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SYLOW SUBGROUPS, EXPONENTS AND CHARACTER VALUES

GABRIEL NAVARRO AND PHAM HUU TIEP

Abstract. If G is a finite group, p is a prime, and P is a Sylow p-subgroup of G, we study how
the exponent of the abelian group P/P ′ is affected and affects the values of the complex characters
of G. This is related to Brauer’s Problem 12. How this is exactly done is one of the last unsolved
consequences of the McKay–Galois conjecture.

1. Introduction

In Problem 12 of the celebrated list [Br], Richard Brauer asks: Given the character table of a

group G and a prime p dividing n = |G|, how much information about the structure of the p-Sylow
group P can be obtained?

In [IN], it was proved that if G is a finite p-solvable group and p is a prime, then a single Galois
automorphism and the character table of G determined the exponent of P/P ′, and it was hinted
that this could hold true for every finite group. (Here in this paper P ′ = [P, P ] is the commutator
subgroup of P , and recall that its exponent is the smallest prime power pe such that xp

e

= 1 for
all x ∈ P/P ′.) This was the origin of a wider generalization of the McKay conjecture: the so-called
McKay–Galois conjecture in [N2] which implies the following.

Conjecture A. Let e ≥ 1 be an integer. Let σe be the Galois automorphism of Gal(Qab) that fixes
roots of unity of order not divisible by p, and sends p-power roots of unity ξ to ξ1+pe

. Let G be a
finite group, and let P ∈ Sylp(G). Then the exponent of P/P ′ is less than or equal to pe if and only
if all the irreducible characters of p′-degree of G are σe-fixed.

In the first main result of this paper, we prove the if direction of Conjecture A. In fact, a stronger
result is obtained.

Theorem B. Let G be a finite group, and let P ∈ Sylp(G). If all the irreducible characters of
p′-degree of the principal p-block of G are σe-fixed, then the exponent of P/P ′ is less than or equal
to pe.
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If the proof of Theorem B already depends on the classification of finite simple groups and on
delicate properties of their characters, the only if direction of Conjecture A seems to lie even deeper.
It is quite exciting too since it proposes that a small abelian p-group P/P ′ affects the character
values of every finite group G that happens to have P as a Sylow p-subgroup.

Our second main result reduces the only if direction of Conjecture A to decorated simple groups.

Theorem C. Conjecture A is true for every finite group, if it is true for almost quasi-simple groups.

In the last section of this paper, we prove that certain almost quasi-simple groups satisfy Conjec-
ture A, giving further evidence of its truth. (G. Malle has informed us that using Theorem C he has
proved Conjecture A for p = 2 very recently in [M].) As pointed out in several places, the present
knowledge of the actions of Aut(S) and Gal(Qab/Q) on the set Irr(S) of the irreducible characters
of a simple group of Lie type S is not enough to fully answer questions as Conjecture A, for the time
being. This appears to be one of the main problems of the representation theory of finite groups
today.

We have mentioned that Conjecture A is implied by the McKay-Galois conjecture. (For a proof,
see Theorem 9.12 of [N3].) At the time of this writing, there is a draft of a reduction of the McKay–
Galois conjecture to a problem on simple groups in [NSV]. As happens with the reduction of the
McKay conjecture, and unlike our Theorem C, this is not a straight reduction to decorated simple
groups, but something far more complex. In any case, there are no shortcuts: Conjecture A (as well
as the McKay–Galois conjecture) will need to be proved for decorated simple groups eventually, and
this, as we have said, will require a much better understanding of the values of the characters of
simple groups and of their extensions than is currently available. We consider our Theorem B as a
contribution to this problem.

For p = 2, Theorem B bears a similarity with a conjecture of R. Gow that we proved in [NT1]:
If G is a finite real group, then P/P ′ is elementary abelian, where P ∈ Syl2(G). In fact, the main
result of [NT1] is that P/P ′ is elementary abelian if all the odd-degree irreducible characters in
the principal 2-block of G are real-valued. Unlike Conjecture A, the converse of this result is not
true (outside solvable groups). This shows, again, that in the global/local questions only the Galois
automorphisms described in [N2] seem to behave perfectly.

As a corollary of Theorem B, we do have, however, a new result on a classical family of groups:
the rational groups. In fact, our result holds more generally for quadratic-rational groups. Recall
that if G is a finite group and χ ∈ Irr(G), then Q(χ) is the subfield of C generated by the values of
χ.

Corollary D. Let G be a finite group, let p be an odd prime, and let P ∈ Sylp(G). Assume that
|Q(χ) : Q| ≤ 2 for all χ ∈ Irr(G) of p′-degree in the principal p-block of G. Then P/P ′ is elementary
abelian.

Proof. Let σ ∈ Gal(Qab/Q) be fixing p′-roots of unity and sending every p-power root of unity ξ to
ξ1+p. Let m = |G|p′ , and let n = |G|. Now, for any χ ∈ Irr(G) of p′-degree in the principal p-block
of G, we have that the extension Qm(χ)/Qm has degree 1 or 2. Also Qm(χ)/Qm is contained in
Qn/Qm, which has cyclic Galois group. Using Gauss sums, the only sub-extension of degree 2 of
Qn/Qm is Qm(i

√
p) or Qm(

√
p) depending on the congruence of p mod 4. In any case, i

√
p or√

p are sums of roots of unity of order dividing p, so they are fixed by σ. So χ is fixed by σ, and
Theorem B applies for σ = σ1. �

Note that the p = 2 analogue of Corollary D is not true. For instance, all the irreducible odd-
degree characters of G = SU3(3) are in the principal 2-block of G, are rational-valued or have
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quadratic field of values. However, if P is a Sylow 2-subgroup of G, then P/P ′ = C2 × C4. Of
course, this cannot happen if G is a rational group, by the main result of [NT1] mentioned above.

Finally, let us mention that after the recent result in [SF], the if direction of Conjecture A is one
of the last unproven consequences of the McKay-Galois conjecture.

2. Theorem B

In this section, we prove Theorem B assuming that Theorem 2.3 below on almost-simple groups
is true.

Our notation for characters follows [Is], while the notation for blocks follows [N1]. If G is a
finite group, then Irr(G) is the set of the irreducible complex characters of G. If N / G and
θ ∈ Irr(N), then Irr(G|θ) is the set of irreducible characters χ ∈ Irr(G) such that [χN , θ] 6= 0.
If p is a prime, then Irrp′(G) is the set of χ ∈ Irr(G) of degree χ(1) not divisible by p, and
Irrp′(G|θ) = Irr(G|θ)∩Irrp′(G). We denote by B0(G) the principal p-block of G, and by Irrp′(B0(G))
the complex irreducible characters in it of p′-degree.

About our Galois automorphism σ = σe ∈ Gal(Qab), we notice the following. If G is a finite group
of order dividing some integer n, then, by elementary number theory, we see that the restriction τ of
σ to the nth cyclotomic field Qn has order a power of p, and τ acts like σ on the ordinary characters
of every group of order a divisor of n.

We will use several times the following easy result.

Lemma 2.1. Let H ≤ G be a finite group and let A be a p-group for some prime p. Suppose that A
acts on the characters of G and H such that [χa, ψa] = [χ, ψ] for all the characters χ, ψ of G (and
of H) and such that (χH)a = (χa)H for every character χ of G and every a ∈ A.

(i) Let ψ be an A-invariant character of G. If there exists an A-invariant ξ ∈ Irr(H) with [ψH , ξ]
not divisible by p, then there exists some A-invariant τ ∈ Irr(G) such that [ψ, τ ][τH , ξ] is not
divisible by p.

(ii) If ψ is an A-invariant p′-degree character of G, then ψ has an A-invariant p′-degree irreducible
constituent with p′-multiplicity.

Proof. Notice that A permutes the irreducible characters of G and of H, since [χa, χa] = [χ, χ] for
characters χ of G (and of H).

(i) We have that

[ψH , ξ] =
∑

τ∈Irr(G)

[ψ, τ ][τH , ξ] .

Since we have that [ψ, τa][(τa)H , ξ] = [ψ, τ ][τH , ξ] using our hypotheses, we deduce that

[ψH , ξ] ≡
∑

τ∈IrrA(G)

[ψ, τ ][τH , ξ] mod p

where IrrA(G) is the set of irreducible A-invariant characters of G. Since [ψH , ξ] is not divisible by
p, the first part easily follows.

Part (ii) follows from part (a) by setting H = 1. �

The first two parts of the following lemma are trivial, while the third (due to M. Murai) lies
deeper.

Lemma 2.2. Let G be a finite group, and let N / G.

(i) We have that B0(G/N) ⊆ B0(G).
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(ii) If Hi are finite groups and γi ∈ Irr(B0(Hi)), then

γ1 × · · · × γt ∈ Irr(B0(H1 × · · · ×Ht)).

(iii) Suppose that θ ∈ Irr(B0(N)) has p′-degree and extends to NP , where P ∈ Sylp(G). Then there
exists χ ∈ Irr(B0(G)) of p

′-degree over θ.

Proof. See Lemma 2.6 of [NT1]. �

Next is the exact result that we need from almost simple groups in order to prove Theorem B,
and whose proof we defer until the next section.

Theorem 2.3. Let p be a prime, and e ≥ 1. Suppose that S / G, where S is a non-abelian finite
simple group, G/S is a p-group, and CG(S) = 1. Let P ∈ Sylp(G) and Q = P ∩ S. If all the
P -invariant χ ∈ Irrp′(S) in the principal p-block of S are σe-fixed, then every linear P -invariant
character of Q is σe-fixed.

Now, we are ready to prove Theorem B.

Theorem 2.4. Let G be a finite group. Let σ = σe, where e ≥ 1 is some integer. If all the
characters in Irrp′(B0(G)) are σ-fixed, then the exponent of P/P ′ is at most pe, where P ∈ Sylp(G).

Proof. We may assume that σ ∈ Gal(Q|G|/Q), so that σ has p-power order. We assume that all
characters in Irrp′(G) in the principal p-block of G are σ-fixed, and by induction on |G|, we prove
that the exponent of P/P ′ is at most pe. If λ is a linear character of P , notice that

λσ = λ1+pe

.

Therefore, using that P/P ′ is isomorphic to the group of linear characters of P , it is enough to
prove that all the linear characters of P are σ-fixed. Let 1 < K be a minimal normal subgroup of G.
Then we know by induction that all the characters of PK/P ′K are σ-fixed (using that B0(G/K) is
contained in B0(G) by Lemma 2.2(ii)). We may assume then that Op′(G) = 1.

Suppose now that K is a p-group. Let λ ∈ Irr(P ) be linear. Write θ = λK ∈ Irr(K) and let T be
the stabilizer of θ in G. Then θ is σ-fixed, becauseK is elementary abelian. Now, by using the Schur-

Zassenhaus theorem, we can write PCG(P ) = P×U , and consider λ̂ = λ×1U ∈ Irr(PCG(P )). Now,
by Lemma (6.4) of [N1] and the Third Main Theorem (6.7) of [N1], there exists some irreducible

constituent ψ ∈ Irr(T ) of p′-degree, over λ̂, in the principal p-block of T . Since ψ lies over θ, then
ψG is irreducible by the Clifford correspondence. Also, ψG has p′-degree and lies in the principal
p-block of G (by Corollary (6.2) of [N1] and the Third Main Theorem). We deduce that ψG is σ-fixed
by hypothesis. By the uniqueness of the Clifford correspondence (using that θ is σ-fixed), then we
have that ψ is σ-fixed. Now, by Lemma 2.1(ii) with A = 〈σ〉, we have that ψP has some σ-invariant
linear constituent τ . Since τK = θ = λK , we have that λ = τρ, for some linear ρ ∈ Irr(P/K) (by
Gallagher’s Corollary (6.17) of [Is]). By induction, recall that ρ is σ-fixed. Therefore λ is σ-fixed.

Hence, we may assume thatK is non-abelian of order divisible by p. Next, we claim thatKP = G.
Let ψ ∈ Irr(KP ) be of p′-degree in the principal block of KP . We claim that ψ is σ-invariant. We
have that ψK = θ is irreducible and P -invariant by Corollary (11.29) of [Is]. By Corollary (9.2)
of [N1], we deduce that θ is in the principal block of K. By Lemma 2.2(iii), there exists some
χ ∈ Irr(G) in the principal p-block of G over θ of p′-degree. By hypothesis, χ is σ-invariant. By
Lemma 2.1(ii), χKP has some irreducible constituent τ which is σ-invariant of p′-degree. Now,
τK ∈ Irr(K) is σ-invariant and G-conjugate to θ, so we deduce that θ is σ-invariant. Now, since θ
has p′-degree and has trivial determinant (because K is perfect), we have by Corollary (6.28) of [Is]

that θ has a canonical extension θ̂ to KP . By uniqueness, θ̂ ∈ Irr(KP ) is also σ-invariant. Then,
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by Gallagher, ψ = θ̂λ, for some linear λ ∈ Irr(KP/K), which we know is σ-invariant by induction.
Thus ψ is σ-invariant. Hence, we may assume that G = KP .

Let S / K be non-abelian simple. Let H = NG(S). Thus G = HP and Q = P ∩H ∈ Sylp(H).
Let R = K ∩ P = K ∩ Q ∈ Sylp(K), and let R1 = R ∩ S = P ∩ S = Q ∩ S ∈ Sylp(S). We can

write K = Sx1 × · · ·×Sxt , where P =
⋃t

j=1Qxj is a disjoint union, with x1 = 1. (We use here that

G =
⋃t

j=1Hxj is also a disjoint union.) Notice that

R = Rx1

1 × · · · ×Rxt
1 .

Furthermore, we claim that Q = NP (R1). Since R1 = P ∩ S and Q = NP (S), it follows that
Q ≤ NP (R1). Conversely, suppose that z ∈ NP (R1). Let 1 6= v ∈ R1. Then vz ∈ R1 ≤ S.
On the other hand vz ∈ Sz = Sxj for some j and vz ∈ S ∩ Sxj . Necessarily Sxj = S = Sz and
z ∈ NP (S) = Q.

Now, let C = CG(S). Thus S ≤ K ≤ SC ≤ H, and H/C is almost simple with H/SC a
p-group. Also QC/C ∈ Sylp(H/C). Using that C ∩ S = 1, we have that R1C/C ∈ Sylp(SC/C),
and therefore (QC/C)∩ (SC/C) = R1C/C = (R1×C)/C. We wish to apply Theorem 2.3 to H/C.
Let γ ∈ Irrp′(SC/C) be QC/C-invariant in the principal p-block. Since C ∩ S = 1, we have that
γS = τ ∈ Irr(S) is H-invariant of p′-degree in the principal p-block. By Lemma 4.1 of [NTT1], we
have that ρ = τx1 ×· · ·×τxt ∈ Irr(K) is G-invariant of p′-degree (and in the principal p-block, using
Lemma 2.2(ii)). Now, ρ has a canonical extension ρ̂ to G (by Corollary (6.28) of [Is]), which lies in
the principal p-block (using Corollary (9.6) of [N1]) and therefore is σ-invariant by hypothesis. In
particular, ρ is σ-invariant. Since ρS is a multiple of τ , we conclude that τ (and therefore γ) are
σ-invariant. By Theorem 2.3, we have that all the Q-invariant linear characters of R1 are σ-fixed.

Finally, let λ ∈ Irr(P ) be linear. Then ν1 = λR1
is Q-invariant, and therefore is σ-fixed. Also,

since xi ∈ P , we have that λRxi
1

= (ν1)
xi , and we conclude that ν = λR = νx1

1 × · · · × νxt
1 is σ-fixed.

Now, by applying Lemma 2.1(ii) to the group A = P ×〈σ〉, we have that νK contains an irreducible
constituent η ∈ Irr(K) which is P -invariant and σ-invariant, of p′-degree with [νK , η] = [ηR, ν] not
divisible by p. Let ψ = η̂ be the canonical extension of η to G. By uniqueness, we have that ψ
is σ-invariant. Also, [ψR, ν] = [ηR, ν] is not divisible by p. We have that ρ = ψP is σ-invariant
with [ρR, ν] 6≡ 0 mod p. Since ν is σ-invariant, by Lemma 2.1(i) it follows that ρ has a σ-invariant
constituent µ ∈ Irr(P ) such that [µR, ν] is not divisible by p. Since ν is R-invariant and P is a
p-group, it follows that µR = ν. Now, λ = εµ, by Gallagher, for some linear ε ∈ Irr(P/R). Since the
linear characters of P/R are the linear characters of G/K, and they are σ-invariant by induction,
then the proof is complete. �

3. Almost Simple Groups. I

In this and the next section we prove Theorem 2.3, thus completing the proof of Theorem B.

Definition 3.1. Let p be a prime and a be any positive integer. A finite p-group P is called pa-good,
if exp(P/P ′) ≤ pa. A finite group G is called pa-good if P ∈ Sylp(G) is p

a-good.

In what follows, Np denotes the p-part of any positive integer N . We begin with some elementary
observations.

Lemma 3.2. Let p be a prime and a any positive integer, and let P , Q, R be finite p-groups.

(i) The set P [a] := {x ∈ P | xpa ∈ P ′} is a normal subgroup of P . Furthermore, P is pa-good if
and only P [a] = P . Also, P is p-good if and only if P ′ = Φ(P ).

(ii) Suppose that Q and R are pa-good subgroups of P . Then 〈Q,R〉 as well as any quotient of Q
are pa-good.
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(iii) Suppose that P = 〈P ′, x1, . . . , xm〉 with xp
a

i ∈ P ′. Then P is pa-good.

Proof. See [NT1, Lemma 3.2]. �

Lemma 3.3. Let p be a prime and let G be a finite group.

(i) Suppose that NG(P ) = P × A for P ∈ Sylp(G) and some subgroup A. Then the number of
p-blocks of G of maximal defect is | Irr(A)|.

(ii) Suppose that S = G/N for some p′-subgroup N � G. Let α, β ∈ Irr(S) and view α, β as
characters of G. Then α, β belong to the same p-block of S if and only if α, β belong to the
same p-block of G. Furthermore, Irr(B0(G)) = Irr(B0(S)).

(iii) Suppose that G has only one conjugacy class of p-central subgroups of order p, P ∈ Sylp(G) is
non-abelian, and C ≤ Z(P ) has order p. Then C ≤ P ′.

(iv) Suppose that A ≤ B are normal subgroups of G such that A and G/B are p-groups. If B/A
has a self-normalizing Sylow p-subgroup, then so does G.

Proof. See [NT1, Lemma 2.7]. �

We will use the following consequences of Lemma 2.1.

Lemma 3.4. Let p be any prime, e ≥ 1, and let R ≤ G be finite groups.

(i) Let R ≤ H ≤ G and let χ ∈ Irr(G) be σe-fixed. Suppose there exists a σe-fixed ν ∈ Irr(R) such
that p - [χR, ν]. Then there exists a σe-fixed γ ∈ Irr(H) such that

p - [χH , γ] · [γR, ν].
(ii) Let R ≤ K ≤ G be such that p - [K : R], and let P be a p-subgroup of G normalizing both

K and R. If there exists a σe-fixed P -invariant ν ∈ Irr(R) of p′-degree, then there exists a
σe-fixed P -invariant γ ∈ Irr(K) of p′-degree such that p - [γR, ν].

Proof. (i) Apply Lemma 2.1(i) to ψ = χH and A = 〈σe〉. (ii) Apply Lemma 2.1(ii) to ψ = νR and

A = 〈σe〉 × P . �

The following result generalizes [NT1, Lemma 2.8]:

Lemma 3.5. Let p be a prime, e ≥ 1, and let N ≤ G be normal subgroups of a finite group H = RN
with p - |N/N ′| and R ∈ Sylp(H). Let P := R ∩G, Q := R ∩N , and suppose that

(a) every R-invariant linear character of P/Q is σe-fixed, and
(b) every R-invariant linear character of Q is σe-fixed.

Then every R-invariant linear character of P is σe-fixed.

Proof. Let λ ∈ Irr(P/P ′) be R-invariant. Then ν = λQ is R-invariant, and so σe-fixed according to
(b). Note that R normalizes both N and Q. By Lemma 3.4(ii) applied to Q ≤ N ≤ G, there exists
η ∈ Irr(N) which is R-invariant (and so H-invariant), of p′-degree, σe-fixed, with p - [ηQ, ν]. As
p - |N/N ′|, the determinantal order o(η) is coprime to p. On the other hand, H/N ∼= R/(R ∩ Q),
so by [Is, Corollary (8.16)], η has a unique extension χ to H with o(χ) = o(η). In particular, χ is
σe-fixed, and [χQ, ν] = [ηQ, ν] is coprime to p. By Lemma 3.4(i) applied to Q ≤ R ≤ H, χR contains
a σe-fixed character ξ ∈ Irr(R) such that p - [ξQ, ν]. As R/Q is a p-group and ν is R-invariant,
it follows that ξQ = ν. Clearly, ξP is R-invariant and (ξP )Q = ν = λQ. Hence λ = ε(ξP ) for
some R-invariant linear ε ∈ Irr(P/Q) by Gallagher’s Corollary (6.17) of [Is]. According to (a), ε is
σe-fixed, and so λ is σe-fixed, as stated. �

Corollary 3.6. Let p be a prime, e ≥ 1, and let N be a normal subgroup of a finite group G with
p - |N/N ′|. Suppose that both N and G/N are pe-good. Then G is pe-good.
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Proof. We may take P ∈ Sylp(G) and assume G = PN . Now take R = P , H = G, and apply
Lemma 3.5. �

Lemma 3.7. Let p be any prime and let n be any positive integer. Then An, Sn, and all 26 sporadic
finite simple groups are p-good.

Proof. See [NT1, Lemmas 3.3, 3.4]. �

Proposition 3.8. Let p be any prime and let S 6∼= 2F4(2)
′ be a simple group of Lie type in charac-

teristic p. Then S is p-good.

Proof. The case p = 2 was already treated in [NT1, Proposition 4.5]. So let’s assume that p > 2
and let P ∈ Sylp(S). If (S, p) 6= (G2(q), 3), then P/P ′ is elementary abelian by [GLS, Theorem
3.3.1(b)], and so we are done. But even in the case (S, p) = (G2(q), 3), P can be chosen to be
generated by root subgroups Xα, α a positive root, and all Xα are elementary abelian. It follows
by Lemma 3.2(iii) that P is p-good. �

In what follows, we use the notation SLε to denote SL if ε = + and SU if ε = −, and similarly for
GLε. We also use the notation Eε

6 to denote E6 when ε = + and 2E6 when ε = −. Slightly abusing
the notation, we will treat ε with ε = ± as ε1 in expressions like q − ε, etc.

Proposition 3.9. Let S be a simple group of Lie type in odd characteristic and let p = 2. If S is
one of the following groups

(a) PSLε
2m(q),where either 4|(q − ε) and m is a 2-power, or if 4|(q + ε),

(b) PSp2m(q), PΩ2m+1(q), PΩ
±
2m(q), 2G2(q), G2(q),

3D4(q), F4(q), E7(q), E8(q),
(c) Eε

6(q) with q ≡ −ε(mod 4),

then S is p-good.

Proof. This statement follows immediately from Propositions 3.5, 3.7, 3.8, Corollary 3.9, and Propo-
sition 4.1 of [NT1]. �

Corollary 3.10. Theorem 2.3 holds if (S, p) is one of the cases listed in Lemma 3.7, Proposition
3.8, or Proposition 3.9.

Proof. In all of the listed cases, S is p-good, hence the conclusion of Theorem 2.3 holds for all
e ≥ 1. �

Next we observe that the proof of [NT1, Proposition 2.9] also yields the following result, which
will be useful in constructing irreducible characters belonging to the principal p-block of finite simple
groups of Lie type. We refer the reader to [C], [DM] for basics of the Deligne-Lusztig theory.

Proposition 3.11. Let p be a prime, e ≥ 1, and let G be a simple algebraic group over a field
of characteristic ` 6= p of adjoint type. Let F : G → G be a Frobenius endomorphism, G := GF ,
(G∗, F ∗) be dual to (G, F ), and let G∗ := (G∗)F

∗

, S := [G,G]. Let s ∈ G∗ be a semisimple element.
Then the following statements hold.

(i) Suppose that s is a p-element. Then the semisimple character χs corresponding to s belongs to
the principal p-block B0(G) of G. Furthermore, every irreducible constituent of (χs)S belongs
to the principal p-block of S.

(ii) Suppose that s is not G∗-conjugate to sz whenever 1 6= z ∈ Z(G∗). Then θ := (χs)S ∈ Irr(S).
More generally, any ϕ ∈ E(G, (s)) is irreducible over S. Moreover, if k ∈ Z is such that sk is
not G∗-conjugate to sz whenever 1 6= z ∈ Z(G∗), then (χs)S = (χsk)S if and only if s and sk

are conjugate in G∗. In particular, if s1+pe

is not G∗-conjugate to any sz with 1 6= z ∈ Z(G∗),
then θ is σe-fixed if and only if s and s1+pe

are conjugate in G∗.
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(iii) Suppose that gcd(|s|, |Z(G∗)|) = 1. Then s is not G∗-conjugate to sz whenever 1 6= z ∈ Z(G∗).

Lemma 3.12. Let p be a prime and let G be a finite group. Suppose that s ∈ G is a p-central
p-element and there exists an integer k such that

(a) sk and s are conjugate in G; and
(b) either k ≡ 1(mod p), or |s| divides kpc − 1 for some c ∈ Z≥0.

Then in fact sk = s.

Proof. The statement obviously holds if s = 1. So we will assume that |s| = pa for some a ∈ Z≥1.
In this case, we note that the two conditions in (b) are actually equivalent. (Indeed, if p|(k − 1),

then pa|(kpa−1 − 1). Conversely, if pa|(kpc − 1), then k ≡ kp
c ≡ 1(mod p).)

Since s is p-central, CG(s) contains a Sylow p-subgroup P of G, and so s ∈ Z(P ). Now (a)
implies by Burnside’s fusion control lemma that gsg−1 = sk for some g ∈ NG(P ). Write |g| = mpb

with p - m and b ≥ 0, and let h := gm. Then hsh−1 = sk
m

and |h| = pb. As NG(P )/P is a p′-group,
the latter implies that h ∈ P , and so hsh−1 = s. Thus |s| = pa divides km − 1. As noted above,
p|(k − 1), whence p - (km − 1)/(k − 1). It follows that pa divides k − 1, i.e. sk = s. �

Lemma 3.13. Suppose that, for the group G in Theorem 2.3, there exists a a simple algebraic
group G of adjoint type in characteristic ` 6= p and a Steinberg endomorphism F : G → G such that
S = GF and the following conditions hold.

(a) G ∼= G∗, where (G∗, F ∗) is dual to (G, F );
(b) G = So 〈h〉, P ∈ Sylp(G), and the conjugation by h ∈ P induced an automorphism of S, which

is obtained by restricting to S a Steinberg endomorphism γ : G → G with F = γm for some
m ∈ Z≥1; and

(c) Q = P ∩ S = Q1 ×Q2 × . . .×Qk is a direct product of k γ-stable cyclic subgroups of the same
order.

Then Theorem 2.3 holds for G.

Proof. Using (a), we will identify G∗ with G, γ∗ with γ, F ∗ with F , and G∗ = (G∗)F
∗

with S. By
(c) we can write Qi = 〈ti〉 ∼= Cpa and

(3.1) γ(ti) = tni

for 1 ≤ i ≤ k and for some a, ni ∈ Z≥1. Let p
bi := (ni − 1)p.

Consider any h-invariant linear character λ ∈ Irr(Q). If a ≤ e, then λ is σe-fixed. So we will
assume a > e. Next, Ker(λ) contains tni−1

i by (3.1). It follows that λ is σe-fixed if maxi bi ≤ e. So
we will assume that b1 > e. Now, we can choose an element s ∈ Q1 of order pe+1. By Proposition
3.11, we see that θ := (χs)S ∈ Irr(S) belongs to B0(S), and it has p′-degree as s ∈ Z(Q). As
b1 > e, (3.1) implies that γ(s) = s. It follows by [NTT2, Corollary 2.5] that θ is γ-invariant, and so
P -invariant. By hypothesis, θ is then σe-fixed, whence s and s

1+pe

are conjugate in S by Proposition
3.11(iii). This in turn implies by Lemma 3.12 that s = s1+pe

. But this contradicts the choice of s
to be of order pe+1. �

Lemma 3.14. Suppose that 2 < p|(q − ε) and n = pk for some k ≥ Z≥1. Then SLε
n(q) is p-good.

Proof. We proceed by induction on k ≥ 1 and fix α ∈ F
×

q of order pa = (q− ε)p. We also fix a basis
(e1, . . . , en) of the natural module V = Fn

q for SLn(q), and an orthonormal basis (e1, . . . , en) of the
natural module V = Fn

q2 for SUn(q).

(i) For the induction base k = 1, we can choose a Sylow p-subgroup of SLε
p(q) to be

(3.2) R = 〈s, x1x−1
2 , x2x

−1
3 , . . . , xp−1x

−1
p 〉
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in the chosen basis of V , where

s : e1 7→ e2 7→ e3 7→ . . . 7→ ep 7→ e1, x1 = diag(α, 1, 1, . . . , 1), xi = si−1x1s
1−i, 2 ≤ i ≤ p.

Then we have

x1x
−1
2 ≡ x2x

−1
3 ≡ . . . ≡ xp−1x

−1
p ≡ xpx

−1
1 (mod [R,R]).

But certainly

x1x
−1
2 · x2x−1

3 · . . . · xp−1x
−1
p · xpx−1

1 = 1.

It follows that all the generators of R in (3.2) have their pth-powers belonging to [R,R]. Hence R
is p-good by Lemma 3.2(iii).

(ii) For the induction step, let n = pk = mp ≥ p2, and take V = ⊕p
i=1Vi with

Vi := 〈e(i−1)m+1, . . . , eim〉.
Let

y1 := diag(α, 1, 1, . . . , 1), t : ej 7→ em+j 7→ e2m+j 7→ . . . 7→ e(p−1)m+j 7→ ej , 1 ≤ j ≤ m.

By the induction hypothesis, a Sylow p-subgroup R1 of SLε(V1) ∼= SLε
m(q) that acts diagonally in

the basis (e1, . . . , em) is p-good. Define

yi := ti−1y1t
1−i, Ri := ti−1R1t

1−i

for 2 ≤ i ≤ p. Then note that

T := 〈t, y1y−1
2 , y2y

−1
3 , . . . , yp−1y

−1
p 〉

is isomorphic to the subgroup R defined in (3.2), and so it is p-good. Now

〈R1, R2, . . . , Rp, T 〉
is a Sylow p-subgroup of SLε

n(q), and it is p-good by Lemma 3.2(ii). �

Proposition 3.15. Theorem 2.3 holds in the case S is a simple Suzuki or Ree group.

Proof. By Corollary 3.10, we may assume that S is a simple Suzuki or Ree group over a field of
characteristic ` 6= p, p 6= 2 if S = 2G2(q

2), and that S 6∼= 2F4(2)
′. Then we can write q2 = `2a+1 for

some a ∈ Z≥1, and find a Steinberg endomorphism δ of G ∼= G∗ (of type B2, G2, or F4) such that
δ2 is the standard Frobenius endomorphism of G, induced by the field automorphism x 7→ x`, and
F = δ2a+1. Now if |G/S| =: m, then we can take γ := δ(2a+1)/m to fulfill condition (b) of Lemma
3.13.

Suppose first that S = 2B2(q
2) with q2 > 2. Then p 6= 2, and one can check that G also fulfills

condition (c) of Lemma 3.13, with Q being cyclic. Hence we are done in this case. The same
arguments apply in the case S = 2G2(q

2) with q2 > 3.
Next suppose that S = 2F4(q

2) with q2 > 2. If furthermore p - (q8 − 1), then Q is cyclic, and we
are done as above. Suppose 3 6= p|(q4−1). Then by the main result of [LSS] (see Table 5.1 therein),
there is a δ-stable connected reductive subgroup D of G such thatNS(DF ) ∼= Sp4(q

2)·2 andNG(DF )
is a maximal subgroup of S. As F = δ2a+1, DF is δ-stable, and so NG(DF ) ∼= (Sp4(q

2) · 2) o 〈h〉.
The assumptions on p ensure that we can take

P < M := Sp4(q
2)o 〈h〉 = Sp4(q

2)o 〈h2〉,
where h2 is induced by γ2 = (δ2)(2a+1)/m, with δ2 acting on D as the standard Frobenius endomor-
phism. Working in M , we can represent Q as a direct product of k = 2 h2-stable cyclic subgroups
of the same order, fulfilling condition (c) of Lemma 3.13. The same arguments apply in the case
p|(q4 + 1), where DF ∼= 2B2(q

2) × 2B2(q
2) and the odd-order element h stabilizes each of the two
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factors 2B2(q
2). Finally, if p = 3, then we can put Q in a subgroup SU3(q

2) of S, which is 3-good
by Lemma 3.14. �

4. Almost Simple Groups. II

Throughout this section, we will assume that

(4.1)
S is a simple group of Lie type in characteristic ` 6= p but
not a Suzuki or Ree group, and (S, p) is not listed in Corollary 3.10.

We will then view S = [GF ,GF ] for some simple algebraic group of adjoint type over a field of
characteristic ` and a Steinberg endomorphism F : G → G. Let (G∗, F ∗) be dual to (G, F ), G∗ =
(G∗)F

∗

, and let q denote the common absolute value of eigenvalues of F acting on the character
group X(T ) of an F -stable maximal torus T of G. Recall the notion of d-tori in algebraic groups
as defined in [MTe, Definition 25.6]. Also, let Φd(·) denote the dth cyclotomic polynomial, of degree
ϕ(d). Given p and q, let d be the order of q modulo p, so that p|Φd(q) but p - Φe(q) for all 1 ≤ e < d.
Note that 1 ≤ d ≤ p− 1.

Lemma 4.1. Let G be a simple algebraic group with a Steinberg endomorphism γ and let F = γm

for some m ∈ Z≥1. Suppose that

(a) the common absolute value of eigenvalues of F acting on the character group X(T ) of some
F -stable maximal torus T of G is q;

(b) S is a γ-stable d-torus of G for some d ∈ Z≥1; and

(c) j ∈ Z≥1 is such that Gγjd

is not a Suzuki or Ree group.

Then γjd acts on S via x 7→ xq
jd/m

.

Proof. We may choose T to be a γ-stable maximal torus of G. Now, if λ is any eigenvalue for γ
acting on X(T ), then λm is an eigenvalue for F = γm acting on X(T ), whence |λm| = q by (a), and
so |λ| = q1/m. It now follows from the proof of [MTe, Proposition 25.7] that γ acts on X := X(S)
as q1/mφ for some linear transformation φ with φd = 1X . Hence γjd acts on X(S) as qjd/m · 1X .
Now qjd/m is an integer because of (c), and so the statement follows from [NT1, Lemma 4.2(ii)]. �

In the next generalization of Lemma 3.13, by a natural permutation action of a finite group Y on
a direct product X = X1 ×X2 × . . . ×Xk with X1

∼= X2
∼= . . . ∼= Xk we mean an identification of

X with {(x1, x2, . . . , xk) | xi ∈ X1} (with component-wise product) and an embedding π : Y ↪→ Sk

such that y ∈ Y sends (x1, x2, . . . , xk) to (xπ(y)(1), xπ(y)(2), . . . , xπ(y)(k)).

Proposition 4.2. Let S be as in (4.1), G = S o 〈h〉, and suppose that all the following conditions
hold.

(a) The conjugation by h ∈ P induced an automorphism of S, which is obtained by restricting to S
a Steinberg endomorphism γ : G → G with F = γm for some p-power m ∈ Z≥1.

(b) There is a γ-stable d-torus S of G such that Q = Op(SF )oR for some pe-good subgroup R.
(c) Let (G∗, γ∗) be dual to (G, γ). There exists a quotient H = G∗/Z, where Z ≤ Z(G∗) and γ∗-stable

d-tori Rj of H, 1 ≤ j ≤ l, all of rank ϕ(d), such that

Q∗ = (Op(RF∗

1 )×Op(RF∗

2 )× . . .×Op(RF∗

l ))oR∗

is a Sylow p-subgroup of H := HF∗

, where the p-subgroup R∗ naturally permutes the subgroups
O(RF∗

j ), 1 ≤ j ≤ l.

(d) p - |Z((G∗)F
∗

)|.
Then Theorem 2.3 holds in this case.
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Proof. (i) Let (G∗, γ∗) be dual to (G, γ). Then we may take F ∗ = (γ∗)m. By [MTe, Proposition
25.7], S = S1 × S2 × . . .× Sk is a direct product of γ-stable d-tori Si, each of rank ϕ(d). It follows
that

SF = SF
1 × SF

2 × . . .× SF
k .

As mentioned in the proof of [MTe, Proposition 25.7], each SF
i is cyclic of order Φd(q). Also, γ acts

on SF
i . Hence, if SF

i = 〈ti〉, then
(4.2) γ(ti) = tni

i

for some ni ∈ Z≥1. On the other hand, γd(ti) = tq
d/m

i by Lemma 4.1. Observe that Gγ is not a
Suzuki or Ree group. (Indeed, otherwise either GF itself would be a Suzuki or Ree group for p > 2,
or (p, `,GF ) = (2, 3, G2(q)), both contradicting (4.1).) Hence, it follows from the proof of Lemma
4.1 that q1/m ∈ Z, and so

(4.3) nd
i ≡ qd/m(mod Φd(q))

for all i. Let

(Φd(q))p = pa, (qd/m − 1)p = pb, (ndi − 1)p = pbi , Op(SF
i ) = 〈si〉.

The choice of d implies that (qd − 1)p = pa > 1. As m is a p-power, we have

qd/m − 1 ≡ qd − 1 ≡ 0(mod p)

and furthermore p|(qd − 1)/(qd/m − 1) if m > 1. It follows from (4.3) that

(4.4) b1 = b2 = . . . = bk = b < a

if m > 1.

(ii) Note that q is also the common absolute value of eigenvalues of F ∗ acting on the character
group X(T ∗) of an F ∗-stable maximal torus T ∗ of G∗ or of H. Hence, the same arguments as in (i)
show that

(4.5) c1 = c2 = . . . = cl = b < a

if m > 1. Here, we write RF∗

j = 〈t∗j 〉, γ∗(t∗j ) = (t∗j )
n∗

j , and ((n∗
j )

d − 1)p = pcj for 1 ≤ j ≤ l.

Furthermore, condition (d) implies that Q∗ is contained in [H,H], which is a quotient of (G∗)F
∗

.

Let Q̂∗ denote the full inverse image of Q∗ in G∗. Then (d) implies that O(Q̂∗) ∈ Sylp(G
∗) and

there is a γ∗-equivariant isomorphism Op(Q̂
∗) ∼= Q∗. So, without any loss, we may view Q∗ as a

Sylow p-subgroup of (G∗)F
∗

, with prescribed action of γ∗.

(iii) Consider any h-invariant linear character λ ∈ Irr(Q). If a ≤ e, then Q is pe-good by Lemma
3.2(ii), and so λ is σe-fixed. So we will assume a > e. Next, Ker(λ) contains tni−1

i by (4.2). It
follows by Lemma 3.2(iii) that λ is σe-fixed if bi ≤ e for all i. So we will assume that maxi bi > e.
If m > 1, then this implies by (4.4) that b > e. If m = 1, then we also have b = a > e.

Note that |Op(RF∗

i )| = (Φd(q))p = pa. Since a > e, hypothesis (c) allows us to choose an element

s ∈ Z(Q∗) ∩ (Op(RF∗

1 )×Op(RF∗

2 )× . . .×Op(RF∗

l ))

of order pe+1. Using (d) and Proposition 3.11, we see that θ := (χs)S ∈ Irr(S) belongs to B0(S),
and it has p′-degree as s ∈ Z(Q∗).

If m = 1, then s is γ∗-stable as γ∗ = F ∗ in this case. If m > 1, then (4.5) implies that
pe+1|((n∗j )d − 1) for all j, and so (γ∗)d(s) = s, i.e. s is (γ∗)d-stable. As s is stable under F = γm

and gcd(m, d) = 1, we see that s is γ∗-stable in this case as well. It follows by [NTT2, Corollary 2.5]
that θ is γ-invariant, and so P -invariant. By hypothesis, θ is then σe-fixed, whence s and s1+pe

are
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conjugate in (G∗)F
∗

by Proposition 3.11(iii). This in turn implies by Lemma 3.12 that s = s1+pe

.
But this contradicts the choice of s to be of order pe+1. �

Proposition 4.3. Let S = [GF ,GF ] be as in (4.1) and p > 2. Suppose in addition that GF is a
classical group, p - gcd(n, q − ε) if S = PSLε

n(q), and that p 6= 3 if S ∼= PΩ+
8 (q). Then Theorem 2.3

holds in this case.

Proof. (i) By the assumptions, p - |Z((G∗)F
∗

)|. Recall by [GLS, Theorem 2.5.12] that Aut(S) =
J o ΦSΓS is split over J = Inndiag(S). Let m := |G/S|, a p-power. Then |GJ | = m|J |, and so
GJ = J oCm for some subgroup Cm ≤ ΦSΓS . Let δ denote the standard Frobenius endomorphism
of G induced by the field automorphism x 7→ x`. Then we have F = τδf , where τ is either trivial
or a graph automorphism of order 2 of G commuting with δ, and Cm = 〈γ|S〉 with γ = τδf/m.
As m is a p-power and p - |J/S| = |Z((G∗)F

∗

)|, P ∈ Sylp(GJ), and so h := γ|S ∈ P x for some
x ∈ GJ ≤ Aut(S). Replacing G by Gx, we then have G = S o 〈h〉 with h fulfilling condition (a) of
Proposition 4.2.

(ii) Assume in addition that p - (q− ε) if S = PSLε
n(q). In the notation of Proposition 4.2(c), we

can choose H such that

H = SLε
n(q), SO2n+1(q), Sp2n(q), SO

ε
2n(q),

according as S = PSLε
n(q), PSp2n(q), Ω2n+1(q), PΩ

ε
2n(q). Now, the conditions on p and the con-

struction of Sylow p-subgroups of H [GL, Chapter 3, §8], displayed in [BFMNST, §2.2], shows that
condition (c) of Proposition 4.2 holds, with R∗ being a Sylow p-subgroup of Sl. By Lemma 3.7,
R∗ is p-good. Arguing as in p. (ii) of the proof of Proposition 4.2, we can again replace G by an
isogenous simple algebraic group and then replace GF by

SLε
n(q), Sp2n(q), SO2n+1(q), SO

ε
2n(q),

according as S = PSLε
n(q), PSp2n(q), Ω2n+1(q), PΩε

2n(q). The above description of Sylow p-
subgroups then implies that condition (b) of Proposition 4.2 holds. Now we are done by applying
Proposition 4.2.

(iii) Next we consider the case S = PSLε
n(q) but p|(q−ε). Then p - n, so we write n = ap+r with

a, r ∈ Z≥1 and 1 ≤ r ≤ p − 1. Now (G∗)F
∗

= SLε
n(q), and we can find γ∗-stable one-dimensional

d-tori Rj , 1 ≤ j ≤ n− 1, such that

R :=







diag(x1, x2, . . . , xn−1,

n−1
∏

j=1

x−1
j ) | xj ∈ Rj







is a maximal torus of G∗ (where d = 1 if ε = + and d = 2 if ε = −). It is easy to see that condition (c)
of Proposition 4.2 holds with l = n−1 and R∗ ∈ Sylp(Sn−r) fixing each of Rj for ap+1 ≤ j ≤ n−1.
We can then take S = R/Z(G∗) to see that condition (b) of Proposition 4.2 holds with k = n − 1
and R ∈ Sylp(Sn−r) being p-good. Now we can again apply Proposition 4.2. �

Proposition 4.4. Let q = `f be a power of a prime ` 6= p, ε = ±, S = PSLε
n(q), and 2 <

p| gcd(n, q − ε). Let S / G, where G is a finite group, G/S is a p-group, and CG(S) = 1. Let
R ∈ Sylp(G) and P = R ∩ S. Suppose that all the R-invariant complex irreducible characters of
p′-degree in the principal p-block of S are σe-fixed. Then every R-invariant linear character of P is
σe-fixed.

Proof. (a) We will view S = L/Z(L), where L = SLε
n(q), and set r := (q − ε)p ≥ p. We will work

with the basis (e1, . . . , en) of the natural L-module V as specified in the proof of Lemma 3.14. Using
this basis, we can define the standard Frobenius automorphism δ : Y = (yij) 7→ (y`ij) of the groups
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GLε(V ) ∼= GLε
n(q), L, and S. Write q = `f and f = pcf0 for some c ∈ Z≥0 and p - f0, and let

δ0 := δf0 if ε = + and δ0 := δ2f0 if ε = −. Then the automorphism δ0 of L has order pc. Also, we
set

M := {Y ∈ GLε(V ) | det(Y )
r
= 1}, Γ :=M o 〈δ0〉, Z := Z(M).

Then Γ/Z induces a p′-index subgroup of Aut(S). Since CG(S) = 1 and G/S is a p-group, after a
suitable conjugation in Aut(S), we may assume that G ≤ Γ/Z.

Fix α ∈ F
×

q of order r, and define

xi := diag(Ii−1, α, In−i), 1 ≤ i ≤ n

in the chosen basis of V . We also let A := An act naturally on the basis (e1, . . . , en) (by permuting

the indices of ei), and fix T ∈ Sylp(A). Now it is easy to check that P̂ := Qo T ∈ Sylp(L), where

(4.6) Q := 〈xix−1
j | 1 ≤ i 6= j ≤ n〉.

Moreover, denoting

(4.7) B := 〈x1〉o 〈δ0〉,
we see that R∗ := P̂ o B is a Sylow p-subgroup of Γ. Let Ĝ denote the full inverse image of G in
Γ = LoB. Then

(4.8) Ĝ = Lo (Ĝ ∩B), R̂ = P̂ o (Ĝ ∩B) ∈ Sylp(Ĝ).

We can and will identify P with P̂ /(Z ∩ P̂ ), and R with R̂/(Z ∩ R̂).
(b) In view of Lemma 3.14, we may assume that n is not a p-power, and so we can find d ∈ Z≥1

such that pd < n < pd+1. Now write n = a+ b, where

a = pd ≥ p, 1 ≤ b = n− a = pd
′

b′, 0 ≤ d′ ≤ d, p - b′.

If d′ = d, set j := −1 and

(4.9) s := diag(αIa, α
jIa, In−2a) ∈ L.

If d′ < d, then, since gcd(b′, r) = 1, we can find x, y ∈ Z such that xb′ = yr − 1. Setting

(4.10) j = pd−d′

x,

we then have a+ bj = pdyr, and can now consider the p-element

(4.11) s := diag(αIa, α
jIb) ∈ L.

In what follows, we will work with some p-powers l, where r > l ≥ 1. For such an l, αl 6= αlj , and
so it is straightforward to check that

[L : CL(s
l)] = [GLε(V ) : CGLε(V )(s

l)]

is coprime to p.
Next we observe that if skl is L-conjugate to slz for some z ∈ Z(L) and some k ∈ pZ+ 1, then

(4.12) z = 1, αl(k−1) = 1.

Indeed, let β denote the (unique) eigenvalue of z (acting on V ). The choice of j implies that αl 6= αlj

and αkl 6= αklj . First suppose that d′ < d. Then a > b, and by comparing eigenvalues and their
multiplicities we see that

αkl = αlβ, αklj = αljβ.

It follows that β = αl(1−k); in particular, β is a p-element; and that βj−1 = 1. Since p|j by (4.10),
we conclude that β = 1 and z = 1.



14 GABRIEL NAVARRO AND PHAM HUU TIEP

Suppose a = b. Then
{αkl, α−kl} = {αlβ, α−lβ}.

In particular, β2 = 1 and β = αl(1+γk) is a p-power for some γ = ±1. As p > 2, we see that β = 1
and z = 1. Moreover, if γ = 1, then, as k ≡ 1(mod p), we see that αl = 1, a contradiction. Hence
γ = −1 and αl(1−k) = 1, as stated.

Suppose d = d′ and b > a. Then

{αkl, α−kl, 1} = {αlβ, α−lβ, β}.
In particular, β3 = 1 and β = αil with i ∈ {0,±l}, whence β is a p-element. It follows that p = 3,
and so b 6= 2a as n = a + b is not a p-power. In this case, by comparing the eigenvalues with
multiplicity b − a, we see that β = 1 and z = 1. Now β = αl(1+γk) for some γ = ±1. Arguing as
above, we conclude that γ = −1 and αl(1−k) = 1.

(c) We can also view L as the dual group H∗ and S as [H,H], where H = GF ∼= PGLε
n(q) is of

adjoint type. By virtue of (4.12) with k = 1, we can apply Proposition 3.11(i), (ii) to the semisimple
character χsl of H and conclude that θl := (χsl)S is an irreducible character in B0(S), of degree

θl(1) = [L : CL(s
l)]`′

which is coprime to p.
Let λ ∈ Irr(P/P ′) be R-invariant. By inflation we can view λ as an R̂-invariant linear character

of P̂ . Now recall that T ∈ Sylp(An) is p-good by Lemma 3.7. Hence by Lemma 3.2(ii) we see that

P̂ = Qo T is pe-good if r ≤ pe, and so λ is σe-fixed in this case. We may therefore assume that

(4.13) r > pe.

Next, recalling (4.6)–(4.8), we note that x1 centralizes Q, and assume that Ĝ ∩ B induces the
subgroup 〈δ1〉 in the quotient B/〈x1〉. Then, for a suitable `-power q1, we have that δ1(x) = xεq1

for all x ∈ Q. Denoting
(q1 − ε)p = pe1 ,

and using the Ĝ ∩B-invariance of λ, we then see that Ker(λ) 3 xp
e1

for all x ∈ Q. As T is p-good,
Lemma 3.2(ii) again implies that λ is σe-fixed if e1 ≤ e. So we will assume that

(4.14) e1 > e.

Using (4.13), we now choose l = r/pe+1, so that sl has order pe+1. The construction of s in (4.9),

(4.11) shows by (4.14) that sl is δ1-invariant and so (sl)L is R̂-invariant. By hypothesis, θl is σe-
fixed. Applying (4.12) to (l, k) = (l, 1 + pe), we see by Proposition 3.11(ii) that sl and (sl)1+pe

are
conjugate in L, and 1 = αlpe

= αr/p. But this contradicts the choice of α to be of order r. �

The next result is obtained along the lines of the proof of [NT1, Proposition 3.10], but with
several modifications.

Proposition 4.5. Let q = `f be a power of an odd prime `, ε = ±, 4|(q − ε), and S = PSLε
n(q),

where n ≥ 3 is not a 2-power. Let S/G, where G is a finite group, G/S is a 2-group, and CG(S) = 1.
Let R ∈ Syl2(G) and P = R∩S. Suppose that all the R-invariant complex irreducible characters of
odd degree in the principal 2-block of S are σe-fixed. Then every linear R-invariant character of P
is σe-fixed.

Proof. (a) Write n = 2m + κ with κ ∈ {0, 1}. We will view S = L/Z(L), where L = SLε
n(q),

and set r := (q − ε)2 ≥ 4. Let q∗ := q if ε = +, and q∗ := q2 if ε = −. We again use the basis
(e1, . . . , en) of the natural L-module V = Fn

q∗ as described in the proof of Lemma 3.14. Using this

basis, we can define the transpose-inverse automorphism τ : Y 7→ tY −1 and the standard Frobenius
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automorphism δ : Y = (yij) 7→ (y`ij) of the groups GLε(V ) ∼= GLε
n(q), L, and S. Write f = 2cf0 for

some c ∈ Z≥0 and odd f0, and let δ0 := δf0 . (Note that the automorphism δ0 of L has order 2c if

ε = + and 2c+1 if ε = −; in the latter case, τ = δ2
c

0 .) Also, we set

M := {Y ∈ GLε(V ) | det(Y )
r
= 1}, Γ :=M o 〈τ, σ0〉, Z := Z(M).

Then Γ/Z induces an odd-index subgroup of Aut(S). Since CG(S) = 1 and G/S is a 2-group, after
a suitable conjugation in Aut(S), we may assume that G ≤ Γ/Z.

Fix α ∈ F×
q∗ of order r, and define

xi = diag(Ii−1, α, In−i), 1 ≤ i ≤ n; tj = diag(I2j−2,

(

0 1
−1 0

)

, In−2j), 1 ≤ j ≤ m

in the chosen basis of V . We also consider the “flips”

τ1i : e1 ↔ e2i−1, e2 ↔ e2i, ej 7→ ej , ∀j 6= 1, 2, 2i− 1, 2i

for 1 ≤ i ≤ m. Then A := 〈τ1i | 2 ≤ i ≤ m〉 ∼= Sm, and we fix T ∈ Syl2(A). Now it is easy to check

that P̂ := Qo T ∈ Syl2(L), where

(4.15) Q := 〈xix−1
j , tk | 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ m〉.

Moreover, denoting

B := 〈x1〉o 〈τ, δ0〉,
we see that R∗ := P̂ o B is a Sylow 2-subgroup of Γ. Let Ĝ denote the full inverse image of G in
Γ = LoB. Then

(4.16) Ĝ = Lo (Ĝ ∩B), R̂ = P̂ o (Ĝ ∩B) ∈ Syl2(Ĝ).

We can and will identify P with P̂ /(Z ∩ P̂ ), and R with R̂/(Z ∩ R̂).
(b) Since n is not a 2-power, we can write n = a+ b, where

a = 2d ≥ 2, 1 ≤ b = 2d
′

b′ ≤ 2d − 1, 0 ≤ d′ < d, 2 - b′.

As gcd(b′, r) = 1, we can find x, y ∈ Z such that xb′ = yr − 1. Setting

(4.17) j = 2d−d′

x,

we then have a+ bj = 2dyr and so we can consider the 2-element

(4.18) s = diag(αIa, α
jIb) ∈ L.

Note that the choice (4.17) implies that 2|j. In what follows, we will work with some 2-powers l,
where r > l ≥ 1. For such an l, αl 6= αlj , and so

CGLε(V )(s
l) ∼= GLε

a(q)×GLε
b(q).

Next we observe that if k is any odd integer and skl is L-conjugate to slz for some z ∈ Z(L), then

(4.19) z = 1, αl(k−1) = 1.

Indeed, if β is the (unique) eigenvalue of z (acting on V ), then the conditions a > b, αl 6= αlj , and
αkl 6= αklj imply by comparing eigenvalues and their multiplicities that

αkl = αlβ, αklj = αljβ.

It follows that β = αl(k−1); in particular, β is a 2-element; and that βj−1 = 1. Since 2|j, we conclude
that β = 1 and z = 1.
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(c) We can also view L as the dual group H∗ and S as [H,H], where H = GF ∼= PGLε
n(q) is of

adjoint type. By virtue of (4.19) with k = 1, we can apply Proposition 3.11(i), (ii) to the semisimple
character χsl of H and conclude that θl := (χsl)S is an irreducible character in B0(S), of degree

θl(1) = [L : CL(s
l)]`′ =

|GLε
a+b(q)|`′

|GLε
a(q)|`′ · |GLε

b(q)|`′
which is odd, since

(

a+b
a

)

is odd, see [NT1, Lemma 4.4(i)].

Let λ ∈ Irr(P/P ′) be R-invariant. By inflation we can view λ as an R̂-invariant linear character

of P̂ . Now recall that T ∈ Syl2(Sm) is 2-good by Lemma 3.7. Hence by Lemma 3.2(ii) we see that

P̂ = Q o T is pe-good if r ≤ pe, and so λ is σe-fixed in this case. We may therefore assume that
r > 2e. Now, applying (4.19) to (l, k) = (1, 2e + 1), we see by Proposition 3.11(ii) that θ1 is not
σe-fixed. The latter implies by the hypothesis that θ1 cannot be R-invariant. Since M/Z ≤ H
and θ1 is clearly H-invariant, we have therefore shown that R > P and G(M/Z) > M/Z, whence

ĜM > M .

(d) Assume now that τ ∈ ĜM . Since Ĝ > L and M = L〈x1〉, it follows that τ = τ ′x−i0
1 for some

τ ′ ∈ Ĝ and i0 ∈ Z. Thus τ ′ = τxi01 ∈ Ĝ ∩ B, and so τ ′ ∈ R̂ by (4.16). As λ is R̂-invariant, λ = λτ
′

and so K := Ker(λ) contains τ ′(x)x−1 for all x ∈ P̂ . Certainly, x1 centralizes all xi and τ inverts
each xi. Hence

P̂ ′ ≤ K 3 τ ′(xix
−1
j )(xix

−1
j )−1 = (xix

−1
j )−2

for all 1 ≤ i 6= j ≤ n. Since 4|r, this implies by [NT1, (3.5)] that t2k = (x2k−1x
−1
2k )

r/2 ∈ K. As T is

2-good by Lemma 3.7, we also have that P̂ ′ 3 y2 for all y ∈ T . It follows from (4.15) and Lemma

3.2(iii) that P̂ /K is 2-good, whence λ is σe-fixed.

(e) Note that if ε = −, then c = 0 and B = 〈x1, τ〉 with M = L〈x1〉. In this case, ĜM > M

implies that τ ∈ ĜM and so we are done by (d). So it remains to consider the case where ε = +,

τ /∈ ĜM , and c ≥ 1. Note that B1 := 〈δ0〉 × 〈τ〉 ∼= C2c × C2 and ĜM =M o (ĜM ∩B1). Also,

(4.20) R̂ ≤ R̃ := 〈P̂ , x1〉o (ĜM ∩B1) ∈ Syl2(ĜM).

Now the assumption τ /∈ ĜM > M implies that there exist some 1 ≤ c1 ≤ c and some j = 0, 1 such

that ĜM ∩B1 = 〈δ2c−c1

0 τ j〉 ∼= C2c1 . Set q1 := p2
c−c1f0 , δ1 = δ2

c−c1

0 , so that q = q2
c1

1 . Again we can

write δ1τ
j = δ′x−i1

1 for some δ′ ∈ Ĝ and i1 ∈ Z. Thus δ′ = δ1τ
jxi11 ∈ Ĝ∩B and so δ′ ∈ R̂ by (4.16).

Recall that α ∈ F×
q has order r = (q − 1)2. As c1 ≥ 1, q − 1 = q2

c1

1 − 1 is divisible by q1 − (−1)j .

Hence there is a 2-power 1 ≤ l < r such that αl has order (q1 − (−1)j)2 ≥ 2. Our choice of l
implies that δ1τ

j(αl) = αl, and so the element sl, with s defined in (4.18), is δ1τ
j-invariant. It then

follows by [NTT2, Corollary 2.5] that the characters χsl and θl (as defined in (b)) are δ1τ
j-invariant.

Since θl is invariant under M/Z ≤ H, we see by (4.20) and Proposition 3.11(i), (ii), that θl is an
R-invariant irreducible character of odd degree in B0(S), whence θl is σe-fixed by the hypothesis.
The latter implies by (4.19) (with k = 2e + 1) and Proposition 3.11(ii) that sl is L-conjugate to
s2

e+1. Using (4.19) again with k = 2e + 1, we see that |αl| ≤ 2e, and so

(4.21) (q1 − (−1)j)2 ≤ 2e.

Now we return to the R̂-invariant character λ of P̂ /P̂ ′. As δ′ ∈ R̂, λ = λδ
′

and so K = Ker(λ)

contains δ′(x)x−1 for all x ∈ P̂ . Note that δ′(xi) = δ1τ
j(xi) = x

(−1)jq1
i , and so P̂ ′ ≤ K 3

(xix
−1
j )q1−(−1)j for all 1 ≤ i 6= j ≤ n. It follows from (4.21) that K 3 (xix

−1
j )2

e

for all such i, j.

Furthermore, by [NT1, (3.5)] we have

t2
e

k = (x2k−1x
−1
2k )

r/2·2e−1

= ((x2k−1x
−1
2k )

2e)r/4 ∈ K.
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Hence, we conclude as in (d) that P̂ /K is 2e-good, and so λ is σe-fixed, as desired. �

Lemma 4.6. Let X be a normal abelian subgroup of a finite group Y . Suppose j̄ is a central
involution in W = Y/X and it acts on X as the inversion x 7→ x−1. Then

(i) If 2 - |X|, then Y splits over X and Y ∼= X oW .
(ii) If p > 2, then P ∈ Sylp(Y ) splits over Q := Op(X). More precisely, P = Q o R with R

isomorphic to a Sylow p-subgroup of W .

Proof. (i) We may assume that j̄ = jX for some involution j ∈ Y , and jvj−1 = v−1 for all v ∈ X.
Since j̄ ∈ Z(W ), jY ⊆ jX. Conversely, given any u ∈ X we can find v ∈ X such that v2 = u, and
so v−1jv = ju. Thus jY = jX, whence

|CY (j)| = |Y |/|jX| = |Y/X|.
Now CY (j) ∩X = 1, and we conclude that Y = X oCY (j).

(ii) Let T := Op′(X) so that X = T × Q. Applying (i) to Y/T , we see that Y/T splits over
QT/T . Hence PT/T = QT/T o (R1/T ) for some subgroup R1 of Y , and R1/T is isomorphic to a
Sylow p-subgroup of W . Now R1 = TR for R ∈ Sylp(R1), Q� Y , and

Q ∩R ≤ Q ∩ (RT ∩QT ) = Q ∩ T = 1.

As |P | = |Q| · |R|, it follows that P = QoR (after a suitable conjugation). �

Proposition 4.7. Let S = [GF ,GF ] be as in (4.1). Suppose in addition that GF is an exceptional
group of Lie type and p > 2. Then Theorem 2.3 holds in this case.

Proof. (i) First we note that, since p > 2, condition (a) of Proposition 4.2 is satisfied, after a suitable
conjugation in Aut(S). Next, G admits γ-stable Sylow d-tori S, by [MTe, Theorem 25.11], which
can be chosen to be a direct product of γ-stable d-tori of rank ϕ(d), see [MTe, Proposition 25.7].
Assume furthermore that p - |Z((G∗)F

∗

)| and that a Sylow p-subgroup of GF is contained in SF .
Then conditions (b)–(d) of Proposition 4.2 hold, with R = 1 and R∗ = 1, and so we are done.

(ii) Here we assume in addition that p > 3; in particular, p - |Z((G∗)F
∗

)|. Note that in the case
p = 5|(q2 +1) and GF = E8(q), we can put Q ∈ Syl5(S) in a subgroup X ∼= SU5(q

2) by [LSS, Table
5.1], and SU5(q

2 + 1) is 5-good by Lemma 3.14, whence we are done. Aside from this case, one
checks that the assumptions in (i) are fulfilled, except when there is ε = ± such that p|(q − ε) and
furthermore (p,GF ) = (5, Eε

6(q)) or p ∈ {5, 7} and GF = E7(q) or E8(q). Suppose that we are in
these cases, but p 6= 5 if GF = E8(q). Then d = 1 if ε = + and d = 2 if ε = −. By the main result
of [LSS] we can find a γ-stable connected reductive subgroup D of G such that p - [GF : DF ], with
[DF ,DF ] being a central extension of

• PSL2(q)× PSLε
6(q) when (p,GF ) = (5, Eε

6(q)),
• PSLε

8(q) if GF = E7(q), and
• PSLε

9(q) if GF = E8(q).
Putting Q in DF and working in DF , we see that condition (b) of Proposition 4.2 holds, with
R ∼= Cp. Taking H = G∗/Z(G∗) ∼= G, we then see that condition (c) of Proposition 4.2 holds, with
R∗ ∼= Cp. Hence we are done by using Proposition 4.2.

(iii) From now we will assume that p|(q−α) for a unique α = ±, and either p = 3, or GF = E8(q)
and p = 5. If GF = G2(q), then we can put Q in a subgroup SLα

3 (q), cf. [LSS, Table 5.1], and see
that Q is 3-good by Lemma 3.14.

To handle the next cases, we will view S = L/Z(L), where L := (G∗)F
∗

, the corresponding group
of Lie type of simply connected type, and aim to show that L is p-good (in most cases). To do this,
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we will use a certain subgroup K < L of p′-index in L and described in [GL, Table 4-1]. We also

use the fact that 3 - |X/[X,X]| for X = SLα
3 (q), and set M := O`′(K).

First we handle the case (L, p) = (E8(q), 5). Then K ∼=M ·C5 with M ∼= SLα
5 (q) ◦ SLα

5 (q). Now
M is 5-good by Lemma 3.14, 5 - |M/M ′|, and K/M ∼= C5 is also 5-good. Hence K is 5-good by
Corollary 3.6.

From now on we may assume p = 3. Let L = 3D4(q). Then K ∼= M · C3 and M ∼= SLα
3 (q). Now

M is 3-good by Lemma 3.14, 3 - |M/M ′| as noted above, and K/M ∼= C3 is also 3-good. Hence K
is 3-good by Corollary 3.6.

Next let L = F4(q). Then K ∼= M · C3 and M ∼= SLα
3 (q) ◦ SLα

3 (q). Now M is 3-good by Lemma
3.14, 3 - |M/M ′|, and we can finish as above.

Suppose L = Eε
6(q)sc. If α 6= ε, then we can choose K ∼= F4(q) which is already shown to be

3-good. Assume next that α = ε. Then we can take K ∼=M · (C3 ×C3) and M ∼= SLα
3 (q) ◦ SLα

3 (q) ◦
SLα

3 (q), and conclude that K and L are 3-good as above.
Suppose L = E8(q). Then we can take K ∼=M · C3 and M ∼= SLα

3 (q) ◦Eα
6 (q)sc, which is already

shown to be 3-good, and so we are again done.

(iv) Here we consider the case GF = E7(q)ad and p = 3 as in (iii). As |GF /S| = gcd(2, q − 1),
condition (a) of Proposition 4.2 holds; write F = γm and q = qm1 for m := |G/S|. Recall that d = 1
if α = + and d = 2 if α = −. Note that there exists a γ-stable maximal torus T1 of G such that T1
is a Sylow 1-torus and NGF (T1) = T F

1 ·W where W = W (E7); furthermore, γ acts on X(T1) via
ν 7→ q1ν and on T1 via t 7→ tq1 . Let j̄ denote the central involution of W and let T2 = xT1x−1 with
x ∈ G and x−1γ(x)T1 = j̄. By [C, Proposition 3.3.4], γ acts on X(T2) via ν 7→ −q1ν, whence γ acts
on T2 via t 7→ t−q1 . Thus T2 is a Sylow 2-torus. We have shown that Td is a Sylow d-torus and γ
acts on Td via t 7→ tαq1 .

By [LSS, Table 5.1], see also [GL, Table 4-1], there is a γ-stable Levi subgroup D = CG(T ) such
that DF = (Cq−α ◦ Eα

6 (q)sc) · C3. Here, [D,D] is of type E6 and T = Z(D)◦ is a one-dimensional
γ-stable d-torus. By [MTe, Theorem 25.11], we may assume that T < Td, and so γ acts on T via
t 7→ tαq1 . Choosing s ∈ T F of order (q1 − α)3, we then see that γ(s) = s. As s ∈ Z(DF ), s is
3-central in GF . We can also view s as a γ∗-stable 3-element in (G∗)F

∗

. By Proposition 3.11(i),
(iii), θ := (χs)S is a P -invariant p′-degree character in B0(S), whence it is σe-fixed and so s and
s1+pe

are conjugate in (G∗)F
∗

. This in turn implies by Lemma 3.12 that sp
e

= 1, and so

(4.22) (q1 − α)3 ≤ 3e.

Note that N := [D,D]F ∼= Eα
6 (q)sc is perfect. Next, since [D,D] is connected, the map

g 7→ g[D,D]

yields a γ-equivariant homomorphism from DF onto (D/[D,D])F with kernel N , and so we obtain
a γ-equivariant isomorphism

DF /N ∼= (D/[D,D])F .

As D = [D,D]T , we then see that γ acts on the quotient DF /N (of order q − α) via the map
y 7→ yαq1 .

Now we may assume that Q ∈ Syl3(S) is contained inO3′(DF ) > N , and consider any P -invariant
linear character λ of Q. As shown in (iii), N is 3-good. Moreover, (4.22) and the described action
of γ on DF /N show that any P -invariant linear character of O3(DF /N) is σe-fixed. It follows by
Lemma 3.5 that λ is σe-fixed, as desired. �

Proposition 4.8. Let S be as in (4.1), p = 2, and suppose that GF = Eε
6(q)ad with 4|(q − ε) for

some ε = ±. Then Theorem 2.3 holds in this case.
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Proof. (a) Recall that G∗ is a simple, simply connected, algebraic group of type E6 defined over F`,
and let δ : G∗ → G∗ denote the standard Frobenius endomorphism of G∗ defined by this F`-structure.
Let T be a δ-stable maximal torus of G∗ contained in an δ-stable Borel subgroup B. As shown in
part (a) of the proof of [NT1, Proposition 4.3], there is an involutive graph automorphism τ of G∗

that commutes with δ, stabilizes T , and induces the involutive symmetry ρ of the Dynkin diagram
of the root system Φ of G∗ with respect to T ⊂ B. In particular, if q = `f , then

(G∗)δ
f ∼= E6(q)sc, (G∗)τδ

f ∼= 2E6(q)sc.

Furthermore, there is some g ∈ NG∗(T ) such that the conjugation jg by g induces −ρ on X(T ) and
commutes with δ. Moreover, there is a 〈jgτ, δ〉-stable one-dimensional subtorus T0 of T such that

C := CG∗(T0) = T0L
is a maximal rank subgroup of type D5T1 of G∗, with L := [C, C] simple, simply connected, of type
D5.

(b) Suppose we are in the case ε = −. We will use the following facts proved in part (b) of the
proof of [NT1, Proposition 4.3]. First, one has

H := (G∗)δ
′ ∼= 2E6(q)sc,

where δ′ := jgτδ
f ; furthermore, T δ′ ∼= C6

q+1. Denoting L := Lδ′ < H and C := Cδ′ , by [LSS, Table

5.1] we have that L ∼= Spin−10(q) and that

(4.23) 2 - [H : C].

Recall that 4|(q + 1) in the case under consideration, whence |Out(S)|2 = 2. Suppose first that
S < G. In this case, as shown in part (b2) of the proof of [NT1, Proposition 4.3], Q/Ker(λ) is
elementary abelian for any P -invariant linear character of Q, whence λ is σ1-fixed.

Next suppose that G = S. As T is a Sylow 2-torus for (G∗)δ
′

and T0 < T , we see that T δ′

0
∼= Cq+1.

Now any generator s of O2(T δ′

0 ) (of order (q+1)2) centralizes C and so it is 2-central in H by (4.23).
Viewing S = [H∗, H∗] for H∗ dual to H, we see by Proposition 3.11(i), (iii), that θ := (χs)S belongs
to B0(S) and has odd degree. By hypothesis, θ is σe-fixed, and so s and s1+2e are conjugate in H
by Proposition 3.11(iii). This in turn implies that s2

e

= 1 by Lemma 3.12. Thus

(4.24) (q + 1)2 ≤ 2e;

in particular, e ≥ 2.
Now, using the decomposition C = T0L and arguing as in part (iv) of the proof of Proposition

4.7, we can put Q inside L · C(q+1)2 , where C(q+1)2
∼= O2((C/L)δ

′

)). The inequality (4.24) clearly

implies that C(q+1)2 is 2e-good. On the other hand, L ∼= Spin−10(q), and so L/〈z2〉 ∼= Ω−
10(q) is

2-good by [NT1, Proposition 3.7], where Z(L) = 〈z〉 ∼= C4. As |z2| = 2 ≤ e, it follows that L is
22-good, whence it is 2e-good as well. We conclude that Q is 2e-good by Corollary 3.6.

(c) From now on we will assume that ε = +. Write q = pf with f = f02
a, where a ≥ 0 and 2 - f0,

and let δ0 := δf0 .
Note that jgτ normalizes T and acts via ν 7→ −ν on X(T ), whence jgτ acts as inversion on T by

[NT1, Lemma 4.2(ii)]. Furthermore, jgτ commutes with δ, so jgτ acts on H := (G∗)δ
f

= E6(q)sc.
Without loss of generality, we will view jgτ as an automorphism of H and replace jgτ by its 2-part
τ0.

Observe that the subgroups T0, C, L, L := Lδf < H, and C := Cδf are all stable under τ0 and
δ. Also, C is a maximal rank subgroup of type D5T1 of G∗, so by [LSS, Table 5.1] we have that
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L ∼= Spin+10(q) and that

(4.25) 2 - [H : C].

We can view S as either H/Z(H) or [H∗, H∗], where H∗ ∼= E6(q)ad, and note that

Out(S) = H∗/S o 〈τ0, δ〉.

As shown in part (c) of the proof of [NT1, Proposition 4.3], τ20 ∈ R := O2(T δf ), and (4.25) implies

that 〈C, τ0, δ0〉 has odd index in 〈H, τ0, δ〉. Extend 〈R, τ0, δ0〉 to a Sylow 2-subgroup P̃ of 〈C, τ0, δ0〉.
Conjugating inside Aut(S), and using 2 - |Z(H)|, we may assume that P ≤ P̃ for P ∈ Syl2(G) and

that G ≤ P̃H. Then

Q = P ∩ C ∈ Syl2(C), P̃ = Q〈τ0, δ0〉,
and in fact

(4.26) P/Q ≤ P̃ /Q ∼= C2 × C2a ,

with C2 generated by τ0 and C2a generated by δ0.

(d) Let λ be any P -invariant linear character of Q and let K := Ker(λ). If P 3 τ0, then it was
shown in part (c) of the proof of [NT1, Proposition 4.3] that Q/K is elementary abelian, and so
λ is σ1-fixed. From now on we may assume that P 63 τ0. Then (4.26) implies that there is some
j ∈ {0, 1} and 0 ≤ b ≤ a such that

P = 〈Q, δ1τ j0 〉,
where δ1 := δ2

a−b

0 . Setting q1 := pf0·2
a−b

, we note that

(4.27) δ1τ
j
0 (t) = t(−1)jq1

for all t ∈ T . Next, as δf acts on T via t 7→ tq, T0 < T is a 1-torus and so T δf

0
∼= Cq−1. Furthermore,

the condition P 63 τ implies that (b, j) 6= (0, 1) and so q − 1 = q2
b

1 − 1 is divisible by q1 − (−1)j . It

follows that we can find s ∈ T δf

0 < T δf of order (q1 − (−1)j)2 ≥ 2. By its choice, s ∈ Z(C) and
so 2 - [H : CH(s)] by (4.25). Now Proposition 3.11(i), (iii) implies that θ := (χs)S is irreducible,

of odd degree, and belongs to B0(S), if we view S as [H∗, H∗]. Also, s is δ1τ
j
0 -invariant, whence

θ is P -invariant. By the main hypothesis, θ is σe-fixed, and so s and s1+2e are conjugate in H by
Proposition 3.11(iii). This in turn implies by Lemma 3.12 that s2

e

= 1, and so

(4.28) (q1 − (−1)j)2 ≤ 2e.

Now, if (q1 − (−1)j)2 = 2, then it was shown in part (d) of the proof of [NT1, Proposition 4.3]
that Q/K is elementary abelian, and so λ is again σ1-fixed. So we may assume that e ≥ 2. It was
also shown in part (d) of the proof of [NT1, Proposition 4.3] that

Q = Q1 oR2,

with Q1 ∈ Syl2(L) and R2
∼= C(q−1)2 contained in T . Recall that λ is δ1τ

j
0 -invariant. Hence

K = Ker(λ) contains δ1τ
j
0 (x)x

−1 for all x ∈ Q. If, in addition, x ∈ T , then (4.27) and (4.28) imply

that δ1τ
j
0 (x)x

−1 = x(−1)j(q1−(−1)j) generates 〈x2e〉. In particular, y2
e ∈ K for all y ∈ R2. On the

other hand, if Z(L) = 〈z〉 ∼= C4, then L/〈z2〉 ∼= Ω+
10(q) is 2-good by [NT1, Proposition 3.7], and so

Q1 is 2e-good as e ≥ 2. We conclude by Lemma 3.2 that Q/K is 2e-good, and so λ is σe-fixed, as
desired. �

Proposition 4.9. Theorem 2.3 holds in the case where S = PΩ+
8 (q) and p = 3 - q.
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Proof. (i) Recall [GLS, Theorem 2.5.12] that Aut(S) ∼= GF o (Cf × C3), where q = rf for a prime
` 6= p, Cf is generated by the standard Frobenius automorphism δ induced by the field automorphism
x 7→ x`, and C3 is generated by a triality graph automorphism. As GF /S is a 2-group, by a suitable
conjugation in Aut(S) we may assume that G ≤ S o (Cf × C3). If furthermore G ≤ S o Cf , then
the arguments in the proof of Proposition 4.3 apply and yield the result. In what follows we will
therefore assume that G = S oA with P = QoA, A ≤ Cf o C3 but A 6≤ Cf .

(ii) Fix an orthonormal basis (e1, e2, e3, e4) of the Euclidean space R4 and consider

α1 := e1 + e2, α2 := −e2 + e3, α3 := −e3 − e4, α4 := e4 − e3

as simple roots for a root system Φ of type D4. Then one can check that the maps

β : e1 7→ e2 7→ e3 7→ e1, e4 7→ e4, τ : α1 7→ α3 7→ α4 7→ α1, α2 7→ α2

are commuting isometries of order 3 of Φ, and β ∈W (D4), the Weyl group of Φ.
Next we consider X := 〈e1, e2, e3, e4〉Z and an integer r ∈ Z. Then

Y1 := (β − 1)X = 〈e1 − e2, e2 − e3〉Z.
Furthermore,

Y2 := 〈Y1, 2(rτ − 1)X〉Z 3 4(r2 + r + 1)e1, 4(r
2 + r + 1)e4.

Since 9 - (r2 + r + 1), it follows that, for any k ≥ 2, we have that exp(X/Y ) ≤ 3 (in fact it is
generated by e1 + Y ), if we set

Y := 〈Y2, 3kX〉Z.
(iii) Let q ≡ ε(mod 3) and let (q − ε)3 = 3k. Working in a subgroup

Ωε
2(q)

4 o A4 < Ω+
8 (q),

we see that Q ∼= C4
3k oC3, with δ acting on C4

3k via t 7→ tn for some n ∈ Z. Since A 6≤ Cf , we have

that A 3 δjτ , with δj acting on C4
3k via t 7→ tr with r := nj .

If k = 1, then Q is 3-good, and so we are done. Suppose k ≥ 2. We view e1, . . . , e4 as coroots
for G and identify X/3kX o 〈β〉 with Q. Also, let λ ∈ Irr(Q) be linear and δjτ -invariant. The
calculations in (ii) then show that Q/Ker(λ) is 3-good, and so λ is σ1-fixed, as desired. �

Proof of Theorem 2.3. Theorem 2.3 now follows from Corollary 3.10, Propositions 3.15, 4.3, 4.4,
4.5, 4.7, 4.8, and 4.9 (using the classification of finite simple groups). �

5. Theorem C

In this section we prove Theorem C. We start with some general lemmas.

Lemma 5.1. Let G be a finite group. Suppose that σ ∈ Gal(Q|G|/Q) has order a power of p and
fixes p′-roots of unity. Suppose that N / G has p′-index, and let θ ∈ Irr(N) be σ-invariant. Then
every χ ∈ Irr(G|θ) is σ-invariant.

Proof. By induction on |G : N | and using the Clifford correspondence, we may assume that θ is G-
invariant. Now, let χ ∈ Irr(G|θ), and let g ∈ G. We want to show that χ(g)σ = χ(g). Working with
the irreducible constituents of χN〈g〉, we may assume that G/N is cyclic. Then |Irr(G|θ)| = |G/N |
is not divisible by p. Let A = 〈σ〉, which is a p-group which acts on the set Ω = Irr(G|θ). Then
|Ω| ≡ |Ω0| mod p, where Ω0 are the A-invariant elements in Ω. We conclude that σ fixes one
extension χ ∈ Irr(G|θ). By Gallagher’s theorem (Corollary 6.17 of [Is]), all the other extensions are
products of χ with linear characters of G/N , which are σ-fixed. �
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Lemma 5.2. Let G be a finite group. Suppose that σ ∈ Gal(Q|G|/Q) has order a power of p.
Suppose that N / G has p-power index, and let P ∈ Sylp(G). Assume that every linear character of
P is σ-invariant. Let χ ∈ Irr(G) be of p′-degree, and assume that χN = θ is σ-invariant. Then χ is
σ-invariant.

Proof. Let Q = P ∩ N and A = P × 〈σ〉. Then θQ is A-invariant, and has p′-degree. By Lemma
2.1(ii), we have that θQ contains a linear A-invariant constituent ξ with p′-multiplicity. Then [χQ, ξ]
is not divisible by p. By Lemma 2.1(i) (with H = Q, A = P , and ψ = χP ), we have that χP contains
an irreducible constituent τ such that τQ = ξ, and [χP , τ ] is not divisible by p. By hypothesis, we
have that τ is σ-invariant. Now [(τG)N , θ] = [ξN , θ] = [θQ, ξ] is not divisible by p. By Lemma 2.1(i)
applied to 〈σ〉, τG and H = N , we have that τG contains an irreducible constituent ρ, σ-invariant,
such that [ρN , θ] is not divisible by p. Then ρN = θ (by Corollary (11.29) of [Is]) and χ = λρ, for
some linear λ ∈ Irr(G/N), by Gallagher’s theorem. However, λ is σ-invariant by hypothesis and the
fact that G/N ∼= P/Q, so χ is σ-invariant. �

Next we use character triples. The notation we follow is that of [N3].

Theorem 5.3. Suppose that N/G and let θ ∈ Irr(N) be G-invariant. Suppose that θ can be afforded
by an absolutely irreducible F-representation, where Q ⊆ F ⊆ C is a field. Assume that M/N is
a non-trivial perfect normal subgroup of G/N . Then there exists a character triple (M∗, N∗, θ∗)
isomorphic to (M,N, θ) such that:

(i) G acts as automorphisms on M∗, centralizing N∗, and such that

((mN)∗)g = (mgN)∗

for m ∈M and g ∈ G.
(ii) M∗ is perfect, N∗ ≤ Z(M∗), N∗ is isomorphic to a finite subgroup of F×, and θ∗ is faithful.
(iii) If N ≤ U ≤M and ν ∈ Irr(U |θ), then (ν∗)g = (νg)∗ for g ∈ G.
(iv) If N ≤ U ≤M and ν ∈ Irr(U |θ), then F(ν) = F(ν∗).

Proof. By hypothesis, we have that θ can be afforded by an absolutely irreducible FN -representation
Y. Arguing as in Theorem (11.2) of [Is], there exists a projective representation X of G such that
χ(g) ∈ GLd(F) for g ∈ G and satisfying conditions (a), (b), (c) of Theorem (11.2) of [Is]. (See
the remark after the proof of (11.2) in [Is]. See also the proof of Theorem 5.1 in [NTT1].) If α
is the factor set associated to X we have that α(g, n) = α(n, g) = 1 for n ∈ N and g ∈ G and
α(gn, hm) = α(g, h) for g, h ∈ G and n,m ∈ N .

Now, let F× be the multiplicative group of F. For any subgroup H ≤ G, we define H̃ = H × F×.
It is straightforward to check that G̃ is a group with multiplication

(g1, f1)(g2, f2) = (g1g2, α(g1, g2)f1f2) .

Also, H̃ is a subgroup of G̃ whenever H is a subgroup of G. We have that the map π : G̃ → G
given by (g, f) 7→ g is an onto homomorphism with kernel 1̃ = 1×F×. Hence, M̃ and Ñ are normal

subgroups of G̃. Furthermore, we can check that N×1 (which we again call N) is a normal subgroup

of G̃, 1̃ is contained in Z(G̃) and Ñ = N × 1̃.

Now, Ñ/N ≤ Z(G̃/N). Let M1/N = (M̃/N)′. Since M̃/Ñ is perfect, we have that M̃ = ÑM1.
Also, M1/N is perfect. Also, M1/N is finite, by Schur’s theorem. (See (IV.2.3) of [Hu].) In

particular, M1 is finite. Let N1 =M1 ∩ Ñ , and F1 = N1 ∩ 1̃, so that N1 = F1 ×N . Notice that F1

is a finite subgroup of F×.
Now, M1 / G̃ and thus G̃ acts on M1 by conjugation. Since 1̃ is in the kernel of the action, we

have that G acts on M1.
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We define

X̃ (g, f) = fX (g) .

It is clear that X̃ is an F-representation of G̃. Also, X̃ (n) = Y(n) for n ∈ N . Now, define
the linear character λ ∈ Irr(N1) by λ(n, f) = f̄ , where f̄ is the complex conjugate of f . Let

θ1 = 1 × θ ∈ Irr(N1). Let τ be the character of the representation of XM1
. Note that τ is G̃-

invariant and has its values in F. Also, τN1
= λ̄θ1, where again λ̄ is the complex conjugate of λ and

τN = θ. Thus τ ∈ Irr(M1).
Now, the map x 7→ π(x) is an onto group homomorphism from M1 to M with kernel F1. Since

F1 ≤ ker(θ1), by Lemma (11.26) of [Is], we have that (M1, N1, θ1) and (M,N, θ) are isomorphic
character triples. This isomorphism commutes with G-conjugation and preserves field of values
of characters. Now, by the remark after Lemma (11.27) of [Is], we have that (M1, N1, λ) and
(M1, N1, θ1) are isomorphic character triples. Furthermore, if ν ∈ Irr(U |λ), we have that the image
of ν under this isomorphism is ντU . Clearly, we have that F(τUν) ⊆ F(ν). On the other hand, if
σ ∈ Gal(F(ν)/F(τUν)), then

τUν = (τUν)
σ = τσUν

σ = τUν
σ ,

using that τ is F-valued. By the uniqueness in Gallagher’s theorem, we conclude that νσ = ν, and
F(τUν) ⊆ F(ν). Also, this bijection ν 7→ τUν commutes with G-action.

Finally, (M1, N1, λ) and (M1/N,N1/N, λ) are isomorphic by Lemma (11.26) of [Is] (with an
isomorphism that preserves fields of values and commutes with G-action). Now, writeM∗ =M1/N ,
N∗ = N1/N and θ∗ = λ. �

We prove Theorem C by assuming a slightly weaker version of Conjecture A for almost quasi-
simple groups.

Conjecture 5.4. Let σ = σe, as in Conjecture A. Suppose that S is a perfect group such that
S/Z(S) is a simple group, and |Z(S)| has order not divisible by p. Suppose that a p-group P acts
by automorphisms on S centralizing Z(S). Let Q be a P -invariant Sylow p-subgroup of S. Assume
that every linear P -invariant character of Q is σ-invariant. Then every P -invariant χ ∈ Irrp′(S) is
σ-invariant.

This is exactly how we will use Conjecture 5.4.

Corollary 5.5. Assume Conjecture 5.4, and let σ = σe. Suppose that M is a perfect group acted
on by a p-group P . Suppose that |Z| is not divisible by p, where Z = Z(M) is centralized by P .
Assume that M/Z is a direct product of non-abelian simple groups transitively permuted by P . Let
Q be a P -invariant Sylow p-subgroup of M , and assume that every linear P -invariant character of
Q is σ-invariant. Then every P -invariant χ ∈ Irrp′(M) is σ-invariant.

Proof. Write

M/Z = S1/Z × . . .× Sa/Z ,

where Si/Z is simple and the Si’s are transitively permuted by P . Hence, for i 6= j, we have that
[Si, Sj ] = 1. Also S′

i is perfect, by elementary group theory, and Si is the central product of S′
i and

Zi = Z ∩Si. Write Qi = Q∩Si ∈ Sylp(Si). Since Zi is a p
′-group, we also have that Qi ∈ Sylp(S

′
i).

Let P1 be the stabilizer of S1 in P . Let {u1, . . . , ua} be a transversal for the right cosets of P1 in P .
Let θ ∈ Irr(Z). By Lemma (4.1.ii) of [NTT1], there is a natural bijection

(ψ1, . . . , ψa) 7→ ψ1 · · ·ψa
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from Irr(S1|θ)× . . .× Irr(Sa|θ) onto Irr(M |θ). Furthermore, if ψ ∈ Irr(S1|θ), then ψ is P1-invariant
if and only if ψu1 · · ·ψua is P -invariant. Also, the map commutes with σ. In the same way, we
have a natural bijection Irr(Q1) × · · · × Irr(Qa) → Irr(Q) that commutes with σ, and such that
ψ1 × . . . × ψa is P -invariant if and only if ψ1 is P1-invariant. Finally, observe that since Si is the
central product of S′

i and Z, we have that Irr(Si|θ) = {ν · θ | ν ∈ Irr(S′
i|θi)}, where θi = θZi . Now

the proof easily follows by applying Conjecture 5.4 to each S′
i. �

In our next theorem we will use the following extension result, whose proof uses elementary but
non-trivial character theory.

Theorem 5.6. Suppose that G is a finite group, K = Op(G), and let P ∈ Sylp(G). Let P ≤ V ≤ G
and U = V ∩K. If θ ∈ Irr(U) has p′-degree and is P -invariant, then θ extends to V .

Proof. This is Theorem 2.6 of [NT2]. �

The following includes Theorem C.

Theorem 5.7. Assume Conjecture 5.4. Let G be a finite group, and let P ∈ Sylp(G) such that the
exponent of P/P ′ is less than or equal to pe. Let L / G and suppose that θ ∈ Irr(L) has p′-degree,
extends to LP , and is σ-invariant. Then all Irrp′(G|θ) are σ-invariant.

Proof. We argue by double induction, first on |G|, and then on |G : L|. By the Clifford cor-
respondence, we may assume that θ is G-invariant. Let χ ∈ Irrp′(G|θ). We want to show that
χσ = χ. Notice that if P ≤ H < G, then every p′-degree irreducible character of H is σ-invariant
by induction.

Let K/L be a chief factor of G. We claim that we may assume that G = KP . Suppose that
KP < G. Let τ ∈ Irrp′(PK) be under χ. Then τ is σ-invariant by induction, since we are assuming
that KP < G. Now, τK ∈ Irr(K) (because |KP : K| and τ(1) are coprime) is σ-invariant, has
p′-degree, and extends to KP . Since |G : K| < |G : L|, by induction we are done. Hence, the claim
is proved, and we assume that G = PK.

We have now that χK = ψ ∈ Irr(K) is σ-invariant of p′-degree. By Lemma 5.2, it suffices to
show that ψ is σ-invariant.

Suppose first that K/L is a p-group. Then G/L is a p-group, and Lemma 5.2 applies. Assume
next that K/L is a p′-group. By Lemma 5.1, we have that ψ is σ-invariant, so again we are done.

So we are left with the case where K/L is perfect of order divisible by p.
Now, letM = Op(G) = Op(K), and let N =M∩L. Notice thatML = K and thatM/N ∼= K/L

is a chief factor of G. Let Q = P ∩M ∈ Sylp(M). Let θ1 = θL ∈ Irr(N). Let F = Q|G|p′
(θ1).

Then θ1 can be afforded by an absolutely irreducible F-representation by Corollary (10.13) of [Is] (in
the case p = 2 we also use [Is, Corollary (10.2.h)]). By Theorem 5.3, there exists a character triple
(M∗, N∗, θ∗1), whereM

∗ is perfect, N∗ ≤ Z(M∗), θ∗1 is faithful, among some further properties. Now,
χM = ψM ∈ Irr(M) = τ has p′-degree and lies over θ1. Notice then that τ∗ is a p′-degree character
over θ∗1 (use Lemma (11.24) of [Is]). Now, (τ∗)N∗ = eθ∗1 . Since M∗ is perfect, the determinant of
τ∗ is trivial. Hence θ∗1 has p′-order, so N∗ is a p′-group (using that θ∗1 is faithful).

Recall that by Theorem 5.3, we have that G acts on the group M∗ centralizing N∗, and that
M/N and M∗/N∗ are G-isomorphic. Now, write (QN)∗ = Q∗ × N∗, where we notice that Q∗ is
a P -invariant Sylow p-subgroup of M∗ (because QN is P -invariant). Let λ∗ ∈ Irr(Q∗) be linear
P -invariant. We prove that λ∗ is σ-invariant. We have that ν∗ = λ∗ × θ∗1 is linear P -invariant.
Let ν ∈ Irr(QN |θ1) be the preimage under the character triple isomorphism. Notice that ν has
p′-degree and is also P -invariant (by Theorem 5.3(iii)). By Theorem 5.6, we have that ν extends to
some ε ∈ Irr(NP ). Since NP < G, we have that ε has p′-degree, and by induction, we have that it
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is σ-invariant. Therefore so is εNQ = ν. Now F = Q|G|p′
(θ1), where θ1 = θN . Since θ is σ-fixed and

σ fixes p′-roots of unity, we conclude that σ fixes every element of F. Since ν is σ-invariant, then σ
also fixes every element of F(ν) = F(ν∗) (by Theorem 5.3(iv)). We conclude that ν∗ is σ-invariant,
and therefore so is λ∗. By Corollary 4.5, we have that every p′-degree irreducible character of M∗

is σ-invariant. Hence, τ∗ is σ-invariant. Again, by Theorem 5.3(iv), we have that F(τ) = F(τ∗),
so we conclude that τ is σ-invariant. Now, χM = τ and we use Lemma 5.2 to obtain that χ is
σ-invariant. �

We conclude this section by providing some evidence in support of Conjecture 5.4.

Theorem 5.8. If p > 2, then Conjecture 5.4 holds if S/Z(S) is an alternating group, a sporadic
group, or a simple group of Lie type in the same characteristic p.

Proof. First suppose that S/Z(S) is a simple group of Lie type in the same characteristic p. Since
p - |Z(S)|, we can find a simple, simply connected algebraic group G over a field of characteristic
p and a Steinberg endomorphism F : G → G such that S is a quotient of G = GF by a central
subgroup. Let K := Q(exp(2πi/|G|p′)). Since 4||G| and p > 2, note that K contains

√
−1. Now, by

Theorem 1.3 and Proposition 10.12 of [TZ], Q(χ) ⊆ K(exp(2πi/p)) for all χ ∈ Irr(G); in particular,
χ is σ1-fixed. Hence Conjecture 5.4 holds for S in this case.

Next assume that S/Z(S) ∼= An for some n ≥ 5 and let K := Q(exp(2πi/|S|p′)). Again, as p > 2,

we see that K 3
√
−1. It is a classical result of Schur (see eg. Theorems 8.6 and 8.7 of [HH] for the

case S = 2An) that for any χ ∈ Irr(S) and any g ∈ S, χ(g) ∈ K(
√
m) for some positive integer m

(which may depend on g), if |Z(S)| ≤ 2. If |Z(S)| > 2, then S ∈ {3Am, 6Am} with m = 6 or 7, and
p > 3. In this case, using eg. [GAP] one can check that χ(g) ∈ K for all g ∈ S and χ ∈ Irr(G). It
follows that χ(g) ∈ K(exp(2πi/p)) for all g ∈ S, and so χ is again σ1-fixed.

Finally, the cases where S/Z(S) is a sporadic simple group can be verified using [GAP]. �
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[NSV] G. Navarro, B. Späth and C. Vallejo, A reduction theorem for the Galois–McKay conjecture, (in preparation).
[NT1] G. Navarro and Pham Huu Tiep, Real groups and Sylow 2-subgroups, Adv. Math. 299 (2016), 331–360.
[NT2] G. Navarro and Pham Huu Tiep, Representations of odd degree, Math. Ann. 365 (2016), 1155–1185.
[NTT1] G. Navarro, Pham Huu Tiep, and A. Turull, p-rational characters and self-normalizing Sylow p-subgroups,

Represent. Theory 11 (2007), 84–94.
[NTT2] G. Navarro, Pham Huu Tiep, and A. Turull, Brauer characters with cyclotomic field of values, J. Pure Appl.

Alg. 212 (2008), 628–635.
[SF] A. A. Schaeffer-Fry, Actions of Galois automorphisms on Harish-Chandra series and Navarro’s self-

normalizing Sylow 2-subgroup conjecture, https://arxiv.org/pdf/1707.03923.pdf, Trans. Amer. Math. Soc.

(to appear).
[TZ] Pham Huu Tiep and A. E. Zalesski, Unipotent elements of finite groups of Lie type and realization fields of

their complex representations, J. Algebra 271 (2004), 327–390.
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