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ABSTRACT. We consider a set of measures on the real line and the correspond-
ing system of multiple orthogonal polynomials (MOPs) of the first and second
type. Under some very mild assumptions, which are satisfied by Angelesco
systems, we define self-adjoint Jacobi matrices on certain rooted trees. We ex-
press their Green’s functions and the matrix elements in terms of MOPs. This
provides a generalization of the well-known connection between the theory of
polynomials orthogonal on the real line and Jacobi matrices on Z to a higher
dimension. We illustrate the importance of this connection by proving ratio
asymptotics for MOPs using methods of operator theory.
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1. INTRODUCTION

The theory of polynomials orthogonal on the real line is known to play an impor-
tant role in the spectral theory of Jacobi matrices. In this paper, we show that the
theory of multiple orthogonal polynomials (MOPs) is related to the spectral theory
of Jacobi matrices on rooted trees. We will start this introduction by recalling the
definition and main properties of MOPs.

1.1. Multiple orthogonal polynomials. In what follows we shall set N := {1,2,...}
and Z, :={0,1,2...}. Consider a vector

—

H::(Nla"'7ﬂd)7 dEN,

of positive finite Borel measures defined on R and let

d
it = (ni,...,nq) € Z4, |ii] = an.
j=1

In this paper, we always assume that supp p; is not a finite set of points and that

/xlduj(x) < oo

R

for every j € {1,...,d} and every | € Z.
Definition 1.1. Polynomials {Ag) }j:1 that satisfy

deg AV <nj—1 forall je{1,...,d}
d

(1.1) / ZAg)(m)xldpj(x) =0 forallle{0,..., |7 —2}
R

are called type I multiple orthogonal polynomials.

Remark 1.2. In the definition above, we let AS) =0ifn; —1 <0.

Definition 1.3. Polynomial Py is called type II multiple orthogonal polynomial if
it satisfies

deg Py < |71,
(1.2)/ Pi(2)z'dpj(z) =0 for all j € {1,...,d} and 1 € {0,...,n; —1}.
R

Orthogonality relations (1.1) and (1.2) define enough linear homogeneous equa-
tions to determine the coefficients of Ag) and P;. Thus, polynomials of the first
and second type always exist. The question of uniqueness is more involved. If every
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Py, defined by (1.2) and not identically equal to zero, has degree exactly |7i|, then
the multi-index 7 is called normal and we choose the following normalization

Pa(z) = 2l + ... |

i.e., the polynomial Pz is monic. It turns out that 7 is normal if and only if the
linear form

d
(1.3) =AY (2)dp; (=

j=1
is defined unquely by (1.1) and the normalization

(1.4) / 211Qu(z) = 1

If the index is normal, we will assume that (1.4) is satisfied. Following Mahler [36],
we shall say that

Definition 1.4. The vector i is called perfect if all the multi-indices 7 € Zi are
normal.

Together with the multiple orthogonal polynomials we shall also need their func-
tions of the second kind.

Definition 1.5. Functions {Rg)} defined by

(15) ROE) = [ 200, e

are called the functions of the second kind associated to the polynomial Pg. Simi-
larly,

Qi()

(1.6) La(z) = | 1=
R

is the function of second kind associated to the linear form Q.

Given a measure p on the real line, denote by g the following Cauchy-type
integral
—~ du(z
(1.7) p(z) :=/M, z ¢ supp i,
RR—ZT
which, following the initial work of Markov [37], is often referred to as a Markov

function. Then, it follows from Definition 1.5 and orthogonality relations (1.2) that
polynomials

Pr( .
(18) P(j) / o )d/‘l‘j( )7 ]6{17"'7d}7
satisfy
RY(z) = Pa(2)iy(z) = P () = O(=77Y) i ed{l,....d},

where O(-) holds as z — co. Thus, to each vector of Markov functions (fi1, .. ., fla),
type II multiple orthogonal polynomials allow us to define a vector of rational

approximants (Pél) /Py ..., Péd) / Pa). Similarly, the polynomial

o Qn(z AD ) - AV @)
A / zZ—x Z/ Z—x du] (;v)
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satisfies

d
(1.9) La(z) = Y A9 ()7 (2) - AL (2) = 2717l 4 O (=111
j=1

where again O(-) holds as z — oco. Hence, to each vector of Markov functions
(1, - .-, fia), type I multiple orthogonal polynomials allow us to define a linear
form that approximates this vector.

Multiple orthogonal polynomials and the corresponding approximants were in-
troduced by Hermite in [28] as the main tool in his famous proof of the transcen-
dency of e. Later, Padé undertook a systematic study of the case d = 1 [47] (in
this case both types of polynomials coincide up to an index shift and normaliza-
tion). Nowadays, MOPs and the corresponding approximants are often referred to
as Hermite-Padé polynomials and Hermite-Padé approximants. For more informa-
tion about multiple orthogonal polynomials, we refer the reader to survey papers
[6, 15, 46] and monograph [45]. For some recent results in the theory of MOPs, we
refer the reader to [5, 21, 33, 34, 35, 38, 39, 42, 48, 49, 54].

1.2. Lattice recurrence relations. MOPs satisfy various recurrences (see, e.g.,
[11, 13, 52]). We will be interested in the relationship between the nearest neighbors
on the lattice 77 € Zi, where 77 is the index of orthogonal polynomial. Henceforth,
we denote by & := (1,0,...,0),...,é; := (0,...,0,1) the standard basis in R<.
For the linear forms {Q7}, the exist numbers {az} and {bz} such that (see, e.g.,
[51, 52])

(1.10)

d
1Q5(r) = Qi—zg,;(v) + br_g, jQi(x) +Zaﬁ,lQﬁ+a (), je{l,...,d}, #eN
=1

and type II polynomials satisfy
(1.11)

d
vPy(x) = Pryz, () + baPa(z) + Y am Pz (z), je{l,....d}, fieZ{.
=1

In this equation, we let P;_z = 0 and az,; = 0 if at least one of the components in
the vector 77 — € is negative.

It is known that the real-valued parameters {az ;} and {b7 ;} are uniquely deter-
mined by ji (see formulas (A.1) and (A.2) from Appendix A). From the definition of
the polynomials of the second type, it is clear that, e.g., {Pngj },n € Z,, are monic
polynomials orthogonal on the real line with respect to a single measure pu; and,
when written for 7 = né;, exactly one of the equations (1.11) represents the stan-
dard three term recurrence which will be discussed later. In general, setting some of
the indices in @ = (ng,...,nq) to zero, e.g., letting @ = (nq,...,n;,0,...,0) reduces
the system to the one defined by truncated vector (u1, ..., ;) and the correspond-
ing recursions on the boundary can be viewed as lower-dimensional recursions.

If d = 1, type II polynomials {P,} are the standard monic polynomials orthog-
onal on the real line with respect to the measure p; and

PO

=——m0—, neN.
" Pl
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Equations (1.11) reduce to the standard three-term recurrence
(1.12) xPp(x) = Poy1(z) + b1 Po(x) + an1Pr_1(x).

Later in the paper, when d = 1, will write y, an,—1, b, instead of ui, an 1, bp,1-
It is known that a, > 0,b, € R for all n € Z, and, if p is compactly supported,
then

(1.13) sup a, < 00, sup lb,| < o0

as follows from (2.9), (2.10), and (2.12) below.

Coefficients {a, } and {b,} define a one-sided tri-diagonal operator H that can be
symmetrized to get a self-adjoint bounded operator 7, i.e., the Jacobi matrix, (see
formulas (2.5) and (2.13) below). Conversely, we can start with arbitrary {a,}, {b,}
that satisfy

an >0, supa, < oo, suplb,| <o
n n

and define a self-adjoint bounded Jacobi matrix J. Polynomials {P,} are deter-
mined by solving recursion (1.12) with initial conditions P_; = 0, Py = 1. Then,
one can show that there exists a unique measure y for which {P,} are monic or-
thogonal. This p turns out to be compactly supported.

If d > 1, unlike the one-dimensional case, we can not prescribe {az ;} and
{b7;} arbitrarily. In fact, coefficients in (1.10) and (1.11) satisfy the so-called
“consistency conditions” given by a system of nonlinear difference equations (see,
e.g., Theorem 3.2 in [52]):

(1.14) biire:j — biaj = bive;i — biis
d d
(1.15) Zam*j,k - Zaﬁ+",;,k = bite; ibij — bite b,
k=1 k=1
(1.16) ii,i(bi,j = biii) = e, i(bia-e,j — bi-é.i),

where 77 € N¢ and i,j € {1,...,d}. Relations (1.14)-(1.16) can be viewed as a
discrete integrable system (see, e.g., [16]) whose associated Lax pair was studied in
[10].

1.3. Angelesco systems. In the one-dimensional case, recurrence relations (1.12)
establish a connection between the theory of orthogonal polynomials and the spec-
tral theory of Jacobi matrices [45]. Therefore, it is natural to ask what self-adjoint
operators are related to multidimensional equations (1.10) and (1.11)? There were
several results in this direction. In [8, 9], equations (1.10) and (1.11) were combined
to obtain the electro-magnetic Schrodinger operator defined on ¢2 (Zi). These op-
erators were symmetrized but only in very special cases. In [7, 11, 12, 13, 14, 30],
the recurrences along the diagonal (the so-called “step-line”) were related to higher-
order difference relations on Z,. They were not self-adjoint, in general.

The main goal of this paper is to introduce bounded self-adjoint operators defined
on ¢2(T), where T is a tree (finite or infinite) for which {P;} and {Q5} turn out
to be the generalized eigenfunctions after suitable normalization. This will be done
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under the following assumptions on fi and {az ;}, {bs ;}:

(A) i — perfect,

(1.17) (B) 0 < aj,; for all i € Zi such that n; >0, 7€ {1,...,d},
(C) sup ag,j < 00, sup b ;| < 00
neN? je{1,...,d} neN? je{1,...,d}

We will show that conditions (1.17) are satisfied by Angelesco systems which is
defined as follows.

Definition 1.6. We say that ji is an Angelesco system of measures if
(118) AimA]‘ =9, 1,jJ€ {17...,d},
where A; := Ch(supp p;) and Ch(-) stands for the convex hull.

We note here that, {A;} is the system of d closed segments separated by d — 1
nonempty open intervals. Without loss of generality, we can assume that A; <
<Ay (E1 < B, if supE1 < inng).

Angelesco systems, being important in theory of Hermite-Padé approximation
and in other areas of analysis and number theory, were studied in numerous papers,
see, e.g., [2, 3, 26, 43, 55] and references therein.

The theory of Schréodinger operators on graphs has been an active topic lately
which was motivated by their applications in the study of some problems in math-
ematical physics [1, 24, 32], most notably the delocalization in Anderson model.
For the general spectral theory of operators on trees and more references, see, e.g.,
[31]. We believe that our paper will set the ground for further development in the
theory of MOPs and spectral theory of difference operators on graphs. Among the
problems for future research in this direction we mention the problem of finding
the spectrum and the spectral type of the Jacobi matrices on the trees generated
by MOPs and building the spectral theory for Nikishin system of MOPs (see, e.g.,
[19, 44, 45] for definition of Nikishin system and recent developments). Multiple
orthogonal polynomials for some classical weights were recently studied in, e.g.,
[41] and the recurrence coefficients were found explicitly. These results allow one
to write the Jacobi matrix on the tree in the exact form. We are planning to study
them in subsequent publications.

In the next section, we recall the classical connection between Jacobi matrices
and orthogonal polynomials. In section 3 we introduce Jacobi matrices on trees and
explain their relationship to the theory of MOPs. Then, in section 4, we explore
the fact that Angelesco systems satisfy assumption (1.17). In particular, we show
how results on ratio asymptotics for MOPs can be obtained using the established
connection between MOPs and Jacobi matrices. Appendix A contains the proof
that Angelesco systems satisfy (1.17) and some general results. In Appendix B, we
apply matrix Riemann-Hilbert problem technique to prove the asymptotics of the
recurrence coefficients and MOPs for Angelesco systems with analytic weights that
is also used in section 4.

2. CLASSICAL JACOBI MATRICES

In this section we quickly review the connection between orthogonal polynomials
and the spectral theory of Jacobi matrices. Hereafter, we adopt the following
notation:
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e If 14 is a measure on R, then we set

= [ gadis Uflpi= D llls= [ de

Let G be a graph and V be the set of its vertices. For X € V fixed, we put
1, ify =X,
ex(Y) = { 0, otherwise.

When appropriate we identify Z with the set of vertices of a 1-Cayley tree.
In particular, e;, I € Z, stands for the function on Z, defined as above.
If B is an operator on the Hilbert space, symbol o(B) will indicate its
spectrum.
If A is self-adjoint operator defined on ¢2(V) and z ¢ o(A), we will denote
the Green’s function of A as
G(X,Y,2) = ((A—2)"tey,ex), X, Y eV.

We remark here that the identity

(A=2)"tey,ex) = (e, (A" = 2) lex) = (A - 2)"lex,ey)
implies

(2.1) G(X,Y,z) = G(Y, X, 2).

e If 44 is a finite measure on the real line, then the function

du(x
0,(2) == / dp(w) ), z€C,
RL—Z
is called the Stieltjes transform of u. Clearly, it coincides with the Markov
function of 41 up to a sign, i.e., ©, = —[, see (1.7). We introduce this double
notation as Markov functions are classical objects in the literature on ap-

proximation theory and orthogonal polynomials while Stieltjes transforms
are standard in the spectral theory literature.

2.1. Orthogonal polynomials. Consider a positive measure p on R and assume
that p satisfies supp 1 C [— R, R] with some R > 0. We recall that monic orthogonal
polynomials {P, },n € Z, are defined by the conditions

(2.2) P (z)=a"+..., /DQPn(m)xldu(x) =0, 1€{0,...,n—1}

In one-dimensional theory, { P, } are called orthogonal polynomials of the first kind.
We write (1.8) as

A(2) = PI(e) = [ D=l

dp(z),

which is called the polynomial of the second kind. Notice that deg A, = n — 1.
Due to orthogonality relations (2.2), integral formula for the function of the second
kind (1.5) can be rewritten as

x\" P,(x)
R,(2) = (7> ——d .
@)= [ (2) 2 dutw)
Cauchy-Schwarz inequality gives

(2.3) | R (2)] < 2||ull= R™ 27" 7| Pl
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for |z] > 2R. Polynomials {A,} satisfy the same recurrence as {P,} but with
different initial conditions. More precisely, if we let a_; = —||p|, then for n € Z
it holds that

(2.4) { 2Py (x) = Poy1(z) + b, Po(2) + an_1 Py1(), Py :=0, Py =1,
A, (2) = Apy1(z) + 0pAn(2) + an_14n_1(z), A_y =1, Ay = 0.
2.2. Jacobi matrices. Let us consider an operator
bp 1 0 O
a by 1 0

(25) H = 0 a1 b2 1
0 0 ag b3

that acts on the space of sequences. Write P = (Po, P1,...)and R:= (Ro, Ry, ...).
It follows from (2.4) that
(2.6) HP=aP, (H—2)R=—eolul,

thus, formally, Pisa generalized eigenvector for H.
Now, we will show how this operator can be symmetrized. To this end, let us
introduce

(2.7) My = || Poly -

Multiplying (2.4) by P,_; or P,, integrating against the measure p, and using
orthogonality conditions (2.2) gives

2
m P, P,
ap_1 = —5— >0, bn:7< ”’2 ">”, nez,.
me_ m2

(2.8) Pn = Pom> Y, 1, = —R,m; .
Then polynomials p,, are orthonormal with positive leading coefficients and satisfy
(29) SCpn(l’) = Cnpn-i—l(l') + bnpn(z) + Cn—lpn—l(x), Cn 1= /Qn .

This equation can be used to easily estimate ||[{a,}||co and ||{bn}|lcc in terms of
supp p only. Indeed, multiplying (2.9) by p,—1(x) and integrating with respect to
 gives

oy = / 2P (@)pn(@)dpi(z) = / (& — Npu1 (2)pn (2)dp(2)
R R

with arbitrary A. After setting A to be the midpoint of A and applying Cauchy-
Schwarz inequality, this yields

(2.10) ||{Cn}||€°°(Z+) < |A|/27

where A := Ch(supp ). Next, multiplying (2.9) by p,(z) and integrating with
respect to p gives

(2.11) bp = Awpn(x)du(w)
and

(2.12) {00}l g0 (z) < sup |z].
TEA
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The Jacobi matrix J, defined by
bo Co 0 0
Co b1 C1 0 e
(213) j = 0 C1 b2 Co [N 5
0 0 C2 b3

is symmetric in ¢2(Z, ). Since the sequences {a, } and {b,} are both bounded, the
operator J is bounded and self-adjoint. If ' := (po,p1,-..), 7:= (ro,71,.-.), then
(2.6) and (2.8) yield
Jp=zp, (J-z)F=ep.
Similarly to (2.3), we can write
ra(z) = —/ (f)" Pal®) (@), rn(2)] < 2R7)50HD n e N, |o| > 2R,
rR\2/) z—x

since suppp C [—R, R]. Therefore, ¥ € ¢2(Zy) for |z| > 2R, and this implies that

(2.14) F=(J —2)""es, z¢oa(T),
by analyticity in z. We will also need the finite sections

bo Co 0 . . 0

Co bl C1 ce N 0
(215) jN = 0 C1 b2 0

O O O e CN—1 bN
which are all symmetric matrices. If py := (po,...,pn), we get
(2.16) (IN — 2)pN = —cnpny1(T)en.

2.3. Green’s functions. It follows from (2.14) that

G(eo, €0,2) = ((J — 2) " eo, e0) = —(2)l|ull ",
which shows that —||pu||~!7 is the Stieltjes transform of the spectral measure of e
with respect to J. Moreover, (2.16) implies that

pj(z)

2.17 GM(e;,en,a) = —— 1
( ) (€5-en,2) cNPN+1(T)

je{0,...,N}.
Hence, the matrix element

My (2) := G (en,en,2) = (In — 2)'en, en)

is the Stieltjes transform of the spectral measure of ey relative to the operator Jy
as given by the Spectral Theorem. We also see from (2.17) that

pn(z)
2.18 My(z) = ——————.
( ) v (2) cNPN+1(2)
Now, take (2.9) with n = N and divide by py to get
1
(2.19) Mpy(2)

N bN —Z — C?V_lMN—l(Z) ’

Iterating this representation gives a continued fraction expansion for the rational
function M.
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Since Jy is self-adjoint, (2.1) yields

po(2)

2.20 G (en,e0,2) = G (eg,en,2) = ————2
220 (ewco,2) = G e e, 3) = —— 2

because all the coefficients of p; are real.

Identities (2.14), (2.18), and (2.20) establish remarkable connection between the
spectral characteristics of J and Jy and the associated orthogonal polynomials
Pn. In particular, their asymptotics allows one to write asymptotics of Green’s
functions. Namely, assume that the measure p is supported on [—1, 1] and satisfies
the Szegd condition

! log ' ()
Vg

Then, it is known that (see, e.g., [45, p. 121, Theorem 5.4])

pu(2) = (1+0(1)S(2) (2 + V22 = 1)", n— 00, zeC\[-1,1],

where S, the so-called Szeg6 function, is a function analytic and non-vanishing
in C\[—1,1] which is defined explicitly through p’. Under these assumptions, we
also have lim, oo ¢, = 1/2, lim, o0 b, = 0 and therefore limy_,oo Mn(2) =

—2(z — V22 —1), z € C\[-1,1].

dxr > —o00.

3. JACOBI MATRICES ON TREES AND MOPSs
In this section we assume that [ satisfies (1.17).

3.1. JMs on finite trees and MOPs of the second type. Fix N = (N1,...,Ng) €
N? and a vector & € R?, which satisfies normalization

(3.1) Rl =K1+ - +rg=1.

We shall define an operator KT{, &> an analog of an NV x N truncation of the operator
H defined in (2.5). Domain of K 5 consists of functions defined on vertices of a
certain finite tree 7Ty constructed in the following fashion. Truncate Zi to the
rectangle Ry = {7 : n1 < Ni,...,ng < Ng} and denote by Py the family of all
paths of length |N| = Ny + --- + N4 connecting the points (0,...,0) and N =
(N1,...,Ng) (within a path exactly one of the coordinates is increasing by 1 at
each step). Untwine Py into a tree Ty in such a way that Py is in one-to-one
correspondence with the paths in 7, where the root of T, say O, corresponds
to ]\7, see Figure 1 for d = 2 and N = (2,1). The vertices of T correspond to
the points of the grid R 3 visited along the corresponding path. We denote by Vg
the set of these vertices and let II stand for the projection operator from V onto
R - Given a vertex Y € Vg, we denote by Y{, the "parent” of Y and define the
following index function on V:

0:Vg —={1,...,d}, Y by such that TI(Y,) = II(Y) + &, .
Finally, we denote the “children” of Y by Y{(.p);, where [ € ch(Y) = {i:n; >

0,II(Y) = (n1,...,nq)} and H(Y) = II(Y{cp),) + € (that is, Z = Yiepy, if | = £2),
see Figure 1.

Remark 3.1. Most of the points in R 3 correspond to multiple vertices of the tree
Ty, s0 II7!, in general, is not uniquely defined.
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(2,1)

(2,0) ~ Z

P)

(1,0) ~ Z

(07 O) ~ Y—(ch),Q (07 0) (07 0) ~ Z(ch),l

FIGURE 1. Tree for d = 2 and N = (2,1).

Remark 3.2. The number of children of a vertex Y is equal to the number of non-
zero coordinates of TI(Y'). Hence, most of the vertices have exactly d children.

To define the operator K. g, we first define two interaction functions V, W :

V5 — R with the help of the recurrence coefficients {as i, b7} from (1.10), (1.11).
Namely, we set

Vy = bH(Y)»Zyv Y 7£ 0, Wy = ATI(Y () b > Y 7é 0,
an
Vo =30 Kjbg, Y =0, Wo =1, Y =0.

Then, for any function f defined on Vg, the action of the operator K. o can be
written in the following form

{ (Ken Ny = fvoy + Vv + Xicanyy Wy, Y #0,
(’C,z,z\?f)o =Vfo+ ZZECh(O)(Wf)O(ch),H Y =0.

Remark 3.3. Clearly, this construction represents untwining d recurrences (1.11) at
the same point 7 € Zi to equations on the tree - one for each of many vertices Y
on Ty that satisfy II(Y') = 7.

Remark 3.4. The constructed tree T is not homogeneous since the vertices on the
tree representing the points on coordinate planes in Zi have fewer than d children.
However, one can consider the homogeneous infinite rooted tree 7,75 C T, with
the same root as T and extend ’CF{,N to T\Tg by setting KE,N' = 0. Then, the
resulting operator defined on all of 7 decouples into the direct sum of a finite matrix
KE,IV|TN and the zero operator.

Let us now consider the polynomials P;(z) as a function P on Vg given by
Py = Py, where z is now treated as a parameter. It follows from (1.11) and the
definition of K 5 that P satisfies the following operator equation:

d
(3.2) Ky nbP =2P— (Z ki Py e (z))eo .
j=1
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Remark 3.5. In the definition of the operator K. g the numbers {as ;, b5} could
be absolutely arbitrary. However, (3.2) holds precisely because these numbers come
from the recurrence relations (1.11).

Now, we can use (B) from assumptions (1.17) to symmetrize K 5 and produce
a self-adjoint operator jﬁ,ﬁ, which is an analog of Jy defined in (2.15). To do that,
consider a function m defined on Vg and choose m such that T = m‘lng Nm
is symmetric on ¢2 (V). This condition is easy to satisfy by taking m as follox;vs:

my:= [ W) %

yEpath(Y,0)

where path(Y, O) is the non-self-intersecting path connecting ¥ and O (Y and O
are included in the path). For the resulting self-adjoint operator J. g, which we
call Jacobi matrix on a tree, we have 1

(3.3)

1/2 1/2
(jﬁ,ﬁf)y = (WY) / fY(p) + (Vf)y + ZlEch(Y) (WY(ch),l) / fY(ch),l’ Y # Oa
1/2
(jﬁ,ﬁf)o =W/flo+ Zlech(o) (WO(ch),l) / fO(ch).z’ Y =0.
Furthermore, we get from (3.2) an identity
d
(3.4) Te §P=2p — (Z KiPg. e (z)) eo, p:=m ‘P
j=1

Remark 3.6. To symmetrize the operator K.  we only need the positivity of the
numbers {az ;}, but again to get (3.4) we need the full power of (1.11).

3.2. JMs on finite trees: Green’s functions. Identity (3.4) gives a formula for

the Green’s functions of 7. y:

(3.5) GM(Y,0,z2) = —— Py (2) . 2€C\o(T. 5)
2j=1KiPyie (2) 7

which is an analog of (2.17). In fact, if d = 1 and II(Y") = n, we have

P,

py = Pov/an . an—1 =+/ao...an—1——————— = (yao . .- an—1 || u|)pn

ag...0p—1

and py coincides with p, up to a scalar multiple. Furthermore, by taking Y = O
in (3.5), we get

c—2) " teo,e0) = — Pﬁ(z)
(3.6) (Ten —2) eoseo) Z?ﬂ ijm%(z).

If & = €;, we get a ratio of two MOPs with neighboring indices similar to (2.18),
that is,
Pg(z)

(3.7) M (2) = (T, 5 — 2)eo,e0) = ’ﬁ
+€;

(recall that O corresponds to the multi-index N so the analogy with (2.18) is indeed
valid). These ratios were already studied in [10] (e.g., formulas (5.5) and (5.6)).
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Divide (1.11) with @ = N by Pg to get
1 0
(38) xr = _MT(x) +b]\77] _Zaﬁ7lM]\7—é'l(m)
N l
It is worth mentioning here that Psyz and Pgz, are connected by a very simple

identity if j # m. If we subtract recursions (1.11) from each other and divide the
resulting equation by Py, we get

Pire;  Paye,
Py P

+bim — bi,j

implying that

1 1 .
(3.9) _W:_W—i_bﬁﬂj_bﬁvm N eZf .

N N
Tteration of (3.8), with application of (3.9) when the projection of the path hits the
margin of Zi, gives a branching continued fraction expansion, which generalizes
the standard one obtained from (2.19).

Finally, consider any Y and apply formula (2.1) to (3.5). Since J. y is self-

adjoint and all the coefficients of P; are real, it gives ’

my' Py (2)

Zj:l ”jpﬁ+€j (2) Zj:l “jPNJrgj (2)
In particular, taking Y as any point at the bottom of the tree and noticing that
In(y)=(0,...,0), Py = 1, we get

-1
My

d

G (0,Y,2) = -

which is an analog of (2.20).

3.3. JMs on infinite trees and MOPs of the first type. Take 7 € N? and
consider all paths that connect (1,...,1) with 7i. Again, we assume that each path
goes from (1,...,1) to i by increasing one of the coordinates by 1 at each step.
We consider infinite rooted tree (Cayley tree) with root O that corresponds to
(1,...,1). This tree is obtained, as before, by untwining paths to the lattice, see
Figure 2 below for d = 2. We denote this tree by 7 and the set of its vertices by V.
The projection from V to N¢ is again denoted by II. Every vertex Y € V.Y # O,
has the unique parent, denoted as before by Y{,), which allows us to define the
following index function:

(3.10) (:V —={1,...,d}, Y — Iy such that II(Y) = H(Y(y)) + €z, -
With the help of this function we can label the “children” of each vertex Y € V
as {Y(ch),1, -+ Y(cn),a}, Where we choose index | € {1,...,d} so that II(Y),;) =
I(Y) + &, that is, Z = II(Yen),) if £z = L.

Again, let {a74,b7,} be the recurrence coefficients from (1.10). To define the

p)>

operator Rz on V, we first define two interaction functions ‘7, W:V—-R by

Vy =brpy, )iy Y # 0, o { Wy = ar(y,, ey, Y # O,
‘70 = Z?:l ijf—é},j’ YZO, WO = 1, YZO,
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(1,1) ~ O ZY(p)

(17 2) ~Y = O(ch),2

(37 1) (27 2) (27 2) ~ Yv(ch),l (17 3) ~ }/(ch),2

FIGURE 2. Three generations of the tree 7 when d = 2.

where T = (1,...,1) and & is as in (3.1). Then, for any function f € ¢2(V), the
action of the operator Rz can be written in the following form

{ (Rzf)y = fv,, + (VH)y + Zf:ﬂwf)nw)ﬁ Y #0,
(Ref)o = (Vo + iy (W o Y =0.

Remark 3.7. Given i € N¢ let k € {1,...,d} be the number of the coordinates of
7i equal to 1. Then for the definition of the operator Rz at Y with II(Y) = 7 we
use one of only d — k recurrences (1.10) with excluded ones corresponding to the
indices j such that 7 — &; ¢ N%.

(3.11)

Now, recall formula (1.3) and consider forms Q7(z) as a signed-measure-valued
function @ on V given by Qy = Qri(y), where z is treated as a parameter. Similarly,
we can transfer polynomials Ag) (2),... ,A%d) (z) to obtain functions Ag/l), cee Agﬁl),
respectively, Y € V, that depend on a parameter z. From our construction and

(1.10), we have that
d d

(3.12) (Rz —2)Q = — (Z Hij,gj)eo = (Z %dui)eo,

j=1 i=1
where the coefficients ~; can be found explicitly via the relations

d
(3.13) vi= =y gAY
j=1

and the constants A?ig (these are polynomials of degree at most zero) are such

' 7
that Agf_)a =0 and

J

(1)
0 Jdwt) - [dua(t) Ar’e

3.14 - : ' : :
(3.14 0 St dpa(t) - [t 3dpa(t) || 49D
1 St dm(t) - [t 2dpa(t)) \ A
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(when d = 2 the above system retains only the last line; even though the system is

written as a matrix with d — 1 rows and d columns, forcing Agj )é = 0 turns it into
—&;
a square system).
Now, define the function L on V by setting Ly := Ly, see (1.6) (again, it

depends on a parameter z). Then, we get from (3.11) that

/ (Rz —2)Q,ey)

zZ—XT

= ((Rz—z)L,ey) + / Quv) (@) = ((Rz — z)L, ey ),

where the last equality holds since |TI(Y)| > d > 2 and therefore Qr(yy is always
orthogonal to constants by (1.1). The above identity, in view of (3.12) and (1.7),
yields that

(Rz —2)L = (i %‘ﬁz‘(z))eo :
i=1

Finally, similarly to the case of operators on finite trees, we can symmetrize Rz
to get symmetric Jz formally defined via

(3.15)
—~ (1/2 ~ —~ 1/2
(j,gf)y = (WY) / fY(p) + (Vf)Y + E?:l (WY(ch),z‘) / fY(ch),i7 Y #0,
~ —~ 1/2
(Teho = (Vo + iy Wo.) " form.. Y =0.
In this case it holds that
d
(3.16) (Tx = 2= (D wiis () o
j=1
where we let
(317) ly = m;/lLy, my ‘= H (Wy)il/Q,

y€Epath(Y,0)

and path(Y;O) is the non-self-intersecting path connecting ¥ and O. Conditions
(C) in assumption (1.17) imply that V and W are bounded. Thus, Jz is bounded
and self-adjoint on £2(V).

Remark 3.8. Inrecent papers, see, e.g., [41, 52], the recursion parameters {as; ;, bz, ; }
were computed exactly for some classical weights. In many of these cases, measures
{1;} were not compactly supported and at least one of the conditions in (C), (1.17)
was violated. However, our construction can still go through for many of these situ-
ations resulting in Jacobi matrices which define unbounded and formally symmetric
operators. We illustrate it with the classical example of multiple Hermite polyno-
mials defined by absolutely continuous measures given by the Gaussian weights

/14;' _ e—$2+0jw7 ¢ £ if j#1, 1< <d.

The formula for Hermite multiple orthogonal polynomials can be written exactly
[4, 27, 50] and it is known [52] that

big =¢j/2, am;=mn;/2.

Since az ; > 0 for i € N, we can repeat our construction to define formally sym-
metric operators Jz on infinite tree 7. The function Wy used in its definition
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can grow as fast as /|Y| at infinity so Jz is unbounded in ¢2(V). Studying de-
fect indexes of Jz and existence of self-adjoint extensions in ¢2(V) are interesting
problems but we choose not to pursue them in this paper.

4. JACOBI MATRICES ON TREES AND ANGELESCO SYSTEMS

We continue our discussion for the case when fi forms an Angelesco system (AS).
The foundational result for this section is the following theorem.

Theorem 4.1. If i forms an Angelesco system, then conditions (1.17) are satisfied.
Its proof is given in Appendix A.

4.1. JMs on infinite trees for AS: spectral measures. Here we discuss further
connections between Jz and MOPs of the first type. Recall that A; < Ay < ... <
Ag.

Proposition 4.2. Let I(z) be given by (3.17) and the coefficients ~y; be given by
(3.13)~(3.14). Then

(4.1) I(z) = (i ’yj//ij(z)) (Jz —2)"'eo

holds as an identity on the Hilbert space £*(V) for all z ¢ (U4_ supp ;) U o (Tx).
In particular,

d —
(42) GV,0,2) = (Y i) iv(a),

where G(Y, O, z) is the Green’s function for Jz.
Proof. Let R > 0 be such that supp pt; C [-R, R] for all j. It holds that
[La(2)| < (|21 = BT, 2] > R,

see (A.6) in Appendix A. This estimate along with boundedness of w implies that
I € (2(V) provided that |z| > R;, where R; is sufficiently large. Therefore, we
can conclude that (3.16) is satisfied not only formally as a functional identity, but
also as an identity on the Hilbert space ¢2(V). This, in particular, implies that
(4.1) holds for |z| > Ry, in which case the functions in both left-hand and right-
hand sides are in £2(V). Now, since for every Y € V, ly(z) is analytic away from
UJ_ysupp p; and ((Jz — z) " 'eo, ey) is analytic away from o(Jz), they match on
the common domain as claimed. Relation (4.2) follows straight from the definition
of the Green’s function, see the beginning of Section 2. O

Let the spectral measure of ep with respect to the operator Jz be denoted by
vg and recall that Stieltjes transform is defined by

(4.3) 0x(2) i= G(0,0,2) = [ 22

R T—2

Formula (4.2) allows to obtain the following representation for Oz:
Ox(z) = Lo(?) _ Z?:1 Yilti(2)
K - d ~ - d Py )
Do Vil (2) Y iy vilti(2)
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where the coefficients 7; form the solution of the linear system

0 f d,ul(t) .. f d/},d(t) il
(4.4) 0 = [ tdfg.dul(t) e td*2'dﬂd(t) %;1
1 [tV (t) - [t dpa(t) Y

In the case d = 2, the formulas are particularly easy.
Proposition 4.3. If (11, pue) forms an Angelesco system, then

pa(2) |2l — p2(2)]| |
wofiy (2) || pall + rafiz(2) || pa ||

=)= ([ (440 - )

Proof. We get from (4.4) that

(4.5) Or(2) = E(u1, p2)

where

Y= =B, po)ll| 7t and Fo = E(ua, p2)l|p2l| 7
and we get from (3.13)—(3.14) that
(46) i =—mAL = —mllm| T and o= kAR =~k 2]
which clearly finishes the proof of the proposition. O
This proposition has many applications. For instance, given p; and ps, (4.5)

allows us to find vz. For example, let & = (0,1). We can take the weak—(x) limit
lime_, 0 Im © g 1)(z + i€), use properties of the Poisson kernel, and write

_ |M1||ﬁ2)

et

(4.7) w1y = Z(p1, p2) Im* (1

= E(u1, p2) i (XAMA@ Im™* (—Ai) — Xapfiy Im ™ ﬁz) :
(|22l i1

where Im™ F' denotes the weak—(#) limit of the imaginary part of functions F'(z+ie)

when € — +0, and xg is the characteristic functions of a set E. Notice that since

A < Ag and Ay, Ay do not intersect, fip is continuous and negative on A; and

i1 is continuous and positive on As. Moreover, from the standard properties of

convolution with the Poisson kernel, we get —Im™ H; = mu;. As a corollary, we get

supp pip U supp Im* (7i7") € o(J(0,1))-

If both measures pq, uo are absolutely continuous, given by the weights wq, wo,
respectively, where in addition w; > 0 a.e. on Ay, i € {1,2}, then we have Ay U
Ay C 0(J0,1)). If we also assume that wl_1 € L*>(A1), then v 1y is absolutely
continuous with respect to Lebesgue measure and

l[pall Baws — Fown
luall -l f?

Analogously to the one-dimensional case, the inverse spectral problem can be solved
using (4.7).

Vo1 = E(11, pi2)
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Proposition 4.4. Assume that (u1, j12) defines an Angelesco system. If
||H1Ha ||,LL2H, E’(,uly,u2)7 and (5

are known, then pi, us, and Jz can be found uniquely.
Proof. Set h := [iz/f1. Then it follows from (4.5) that
b oo kel E(p, p2) — 20
el E(pa, p2) — K105

That is, h is uniquely defined given |1, [|s2]l, Z(p1, p2), and vz. Since [y is

analytic on Ag, the problem of finding i; (and then p;), ¢ € {1,2}, can be reduced
to finding fis from the equation

fis [l =W /b
where the right-hand side is given a.e. on As. Let ﬁ;r and fi; be the upper and
lower non-tangential limits of jis on the real line, which exist a.e. because jis is in

the Nevanlinna class. Notice also that fi; = fij and these functions are different
from zero for a.e. x € Ag. If we map C* conformally onto I and consider ifio
instead of fio, then the uniqueness of fis can be deduced from the following claim:

If G is analytic in D, Re G > 0 in D and G/G is known for a.e. z € T, then G is
defined uniquely up to multiplication by a positive constant.

Indeed, consider H := log G and notice that H = log |G|+iarg G, |arg G| < 7 /2.
Therefore, H belongs to Hardy classes H?(D) with any p < co and so log |G| and
H can be recovered from arg G uniquely up to adding a real constant. On the other
hand, G/G defines arg G uniquely since |arg G| < /2, which finishes justification
of the claim.

Therefore, fi2 is known up to multiplication by a positive constant. Since fiz(z) =
llu2llz=t + O(|2|72) when |2| — oo and |2l is given, this constant is uniquely
defined. O

Remark 4.5. Proposition 4.3 can be generalized to any d > 2 with resulting formulas
becoming more cumbersome.

Remark 4.6. From the construction of the operators Jz it is not a priori clear
why Jz # Jz if R # k’. However, this follows from (1.14) and lemma A.13 in
Appendix A.

4.2. JMs on infinite trees for AS: branching continued fractions. The
branching continued fraction associated with Jz can be constructed in the fol-
lowing way. Choose Y* € V and consider the infinite homogeneous subtree in T
which has Y* as the root, see Figure 3 for d = 2 and Y* = (1,2). We will call it Ty«
and the set of its vertices is Vy«. There are d types of these subtrees depending on
Zy*, see (3.10). We can define the operator Ry on Ty« in the same way as it was
done in (3.11) with O replaced by Y* and K = &,... Ry~ can be regarded as the
restriction of Rz to all f defined on V which are zero away from Vy+. The operator
Ry« can be symmetrized in the same way as it was done in (3.15) to produce a
self-adjoint operator Jy~. By construction, this Jy- is also equal to restriction of
Jz to Vy«. The Stieltjes transform of the spectral measure of ey« with respect to
the operator Jy« defined on £?(Vy ) is given by

Oy-(2) i= (Fy+ — 2) ey~ ex-).
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(1,1)
/,‘\

(3,1)" a(2,2) (2,2) (1,3)

(401) (32)372) 2332 @3 (114)
FIGURE 3. Three generations of subtree 7y« with root at Y* for
d = 2 (solid lines).

Denote the restriction of Iy to Ty« by lg,y*). Identity (3.16), when restricted to
Ty, implies that
(Jy» =) = *Wyg*ly})(z)@w :
Therefore,
Yy* =1 «
B7(z) = =Witdy: (2)Gy-(Y, Y™, 2),

where Gy+ denotes the Green’s function of Jy+«. In particular, we get from (3.17)
that

(4.8) Oy-(2) = _W;*% ly«(2) _ Lyiy~)(2)

by (2) LH(Y(;))( z)

In the spectral theory of Schrodinger operators on Cayley trees it is known (see,

g., [18]) that the functions Oy~ (z) enter into the branching continued fraction for
Oy defined in (4.3). Let us recall this argument. For Y* # O, we write equation
for [ at point Y*:

= Zly* .

"< N\»—A

((JL) J (ch),j

d
Vy«ly« + W%*ZY Z

Divide both sides by Iy and use (4.8) at points Y* and { ()i } This gives

VY* @Y* Z W (ch) i Y(ch),i (Z) =z.

Iterative application of this formula provides the branching continued fraction for
Oz. If d = 2, proposition 4.4 implies that all the entries of this continued fraction
can be found uniquely provided that three additional parameters are known.

4.3. JMs on infinite trees for AS: multiplication operators. One important
aspect of the one-dimensional theory is that the system {p,(x, 1)} can be used to
show that the Jacobi matrix J is unitarily equivalent to the multiplication operator
defined on L?(p). Indeed, orthogonality conditions give us

(4.9) eo(n) = ] 7172 / po(@, W)dp(z), n € Zs,
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and acting on this identity by J%*, k € Z,, we get
(4.10) (74e0) ) = 1l 2 [ 2*puln (o), ne 2o,

while {p,,} is generalized orthogonal basis of eigenvectors of J in the Hilbert space
(?(Zy). This formula sets the ground for the constructive proof of the Spectral
Theorem for J. In the multidimensional case, some generalizations are possible.

Proposition 4.7. Ifd = 2, then

(4.11) eo(Y) =my! / AP (2)zdpy (z) + my! / AP (2)zdpy(z)
and
(4.12)

(TEeo)(Y) =my! / Ty () A (2)zdpn (x) + my* / Ty (2) AP (z)zdps () ,
where Ty (x) = x¥ + - are monic polynomials that can be computed inductively by
To(z) =1 and

Tk+1(m) = CCTk({E) + (b(0,0),l - b(070)72)Ag?1) /ka(x)dug(m) .

Similarly, one can get a formula for Jelzeo.

Proof. We notice first that (1.10) implies

(4.13)
pAT (@) = ALY, (@) +ba—z, AL (@) +Zan AT (@), mje{l2}, meN.

The formula (4.11) in proposition follows from the definition of the polynomials of

the first type. We notice here that the first integrand, i.e., m;,lAg/l), is a formal
eigenfunction of Jz, and the second one is a formal eigenfunction of Jz, thanks to
(4.13) and Ag) = Ag) = 0. This can serve as a multidimensional analog of identity
(4.9) with the striking difference that the formal eigenvectors of two operators are
involved. Acting repeatedly on (4.11) by Jz, gives a formula (4.12) which is similar
0 (4.10). Indeed, To(z) = 1. Now, we argue by induction: given (4.12), we act on
it by Je, to get

(4.14)

(75 1e0) (V) = my [ (aTe(e) AP @padps(@)+my? [ Tala) (T, A2 () e,
Next, we notice that (3.15) and (1.14) yield
(Je, — T&,)f = (bo,1),1 — ba,oy,2)(eo, fleo = (bo,0),1 — b0,0),2){€o, f)eo,

ie., Jz and Jg, are rank-one perturbations of one another and

jglA(Q) () = je“zA(g) (1?)+(b(0,0),1—b(0,0),2)A(oz)eo = 9514(2)(x)'f‘(b(o,o),l—b(o,o),z)Ag)eo-
Substituting this into the second term in (4.14), we get

(T eo) (V) = my* / (aTi(2)) ASY (@) xdp () +my! / (aTi(2)) A (2)xdus (z)
+ (00011 - 002G [ Tu@dia@) cotr).
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Now, using (4.11) we get

T (z) = 2Tk(x) + (bo.oya — bo.0).2) ALy / 2Ty (x)dpa () |
which finishes thet proof. O

Remark 4.8. Since all {T}} are linearly independent, the formula (4.12) sets the
linear isomorphism between Span{J% eo}, ¢z, and linear space of algebraic poly-

nomials in z.

The function fy := m;,lAgﬂ) formally satisfies an identity (7z, f(a:))y =z fy(z)
for all x € R but, in general, we do not know in what sense it can be regarded
as generalized eigenfunction of Jz,. However, if f(E) € ¢*(V) for some E € R,
then f(F) is an actual eigenvector of Jz, corresponding to eigenvalue E. Condi-
tion f(E) € £2(V) can be verified in some cases. For example, take & = & and
assume that E is an isolated atom in ps. Let £ be the closure of the subspace
spanned by vectors {eop, Jz,€0, \7522 €0, ...} Clearly, £ is invariant under Jz,. Let
the restriction of Jz, to £ be denoted by 57\52. It is a basic fact of the spectral the-
ory of self-adjoint operators, that fgz is unitarily equivalent to a one-dimensional
one-sided Jacobi matrix. We do not know if E is an isolated eigenvalue of Jz,.
However, from (4.7) applied to Jz,, we learn that E is an isolated eigenvalue for
jgz. Consider a small contour I'" around F which separates it from the rest of the
support of us. Since F is an isolated eigenvalue for \?5‘27 we get representation for
the spectral projection

1
Projpeo = —o— /F G(Y,0,2)dz € 2 (V).

On the other hand, it follows from (4.2) and (4.6) that
Qv (&)

I R 2-¢ ||M1||//
Y, - _
o / G, 0,7) 2ri my Jr ma(2) dz T 2m my
(I | (B pa ({EY))myt AP (E)

by residue calculus. Therefore, m;lAg,Q) € (*(V) and thus it represents a true
eigenvector of Jz,.

4.4. AS with analytic weights: asymptotics of the recurrence coefficients.
In this subsection we describe the asymptotic behavior of the recurrence coefficients
{as,j,bn,;} from (1.10), (1.11) when measures of orthogonality form an Angelesco
system (1.18) with

supp pj = Aj = [y, B5], je{l,...,d},

and have analytic non-vanishing densities with respect to the Lebesgue measure
on the corresponding interval. The proof of the main theorem is presented in
Appendix B.

In what follows, we always assume that
(4.15)

n; = cilii| +o(ii), ie{l,....d}, &=(e,...,cq) € (0,1) |c|_zc,_1
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When d = 1, i.e., when we have only one interval of orthogonality, it holds that
7i = n and therefore ¢ = ¢; = 1. Even though the middle condition in (4.15) is not
satisfied, all the considerations below still apply, however, no results are new in this
case.

It is known that the weak asymptotic behavior of multiple orthogonal polyno-
mials is described by the logarithmic potentials of components of a certain vector
equilibrium measure [26]. More precisely, given ¢ as in (4.15), define

Mg(Al,...,Ad) = {172 (Vl,...,l/d) 7S Mci(Ai), 1€ {1,...,(1}},

where M (A) is the collection of all positive Borel measures of mass ¢ supported
on A. Then it is known that there exists the unique vector of measures &z €
Mg(Al, . ,Ad) such that

d
I[dz] = min IRZR I[V]:= 21 ;] + Iy, ve] ),
R N L LB I CD >l )
where I(v;] := I[v;, ;] and I[v;, ] := — [ [log|z — t|dv;(t)dvg(z). The measure
wz,; might no longer be supported on the whole interval A; (the so-called pushing
effect), but in general it holds that

Az = supp(we;) = [az, Bzil C e, Bi], i€ {l,....d}.

Using intervals Az; we can define a (d 4 1)-sheeted compact Riemann surface,
say Mg, realized in the following way. Take d+ 1 copies of C. Cut one of them along
the union U?Zl Ag,;, which henceforth is denoted by 9{5?0). Each of the remaining
copies cut along exactly one interval Az;, so that no two copies have the same

cut, and denote it by ‘ﬁg) To form Rg, take ‘,)%g) and glue the banks of the cut

Ag; crosswise to the banks of the corresponding cut on méo). It can be easily
verified that thus constructed Riemann surface has genus 0. Denote by 7z the
natural projection from MRz to C (each sheet is simply projected down on to the
corresponding copy of the complex plane). We also shall employ the notation 2(®
for a point on 9{((;) with mz(2(Y) = 2z and z for any point on Mz with mz(2) = 2.

Since Mz has genus zero, one can arbitrarily prescribe zero/pole multisets of
rational functions on Rz as long as the multisets have the same cardinality. Hence,
we define xz(z) to be the rational function on PRz such that

(4.16) Xg(z(o)) =2z+0(z7") as z— 0.

This is in fact a conformal map of PRz onto the Riemann sphere (it is uniquely
defined by (4.16) as all the functions with a single fixed pole are different by an
additive constant and therefore prescribing the second term in the Taylor series at
209 to be zero is equivalent to prescribing a zero). Further, let us define constants

d
{4z, Bzi},_, by
(4.17) xe(27) = Bz + Aziz P+ 0(27%) as z— o0
Then the following theorem holds.

Theorem 4.9. Assume that the measure u; is absolutely continuous with respect to
the Lebesgue measure on A; and that the density du;(x)/dx extends to a holomor-
phic and non-vanishing function in some neighborhood of A; for eachi € {1,...,d}.
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Further, let Nz = {fi} be a sequence of multi-indices for which (4.15) holds. Then
the recurrence coefficients {aﬁ7i,bﬁ,i} from (1.10), (1.11) satisfy

(4.18) limaz,; = Az; and limbz,; = Bz;, i€{l,...,d}.
Ne 7 ’ Ne 7 ’

Remark 4.10. Theorem 4.9 as well as all the forthcoming results on asymptotics of
MOPs remains valid under more general assumption that du;(x)/dx is equal to the
product of a non-vanishing possibly complex-valued holomorphic function and a so-
called Fisher-Hartwig weight, see [55]. In this case the possibility of normalization
(1.4) and the fact that deg(Pz) = || are no longer immediate, but can be proven to
hold for all 7i € Nz with |7| large enough (in which case the recurrence coefficients
{aﬁﬁi, bﬁ,z‘} are well defined). However, we opted not to pursue this generalization
as it is technical and not conceptual in nature.

Remark 4.11. When d = 1 and we denote the single interval of orthogonality by
[a, B], the corresponding conformal map x can be explicitly written as

X(z®) = 2= (a+5)/2 - (—21)k (z —a)(z — 5)7
for k € {0,1}, and therefore A = (3 — «a)?/16, B = (8 + «)/2, as expected.

Since xz(2) is a conformal map, all the numbers Bz ; are distinct. Hence, the fol-
lowing corollary is an immediate consequence of theorem 4.9 and [53, Theorem 1.1].

Corollary 4.12. Under the conditions of theorem 4.9, let polynomials Py (x) satisfy
(1.2). Then it holds that

lin Pa(2)/ Prs () = (xe(s?) = Bey)

uniformly on closed subsets of C \ U:'i:1 Ag; for every j € {1,...,d} .

4.5. JMs on finite trees for AS: convergence. Our main goal in this subsection
is to illustrate how the connection between the theory of MOPs and Jacobi matrices
can be used to obtain results about MOPs. For that purpose, we will focus on ratio
asymptotics.

Proposition 4.13. Let ¢ € (0,1)¢ and Nz = {N} be as in (4.15) (replace 7 with

N) Suppose that [i forms an Angelesco system for which the recurrence coefficients
satisfy

(4.19) limaz; = Az; and limbz; = Bz;, i€ {l,...,d}.
N T ’ N ’

Then the following limits exist:
P-

MY () = —tim 8C) ey,
c Nz PJ\7+€J‘(Z)

and the convergence is uniform on closed subsets of C\ Ule A;.

This result slightly generalizes part of [53, Theorem 1.1]. It can be used to give
alternative proof to corollary 4.12.

Proof. Consider operators {J. 3} introduced in (3.3) for N € Nz Thanks to a
remark given right before the formula (3.2), we can assume that all these operators
are defined on the single infinite tree 7. From the results of Appendix A, we also
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know that coefficients in these operators are uniformly bounded, which implies
sup e, |7z 5l < oo

On the infinite d + 1 homogeneous tree 7 with root at O, define operator Jz z
obtained by formally taking the limit in (3.3) and using (4.19):

(4.20) { (Twef)y = Beify + (Az:) % fy,,, + Z?Zl(Aa,j)%fY(ch),j, Y #0,
(Jzzf)o == 2?21 Bzikifo + E;—t:l(Aaj)%fo(cm,j, Y =0,

where Y(;,) has d children each corresponding to the index i € {1,...,d}.
First, we claim that J. g — Jz e in the strong operator sense, i.e.,

1(Te.5 = Tz2) fll oy = O

for every fixed f € £*(V). Indeed, let x|x|<, be the characteristic function of the
ball in 7 with center at O and radius p. Given any € > 0, there is p. such that

If = FXix1<pcllezv) < €.

Since coefficients {az ;} and {b7 ;} are uniformly bounded, we have

H(jﬁ,ﬁ - jﬁf) (f : X\X|2l)e) |€2(V) < Ce
uniformly in N. Having € and p,. fixed, we get
(725 = Tea) (f - xixi<p )l 2y = 0

by our assumptions (4.19). This proves our claim.
Next, the Second Resolvent Identity from perturbation theory of operators (see,
e.g., [29], theorem 4.8.2, formula (4.8.3)) gives

(T 5 —2) "eo = (Tze—2) 'eo — (Tz 5 — 2) NI 5= TJ2.0)( Tz — 2) eo

Js g
for z € C\R. Since [|(Jz,¢— 2)"'|| < |Imz|~" by the Spectral Theorem, we can
take |N| — oo and use the above claim to obtain

(421) |]\7‘ thEN (jé‘j,l\_f — Z)_leo = ( &, — z)—leo
—» 00, z

and this convergence is uniform in z over compacts in C* and C~. Now, recall the
notations (3.6) and (3.7) for the resolvent matrix element

(9) — - = Fy(z)
M]\7 (2) := <(‘7€j,1\7 —2) 1eo,eo> - _pﬁ+€j(z)

Thus, from (4.21), we get the required ratio asymptotics and Mcﬁj) = ((Jg,e —
z)"tep, eo). To extend this convergence to closed subsets of C \ U?:l A;, we only
need to notice that interlacing property of zeros implies that functions Mj(vj) are
uniformly bounded and analytic on them. Thus, by normal family argument we

can prove that Méj ) are analytic there and the uniform convergence extends to

these closed sets as well. O

Two remarks are in order now.
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Remark 4.14. Under the conditions of theorem 4.9, we use corollary 4.12 to get

d
. . _

(4.22) M () = A1 ;™). zeT\ | Az,

i=1
where' Yz, := Az;/(xz — Bzi), i € {1,...,d}. Taking the limit in formulas (3.7)
and (3.8), we obtain

A d

4.23 =% __ | B.. Tz:(29), je{1,...,d}.
( ) Z T, (Z(O)) + bzj + ; , (Z ) VESRH }
In other words, functions Yz ; (z(o)) define a solution to a system of d algebraic
equations and each of them, when multiplied by —1, is in Nevanlinna class in CT.

Remark 4.15. We can repeat the argument given right after formula (4.8) to show
that the matrix element of the resolvent operator Méj) = ((Jg,e — 2)"teo,eo)
satisfies equation similar to (4.23). Fix j € {1,...,d}. Denoting the Green’s
function

u = (Jz0 — 2)"teo,

we have (Jz, # — 2)u = ep, which can be rewritten using (4.20) as

“J

d
(4.24) Bzjuo + Y _(Az))*uo,,,, = zuo +1.
1=1
As Méj) = (u,e0) = up, that is equivalent to
d
(4.25) Bey MY + 3 (Az) Yo, = 2ME +1.
=1
Let us write O; := O(cnyi, @ € {1,...,d}. Then we get from (4.20) that
d
1 1
zuo; = (Azj)2uo + Bzjuo,; + Z(Aa,i)zu(oj)@h),i )
i=1
or equivalently
(4 26) B —Uo; zd:(A )1 “U(O;) (cny.i 1 —UQ;
~ Gi i T gi)? 1 =l
T(Ag) w0 o (Ag;)2uo (Ag;)2uo

Let us denote by (jé‘j’g)i the truncation of the operator Jz, = to the subtree T
with root at O;. Further, let u() be the Green’s function for (Jz, #);, i € {1,...,d}.
By comparing (4.24) and (4.26), we immediately see that

W = %2
(Az;j)2uo
Identifying ¢2 (V) with ¢2(V) in a standard way, we see that the operators (Jz,.2)j
and Jg, 7 are identical and therefore ugj) =up=M ng ), Hence, it holds that

uo, = — (Agy)* (M)

é

Lecompare with formula (B.2) in Appendix B
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Substituting this result into (4.25) we obtain
(4.27) Ba ;MY — Agy (MO + 2 s oy, = MY 1.

An analogous argument on subtree 7, i # j, yields that
uo, = —(Ag:)F MY MY

Substituting this result into (4.27), we arrive at

d
_ 1 ()
z = —W +B€,j — ZAFﬂME s
Z 1=1

which is consistent with (4.23).

4.6. AS with analytic weights: asymptotics of MOPs. This subsection is

the continuation of Section 4.4. In what follows, we shall set F'(®)(z) := F(2(®) for

a function F' on a given Riemann surface. It will also be convenient for us to set
dui(x) _ pilz)

4.28 = —
( ) dx 2mi ]

where, as before, we assume that p;(x) extends to a holomorphic and non-vanishing
function in some neighborhood of A;. Put

weil2) i= /(2 = az)(z - )

to be the branch holomorphic outside of Az; normalized so that wz;(z)/z — 1 as
z — 00. Observe that

(piwziv)(x) = 2m|wz, (2)|(dpi(z) /dx) >0, = € AZ; = (azi, Bzi),

where wg ;4 (x) stands for the non-tangential limit of wg;(2) on Az, taken from the
upper half-plane. The following facts have been established in [55, Proposition 2.4].

Proposition 4.16. There exists the unique up to a multiplication by a (d + 1)-st
root of unity set of functions Sék)(z), k e€{0,...,d}, such that
. Séo)(z) is mnon-vanishing and holomorphic in C \ U;j:l Az; and Sg)(z) is
non-vanishing and holomorphic in C\ Az;, i € {1,...,d};
. Séo), Séf) have continuous traces on A ; that satisfy Séf)i(x) = SéO:)F (z) (piwz,iy) (2)
there; '
e it holds that |S§0)(z)| ~ |S§)(z)|71 ~lz—zo| TVt as 2z — 2 € {azi, Bzt
i€{l,...,d}* and HZ:O Sék)(z) =1,z€eC.
These functions are continuous with respect to the parameter ¢, i.e., Séi)(z) —

Sg))(z) for each z € C\{az, i, Be,.i} (including the traces on A% ) as @ — ¢ € (0, 1)4
for each i € {1,...,d}.

2A(z) ~ B(z) as z — zo means that the ratio A(z)/B(z) is uniformly bounded away from zero
and infinity as z — zo.
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Remark 4.17. In the single interval [a, 8], i.e., in the case d = 1, let

Sy(z) :=exp { w(#) /6 log(pwy)(x) dx } 7

2mi z—x  wy(x)

where w(z) := /(2 — a)(z — 8), be the classical Szegd function for a log-integrable
positive weight p. Then it is easy to check that S(©) = S, and S = 1/5,.

Hereafter, we use for simplicity subindex 77 instead of the normalized subindex
it/|ii] € (0,1)?. For example, we shall write JRj; instead of Ry /7). Let ®7(2) be a
rational function on PRz with zero/pole divisor given by

(4.29) nioo® + .- 4 ny00® —|7|oo®

normalized so that HZ:O @%k)(z) = 1 (such a normalization is possible since this
product is necessarily a bounded entire function and therefore is a constant, and it
is unique up to a multiplication by a (d + 1)-st root of unity). Notation we used in
(4.29) indicate that the rational function has root of degree n; at infinity on first
Riemann sphere, etc., and pole of degree |7i| at infinity on Riemann sphere with
index 0.
It can be shown [55, Proposition 2.1] that

—yws (Z) + # 22:1 €ﬁ7k7 z € ‘ﬁﬁo)

n

1
i Verni(z) — b+ g Sr_ lag, z€RY, ie{1,...,d}

mlog|¢ﬁ(z)| =

for certain constants ¢z ;, ¢ € {1,...,d}, where wy = Z?:l wi,; and V¥(z) =
— [log|z — t|dw(t) is the logarithmic potential of w. It is of course true that
Wi, i Y wg; and Ly ; — Lz, as || — oo, © € N, for each ¢ € {1,...,d}, where Y
denotes weak-(*) convergence of measures.

Theorem 4.18. Let the measures p;, i € {1,...,d}, be as in (4.28) and polynomi-
als Py (x) satisfy (1.2). Further, let Nz = {7} be a sequence for which (4.15) holds.
Then it holds for i € Nz that

Pa(z) = (1+0(i™Y) % (S:25) " (2),
Pa(e) = (1+0(l™) v (Sa®a) " (2) + (1 + Ol ™)) 7a (Saa) (@),

where the first relation holds uniformly on closed subsets ofﬁ\Uf=1 Ap i, the second
one holds uniformly on compact subsets Ule A2

7.0 and g s a constant such that
: A (0)
Zlg]élo v 2™ (S7®7) " (2) = 1.
Remark 4.19. Observe that in the statement of the above theorem the functions
Sék) can be replaced by their limits Sék) at the expense of possibly loosing |7i|~1-
rate of convergence. Moreover, if the sequence Nz is such that no pushing effect
occurs for all its indices large enough, then Ry = Mz and Sék) = S’ék)
all such indices.

any way for

Let II7(z) be a rational function on PR; with the zero/pole divisor and the
normalization given by

2(c0™ 4+ 00@) =Dy and TV (c0) =1,
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where Dy is the divisor of ramification points of PRz (i.e., we place root of degree
1 at each ramification point of Rz). When d = 1, it in fact holds that

() = 2= @482+ (Ve
2/ (z—a)(z—=p5)
Then the following theorem holds.

, ke{0,1}.

Theorem 4.20. Let the measures u; be as in (4.28) and polynomials Ag)(m) be as
in (1.1) and (1.4), i € {1,...,d}. Further, let Nz = {1i} be a sequence for which
(4.15) holds. Then it holds for it € Nz that

i a1 H(_.i)wﬁi z
AV = —(1+0(l ))Wv
(i) (7)
A = — (14 o) TEwmdr @) g oz 05w -@)
= () ( (| | )) ’m(SﬁCI)ﬁ)S:)(x) ( (| ‘ )) ’Yﬁ(SﬁQﬁ)(j)(x)

where the first relation holds uniformly on closed subsets of C\ Az; and the second
one holds uniformly on compact subsets of A%, i € {1,...,d}. Finally, let Ly (2)

be given by (1.6). Then it holds for i € Nz that
(4.30) La(z) = 1+ O(71™) o5

uniformly on closed subsets of C \ Ule A;.

4.7. JMs on infinite trees for AS: asymptotics of the Green’s functions.
The asymptotics of the recurrence coefficients and polynomials of the first type can
be used to compute asymptotics of the Green’s functions of the operator Jz defined
in (3.15). We can use (4.1),(4.2), and (3.17) to this end. For simplicity, we consider
d = 2 and suppose that |Y| — 400 in such a way that N := II(Y) satisfy (4.15).
It follows from (4.2) and (4.6) that

@) G,0.2) = — Gl sl + mafin ()l - 2L,

where my was defined in (3.17). Then the asymptotics of my is derived from
the asymptotics of the recurrence coefficients (4.18) and (4.30) can be employed to
control asymptotics of Ly .

Notice that the projection of a general path from O to Y to the lattice N2 can
be complicated and it can go through many intermediate “angular” regimes before
reaching II(Y") which defines the terminal value of ¢. This makes the asymptotics of
G(Y, O, z) very sensitive not only to II(Y") but also to the path itself. However, for
generic Y, this asymptotics takes a much simpler form. Indeed, consider a random
path in 7 that starts at O and goes to infinity so that, when moving from Y to
Y(cn),1 or Y(cp),2, we chose the next vertex with equal probability. We denote the
resulting path by {Y (™}, n=0,1,....

Proposition 4.21. With probability one, the asymptotics of G(Y™), 0, 2) is given
by
1+ 0(|@™") 1 9z

GY™ 0,2)=—— _ il
( )= ) Tl + raf )T iy 1S Ba) O (2)
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uniformly on closed subsets of C \ (Az,1)1UAGL 1)2), and

— n n/4
my(ln) = (14 o0(1)) ((A( ),114(%,%),2) :

Proof. We will work with (4.31). Consider {II(Y(™)}, the projection of the path
{Y(™}. Project {TI(Y (™)} to the line y + = = 0 in R? denoting the resulting
sequence by {U(")}. It is the standard random walk defined on the line z +y =0
with each step of the size v/2. By the law of iterated logarithm [40], we have

v /\/2 B
V2nloglogn|

with probability 1. Therefore, almost surely {T[(Y(™)} satisfies conditions (4.15)
with ¢; = ¢z = 0.5. We can use (4.30) to write

11
272

lim sup
n—oo

H(P)(z)
Ly (2) = (1+0(a] ™)) —2 2
v (2) = ( (1)) ¥ (S7®5) 0 (2)
uniformly on closed subsets of C \ (A,1)1 YAL 1) 2), where 7T = (Y ™). The
asymptotics of the recursion coefficients (4.18) yields

n
y(n)* (I1+o0(1 H

where £; = 1 if the projection of the path to N2 goes to the right at j-th step and
& = 2 if it goes up. Taking logarithm of both sides of this formula and using the
law of iterated logarithm one more time gives

N\»—‘ \

l
2

logmy(n) 10g<A(%a%)a1A(%7%)72)
n B 4
with probability 1. This proves claimed asymptotics. O

APPENDIX A.

In this appendix, we prove theorem 4.1 and some auxiliary statements used in
the main text. Part (A) is well-known (see, e.g., [2, 43, 51]). The positivity of
coefficients ag ;, i.e., condition (B), is a part of folklore but we provide the proof
below anyway. Analog of (C) for the diagonal step-line recurrences was proved
n [11]. Before giving the proof of part (C) for the nearest neighbor recurrence
coefficients, we list several lemmas. Some of them are well-known but we state them
for completeness of the exposition. Recall that A; is the smallest interval containing
supp ;. Without loss of generality we assume that A; < Ay < ... < Ag.

Lemma A.1. We have representations

| Pty @

(A1) am; = , nezd, je{l,....d}, n;—1>0,
[ Posy @)™ a0
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and
(A.2) bﬁ,gj,j:/xlﬁ\Qﬁ(x)_/x\ﬁlleﬁ,gj(x), neN je{l,...,d}.
R R

Proof. To get (A.1), consider (1.11), multiply it by 2™ ~! and integrate against
;. To prove (A.2), take (1.10), multiply it by z!™1=1 and integrate over the line.
Orthogonality conditions (1.1) and normalization (1.4) give (A.1) and (A.2). O

Remark A.2. Formula (A.1) is well-known (see, e.g., [51]). Later in the text, we
will explain why the denominator in (A.1) is non-zero.

We will use the following lemma. Its first claim is well-known ([51], theorem
23.1.4 and [27]).

Lemma A.3. Py has n; simple zeros on Aj, the zeros of Prye,, and Py interlace
for anym € {1,...,m}. Moreover, let {xﬁ+€"L7i}L7;‘f_1 be the zeros of Pqyz, labeled

in the increasing order. Then
Tite;,1 < Titep,l < Ti4e;,2 < Titey,2 < - < Titg; |i|+1 < Titey,|i|+1

for any j <k, j,k € {1,...,d}. That is, the zeros of Pqiz, and Pqyg, interlace
and the zeros of Pjia, dominate the ones of Pryz,.

Proof. We present the proof of the second claim, it can be easily adjusted to handle
the first one as well. Given constants A, B such that |A| 4+ |B]| > 0, the polynomial
AP;y e, (z) + BPjyg () has at most |7 + 1 zeros and satisfies n; orthogonality
conditions on A; for each i € {1,...,d}. Therefore, it must have at least n; zeros
of odd multiplicity on A; for each i. However, since the total number of real zeros
is at most |7i| + 1, we conclude that all of them are simple. We claim that Pz,
and Pjyz, do not have a common zero. Indeed, if there were a common zero .,
then by taking A = Py . (2.) and B = =P} (z.), we would obtain a polynomial
with a double zero at . (|A| 4+ [B| > 0 holds as all the zeros of Py,&, and Pqig,
are simple as well). Thus, the expression

Pita;(y) Pt (2) — Pate, () Paye; (2),

as a function of x, vanishes at y and has only simple zeros. This implies that

8
+

€y (y)
+& (y)

Piye;(y)

det
Ple ()

| #0

2l

for all y. In a standard fashion (see, e.g., [27], proof of theorem 2.1) this leads to
the interlacing of the zeros of Priz, and Pyye;. Since Aj < Ay and Pyye, has
n; +1 zeros on A; while Py ¢, has n; zeros there, the domination property follows
from interlacing. O

Proof of theorem /j.1: condition (B). According to lemma A.3, we can write

Py =pl - p,
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) ;

where each polynomial p3’ is monic and has n; zeros on A;. Thus, we can rewrite

(A1) as
/A Hp( ) z)dpj(z
(A3) aﬁ’j _ / J i#£j )
vy g ) TTY (2)
A i#]

Since the products [[,_; p%)( ) and [],; pﬁ 2 ( ) are non-vanishing and have the
same sign on A; according to lemma A.3, the pomtivity of ap ; follows. O

As before, let us write A; = [, 055], 7 € {1,...,d}. We further put g; :=
aip1 — Bi, i€ {1,...,d— 1}, and set Apax := [a@1, Bd], Gmin := min; g;.
Lemma A.4. Let i € N4, We have
(m)
pﬁ (l‘) < |Amax|

sup < m#j
TEA; p(_‘ )_‘ (CE) Gmin ’

Proof. Put oy = |2k,5,m — 2|, & = |2k,7i—;,m — ©|, where x € A; and {zp71,m } are
zeros of p%m) on A, and we assume that xy, &, are monotonically increasing with

k. It follows from lemma A.3 that either x; < &, ¢ € {1,...,ny,}, in which case
Iy -

L1 Ty, <1< M’
51 gnm 9min
or 0 < 9min S 51 S s S 52 S x2 S S gnm S T, S Amaxv in which case

T1...Tp T Tn,,—1 T T |Amax|
A4 - Pm < e m > . U oL O
(A-4) ISEERES &2 Enm & & Gwmin

If o is positive measure on R, denote the corresponding monic orthogonal poly-
nomial by P,(z,0) or just P, (o )

Lemma A.5. We have
[1Pa(0)2 = min Q2.

Q:deg Q=n,Q is monic

Proof. This follows from the orthogonality conditions. O

Lemma A.6. Let o be positive measure on R with compact support. Set A :
Ch(suppo). Then

[Pn41()1I5

2 TGl <AV
Proof. See the explanation between (2.7) — (2.10). O
Define
V= (TT 1p57]) - do

m#j
Then the following lemma trivially holds.

Lemma A.7. Polynomial pal is nj-th monic orthogonal polynomial with respect

to the measure 0(3), i.€e. pm Py, (ag)),



32 A.I. APTEKAREV, S.A. DENISOV, AND M.L. YATTSELEV

For the proof of next lemma, see, e.g., [45], p. 135, Proposition 3.4 and [20],
Proposition 2.2.

Lemma A.8. Ag) has nj — 1 simple zeros on A;.

Denote by k7 the product of the leading coefficients of the polynomials Ag) and
define

—ﬁfHA(J z‘ﬁ‘_d—i—(’)(zlm_d_l) as 2z — 00.

Lemma A.9. Given ii € N, there exists a polynomial Dz(z) = Hf;ll(x — i),
where &z.; € {a, Bi}, such that

d
(A.5) Z/ ‘Ag)DﬁMﬁ
j=1"8

Proof. Since D7 My is a monic polynomial of degree |7i] — 1, we get from orthogo-
nality conditions (1.1) and normalization (1.4) that

d
Z/ Ag)DﬁMﬁduj = / DﬁMﬁQﬁ =1.

Notice first that the polynomial Ag)DﬁMﬁ does not change its sign on A; for
any choice of &, € {a;, 5}, i € {1,...,d — 1}. To prove the lemma, choose
i € {o,B;}, starting with ¢ = d — 1 and continuing down to ¢ = 1, so that
Ag)DﬁMﬁ has the same sign on A; as A(ﬁd)DﬁMﬁ has on A, (the latter is necessarily
positive). O

d,uJ:].

The next lemma follows from the proof of theorem 5 in [20] (see also [27]).

Lemma A.10. The zeros of Ag) and Ag_?_a interlace for anyl € {1,...,d}.

Proof of theorem /j.1: condition (C). The first bound in (C) from (1.17). By
(A.3) and lemma A.4, we get that

)] ()
. - (|Amax|>d_l / ( ) dO'H
" /( (]) ) do (J)
R

Then, it follows from lemmas A.7, A.6, and A.5, that

L) 0o [ (B (o) o (131 [ (Purte) 0 (1)

N . 2 . = 2 . 2
[ @2y [ o) | @20

Thus,
Apas d=1 /1A 1\ 2
e aﬁ’j < <d|) <| ]|) .
feNd Imin 2

9min
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The second bound in (C) from (1.17). It follows from (A.2) that
bﬁ,j = Yﬁ+€j — Ytﬁa Yﬁ = / l.\mQﬁ(x)
R
Put

d
I o(M=D=)x)Oxz(x) = xg)~~$ i\xr).
= [ o(MzDs)()Qu(a) > /. (A DaMs) @) 0

Orthogonality conditions (1.1) and normalization (1.4) yield that
i =Ya+Ca+Cs,

where Cj is defined by My (z) = /=4 + Crzl™=4=1 4 ... and C7 is defined by
Di(z) = 2971 4+ Czz?=2 + .- . Tt follows from (A.5) that

sup [nz| < sup |af.
ﬁGZi TEAmax

Furthermore, since each &7 ; € {a;, 5;}, ¢ € {1,...,d — 1}, we have that

d—1
E Erivei —
=1

[7i|—d

Finally, if we denote the zeros of Mz by {z7};—; in the increasing order, it holds
that

d—1

D i
i=1

-1
|Crive, — Cr| = < Z |€rte;i — &avil < 1Amaxl-
=1

|7t —d+1 |7t —d
|Crye, — Cr| = Z Tite i — Z Tig| < [Amax| + sup |z|
i=1 i=1 PESmax

by lemmas A.8 and A.10. Since |Apax| < 2sup,ca |x|, we have that

max

sup b7 ;| <7 sup |z| O
neN? je{1,...,d} TE€Amax

Remark A.11. The arguments we have given above imply that

sup ag,; < 00, sup b7, < o0,
ezt ,je{l,...,d} ezt je{l,....d}

that is, we can replace N with Z in (1.17). Indeed, consider all {az,;} and {b;;}
for which at least one coordinate in 77 is zero. Among them, we first take those 7 for
which exactly one component, say n;, in 7 is equal to zero and [ = j. For that family,
the boundedness of {b7,;} has been proven in the above theorem and recall that
az,; = 0 for such indices. To prove a uniform estimate for other coefficients, we can
argue by induction in d. Indeed, for d = 2, the recurrence coefficients evaluated on
the margins are uniformly bounded because they are recurrence coefficients of one-
dimensional Jacobi matrices with compactly supported measures of orthogonality.
For general d, we notice that the polynomials of a first/second type with indices
on the margin are in fact the polynomials of the first/second type with respect to
d — 1 orthogonality measures in Angelesco system and we can argue by induction.
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Remark A.12. We want to give another proof of the uniform estimate of b5 ;. This
argument is taken from [11]. Divide recursion (1.11) by xPz(z) and integrate over
the contour I" which encircles {0} U?zl Aj to get

%A(l—?ﬁ%f)dz—bnﬁ /Z MZ”le

The last term is zero by residue calculus at infinity. Using the interlacing property
of zeros, we can write

1
bi
basl < 57 |

where one needs to use a variation of (A.4).

Pn+ej( )
2Pz (2)

]’1]’1X )

The next lemma shows that the coefficients {b; ;} in fact are monotonic in j.
Lemma A.13. For allii € Z% and any j <k, j,k € {1,...,d} it holds that
bi,j < bi -
Proof. Tt follows from the recurrence relations that
(brj — b k) Pi(2) = Piiye, () — Paye, (2).
Since Pj(z) is a monic polynomial and the second coefficient of any monic polyno-
mial is minus the sum of its zeros, we have that

Jfil+1
bi,j — bk = E (Titre;i — Titeni)s

i=1
where {x7z, ;} are the zeros of P; 1z labeled in the increasing order. The claim
now follows from the second claim in lemma A.3. [l

Lemma A.14. Suppose ji defines an Angelesco system and Apax C [—R, R]. Then
(A.6) [Ln(2)] < (J2[ = R)717, |2 > R.

Proof. Recall that Ag) has n; — 1 simple zeros on A;. Let us abbreviate Oz =
MzD3, see lemma A.9, and write

Qa(z) 1 / (Oii(2) = Oi(2))Qir(x) 1 / Oii ()@ (x)

R z—2z Oz(2) Jr T —z Ox(2) Jp -2
Since (Oz(z) — Og(x))/(z — x) is a polynomial in = of degree || — 2, the first
summand of the left-hand side of the equality above is zero. For the second one,
we can write

‘ 1 /oﬁ(x)Qﬁ(m) | /Z?_lfAj(Aiﬂf)DﬁMﬁ)(m)duj(w)
Oz(z) Jp  x—2 - 10a(2) Jr T —z =

1 S5 S, [(AY DaMg) (@) | dpy () 1

Tl =] SQe—mmr =R

due to (A.5). O
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APPENDIX B.

B.1. Strong asymptotics of MOPs. Let (ﬁl, . ,ﬁd) be a vector of Markov
functions of the measures p;, that is,

7ii(2) ;:/M - 7_/ pil®) 4 L eT\ AL
z2—x 27 Ja, T — 2

The above definition explains the somewhat perplexing normalization in (4.28) as
(it — fi—)(x) = pi(z), x € A?, by Sokhotski-Plemelj formulae. Further, let
linearized error function RS) be given by (1.5) and polynomials Péz) be given by
(1.8).
Theorem B.1. Under the conditions of theorem /.18, it holds for all i € Nz that
(Q . Pé”) ()= B 1+ O (Sa2a) " (2)

Py Py (2) wii(2)  (S;®5) © )

i€ {1,...,d}, uniformly on closed subsets of C\ Ule Az,

Clearly, the error of approximation is small in Dgﬂ. and is large in Dgﬂ., where
Df={zeC: |0 (2)/0Y ()| <1} and D7, :={z€C:|0} (2)/0(2)| > 1}.

It is known [26, 55] that the domains Df{i converge in the Hausdorff metric to
certain domains Dé%i when |77| — oo, @ € Nz. The divergence domain D7, is always
bounded, possibly empty, and necessarily contains A;\ Az, see Figure 4. The ratio
\@g) / @%O)| is geometrically small on closed subsets of D;fz

D>

c,1

(€3] 56,-1"51 (€] B2

FIGURE 4. Schematic representation of the pushing effect and a diver-
gence domain in the case of 2 intervals (in this case D, = @).

Proof of theorems 4.18 and B.1. Theorem 4.18 and corollary B.1 were proven in
[55, Theorem 2.5]. Extension to multiple orthogonal polynomials [25] of by now
classical approach of Fokas, Its, and Kitaev [22, 23] connecting orthogonal poly-
nomials to matrix Riemann-Hilbert problems was used followed by the asymptotic
analysis based on the non-linear steepest descent method of Deift and Zhou [17].
The following definitions will be important for the remaining proofs in this section.
Set

Py Rf_il) e Rf_id)
My 1 Pr_e, mrL’lR%lid e mﬁ,le-id,-'
(B]-) Yﬁ = . . 1 . ] 7

myaPr_z, maaR
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where the constants mgy ; are such that lim,_,« mﬁle)_a(z)z" = 1. Further, let
Xi(2) be given by (4.16) on PRy and the constants {Az ;, Bﬁ,i}le be as in (4.17).
Define

(B.Q) Tﬁﬂ'(Z) = Aﬁ,i/(Xﬁ(Z) — Bﬁﬂ'), xS {1, Ce 7d}.
Clearly, it holds that

(B.3) Tg,)i(z) =2z4+0(1) and Tg)z(z) =An;(z7" + Bz 2+ 0(27?))
as z — 0o. Let
5 SN w4 .. SD furs 4
(B4) Mgy i— (SﬁTﬁ,l)(O) (SﬁTﬁ,1)(1)/wﬁ,1 (Sﬁ’rﬁ,l)(d)/w,ﬁ’d
(S7T7.4) © (SﬁTﬁ,d)(l)/wﬁ,l o (SiYa.4) (d)/wﬁ’d

and Cj be the diagonal matrix of constants such that

lim Cy(MzDy)(2)2 20 = I, Dy := diag(e?,...,0%),

Z—00

where o(t) := diag (|7], —n1,...,—ng). Then it was shown in the proof of [55,

O R D @)

FIGURE 5. Contour X (solid lines) in the case of two intervals Az =
[a1, Bz,1] and Azz = [az, Ba].

Theorem 2.5] that there exists a contour X, see Figure 5, that can be made to avoid
any given closed set K C C\ Ule Ag; except for the part K N U?:l(Ai \Agz;) and
any given compact set F' C Ule A% , such that

(B5) Yi3=CsZzMzDy and Yy =CrZiMziDyy(I+(1/p)E;411)

on K and on F'NAg, I € {1,...,d}, respectively, where Z5 is holomorphic in
C\ X, all but (i+1)-st column of Z are holomorphic across A; \ Az, Z7(o0) = I,
and Zz = I+ (’)(\ﬁ|’1) uniformly in C. Let Z := [Z7]1 k41 — dok, where d;; is
the usual Kronecker symbol, k € {0,...,d}. Then we get that

d
enaehs =0 (143270 = (-0~ 5
=0

uniformly on K, where the second equality holds because Z, = O (|ﬁ | _1) uniformly

in C (including the traces on X) and the functions ey converge to the functions

.l
Téol) also uniformly on K. This proves the first asymptotic formula of theorem 4.18.
Similarly, we have that

(Z:Mz)10 = (1+0(A™) (Ta;57)”
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uniformly on closed subsets of C \ U?:l Agz;, j € {1,...,d}. Therefore, it follows
from (B.3) and the choice of 5 that

(B.6) ma; = (1+O(|7| ™)) A [Calj1175
j €41,...,d}. Furthermore, it holds that
d
(ZiM)1ip1 =SS (1 +y° mf;}l> Jws; = (1+ 0|7 )) 8w s
1=0

uniformly on closed subsets of C\ Az;, i € {1,...,d}, where one needs to observe

that even though Tg)z has a pole at infinity, Z; has a zero there, and therefore the
desired estimate is obtained via the maximum modulus principle for holomorphic
functions. Thus,

(B.7) Rai(2) = (14 O ™)) 74 (S5®x) ™ (2)/ws.i(2)

uniformly on closed subsets of C\ Az;, i € {1,...,d}, which proves Theorem B.1.
Finally, we get on F' C AZ,; that

Vit (5(0 ‘I)(O) <1 + Z Zﬂgﬁ) + 7 (Sf;k)q’(k) (1 + Z VAl l:l:) (P1wi g+ )
= ya(sPeY), <1 + ; mef}i> + (5P 0 (1 + l; erg"g)

by the properties of the functions Sé and since F} 0 — Fg ) on Ay, for a rational
function F' on M. This proves the second asymptotic formula of theorem 4.18. [

Py

Proof of theorem 4.20. We can decompose matrix Mz in (B.4) as
My =Y5S5, Si:=diag (5,(30)75,(;1)/1077,1, . -,S,(;d)/wﬁ,d) v Yl ke = TE{TE,

where for convenience we put Yz o = 1. Let IIz,;(2), ¢ € {1,...,d}, be a rational
function on MRy with zero/pole divisor and normalization given by

oo(o)—|—2(oo(1)—|—~-—|—oo(d))—oo(i)—Dﬁ and H()() 1+ 0(z77).

mn,t
Observe that 115 ; = g5,;117 Y5 ; for some normalizing constants gz ;, ¢ € {1,...,d}.
: _ 17(k) o
Set IT; to be the matrix such that [Hﬁ} k41 =1L, §T where we put Iz o := IIj5.
Then it holds that
d
(k)
(Yalla], s ;00 =D (Tadlag) ™,
k=0

which is necessarily a meromorphic function on C. As it can have at most square
root singularities at the points {s s, Bai}, ¢ € {1,...,d}, it is a polynomial. It is
further clear from the behavior of this function at infinity that [Tﬁnﬁ] = §y5.
That is,

(B.8) M;' =S,

1+1,j+1
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Similarly to the matrix Yz, define

LA  ap
1 d

. —diaLave, danAG)s o dagAY)

Yﬁ = )
1 d

—diialriye, AiL—i)-ed o daAll,

_ 1s monic. It was

where the constant dj ; is chosen so that the polynomial dz ZAn Yo,

shown in [25, Theorem 4.1] that
Yi= (Y™

Hence, it follows from (B.5) and (B.8) that on closed subsets of C \ Ule Ag; it
holds that

Y =C3;'Z;1}S; DY,
where Zz = (25")" = I+ [Z1]; /.,

uniformly in C. Then

with Z ;(c0) = 0 and Z,; = O(|] ™)

d d
[Z:1), | =T+ 71y = (1 + Zgﬁ,kz\l,k-s-l’rgg) ) = (1+0(j@1))ny
k=0 k=0

uniformly on closed subsets of @\U?Zl Ag;, where the last equality follows from the
fact that the functions T%O’Z converge to Tg? uniformly on C\ U?Zl{aai, Bz} (in-

cluding the traces on Uf-l:l A%.) and the constants g5 ; converge to some constants
gz Therefore, the last claim of the theorem follows. Similarly we get that

(0)

ik Ly

[Z H;I;]lJrl 1= (1 + E Zl+1 k-&-lg«if) H%; (1+0(a]~ ))H%O?
k=0 il Ll

uniformly on closed subsets of C \ Ule Az;, 1€ {1,...,d}. Since Liig(2) =
27171 O(z*‘m*z) as z — 0o, we also get that

iy T )
(B.9) Lie(2) = (L+0O(|A] ™)) A 7(S7®7)0(2)

uniformly on closed subsets of C \ Ule Az;, Le{1,...,d}. It further holds that

213y =10 43" Zrpa, = (1 O]
k=0
uniformly on closed subsets of @\U?zl Agz;, L €{l,...,d}, where we need to use the
maximum modulus principle and vanishing of Z; ;4 at infinity to cancel the pole of
Tg?l. This estimate immediately proves the first asymptotic formula of the theorem
on closed subsets of C \ U?:l Ag ;. Since the ratio 'yﬁAg)(Sﬁtﬁ )0 /( wy,;) s
holomorphic outside Ay ;, the asymptotic formula is valid on closed subsets of C\
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Ag; again by the maximum modulus principle for holomorphic functions. Finally,
the second relation in (B.5) and (B.8) give us

Yis = Cy' Zallyy S; iDL L(IF (1/p) By i)

on any compact subset of AZ,;. Therefore,

- 1Y, wy e )
V] = (L O 2 (1) (14 (1))
1,0 1
o it (S ®) ) (S ®7) L
Since :F(l/pl)H(ﬁoi)/(Sﬁéﬁ)(io) = Hg:)FU}ﬁJ:F/(Sﬁ(bﬁ)gi) on Ay ; the second asymptotic
formula of the theorem now easily follows. O

B.2. Recurrences.

Proof of theorem /.9. It can be deduced from orthogonality relations (1.2) that

; hz; 1 o .
RY(z) = =5 +0(z72), = / Py(w)a" dpsi(x),

27 znitl
it €{1,...,d}. In particular, we have that myz; = —27i/hz_g, ; in (B.1). Since
ha;  1+0 (|ﬁ|f1)

- In

27 [Cﬁ]i—i-l,i-‘rl
by (B.7) and the definition of the matrix Cy, we get from (A.1) and (B.6) that
agi = hii/hi-z: = (1+ O (A7) Aa,
i €{1,...,d}. Furthermore, it follows from (A.2), (1.6), and (1.9) that
2Liys,(2) — Li(2) = bz 17171 4 (’)(z“ﬁl_z)
as z = 00, 1 € {1,...,d}. Hence, we get from (4.30), (B.3), and (B.9) that
bai = (1+ 0 (|]™")) Bay,
i €{1,...,d}. As mentioned in the proof of theorem 4.18, it holds that
1jl\[H_1 Ay = Az; and 1/1\/1{1 Biji i = Bz,
i €{1,...,d}, from which the claim of the theorem easily follows. O

Nearest-neighbor recurrences (1.11) lead to other recurrence relations for multi-
ple orthogonal polynomials (1.2), in particular, the so-called step-line recurrence.

Given an index n € N, it can be uniquely written as n = md+14, i € {0,...,d—1}.

Set

(B.10)

Pp(x) = Py, (x), where i(n) := (m+1,...,m+1,m,....,m), li(n) | = n.
i times d—i times

It is known [11] that the polynomials P, (x) satisfy (d+2)-term recurrence relations

d
(B.11) 2Py (x) = Pog1(2) + Y Yk P ().
k=0

In [11, Theorem 1.2 and Lemma 4.2] it was shown that the existence of the ratio
asymptotics for the polynomials P;(n)(z) is equivalent to the existence of the limits
for the recurrence coefficients 7, 1, which were computed for d = 2. With the help
of theorem 4.9 we can say more.
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Corollary B.2. In the setting of theorem 4.9, let polynomials P, (x) be defined by
(B.10) and {ynr}e_y be as in (B.11). If we set A; :== Az; and Bj := Bz, for
=(1/d,...,1/d), then fori € {0,...,d — 1} it holds that

Ymd+i,0 = Bit1,

(B.12) lim { Ymd+i1 = A1+ + Aqg,
m—r o0

Ymavik = g1 A [11=g (B — Biw), ke{2,....d},
where we understand the subindices of B’s cyclicly, that is, B_; = Bgq_; for j €
{0,...,d—1}.
Proof. Let n =md +1i, i € {0,...,d — 1}. It follows from (1.11) that

ZPn(Z) = P"+1 (Z) + bz(n) z+1 + Z al (n),j z(n) €’

As the sum on the right-hand side of the equality above has degree at most n — 1,
the first limit in (B.12) follows. It can be inferred from (1.11) that

Pz, = Pinne it Oinn-z-2 05 = Uitz i) Pinn-z,-2._,
B13) = Pacimt+ (Biuoiony—e, — Yitni—1)—e;.i-0) Bitnoi-1)—¢,

where we understand that €;_; = €34;—; when ¢ —1 < 0. By using (B.13) with [ = 0,
we get that

d d
ZaZ(n)7jP;(n)—eJ ZCL ” 1+Z a’z(n) ol bz(n 1)—¢€5,5 bz(n—l)—€j,i)Pf(n—1)—€j'
Jj=1 Jj=1
As the last sum above has degree at most n— 2, the second limit in (B.12) is proved.
Observe that

Un,j = in),j (b;(Tl—l)—€j7j o bf(n—l)—e”j,i) — A;(B; — B;)
as n — 0o. By using (B.13) with [ = 1, we get that

§ Un,; P i(n—1)— E unj 2+§ :“nd i é‘j,j_bZ(n72)7€j,i*l)Pf(n72)fé’]

As the last sum above has degree at most n — 2, the limit for 442 in (B.12)
is established. Clearly, the rest of the limits can be easily shown by induction on
k. O
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