sum ≤ Ggeom,sum,2-param, Garith,sum ≤ Garith,sum,2-param.

Lemma 9.2. For εp := (−1)(p−1)/2, the local systems Geven(ψ, 2n, q), and Godd(ψ, 2n, q) have all
their Frobenius traces in the quadratic field Q(

√
εpp).

Proof. This is proved in [KT2, Lemma 6.1] for the two parameter versions. �

Lemma 9.3. Suppose q ≡ 1(mod4). Then we have the following results about our local systems on
A1/Fp.

(i) Let k/Fp be a finite extension in which −1 is a square. After pullback to A1/k, the arithmetic
monodromy group Garith,even for Geven(ψ, 2n, q) lies in Sp(q2n−1)/2(C).

(ii) The arithmetic monodromy group Garith,odd for Godd(ψ, 2n, q) lies in SO(q2n+1)/2(C).

Proof. This is proved in [KT2, Lemma 6.2] for the two parameter versions. �

Lemma 9.4. We have the following results results about our local systems on A1/Fp.

(i) The arithmetic monodromy group Garith,even for Geven(ψ, 2n, q) lies in SL(q2n−1)/2(C).
(ii) The arithmetic monodromy group Garith,odd for Godd(ψ, 2n, q) lies in SL(q2n+1)/2(C).
(iii) The arithmetic monodromy group Garith,sum for W(ψ, 2n, q) lies in SLq2n(C).

Proof. This is proved in [KT2, Lemma 6.3] for the two parameter versions. �
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Corollary 9.5. The geometric and arithmetic monodromy groups of the local systems Geven(ψ, 2n, q)
on A1 and Geven,2-param(ψ, 2n, q) on A2/Fp are irreducible subgroups of SL(q2n−1)/2(C). The geomet-

ric and arithmetic monodromy groups of the local systems Godd(ψ, 2n, q) on A1 and Godd,2-param(ψ, 2n, q)
on A2/Fp are irreducible subgroups of SL(q2n+1)/2(C).

Proof. Because we have the inclusion Ggeom < Garith, it suffices to prove the irreducibility for the
geometric monodromy groups. For the local systems on A1, this was proven in Lemmas 7.4 and 8.4.
Because these local systems on A1/Fp are pullbacks, by t 7→ 0, of the local systems on A2, these
latter local systems on A2 are a fortiori geometrically irreducible. �

From van der Geer-van der Vlugt [vdG-vdV], we get

Theorem 9.6. The groups Ggeom and Garith for W(ψ, 2n, q) on A1/Fp are finite, as are the groups
Ggeom and Garith for each of its direct summands Godd(ψ, 2n, q) and Geven(ψ, 2n, q).

Proof. This is proved in [KT2, Theorem 5.5] for the two parameter versions. �

Lemma 9.7. The order of Ggeom for Geven(ψ, 2n, q) is divisible by both (q2n−1)/2 and (q2n− q)/2.
The order of Ggeom for Godd(ψ, 2n, q) is divisible by both (q2n + 1)/2 and (q2n − q)/2.

Proof. The divisibilites are instances of the fact that for a finite group, the degree of an irreducible
representation divides the order of the group, applied first to Ggeom and its given representation,
and second to the image in Ggeom of I(∞) acting on the wild part of the I(∞) representation. �

Lemma 9.8. The image of the wild inertia group P (∞) in the geometric monodromy group Ggeom
of each of Geven(ψ, 2n, q) and Godd(ψ, 2n, q) is a p-group, whose action on the wild part of the given
representation is the direct sum of (q2n−1− 1)/2 pairwise inequivalent irreducible representations of
dimension q.

Proof. In each case, the wild part of the I(∞)-representation is irreducible (by Lemma 7.5 and
Lemma 8.5), of dimension (q2n − q)/2. So the assertion results from [Ka-GKM, 1.14 (3) and
1.14.1]. �

Corollary 9.9. The geometric monodromy group Ggeom,sum of the local system W(ψ, 2n, q) contains
a p-group that admits a representation which is the direct sum of (q2n−1−1)/2 pairwise inequivalent
irreducible representations of dimension q.

Proof. We will show that the image P (∞)sum of P (∞) in Ggeom,sum is such a group. The group
Ggeom,sum is a subgroup of the product Ggeom,even×Ggeom,odd which maps onto each factor. Viewing
all these groups as quotients of π1(A

1
Fp
), we see that P (∞)sum maps onto the image of P (∞) in, say,

the first factor Ggeom,even. Via this quotient, we see from Lemma 9.8 that P (∞)sum admits a repre-
sentation which is the direct sum of (q2n−1 − 1)/2 pairwise inequivalent irreducible representations
of dimension q. �

Corollary 9.10. Each of the arithmetic and geometric monodromy groups for each of the six local
systems

Godd(ψ, 2n, q), Geven(ψ, 2n, q), W(ψ, 2n, q),

Godd,2-param(ψ, 2n, q), Geven,2-param(ψ, 2n, q), W2-param(ψ, 2n, q)

contain a p-group that admits an irreducible representation of dimension q.

Proof. By Lemma 9.8 and Corollary 9.9, the assertion holds for the one-parameter local systems.
The assertion for the two-parameter local systems results from the one-parameter case and the
inclusions of Lemma 9.1. �
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Corollary 9.11. The geometric monodromy group Ggeom,even,2-param for Geven,2-param(ψ, 2n, q) has
order divisible by both (q2n−1)/2 and (q2n−q)/2. The geometric monodromy group Ggeom,odd,2-param
for Godd,2-param(ψ, 2n, q) has order divisible by both (q2n + 1)/2 and (q2n − q)/2.

Proof. Immediate from Lemma 9.7 and the inclusions of Lemma 9.1. �

Theorem 9.12. Write q = pa. Then we have the following results.

(i) The arithmetic monodromy group Garith,even for Geven(ψ, 2n, q) lies in Sp4an(p), the latter group
viewed inside SL(q2n−1)/2(C) by one of its even Weil representations.

(ii) The arithmetic monodromy group Garith,odd for Godd(ψ, 2n, q) lies in PSp4an(p), the latter
group viewed inside SL(q2n+1)/2(C) by one of its odd Weil representations.

Proof. In the two parameter versions, the named groups contain SL2(p
2an) (respectively PSL2(p

2an)),
so the asserted inclusions for them result from [KT2, Theorem 4.1]. Our local systems are pullbacks
of these by t 7→ 0. �

Theorem 9.13. Suppose that (q, 2n) 6= (3, 2). Then each of the arithmetic Garith,odd and geometric

Ggeom,odd monodromy groups for Godd(ψ, 2n, q) is (separately) of the form PSp2A(p
B)oCb for some

factorization 2an = AB and some divisor b of B.

Proof. This is part (ii) of [KT2, Theorem 4.7]. �

Theorem 9.14. Write q = pa. We have the following results.

(i) For the local system Geven,2-param(ψ, 2n, q), each of its geometric Ggeom,even,2-param and arith-
metic Garith,even,2-param monodromy groups is (separately) of the form Sp2A(p

B)oCb for some
factorization 2an = AB and some p-power divisor b of B.

(ii) For the local system Godd,2-param(ψ, 2n, q), each of its geometric Ggeom,odd,2-param and arith-

metic Garith,odd,2-param monodromy groups is (separately) of the form PSp2A(p
B) o Cb for

some factorization 2an = AB and some p-power divisor b of B.

Proof. This is proved inside the proof of [KT2, Corollary 6.5]. �

Theorem 9.15. Write q = pa. For the local system W2-param(ψ, 2n, q), we have the following
results.

(i) Its geometric monodromy group Ggeom,sum,2-param is isomorphic to the diagonal image of
Sp2A(p

B) o Cb in Sp4an(p) × PSp4an(p) for some factorization 2an = AB and some p-power
divisor b of B.

(ii) Its arithmetic monodromy group Garith,sum,2-param is isomorphic to the diagonal image of

Sp2A(p
B) o Cb in Sp4an(p) × PSp4an(p) for some factorization 2an = AB and some p-power

divisor b of B.

Proof. Let us begin with the geometric group. From Theorem 9.14, we get that Ggeom,sum,2-param is
a subgroup of a product group

(

Sp2A(p
B)o Cb

)

×
(

PSp2C(p
D)o Cd

)

,

for some factorizations 2an = AB, 2an = CD, with b some p-power divisor of B and d some p-power
divisor of D, which maps onto each factor. By Goursat’s lemma, Ggeom,sum,2-param is the inverse
image of the graph of an isomorphism of some quotient of the first factor with some quotient of the
second factor. The only quotients of the first factor are itself, PSp2A(p

B)oCb and the quotients of
Cb. The only quotients of the second factor are itself and quotients of Cd.

There are no isomorphisms between any Sp2A(p
B)o Cb and any PSp2C(p

D)o Cd, because their
derived groups, namely Sp2A(p

B) and PSp2C(p
D), are not isomorphic.
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There is an isomorphism between PSp2A(p
B)oCb and PSp2C(p

D)oCd precisely when (A,B) =
(C,D) and b = d.

The are no isomorphisms of any nonabelian quotient of one factor with an abelian quotient of
the other.

The only remaining possibilities are isomorphisms between quotients of Cb with quotients of Cd.
But in this case, the group Ggeom,sum,2-param would contain the entire product

Sp2A(p
B) × PSp2C(p

D),

and this is ruled out by the trace zero argument of [KT2, Proposition 6.6].
Repeat the same argument for the arithmetic group Garith,sum,2-param. �

Lemma 9.16. At the point s = −1 ∈ A1(Fq), we have

|Trace(Frob−1,Fq
|W(ψ, 2n, q))|2 = q.

Moreover, for any finite extension K/Fq, and any s ∈ A1(K), we have

|Trace(Frobs,K |W(ψ, 2n, q))|2 ∈ {1, q, q2, . . . , q4n}.
Proof. From [KT2, §5], with t set to 0, we see that, for K/Fp a finite extension, and s ∈ A1(K),
this square absolute value

|Trace(Frobs,K |W(ψ, 2n, q))|2
is the number of zeroes in K of the polynomial

xq
4n

+ sq
2n

xq
2n+1

+ sq
2n−1

xq
2n−1

+ x.

When K is a finite extension of Fq, the set of its zeroes in K is an Fq vector space (under addition
and scalar multiplication by Fq) of dimension ≤ 4n. With s = −1, this becomes the polynomial

xq
4n − xq

2n+1 − xq
2n−1

+ x.

Every x ∈ Fq is a zero of this polynomial. �

In fact, we have the following result.

Lemma 9.17. Let K ⊂ Fq be a subfield. At the point s = −1 ∈ A1(K), we have

|Trace(Frob−1,K |W(ψ, 2n, q))|2 = #K.

In particular,
|Trace(Frob−1,Fp

|W(ψ, 2n, q))|2 = p.

Proof. As noted at the beginning of this section, the local system W(ψ, 2n, q) on A1/Fp has trace
function at s ∈ A1(K), K/Fp a finite extension, given by

s 7→ (−1/αK)
∑

x∈K

ψK(xq
2n+1 + sxq+1).

Taking s = −1, we get

Trace(Frob−1,K |W(ψ, 2n, q)) = (−1/αK)
∑

x∈K

ψK(xq
2n+1 − xq+1).

When K is a subfield of Fq, for each x ∈ K we have

xq
2n+1 = xq+1 = x2,

so that the sum
∑

x∈K

ψK(xq
2n+1 − xq+1) =

∑

x∈K

ψK(0) = #K.
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Thus for K a subfield of Fq,

Trace(Frob−1,K |W(ψ, 2n, q)) = (−1/αK)#K,

whose square absolute value is indeed #K. �

Corollary 9.18. For the 2-parameter local system W2-param(ψ, 2n, q), we have the following results.

(i) At the point (s, t) = (−1, 0) ∈ A2(Fq), we have

|Trace(Frob(−1,0),Fq
|W2-param(ψ, 2n, q))|2 = q.

Moreover, for any finite extension K/Fq, and any (s, t) ∈ A2(K), we have

|Trace(Frob(s,t),K |W2-param(ψ, 2n, q))|2 ∈ {1, q, q2, . . . , q4n}.
(ii) Let K ⊂ Fq be a subfield. At the point (s, t) = (−1, 0) ∈ A2(K), we have

|Trace(Frob(−1,0),K |W2-param(ψ, 2n, q))|2 = #K.

In particular,
|Trace(Frob(−1,0),Fp

|W2-param(ψ, 2n, q))|2 = p.

Proof. The statements about the point (−1, 0) are the statements about the point s = −1 in Lemmas
9.16 and 9.17. The second assertion of (i) is the fact [KT2, §5] that the square absolute value in
question is the number of zeroes in K of the polynomial

xq
4n

+ sq
2n

xq
2n+1

+ 2tq
2n

xq
2n

+ sq
2n−1

xq
2n−1

+ x.

�

10. Identifications of monodromy groups with Sp4n(q)

Recall, see [Zs], that if a > 2 and m ≥ 3, then am−1 admits a primitive prime divisor ppd(a,m),

that is, a prime divisor that does not divide
∏m−1
i=1 (ai − 1).

Theorem 10.1. Let A,B, a, n, b ≥ 1 be some integers with b|B and AB = 2an. Suppose that
H ∼= Sp2A(p

B)o Cb ≤ Sp4an(p) as in §3 and that H satisfies the following conditions:

(i) If n ≥ 2 then |H| is divisible by a primitive prime divisor `2 = ppd(p, (2n− 1)a).
(ii) If n = 1, then a p-subgroup of H is acting irreducibly on a complex space of dimension q := pa.
(iii) If ω denotes one of the two big Weil characters (of degree p2an) of Sp4an(p), then |ω(h)|2 is a

power of q for any h ∈ H.

Then (A,B, b) = (2n, a, 1), that is, H ∼= Sp4n(p
a).

Proof. First we note by Theorem 3.5 that pB/b = |ω(g)|2 for some g ∈ H. Hence condition (iii)
implies that

(10.1.1) B = bas

for some integer s ≥ 1.
(a) Consider the case n ≥ 2. Note that `2 ≥ (2n − 1)a + 1 by the choice of `2. On the other

hand, any odd prime divisor of b divides AB = 2an and so is at most an < (2n− 1)a. Hence `2 - b,
whence `2 divides |Sp2A(pB)|. Thus there is some 1 ≤ j ≤ A such that `2 divides p2Bj − 1, whence

(10.1.2) (2n− 1)a divides 2Bj

again by the choice of `2.
Suppose 1 ≤ j ≤ A/2. Then 2Bj ≤ AB = 2an. As 2(2n − 1)a > 2an, (10.1.2) implies that

2Bj = (2n− 1)a = AB − a, and so a = B(A− 2j) is divisible by B.
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Suppose A/2 < j ≤ A. Then

(2n− 1)a < 2an = AB < 2Bj ≤ 2AB = 4an < 3(2n− 1)a.

Now (10.1.2) implies that 2Bj = 2(2n− 1)a = 2AB − 2a, and so a = B(A− j) is again divisible by
B. Thus we have shown that B|a in either case. Now using (10.1.1) we conclude that b = s = 1,
B = a, and A = 2n as stated.

(b) Now assume that n = 1. Then (10.1.1) implies that Abs = 2. If furthermore A = 2, then
again b = s = 1 and we are done. So assume that A = 1, i.e. H ∼= Sp2(p

2a) o Cb, with bs = 2. In
this case, Sylow p-subgroups of H are abelian, contradicting (ii). �

Lemma 10.2. Let q = pa, and let G̃ be such that G := Sp4n(q) C G̃ ≤ Sp4an(p) and |ω(g)|2 = p

for some g ∈ G̃, where ω is one of the big Weil representation of degree p2an of Sp4an(p). Then

G̃ = NSp4an(p)
(G) = Sp4n(q)o Ca.

Proof. Note that NSp4an(p)
(G) = 〈G, σ〉, where σ is the automorphism of G induced by the map

x 7→ xp, of order a. It follows that G̃ = 〈G, σj〉 for some j|a. By Theorem 3.5, |ω(h)|2 is always a

power of pj for any h ∈ G̃. Hence we conclude that j = 1. �

Theorem 10.3. Let q = pa. For the local system W2-param(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,sum,2-param is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,sum,2-param is isomor-

phic to Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,sum,2-param is isomorphic to Sp4n(q)o

Ca.

Proof. (a) First we consider H = Ggeom,sum,2-param. By Theorem 9.15, H has the shape specified in
Theorem 10.1. Note that H projects onto (in fact, isomorphic to) Ggeom,even,2-param. Therefore, by
Corollaries 9.10 and 9.11, H satisfies conditions (i) and (ii) of Theorem 10.1. Condition 10.1(iii) is
fulfilled by Corollary 9.18. Hence, we conclude by Theorem 10.1 that Ggeom,sum,2-param

∼= Sp4n(q).

(b) If K is any finite extension of Fq, then the same arguments as in (a), but applied to
Garith,sum,2-param, show that Garith,sum,2-param

∼= Sp4n(q).

Finally, let K = Fp and H̃ = Garith,sum,2-param. By Theorem 9.15 and by (i) we know that

Sp4n(q)
∼= Ggeom,sum,2-param C H̃ ≤ Sp4an(p).

Applying Corollaries 9.18 and Lemma 10.2, we conclude that H̃ ∼= Sp4n(q)o Ca. �

Theorem 10.4. Let q = pa. For the local system Geven,2-param(ψ, 2n, q), we have the following
results.

(i) The geometric monodromy group Ggeom,even,2-param is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,even,2-param is isomor-

phic to Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,even,2-param is isomorphic to Sp4n(q)o

Ca.

For the local system Godd,2-param(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,odd,2-param is isomorphic to PSp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,odd,2-param is isomorphic

to PSp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,odd,2-param is isomorphic to PSp4n(q)o

Ca.
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Proof. Note that each of the arithmetic and geometric monodromy groups of each of the two
local systems Geven,2-param(ψ, 2n, q) and Godd,2-param(ψ, 2n, q) is a quotient of the corresponding
group for the local system W2-param(ψ, 2n, q). Also, observe that Sp4n(q) acts faithfully on the
even-dimensional Weil representations of degree (q2n − 1)/2, and acts with kernel C2 on the odd-
dimensional Weil representations of degree (q2n + 1)/2. Now using Corollary 7.4 and Theorem
10.3(i), we conclude that Ggeom,even,2-param ∼= Sp4n(q) and Ggeom,odd,2-param

∼= PSp4n(q).
The same arguments, but now using Theorem 10.3(ii) show that Garith,even,2-param ∼= Sp4n(q) and

Garith,odd,2-param ∼= PSp4n(q) for any finite extension K/Fq.
In the case K = Fp, we use in addition the fact that the arithmetic group contains the geometric

group as a normal subgroup and Theorem 10.3(iii) to see that Garith,even,2-param ∼= Sp4n(q)oCa and
Garith,odd,2-param ∼= PSp4n(q)o Ca. �

Theorem 10.5. Suppose that q = pa as before and that a subgroup G of H = Sp4n(q) satisfies the
following conditions:

(i) G is irreducible on a Weil module V of dimension (q2n + 1)/2 of H.
(ii) If n ≥ 2 then |G| is divisible by a primitive prime divisor `2 = ppd(p, (2n− 1)a).
(iii) If n = 1, then a p-subgroup of G is acting irreducibly on a complex space of dimension pa.

Then G = H = Sp4n(q).

Proof. (a) First we consider the case (n, q) = (1, 3). Then (i) implies that 5 divides |G|. Furthermore,
Sylow 3-subgroups of G are non-abelian by (iii), whence 33 divides |G|. Since no maximal subgroup
of H = Sp4(3) can have order divisible by 33 · 5, see [Atlas], we conclude that G = H.

From now on, we may assume that (n, q) 6= (1, 3). Hence, p4an−1 admits a large primitive prime
divisor ` = ppd(p, 4an) by [F], and we choose such an ` to maximize the `-partQ of p4an−1 = q4n−1.
By (i), |G| is divisible by Q, and we can apply [KT2, Theorem 4.6] (with d = 4n and f = a) to

G. Let L := O`′(G). Note that L 6∼= CQ, as otherwise by Ito’s theorem [Is, (6.15)] any irreducible
complex character of G has degree coprime to `, violating (i). In what follows we will consider the
possibilities for L as listed in [KT2, Theorem 4.6]. We also denote by dC(L) the smallest degree
> 1 of complex irreducible representations of L, and freely use lower bounds for dC(L) as listed in
[TZ1].

(b) L ∼= SL4n/j(q
j) for some j|4n with 4n/j ≥ 3. Then

dC(L) ≥ qj(4n/j−1) = q4n−j > (q2n + 1)/2 = dim(V ).

It follows that the quasisimple group L acts trivially on V . But in this case G cannot be irreducible
on V as G/L is an `′-group.

(c) L ∼= SU4n/j(q
j) for some j|4n with 4n/j ≥ 3 being odd; in particular, 4|j and n ≥ 3. Recall

that LCG ≤ GL4n(q). Now part (e) of the proof of [KT2, Theorem 4.7] (with N = 2an ≥ 6) shows
that no such subgroup G can be irreducible on V .

(d) L ∼= Ω−
4n/j(q

j) with j|2n and j ≤ n. If, moreover, j ≤ n/2, then

dC(L) ≥ qj(4n/j−3) = q4n−3j > q2n > dim(V ),

whence L acts trivially on V and we arrive at a contradiction as in (b). If j = 2n/3 (and so 3|n),
then L is a cover of PSU4(q

2n/3), and so

dC(L) =
q8n/3 − 1

q2n/3 + 1
>
q2n + 1

2
= dim(V ),
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and we again arrive at a contradiction. In the remaining case we have j = n, L ∼= PSL2(q
2n), and

dC(L) = (q2n + 1)/2. This possibility cannot however occur, since L ≤ H = Sp4n(q) has a faithful
representation of degree (q2n − 1)/2.

(e) L = Sp(Wj) ∼= Sp4n/j(q
j) for some j|2n (and the natural moduleWj = F

4n/j

qj
for L is obtained

from the natural module F4n
q of H by base change). Arguing as in part (d) of the proof of [KT2,

Theorem 4.7], we see that G = 〈L, σ〉, where σ is a field automorphism of L order say b|j. If
furthermore j = 1, then we obtain G = L = Sp4n(q), as stated.

Assume furthermore that n ≥ 2. Note any odd prime divisor of b is ≤ n < (2n− 1)a < `2, hence
`2 divides |L| = |Sp4n/j(qj)| by (ii). It follows that `2 divides q2ij −1 for some integer 1 ≤ i ≤ 2n/j,

whence 2n−1 divides 2ij. This is possible only when ij = 2n−1 as n ≥ 2. But j|2n, so we conclude
j = 1, as desired.

Finally, we consider the case n = 1, but j > 1. Then Sp2(q
2) = L C G ≤ Sp2(q

2) o C2. In
particular, the Sylow p-subgroups of G are abelian, contradicting (iii). �

Theorem 10.6. Let q = pa. For the local system W(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,sum is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,sum is isomorphic to

Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,sum is isomorphic to Sp4n(q)o Ca.

Proof. (a) First we consider G = Ggeom,sum. By Theorem 10.3(i) and Lemma 9.1,

G ≤ H := Ggeom,sum,2-param
∼= Sp4n(q).

Next, by Corollary 7.4 we have that G acts irreducibly on a Weil module of dimension (q2n + 1)/2
of H and thus fulfills condition 10.5(i). Furthermore, Lemma 9.7 and Corollary 9.10 show that G
satisfies conditions (ii) and (iii) of Theorem 10.5. Hence, applying Theorem 10.5 to G, we obtain
that Ggeom,sum = H ∼= Sp4n(q).

(b) If K is any finite extension of Fq, then the same arguments as in (a), but applied to Garith,sum,
show that Garith,sum ∼= Sp4n(q).

Finally, let K = Fp and G̃ = Garith,sum. By Theorem 9.15, Lemma 9.15 and by (i) we know that

Sp4n(q)
∼= Ggeom,sum C G̃ ≤ Garith,sum,2-param ≤ Sp4an(p).

Applying Lemmas 9.17 and 10.2, we conclude that G̃ ∼= Sp4n(q)o Ca. �

Theorem 10.7. Let q = pa. For the local system Geven(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,even is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,even is isomorphic to

Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,even is isomorphic to Sp4n(q)o Ca.

For the local system Godd(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,odd is isomorphic to PSp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,odd is isomorphic to

PSp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,odd is isomorphic to PSp4n(q)o Ca.

Proof. Argue similarly to the proof of Theorem 10.4, but using Theorem 10.6 instead of Theorem
10.3. �
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