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SYLOW SUBGROUPS, EXPONENTS AND CHARACTER VALUES

GABRIEL NAVARRO AND PHAM HUU TIEP

ABSTRACT. If G is a finite group, p is a prime, and P is a Sylow p-subgroup of G, we study how
the exponent of the abelian group P/P’ is affected and affects the values of the complex characters
of G. This is related to Brauer’s Problem 12. How this is exactly done is one of the last unsolved
consequences of the McKay—Galois conjecture.

1. INTRODUCTION

In Problem 12 of the celebrated list [Br]|, Richard Brauer asks: Given the character table of a
group G and a prime p dividing n = |G|, how much information about the structure of the p-Sylow
group P can be obtained?

In [IN], it was proved that if G is a finite p-solvable group and p is a prime, then a single Galois
automorphism and the character table of G determined the exponent of P/P’, and it was hinted
that this could hold true for every finite group. (Here in this paper P’ = [P, P] is the commutator
subgroup of P, and recall that its exponent is the smallest prime power p¢ such that z?° = 1 for
all x € P/P’.) This was the origin of a wider generalization of the McKay conjecture: the so-called
McKay—Galois conjecture in [N2] which implies the following.

Conjecture A. Let e > 1 be an integer. Let o, be the Galois automorphism of Gal(Q®P) that fizes
roots of unity of order not divisible by p, and sends p-power roots of unity & to E'7P°. Let G be a
finite group, and let P € Syl,(G). Then the exponent of P/P' is less than or equal to p° if and only
if all the irreducible characters of p'-degree of G are o.-fized.

In the first main result of this paper, we prove the if direction of Conjecture A. In fact, a stronger
result is obtained.

Theorem B. Let G be a finite group, and let P € Syl,(G). If all the irreducible characters of
p’-degree of the principal p-block of G are o.-fized, then the exponent of P/P’ is less than or equal
to p°.
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If the proof of Theorem B already depends on the classification of finite simple groups and on
delicate properties of their characters, the only if direction of Conjecture A seems to lie even deeper.
It is quite exciting too since it proposes that a small abelian p-group P/P’ affects the character
values of every finite group G that happens to have P as a Sylow p-subgroup.

Our second main result reduces the only if direction of Conjecture A to decorated simple groups.
Theorem C. Conjecture A is true for every finite group, if it is true for almost quasi-simple groups.

In the last section of this paper, we prove that certain almost quasi-simple groups satisfy Conjec-
ture A, giving further evidence of its truth. (G. Malle has informed us that using Theorem C he has
proved Conjecture A for p = 2 very recently in [M].) As pointed out in several places, the present
knowledge of the actions of Aut(S) and Gal(Q*/Q) on the set Irr(S) of the irreducible characters
of a simple group of Lie type S is not enough to fully answer questions as Conjecture A, for the time
being. This appears to be one of the main problems of the representation theory of finite groups
today.

We have mentioned that Conjecture A is implied by the McKay-Galois conjecture. (For a proof,
see Theorem 9.12 of [N3].) At the time of this writing, there is a draft of a reduction of the McKay—
Galois conjecture to a problem on simple groups in [NSV]. As happens with the reduction of the
McKay conjecture, and unlike our Theorem C, this is not a straight reduction to decorated simple
groups, but something far more complex. In any case, there are no shortcuts: Conjecture A (as well
as the McKay—Galois conjecture) will need to be proved for decorated simple groups eventually, and
this, as we have said, will require a much better understanding of the values of the characters of
simple groups and of their extensions than is currently available. We consider our Theorem B as a
contribution to this problem.

For p = 2, Theorem B bears a similarity with a conjecture of R. Gow that we proved in [NT1]:
If G is a finite real group, then P/P’ is elementary abelian, where P € Syl,(G). In fact, the main
result of [NT1] is that P/P’ is elementary abelian if all the odd-degree irreducible characters in
the principal 2-block of G are real-valued. Unlike Conjecture A, the converse of this result is not
true (outside solvable groups). This shows, again, that in the global/local questions only the Galois
automorphisms described in [N2] seem to behave perfectly.

As a corollary of Theorem B, we do have, however, a new result on a classical family of groups:
the rational groups. In fact, our result holds more generally for quadratic-rational groups. Recall
that if G is a finite group and y € Irr(G), then Q(x) is the subfield of C generated by the values of

X-

Corollary D. Let G be a finite group, let p be an odd prime, and let P € Sylp(G). Assume that
|Q(x) : Q| < 2 for all x € Irr(G) of p'-degree in the principal p-block of G. Then P/P' is elementary
abelian.

Proof. Let o € Gal(Q*?/Q) be fixing p’-roots of unity and sending every p-power root of unity ¢ to
&P, Let m = |G|y, and let n = |G|. Now, for any y € Irr(G) of p’-degree in the principal p-block
of G, we have that the extension Q,,(x)/Qp, has degree 1 or 2. Also Qy,(x)/Qm is contained in
Q1./Qy, which has cyclic Galois group. Using Gauss sums, the only sub-extension of degree 2 of
Qn/Qm is Qu(iy/P) or Qp(y/P) depending on the congruence of p mod 4. In any case, i\/p or
/D are sums of roots of unity of order dividing p, so they are fixed by o. So x is fixed by o, and
Theorem B applies for o = o0y. O

Note that the p = 2 analogue of Corollary D is not true. For instance, all the irreducible odd-
degree characters of G = SU3(3) are in the principal 2-block of G, are rational-valued or have
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quadratic field of values. However, if P is a Sylow 2-subgroup of G, then P/P' = Cy x Cy. Of
course, this cannot happen if G is a rational group, by the main result of [NT1] mentioned above.

Finally, let us mention that after the recent result in [SF], the if direction of Conjecture A is one
of the last unproven consequences of the McKay-Galois conjecture.

2. THEOREM B

In this section, we prove Theorem B assuming that Theorem 2.3 below on almost-simple groups
is true.

Our notation for characters follows [Is], while the notation for blocks follows [N1]. If G is a
finite group, then Irr(G) is the set of the irreducible complex characters of G. If N <« G and
0 € Irr(N), then Irr(G|0) is the set of irreducible characters x € Irr(G) such that [yn,0] # O.
If p is a prime, then Irr, (G) is the set of x € Irr(G) of degree x(1) not divisible by p, and
Irry (G|6) = Irr(G|6) NIt (G). We denote by By (G) the principal p-block of G, and by Irr, (By(G))
the complex irreducible characters in it of p’-degree.

About our Galois automorphism ¢ = o, € Gal(Q®), we notice the following. If G is a finite group
of order dividing some integer n, then, by elementary number theory, we see that the restriction 7 of
o to the n*" cyclotomic field Q,, has order a power of p, and 7 acts like o on the ordinary characters
of every group of order a divisor of n.

We will use several times the following easy result.

Lemma 2.1. Let H < G be a finite group and let A be a p-group for some prime p. Suppose that A
acts on the characters of G and H such that [x*,¥*] = [x, ] for all the characters x,v of G (and
of H) and such that (xmg)* = (x*)u for every character x of G and every a € A.

(i) Let ¢ be an A-invariant character of G. If there exists an A-invariant § € Irr(H) with [, €]
not divisible by p, then there exists some A-invariant T € Irr(G) such that [, T|[TH, ] is not
divisible by p.

(ii) If+) is an A-invariant p’-degree character of G, then ¢ has an A-invariant p'-degree irreducible
constituent with p'-multiplicity.

Proof. Notice that A permutes the irreducible characters of G and of H, since [x%, x*] = [x, x] for
characters x of G (and of H).
(i) We have that

[1/1]{,5] = Z [Q/J,T][TH,Q.

Telrr(G)
Since we have that [¢, 7*][(7*) g, &] = [¢, T|[TH, £] using our hypotheses, we deduce that

[wHa 5] = Z [W T] [TH7 5] mOdp
T€lrr A (G)

where Irr 4 (G) is the set of irreducible A-invariant characters of G. Since [¢x, €] is not divisible by
p, the first part easily follows.
Part (ii) follows from part (a) by setting H = 1. O

The first two parts of the following lemma are trivial, while the third (due to M. Murai) lies
deeper.
Lemma 2.2. Let G be a finite group, and let N < G.

(i) We have that Bo(G/N) C Bo(G).
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(ii) If H; are finite groups and v; € Irr(Bo(H;)), then
Y1 X s XY € Irr(Bo(H1 X oo X Ht))

(iii) Suppose that 0 € Irr(Bo(N)) has p'-degree and extends to N P, where P € Syl,(G). Then there
exists x € Irr(By(G)) of p'-degree over 6.

Proof. See Lemma 2.6 of [NT1]. O

Next is the exact result that we need from almost simple groups in order to prove Theorem B,
and whose proof we defer until the next section.

Theorem 2.3. Let p be a prime, and e > 1. Suppose that S < G, where S is a non-abelian finite
simple group, G/S is a p-group, and Cg(S) = 1. Let P € Syl (G) and Q = PN S. If all the
P-invariant x € Irr, (S) in the principal p-block of S are o.-fized, then every linear P-invariant
character of Q is o.-fized.

Now, we are ready to prove Theorem B.

Theorem 2.4. Let G be a finite group. Let 0 = 0., where e > 1 is some integer. If all the
characters in Irry (Bo(G)) are o-fived, then the exponent of P/ P’ is at most p®, where P € Syl (G).

Proof. We may assume that o € Gal(Q|g/Q), so that o has p-power order. We assume that all
characters in Irr, (G) in the principal p-block of G are o-fixed, and by induction on |G|, we prove
that the exponent of P/P’ is at most p°. If A is a linear character of P, notice that

A7 = AP

Therefore, using that P/P’ is isomorphic to the group of linear characters of P, it is enough to
prove that all the linear characters of P are o-fixed. Let 1 < K be a minimal normal subgroup of G.
Then we know by induction that all the characters of PK/P'K are o-fixed (using that Bo(G/K) is
contained in By(G) by Lemma 2.2(ii)). We may assume then that O, (G) = 1.

Suppose now that K is a p-group. Let A € Irr(P) be linear. Write § = Ax € Irr(K) and let T be
the stabilizer of  in G. Then 6 is o-fixed, because K is elementary abelian. Now, by using the Schur-
Zassenhaus theorem, we can write PCg(P) = Px U, and consider A = Ax 1y € Irr(PCg(P)). Now,
by Lemma (6.4) of [N1] and the Third Main Theorem (6.7) of [N1], there exists some irreducible
constituent ¢ € Irr(T) of p’-degree, over ), in the principal p-block of T Since 1 lies over 6, then
1@ is irreducible by the Clifford correspondence. Also, 1)“ has p’-degree and lies in the principal
p-block of G' (by Corollary (6.2) of [N1] and the Third Main Theorem). We deduce that 1< is o-fixed
by hypothesis. By the uniqueness of the Clifford correspondence (using that € is o-fixed), then we
have that v is o-fixed. Now, by Lemma 2.1(ii) with A = (o), we have that ¢)p has some o-invariant
linear constituent 7. Since 7 = 6 = Ak, we have that A = 7p, for some linear p € Irr(P/K) (by
Gallagher’s Corollary (6.17) of [Is]). By induction, recall that p is o-fixed. Therefore A is o-fixed.

Hence, we may assume that K is non-abelian of order divisible by p. Next, we claim that K P = G.
Let ¢ € Irr(K P) be of p’-degree in the principal block of K P. We claim that 1 is o-invariant. We
have that ¢ = 6 is irreducible and P-invariant by Corollary (11.29) of [Is]. By Corollary (9.2)
of [N1], we deduce that 6 is in the principal block of K. By Lemma 2.2(iii), there exists some
X € Irr(G) in the principal p-block of G over 6 of p’-degree. By hypothesis, x is o-invariant. By
Lemma 2.1(ii), xxp has some irreducible constituent 7 which is o-invariant of p’-degree. Now,
7k € Irr(K) is o-invariant and G-conjugate to 6, so we deduce that 6 is o-invariant. Now, since 6
has p’-degree and has trivial determinant (because K is perfect), we have by Corollary (6.28) of [Is]
that 6 has a canonical extension 6 to K P. By uniqueness, 6 Irr(K P) is also o-invariant. Then,
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by Gallagher, 1) = 6, for some linear \ € Irr(K P/K), which we know is o-invariant by induction.
Thus v is o-invariant. Hence, we may assume that G = K P.

Let S < K be non-abelian simple. Let H = N¢(S). Thus G = HP and Q = PN H € Syl (H).
Let R=KNP=KNQ € Syl,(K),and let Ry, = RNS =PNS=0QNS € Syl,(5). We can
write K = St x ... x S*, where P = U§:1 Qz; is a disjoint union, with 27 = 1. (We use here that
G= U§:1 Hz; is also a disjoint union.) Notice that

R=R{"x---xX R".

Furthermore, we claim that @ = Np(Ry). Since Ry = PN S and Q = Np(S5), it follows that
@ < Np(R;y). Conversely, suppose that 2 € Np(R;). Let 1 # v € Ry. Then v* € Ry < S.
On the other hand v* € §% = S% for some j and v* € SN S%. Necessarily S* = S = 5% and
z e NP(S) =Q.

Now, let C = Cg(S). Thus S < K < SC < H, and H/C is almost simple with H/SC a
p-group. Also QC/C € Syl (H/C). Using that C' N S = 1, we have that R,C/C € Syl (SC/C),
and therefore (QC/C)N(SC/C) = R1C/C = (R; x C)/C. We wish to apply Theorem 2.3 to H/C.
Let v € Irr (SC/C) be QC/C-invariant in the principal p-block. Since C NS = 1, we have that
vs = 7 € Irr(S) is H-invariant of p’-degree in the principal p-block. By Lemma 4.1 of [NTT1], we
have that p = 7% x - - - x 7%t € Irr(K) is G-invariant of p’-degree (and in the principal p-block, using
Lemma 2.2(ii)). Now, p has a canonical extension p to G (by Corollary (6.28) of [Is]), which lies in
the principal p-block (using Corollary (9.6) of [N1]) and therefore is o-invariant by hypothesis. In
particular, p is o-invariant. Since pg is a multiple of 7, we conclude that 7 (and therefore ~) are
o-invariant. By Theorem 2.3, we have that all the @-invariant linear characters of R, are o-fixed.

Finally, let A\ € Irr(P) be linear. Then vq = Ag, is Q-invariant, and therefore is o-fixed. Also,
since x; € P, we have that )\R.lm = (11)*, and we conclude that v = Ag = V7! X -+ x " is o-fixed.

Now, by applying Lemma 2.1(ii) to the group A = P x (o), we have that v contains an irreducible

constituent 7 € Irr(K) which is P-invariant and o-invariant, of p’-degree with [v% 5] = [nr, V] not
divisible by p. Let ¥ = 7) be the canonical extension of 7 to G. By uniqueness, we have that v
is o-invariant. Also, [¢r, V] = [ng,V] is not divisible by p. We have that p = ¢p is o-invariant

with [pgr, ] # 0 mod p. Since v is o-invariant, by Lemma 2.1(i) it follows that p has a o-invariant
constituent p € Irr(P) such that [ug,v] is not divisible by p. Since v is R-invariant and P is a
p-group, it follows that ur = v. Now, A = eu, by Gallagher, for some linear € € Irr(P/R). Since the
linear characters of P/R are the linear characters of G/K, and they are o-invariant by induction,
then the proof is complete. ([l

3. ALMmosT SIMPLE GROUPS. I
In this and the next section we prove Theorem 2.3, thus completing the proof of Theorem B.

Definition 3.1. Let p be a prime and a be any positive integer. A finite p-group P is called p®-good,
if exp(P/P’) < p®. A finite group G is called p®-good if P € Syl,(G) is p®-good.

In what follows, IV,, denotes the p-part of any positive integer N. We begin with some elementary
observations.

Lemma 3.2. Let p be a prime and a any positive integer, and let P, QQ, R be finite p-groups.
(i) The set Pla] := {x € P | 2" € P'} is a normal subgroup of P. Furthermore, P is p®-good if
and only Pla) = P. Also, P is p-good if and only if P' = ®(P).
(ii) Suppose that Q and R are p®-good subgroups of P. Then (Q, R) as well as any quotient of Q
are p*-good.
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(iii) Suppose that P = (P’ x1,...,&y) with xfa € P'. Then P is p*-good.
Proof. See [NT1, Lemma 3.2]. O

Lemma 3.3. Let p be a prime and let G be a finite group.

(i) Suppose that Ng(P) = P x A for P € Syl,(G) and some subgroup A. Then the number of
p-blocks of G of mazimal defect is | Irr(A)|.

(ii) Suppose that S = G/N for some p'-subgroup N < G. Let o, € Irr(S) and view o, as
characters of G. Then «, 3 belong to the same p-block of S if and only if o, B belong to the
same p-block of G. Furthermore, Irr(By(G)) = Irr(By(S)).

(iii) Suppose that G has only one conjugacy class of p-central subgroups of order p, P € Syl (G) is
non-abelian, and C < Z(P) has order p. Then C < P'.

(iv) Suppose that A < B are normal subgroups of G such that A and G/B are p-groups. If B/A
has a self-normalizing Sylow p-subgroup, then so does G.

Proof. See [NT1, Lemma 2.7]. O
We will use the following consequences of Lemma 2.1.

Lemma 3.4. Let p be any prime, e > 1, and let R < G be finite groups.

(i) Let R < H < G and let x € Irt(G) be o.-fized. Suppose there exists a oe-fived v € Irr(R) such
that p1 [xr,V]. Then there exists a o.-fived v € Irr(H) such that

1 xu,7 [vr, V.

(ii) Let R < K < G be such that p 1 [K : R], and let P be a p-subgroup of G normalizing both
K and R. If there exists a o.-fized P-invariant v € Irr(R) of p’-degree, then there exists a
oe-fixzed P-invariant v € Irr(K) of p'-degree such that p 1 [yr,V].

Proof. (i) Apply Lemma 2.1(i) to ¢ = xz and A = (0.). (ii) Apply Lemma 2.1(ii) to 1 = v and
A= {o.) x P. O

The following result generalizes [NT1, Lemma 2.8]:

Lemma 3.5. Letp be a prime, e > 1, and let N < G be normal subgroups of a finite group H = RN
with pt [N/N'| and R € Syl,(H). Let P:= RNG, Q := RN N, and suppose that

(a) every R-invariant linear character of P/Q is o.-fized, and
(b) every R-invariant linear character of Q is o.-fized.

Then every R-invariant linear character of P is o.-fized.

Proof. Let A € Irr(P/P’) be R-invariant. Then v = A\g is R-invariant, and so o.-fixed according to
(b). Note that R normalizes both N and @. By Lemma 3.4(ii) applied to @ < N < G, there exists
n € Irr(NN) which is R-invariant (and so H-invariant), of p’-degree, o.-fixed, with p { [ng,v]. As
pt |N/N'|, the determinantal order o(n) is coprime to p. On the other hand, H/N = R/(RNQ),
so by [Is, Corollary (8.16)], n has a unique extension x to H with o(x) = o(n). In particular, x is
oe-fixed, and [xq, V] = [ng, V] is coprime to p. By Lemma 3.4(i) applied to Q < R < H, x g contains
a o-fixed character £ € Irr(R) such that p t [{g,v]. As R/Q is a p-group and v is R-invariant,
it follows that g = v. Clearly, {p is R-invariant and ({p)g = v = Ag. Hence A\ = ¢({p) for
some R-invariant linear e € Irr(P/Q) by Gallagher’s Corollary (6.17) of [Is|. According to (a), € is
oe-fixed, and so A is o.-fixed, as stated. O

Corollary 3.6. Let p be a prime, e > 1, and let N be a normal subgroup of a finite group G with
pt|N/N'|. Suppose that both N and G/N are p®-good. Then G is p®-good.
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Proof. We may take P € Syl (G) and assume G = PN. Now take R = P, H = G, and apply
Lemma 3.5. (]

Lemma 3.7. Let p be any prime and let n be any positive integer. Then A,,, S,, and all 26 sporadic
finite simple groups are p-good.

Proof. See [NT1, Lemmas 3.3, 3.4]. |

Proposition 3.8. Let p be any prime and let S % ?Fy(2)" be a simple group of Lie type in charac-
teristic p. Then S is p-good.

Proof. The case p = 2 was already treated in [NT1, Proposition 4.5]. So let’s assume that p > 2
and let P € Syl,(S). If (S,p) # (G2(q),3), then P/P’ is elementary abelian by [GLS, Theorem
3.3.1(b)], and so we are done. But even in the case (S,p) = (G2(q),3), P can be chosen to be
generated by root subgroups X, « a positive root, and all X, are elementary abelian. It follows

by Lemma 3.2(iii) that P is p-good. a
In what follows, we use the notation SL® to denote SL if ¢ = + and SU if ¢ = —, and similarly for
GL*. We also use the notation E§ to denote Eg when € = + and ?Eg when € = —. Slightly abusing

the notation, we will treat € with ¢ = £ as €l in expressions like ¢ — ¢, etc.

Proposition 3.9. Let S be a simple group of Lie type in odd characteristic and let p = 2. If S is
one of the following groups

(a) PSLS,,(q), where either 4|(q — €) and m is a 2-power, or if 4|(q + €),

(b) PSPy (9), PQam1(a), Py, (a), *G2(a), G2(q), *Da(a), Fi(a), Er(a), Es(q),
(¢) E§(q) with ¢ = —e(mod 4),

then S is p-good.

Proof. This statement follows immediately from Propositions 3.5, 3.7, 3.8, Corollary 3.9, and Propo-
sition 4.1 of [NT1]. O

Corollary 3.10. Theorem 2.3 holds if (S,p) is one of the cases listed in Lemma 3.7, Proposition
3.8, or Proposition 3.9.

Proof. In all of the listed cases, S is p-good, hence the conclusion of Theorem 2.3 holds for all
e>1. O

Next we observe that the proof of [NT1, Proposition 2.9] also yields the following result, which
will be useful in constructing irreducible characters belonging to the principal p-block of finite simple
groups of Lie type. We refer the reader to [C], [DM] for basics of the Deligne-Lusztig theory.

Proposition 3.11. Let p be a prime, e > 1, and let G be a simple algebraic group over a field
of characteristic £ # p of adjoint type. Let F : G — G be a Frobenius endomorphism, G := G¥,
(G*, F*) be dual to (G, F), and let G* := (G*)F", S := [G,G]. Let s € G* be a semisimple element.
Then the following statements hold.
(i) Suppose that s is a p-element. Then the semisimple character xs corresponding to s belongs to
the principal p-block Bo(G) of G. Furthermore, every irreducible constituent of (xs)s belongs
to the principal p-block of S.
(ii) Suppose that s is not G*-conjugate to sz whenever 1 # z € Z(G*). Then 0 := (xs)s € Irr(9).
More generally, any ¢ € E(G,(s)) is irreducible over S. Moreover, if k € Z is such that s* is
not G*-conjugate to sz whenever 1 # z € Z(G*), then (xs)s = (X+)s if and only if s and s*
are conjugate in G*. In particular, if s'TP° is not G*-conjugate to any sz with 1 # z € Z(G*),
then 0 is o-fized if and only if s and s'tP° are conjugate in G*.
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(iil) Suppose that ged(|s|, |Z(G*)|) = 1. Then s is not G*-conjugate to sz whenever 1 # z € Z(G*).

Lemma 3.12. Let p be a prime and let G be a finite group. Suppose that s € G is a p-central
p-element and there exists an integer k such that

(a) s* and s are conjugate in G; and

(b) either k = 1(mod p), or |s| divides kP — 1 for some ¢ € Zxg.

Then in fact s* = s.

Proof. The statement obviously holds if s = 1. So we will assume that |s| = p® for some a € Z>;.
In this case, we note that the two conditions in (b) are actually equivalent. (Indeed, if p|(k — 1),
then p?|(k?"~ —1). Conversely, if p®|(k?" — 1), then k = k?° = 1(mod p).)

Since s is p-central, Cg(s) contains a Sylow p-subgroup P of G, and so s € Z(P). Now (a)
implies by Burnside’s fusion control lemma that gsg~! = s* for some g € Ng(P). Write |g| = mp®
with ptm and b > 0, and let h := ¢™. Then hsh~' = s*" and |h| = p*. As Ng(P)/P is a p/-group,
the latter implies that h € P, and so hsh™! = s. Thus |s| = p® divides k™ — 1. As noted above,
p|(k — 1), whence p{ (k™ —1)/(k — 1). It follows that p® divides k — 1, i.e. s* = s. O

Lemma 3.13. Suppose that, for the group G in Theorem 2.3, there exists a a simple algebraic

group G of adjoint type in characteristic { # p and a Steinberg endomorphism F : G — G such that

S =G and the following conditions hold.

(a) G = G*, where (G*, F*) is dual to (G, F);

(b) G =Sx(h), P€Syl,(G), and the conjugation by h € P induced an automorphism of S, which
is obtained by restricting to S a Steinberg endomorphism v : G — G with F = ~™ for some
m € Z>1; and

(c) Q=PNS=Q1 XQ2 X...xQ is a direct product of k ~y-stable cyclic subgroups of the same
order.

Then Theorem 2.3 holds for G.

Proof. Using (a), we will identify G* with G, v* with v, F* with F, and G* = (G*)F" with S. By
(c) we can write Q; = (t;) = Cpa and

(3.1) V(t:) =™
for 1 <4 < k and for some a,n; € Z>1. Let pbi = (n; — 1)p.

Consider any h-invariant linear character A € Irr(Q). If a < e, then A is oc-fixed. So we will
assume g > e. Next, Ker(\) contains t;“*l by (3.1). It follows that A is o.-fixed if max; b; < e. So
we will assume that b; > e. Now, we can choose an element s € Q; of order p**!. By Proposition
3.11, we see that 6 := (xs)s € Irr(S) belongs to By(S), and it has p'-degree as s € Z(Q). As
by > e, (3.1) implies that v(s) = s. It follows by [NTT2, Corollary 2.5] that 6 is y-invariant, and so
P-invariant. By hypothesis, 6 is then o.-fixed, whence s and s'*?° are conjugate in S by Proposition
3.11(iii). This in turn implies by Lemma 3.12 that s = s'*?°. But this contradicts the choice of s
to be of order ptt. O

Lemma 3.14. Suppose that 2 < p|(q — €) and n = p* for some k > Z>1. Then SL,(q) is p-good.

Proof. We proceed by induction on k& > 1 and fix a € qu of order p* = (¢ —€),. We also fix a basis
(e1,...,en) of the natural module V' = Fy for SL,(q), and an orthonormal basis (e1,...,e,) of the
natural module V' = Fy;, for SU,(q).

(i) For the induction base k = 1, we can choose a Sylow p-subgroup of SL;(q) to be

(3.2) R= <3,x1z2_1,x2x3_1,...,xp_lz;1>
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in the chosen basis of V', where

sierrregrr ez ... e, e, oy =diag(a, 1,1,...,1), z; = s tastT 2<i<p.
Then we have
—1 _ -1 _ _ -1 -1
T1Ty = Xoxy =...=xp a1z, =xpx, (mod[R, R]).
But certainly
—1 -1 -1 -1 _
T1Ty - TaTg  * oo Tp—1T), - Tply = 1.

It follows that all the generators of R in (3.2) have their p"-powers belonging to [R, R]. Hence R
is p-good by Lemma 3.2(iii).
(ii) For the induction step, let n = p* = mp > p?, and take V = &¥_,V; with

Vii= <e(i—1)m+17 sy eim>~
Let
y1 :=diag(a, 1,1,...,1), t:ej = emyj > €amypj = oo b €(p_1)mj F €5, 1 < j<m.

By the induction hypothesis, a Sylow p-subgroup R; of SL¢(V;) = SL (¢) that acts diagonally in
the basis (e1,...,em) is p-good. Define

yi =t Tyt Ry =t Ry
for 2 < i < p. Then note that
T = (t, 1Yy Y2ys s Yp—1Yp ")
is isomorphic to the subgroup R defined in (3.2), and so it is p-good. Now
(Ri,Ra,..., Ry, T)
is a Sylow p-subgroup of SL:, (¢), and it is p-good by Lemma 3.2(ii). O
Proposition 3.15. Theorem 2.3 holds in the case S is a simple Suzuki or Ree group.

Proof. By Corollary 3.10, we may assume that S is a simple Suzuki or Ree group over a field of
characteristic £ # p, p # 2 if S = 2G2(¢?), and that S 2 2F(2)’. Then we can write ¢® = ¢2¢*! for
some a € Z>1, and find a Steinberg endomorphism ¢ of G = G* (of type Ba, Go, or Fy) such that
62 is the standard Frobenius endomorphism of G, induced by the field automorphism z +— zf, and
F = §%**1. Now if |G/S| =: m, then we can take y := §(24T1/™ to fulfill condition (b) of Lemma
3.13.

Suppose first that S = 2By (¢?) with ¢ > 2. Then p # 2, and one can check that G also fulfills
condition (c) of Lemma 3.13, with @ being cyclic. Hence we are done in this case. The same
arguments apply in the case S = 2G5(¢?) with ¢% > 3.

Next suppose that S = 2F;(¢?) with ¢* > 2. If furthermore p 1 (¢® — 1), then @ is cyclic, and we
are done as above. Suppose 3 # p|(¢* —1). Then by the main result of [LSS] (see Table 5.1 therein),
there is a d-stable connected reductive subgroup D of G such that Ng(DF) = Sp,(¢?)-2 and N (DF)
is a maximal subgroup of S. As F = §2¢*1 DI is §-stable, and so Ng (D) = (Sp,(¢?) - 2) x (h).
The assumptions on p ensure that we can take

P < M = Spy(q®) % (h) = Spy(q*) x (h?),

where h? is induced by % = (52)(2‘”‘1)/’”7 with 62 acting on D as the standard Frobenius endomor-
phism. Working in M, we can represent Q as a direct product of k = 2 h2-stable cyclic subgroups
of the same order, fulfilling condition (c¢) of Lemma 3.13. The same arguments apply in the case
pl(¢* + 1), where D =2 2B,(¢?) x 2By(g?) and the odd-order element h stabilizes each of the two
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factors 2By (g?). Finally, if p = 3, then we can put @ in a subgroup SUs(¢?) of S, which is 3-good
by Lemma 3.14. (]

4. ALMoST SIMPLE GRouPs. II

Throughout this section, we will assume that

S is a simple group of Lie type in characteristic £ # p but

(4.1) not a Suzuki or Ree group, and (S, p) is not listed in Corollary 3.10.

We will then view S = [GF',G¥] for some simple algebraic group of adjoint type over a field of
characteristic ¢ and a Steinberg endomorphism F : G — G. Let (G*, F*) be dual to (G, F), G* =
(G*)F", and let ¢ denote the common absolute value of eigenvalues of F acting on the character
group X (7)) of an F-stable maximal torus T of G. Recall the notion of d-tori in algebraic groups
as defined in [MTe, Definition 25.6]. Also, let ®4(-) denote the d*" cyclotomic polynomial, of degree
@(d). Given p and ¢, let d be the order of ¢ modulo p, so that p|®4(q) but pt P.(¢) forall 1 <e < d.
Note that 1 < d <p—1.

Lemma 4.1. Let G be a simple algebraic group with a Steinberg endomorphism v and let F = ™
for some m € Z>1. Suppose that

(a) the common absolute value of eigenvalues of F acting on the character group X (T) of some
F-stable mazimal torus T of G is q;

(b) S is a y-stable d-torus of G for some d € Z>1; and

(¢c) j € Z>1 is such that gv”i is mot a Suzuki or Ree group.

Then v7¢ acts on S via x v 27"

Proof. We may choose T to be a vy-stable maximal torus of G. Now, if A is any eigenvalue for ~
acting on X (7)), then A™ is an eigenvalue for F' = 4™ acting on X (7 ), whence |\"*| = ¢ by (a), and
so |A| = ¢*/™. Tt now follows from the proof of [MTe, Proposition 25.7] that v acts on X := X(S)
as ¢*/™¢ for some linear transformation ¢ with ¢¢ = 1x. Hence 7/ acts on X (S) as ¢/%/™ - 1x.
Now ¢/%/™ is an integer because of (c), and so the statement follows from [NT1, Lemma 4.2(ii)]. O

In the next generalization of Lemma 3.13, by a natural permutation action of a finite group Y on
a direct product X = X7 x Xo X ... x X} with X; 2 Xy & ... 2 X we mean an identification of
X with {(x1,22,...,2r) | ; € X1} (with component-wise product) and an embedding 7 : Y < S,
such that y € Y sends (z1,%2,..., k) t0 (Tr(y)(1)s Tr(y)(2)s - - - Tr(y)(k))-

Proposition 4.2. Let S be as in (4.1), G = S x (h), and suppose that all the following conditions

hold.

(a) The conjugation by h € P induced an automorphism of S, which is obtained by restricting to S
a Steinberg endomorphism v : G — G with F' =™ for some p-power m € Z>1.

(b) There is a y-stable d-torus S of G such that Q@ = O,(S¥) x R for some p®-good subgroup R.

(c) Let (G*,~*) be dual to (G,v). There exists a quotient H = G*/Z, where Z < Z(G*) and y*-stable
d-tori Rj of H, 1 < j <1, all of rank ¢(d), such that

Q"= (04(R{") x O4(R5") x ... x Op(R{")) x R

is a Sylow p-subgroup of H := HF ", where the p-subgroup R* naturally permutes the subgroups
O(R{"), 1<j <L
(d) ptIZ((G") ).
Then Theorem 2.8 holds in this case.
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Proof. (i) Let (G*,~*) be dual to (G,v). Then we may take F* = (v*)™. By [MTe, Proposition
25.7], 8§ =81 X Sz x ... x S is a direct product of y-stable d-tori S;, each of rank ¢(d). It follows
that

SF=8'x8Fx...x8F.
As mentioned in the proof of [MTe, Proposition 25.7], each SI" is cyclic of order ®4(g). Also, v acts
on 8F'. Hence, if S = (t;), then

for some n; € Z>1. On the other hand, 'yd(ti) = tgd/m by Lemma 4.1. Observe that G is not a
Suzuki or Ree group. (Indeed, otherwise either G itself would be a Suzuki or Ree group for p > 2,

or (p,¢,G¥) = (2,3,Ga(q)), both contradicting (4.1).) Hence, it follows from the proof of Lemma
4.1 that ¢*/™ € Z, and so

(43) nd = g™ (mod B4(q))
for all 7. Let

(Pa(@)p =% (@™ = 1), =" (nf = 1), =", O,(S]) = (s:).
The choice of d implies that (¢¢ — 1), = p® > 1. As m is a p-power, we have

™ —1=¢?—1=0(mod p)

and furthermore p|(¢® — 1)/(¢¥™ — 1) if m > 1. Tt follows from (4.3) that
(4.4) bp=by=...=b,=b<a
if m>1.

(ii) Note that ¢ is also the common absolute value of eigenvalues of F'* acting on the character
group X (7*) of an F*-stable maximal torus 7* of G* or of H. Hence, the same arguments as in (i)
show that

(4.5) cp=cp=...=¢=b<a

if m > 1. Here, we write RI" = (t2), v*(¢7) = (¢2)"7, and ((n})? — 1), = p% for 1 < j <.
Furthermore, condition (d) implies that Q* is contained in [H, H|, which is a quotient of (G*)

Let Q* denote the full inverse image of Q* in G*. Then (d) implies that O(Q*) € Syl,(G*) and

there is a y*-equivariant isomorphism OP(Q*) >~ @*. So, without any loss, we may view Q* as a

Sylow p-subgroup of (G*)¥", with prescribed action of 7*.

F

(iii) Consider any h-invariant linear character A € Irr(Q). If a < e, then @ is p°-good by Lemma
3.2(ii), and so \ is o.-fixed. So we will assume a > e. Next, Ker(\) contains ¢! by (4.2). Tt
follows by Lemma 3.2(iii) that X is o.-fixed if b; < e for all i. So we will assume that max; b; > e.
If m > 1, then this implies by (4.4) that b > e. If m = 1, then we also have b =a > e.

Note that |O,(RF")| = (®4(q)), = p®. Since a > e, hypothesis (c) allows us to choose an element

s € Z(Q") N(Op(RT) x Op(Ry ) x ... x O4(R{"))
of order p*1. Using (d) and Proposition 3.11, we see that 6 := (x4)s € Irr(S) belongs to By(9),
and it has p’-degree as s € Z(Q*).

If m = 1, then s is y*-stable as v* = F* in this case. If m > 1, then (4.5) implies that
pe+1|((n;f)d —1) for all 4, and so (y*)%(s) = s, i.e. sis (y*)%-stable. As s is stable under F = 4™
and ged(m, d) = 1, we see that s is y*-stable in this case as well. It follows by [NTT2, Corollary 2.5]
that 6 is v-invariant, and so P-invariant. By hypothesis, 6 is then o.-fixed, whence s and s'*?" are
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conjugate in (G*)¥" by Proposition 3.11(iii). This in turn implies by Lemma 3.12 that s = s*+?°,
But this contradicts the choice of s to be of order p°t?!. |

Proposition 4.3. Let S = [GF',G¥] be as in (4.1) and p > 2. Suppose in addition that G¥' is a
classical group, ptged(n,q — €) if S = PSLS,(q), and that p # 3 if S = PQJ (q). Then Theorem 2.3
holds in this case.

Proof. (i) By the assumptions, p 1 |Z((G*)"")|. Recall by [GLS, Theorem 2.5.12] that Aut(S) =
J x ®gTlg is split over J = Inndiag(S). Let m := |G/S|, a p-power. Then |GJ| = m|J|, and so
GJ = J x C,, for some subgroup C,,, < ®sI'g. Let § denote the standard Frobenius endomorphism
of G induced by the field automorphism z +— zf. Then we have F' = 76/, where 7 is either trivial
or a graph automorphism of order 2 of G commuting with §, and C,, = (v|s) with v = 76//™.
As m is a p-power and p { |J/S| = |Z((G*)F)|, P € Syl,(GJ), and so h := 7|s € P* for some
x € GJ < Aut(S). Replacing G by G*, we then have G = S x (h) with h fulfilling condition (a) of
Proposition 4.2.

(i) Assume in addition that p{ (¢ —€) if S = PSL;,(¢). In the notation of Proposition 4.2(c), we
can choose ‘H such that

H = SL;(Q), SO?n+1(q)v Sp2n(q)7 SO%(Q)»

according as S = PSL{, (¢), PSps,,(q), Qant1(q), PQS,, (¢). Now, the conditions on p and the con-
struction of Sylow p-subgroups of H [GL, Chapter 3, §8], displayed in [BFMNST, §2.2], shows that
condition (c¢) of Proposition 4.2 holds, with R* being a Sylow p-subgroup of S;. By Lemma 3.7,
R* is p-good. Arguing as in p. (ii) of the proof of Proposition 4.2, we can again replace G by an
isogenous simple algebraic group and then replace GI' by

SL;,(q), Sp2n(q); SO2n41(q), SO5,(q),

according as S = PSL; (q), PSpa,(¢), Q2nt1(q), PQS,,(¢). The above description of Sylow p-
subgroups then implies that condition (b) of Proposition 4.2 holds. Now we are done by applying
Proposition 4.2.

(ili) Next we consider the case S = PSL{ (¢) but p|(¢—¢€). Then p 1 n, so we write n = ap+r with
a,r € Z>; and 1 < 7 < p— 1. Now (G*)¥" = SL{ (q), and we can find y*-stable one-dimensional
d-tori Rj, 1 < j <n—1, such that

n—1
R := ( diag(z1,xa, ..., Tp_1, H xj_l) |z; € R
j=1
is a maximal torus of G* (where d = 1if e = + and d = 2 if e = —). It is easy to see that condition (c)

of Proposition 4.2 holds with [ = n—1 and R* € Syl,(S,—) fixing each of R; for ap+1 < j <n—1.
We can then take S = R/Z(G*) to see that condition (b) of Proposition 4.2 holds with k =n — 1
and R € Sylp(Sn,T) being p-good. Now we can again apply Proposition 4.2. O

Proposition 4.4. Let ¢ = ¢ be a power of a prime £ # p, ¢ = +, S = PSLS(q), and 2 <
plged(n,q —€). Let S< G, where G is a finite group, G/S is a p-group, and Cg(S) = 1. Let
R e Sylp(G) and P = RN S. Suppose that all the R-invariant complez irreducible characters of
p’-degree in the principal p-block of S are o.-fized. Then every R-invariant linear character of P is
Oe-fized.

Proof. (a) We will view S = L/Z(L), where L = SL{ (g), and set r := (¢ — €), > p. We will work
with the basis (e1, ..., ey,) of the natural L-module V' as specified in the proof of Lemma 3.14. Using
this basis, we can define the standard Frobenius automorphism ¢ : ¥ = (y;;) — (yfj) of the groups
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GLY(V) = GL(q), L, and S. Write ¢ = ¢/ and f = p°fy for some ¢ € Z>o and p { fo, and let
5o := 60 if e = + and &g := 62/ if e = —. Then the automorphism o of L has order p°. Also, we
set

M = {Y € GLY(V) | det(Y)" =1}, T := M x (do), Z := Z(M).
Then I'/Z induces a p’-index subgroup of Aut(.S). Since Cg(S) =1 and G/S is a p-group, after a
suitable conjugation in Aut(S), we may assume that G <T'/Z.

Fix a € qu of order r, and define
x; = diag(li—1, 0, Ip—3), 1 <i<n

in the chosen basis of V. We also let A := A,, act naturally on the basis (eq,...,e,) (by permuting
the indices of ¢;), and fix T' € Syl (A). Now it is easy to check that P := @ x T € Syl (L), where

(4.6) Q= (wx; ' [1<i#j<n).
Moreover, denoting
(4.7) B := (z1) % (dp),

we see that R* :== P x B is a Sylow p-subgroup of I'. Let G denote the full inverse image of G in
I'=L x B. Then

(4.8) G=Lx(GNB), R=Px(GnB)eSylL(G).
We can and will identify P with P/(Z N P), and R with R/(Z N R).

(b) In view of Lemma 3.14, we may assume that n is not a p-power, and so we can find d € Z>1
such that p? < n < p®!. Now write n = a + b, where

a=p?>p, 1§b:nfa:pd/b/7 0<d <d, ptV.
If d =d, set j:= —1 and

(4.9) s := diag(al,,a/ I,, I, _24) € L.

If d’ < d, then, since ged(V,r) = 1, we can find z,y € Z such that xb’ = yr — 1. Setting
(4.10) j=p""a,

we then have a + bj = p%yr, and can now consider the p-element

(4.11) s := diag(al,,a’ ) € L.

In what follows, we will work with some p-powers I, where r > [ > 1. For such an [, o/ # o!, and
so it is straightforward to check that
[L: CL(s)] = [GL(V) : Care(vy(s')]
is coprime to p.
Next we observe that if s* is L-conjugate to s'z for some z € Z(L) and some k € pZ + 1, then
(4.12) z=1, /D =1,

Indeed, let 3 denote the (unique) eigenvalue of z (acting on V). The choice of j implies that a! # ol
and o # o*Y. First suppose that d’ < d. Then a > b, and by comparing eigenvalues and their
multiplicities we see that

oM = al, oM = olig,
It follows that 8 = o!(!=%); in particular, 3 is a p-element; and that 47~! = 1. Since plj by (4.10),
we conclude that 5 =1 and z = 1.
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Suppose a = b. Then
{o*,aH} = {a'B,a71B).
In particular, 52 = 1 and 8 = o!(1*7%) is a p-power for some v = +1. As p > 2, we see that 3 =1
and z = 1. Moreover, if ¥ = 1, then, as k = 1(mod p), we see that ! = 1, a contradiction. Hence
v = —1and o/(1=F) =1, as stated.
Suppose d = d’ and b > a. Then

{o* a7 1} = {a'B,a7'8, 8}.
In particular, 4% = 1 and 3 = o with i € {0, [}, whence j is a p-element. It follows that p = 3,
and so b # 2a as n = a + b is not a p-power. In this case, by comparing the eigenvalues with
multiplicity b — a, we see that 8 = 1 and z = 1. Now 3 = o'/(**7%) for some v = +1. Arguing as
above, we conclude that v = —1 and o/(*=%) = 1.

(c) We can also view L as the dual group H* and S as [H, H], where H = GI' = PGL¢ (q) is of
adjoint type. By virtue of (4.12) with & = 1, we can apply Proposition 3.11(i), (ii) to the semisimple
character x4 of H and conclude that 6; := (x4 )s is an irreducible character in By(S), of degree

(1) = [L : Cr(s")]e
which is coprime to p.

Let A € Irr(P/P’) be R-invariant. By inflation we can view A as an R-invariant linear character
of P. Now recall that T' € Syl (A;,) is p-good by Lemma 3.7. Hence by Lemma 3.2(ii) we see that
P =Q % T is pt-good if 7 < p¢, and so A is o.-fixed in this case. We may therefore assume that

(4.13) r > p°.

Next, recalling (4.6)-(4.8), we note that z; centralizes @, and assume that G’ N B induces the
subgroup (d1) in the quotient B/{x1). Then, for a suitable {-power ¢;, we have that d;(x) = z°©
for all x € Q). Denoting

(@1 —€)p =0,
and using the G N B-invariance of A, we then see that Ker(\) 3 2P for all z € Q. As T is p-good,
Lemma 3.2(ii) again implies that A is o.-fixed if e; < e. So we will assume that

(4.14) el > e.

Using (4.13), we now choose [ = r/p®*1, so that s' has order p**!. The construction of s in (4.9),
(4.11) shows by (4.14) that s’ is §;-invariant and so (s)” is R-invariant. By hypothesis, 6 is o-
fixed. Applying (4.12) to (I,k) = (1,14 p°), we see by Proposition 3.11(ii) that s' and (s')**P" are
conjugate in L, and 1 = o/?° = o"/P. But this contradicts the choice of « to be of order . O

The next result is obtained along the lines of the proof of [NT1, Proposition 3.10], but with
several modifications.

Proposition 4.5. Let ¢ = ¢/ be a power of an odd prime £, ¢ = £, 4/(q — €), and S = PSL¢ (q),
where n > 3 is not a 2-power. Let S< G, where G is a finite group, G/S is a 2-group, and Cg(S) = 1.
Let R € Syly(G) and P = RN S. Suppose that all the R-invariant complex irreducible characters of
odd degree in the principal 2-block of S are o.-fixed. Then every linear R-invariant character of P
1S Oe-fized.

Proof. (a) Write n = 2m + x with k € {0,1}. We will view S = L/Z(L), where L = SL; (q),
and set r := (¢ — €)2 > 4. Let ¢* := q if ¢ = +, and ¢* := ¢ if ¢ = —. We again use the basis
(e1,...,en) of the natural L-module V = [y as described in the proof of Lemma 3.14. Using this
basis, we can define the transpose-inverse automorphism 7 : Y + % ~! and the standard Frobenius
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automorphism ¢ : Y = (y;;) — (yfj) of the groups GL(V) = GL; (¢), L, and S. Write f = 2¢f, for
some ¢ € Z>( and odd fy, and let §y := §f0. (Note that the automorphism dy of L has order 2¢ if
¢ = + and 2°F! if e = —; in the latter case, 7 = 07 .) Also, we set

M :={Y e GLY(V) | det(Y)" =1}, T := M x (1,00), Z :=Z(M).

Then I'/Z induces an odd-index subgroup of Aut(S). Since Cg(S) =1 and G/S is a 2-group, after
a suitable conjugation in Aut(S), we may assume that G <T'/Z.
Fix o € F%. of order r, and define

z; = diag(Li—1, o, In—;), 1 <i<n; t; = diag(lzj_a, (_01 (1)) Ap—2j), 1<j<m

in the chosen basis of V. We also consider the “flips”
T1i €1 $7 €2i—1, €2 <> €24, €5 — €5, Vj 75 1,2,20—1,2¢

for 1 <i<m. Then A:=(m; |2<i<m)=S,, and we fix T € Syl,(A). Now it is easy to check
that P :=Q x T € Syly(L), where

(4.15) Q= (wi; x| 1<i#j<n1<k<m).

Moreover, denoting
B = <.T1> A <T, 50>,

we see that R* := P x B is a Sylow 2-subgroup of I'. Let G denote the full inverse image of G in
I'=L x B. Then

(4.16) G=Lx(GNB), R=P x(GNB) e Syl,(Q).
We can and will identify P with P/(Z N P), and R with R/(Z N R).

(b) Since n is not a 2-power, we can write n = a + b, where

a=2">2 1<b=2"0 <271, 0<d <d, 21V.

As ged(V',r) =1, we can find x,y € Z such that b’ = yr — 1. Setting
(4.17) j=29""g,
we then have a + bj = 2%yr and so we can consider the 2-element
(4.18) s = diag(al,, o’ ) € L.

Note that the choice (4.17) implies that 2|j. In what follows, we will work with some 2-powers [,
where 7 > [ > 1. For such an [, o' # o, and so

Carev)(s) = GLy(g) x GLi(q)-
Next we observe that if k is any odd integer and s*' is L-conjugate to s'z for some z € Z(L), then
(4.19) z=1, /Y =1,
Indeed, if 3 is the (unique) eigenvalue of z (acting on V'), then the conditions a > b, a! # o7, and
okt £ o9 imply by comparing eigenvalues and their multiplicities that
oM = al, oM = olig,

It follows that 8 = o!(*=1): in particular, 3 is a 2-element; and that 37~! = 1. Since 2|4, we conclude
that 5 =1and z = 1.
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(c) We can also view L as the dual group H* and S as [H, H], where H = GI' = PGL,(q) is of
adjoint type. By virtue of (4.19) with k£ = 1, we can apply Proposition 3.11(i), (ii) to the semisimple
character yu of H and conclude that 6; := (x,)s is an irreducible character in By(S), of degree

_[GLE (@)l

| GLG (@)l - | GL; (q)]e
which is odd, since (a:b) is odd, see [NT1, Lemma 4.4(i)].

Let A € Irr(P/P') be R-invariant. By inflation we can view X as an R-invariant linear character
of P. Now recall that T € Syly(S,,) is 2-good by Lemma 3.7. Hence by Lemma 3.2(ii) we see that
P = Q x T is pt-good if r < p¢, and so A is o.-fixed in this case. We may therefore assume that
r > 2¢. Now, applying (4.19) to (I,k) = (1,2° + 1), we see by Proposition 3.11(ii) that 6, is not
oc-fixed. The latter implies by the hypothesis that 6; cannot be R-invariant. Since M/Z < H
and 6, is clearly H-invariant, we have therefore shown that R > P and G(M/Z) > M/Z, whence
GM > M.

(d) Assume now that 7 € GM. Since G > L and M = L(x;), it follows that 7 = 7727 for some
7 € Gandig € Z. Thus 7/ =72 € GN B, and so 7' € R by (4.16). As X is R-invariant, A = ™
and so K := Ker()\) contains 7/(z)x~! for all z € P. Certainly, z; centralizes all ; and 7 inverts
each ;. Hence

01(1) = [L: Cr(s"]e

P <K-> (@i ) (i) = ()7
for all 1 < i # j < n. Since 4|r, this implies by [NT1, (3.5)] that 7 = (zor_125,)"/? € K. As T'is
2-good by Lemma 3.7, we also have that P> y? for all y € T. Tt follows from (4.15) and Lemma
3.2(iii) that P/K is 2-good, whence X is o.-fixed.
(e) Note that if € = —, then ¢ = 0 and B = (z1,7) with M = L({z;). In this case, GM > M
implies that 7 € GM and so we are done by (d). So it remains to consider the case where € = +,
7 ¢ GM, and ¢ > 1. Note that By := (8o) x (1) = Cae x Cy and GM = M x (GM N By). Also,

(4.20) R< R:=(P,z1) x (GM N By) € Syl,(GM).

Now the assumption 7 ¢ GM > M implies that there exist some 1 < ¢; < ¢ and some j = 0,1 such
that GM N By = (027 7 79) = Cyey. Set qq :=p2° *fo, 6, = 6277, so that ¢ = ¢, Again we can
write ;79 = 827" for some &' € G and iy € Z. Thus & = 61772 € GN B and so &' € R by (4.16).

Recall that o € Ff has order r = (¢ —1)2. Asc1 > 1,q—1= @@ — 1 is divisible by ¢; — (—1)/.
Hence there is a 2-power 1 < | < r such that o! has order (¢, — (=1)7)y > 2. Our choice of [
implies that §;77(a!) = !, and so the element s', with s defined in (4.18), is d;7/-invariant. It then
follows by [NTT2, Corollary 2.5] that the characters x,: and 6, (as defined in (b)) are §;7/-invariant.
Since 6; is invariant under M/Z < H, we see by (4.20) and Proposition 3.11(i), (ii), that 6; is an
R-invariant irreducible character of odd degree in By(.S), whence 0 is o.-fixed by the hypothesis.
The latter implies by (4.19) (with k& = 2° + 1) and Proposition 3.11(ii) that s' is L-conjugate to
521, Using (4.19) again with k& = 2¢ + 1, we see that |a!| < 2¢, and so

(4.21) (@1 —(=1)7)2 <2

Now we return to the R-invariant character A of P/P'. As & € R, A = (\6/ and so K = Ker(\)
contains §'(z)z~" for all z € P. Note that & (z;) = &7 (x;) = acg_l)h“, and so P/ < K 3
(xixj_l)‘“*(*l)j for all 1 < i # j < n. It follows from (4.21) that K > (a:i:cj_l)ze for all such ¢, j.
Furthermore, by [NT1, (3.5)] we have

e _ ge—1 _ e
ti = ($2k—1x2k1)r/2 7= ((93%—1352191)2 )”4 € K.
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Hence, we conclude as in (d) that P/K is 2¢-good, and so X is o.-fixed, as desired. O

Lemma 4.6. Let X be a normal abelian subgroup of a finite group Y. Suppose j is a central
involution in W =Y /X and it acts on X as the inversion x — x=1. Then

(i) If 21 |X]|, then Y splits over X andY = X x W.
(ii) If p > 2, then P € Syl,(Y) splits over Q := O,(X). More precisely, P = Q x R with R
isomorphic to a Sylow p-subgroup of W.

Proof. (i) We may assume that j = jX for some involution j € Y, and jvj ! =v~! for all v € X.
Since j € Z(W), j¥ C jX. Conversely, given any u € X we can find v € X such that v?> = u, and
so v 1jv = ju. Thus j¥ = jX, whence

ICy ()] = YI/15X] = [Y/X].
Now Cy(j) N X =1, and we conclude that Y = X x Cy (5).
(ii) Let T := Oy (X) so that X = T x Q. Applying (i) to Y/T, we see that Y /T splits over

QT/T. Hence PT/T = QT /T x (Ry/T) for some subgroup Ry of Y, and Ry /T is isomorphic to a
Sylow p-subgroup of W. Now Ry = TR for R € Syl,(R;), Q QY and

QNR<QN(RTNQT)=QNT = 1.
As |P| =|Q)| - |R), it follows that P = @ x R (after a suitable conjugation). O

Proposition 4.7. Let S = [GF,GF] be as in (4.1). Suppose in addition that G¥' is an exceptional
group of Lie type and p > 2. Then Theorem 2.3 holds in this case.

Proof. (i) First we note that, since p > 2, condition (a) of Proposition 4.2 is satisfied, after a suitable
conjugation in Aut(S). Next, G admits y-stable Sylow d-tori S, by [MTe, Theorem 25.11], which
can be chosen to be a direct product of «-stable d-tori of rank ¢(d), see [MTe, Proposition 25.7].
Assume furthermore that p { |Z((G*)F")| and that a Sylow p-subgroup of G¥ is contained in S¥.
Then conditions (b)—(d) of Proposition 4.2 hold, with R =1 and R* = 1, and so we are done.

(ii) Here we assume in addition that p > 3; in particular, p { |Z((G*)¥")|. Note that in the case
p=5|(¢>+1) and GF = Eg(q), we can put Q € Syl;(9) in a subgroup X 22 SUs(¢?) by [LSS, Table
5.1], and SUs(q? + 1) is 5-good by Lemma 3.14, whence we are done. Aside from this case, one
checks that the assumptions in (i) are fulfilled, except when there is e = + such that p|(¢ — €) and
furthermore (p,G¥) = (5, E§(q)) or p € {5,7} and G = E7(q) or Es(q). Suppose that we are in
these cases, but p # 5 if GI' = Eg(q). Then d = 1 if ¢ = 4 and d = 2 if ¢ = —. By the main result
of [LSS] we can find a 7-stable connected reductive subgroup D of G such that p { [GF : D], with
[DF, D¥] being a central extension of

e PSLa(q) x PSL(q) when (p,GF) = (5, E5(q)),

e PSLg(q) if GF = E4(q), and

e PSL§(q) if G¥ = Es(q).

Putting @ in DF and working in DF, we see that condition (b) of Proposition 4.2 holds, with
R = (). Taking H = G*/Z(G*) = G, we then see that condition (c) of Proposition 4.2 holds, with
R* = C,. Hence we are done by using Proposition 4.2.

(iii) From now we will assume that p|(g — «) for a unique o = =, and either p = 3, or G¥' = Fg(q)
and p = 5. If GI' = G5(q), then we can put @ in a subgroup SL§(q), cf. [LSS, Table 5.1], and see
that @ is 3-good by Lemma 3.14.

To handle the next cases, we will view S = L/Z(L), where L := (G*)", the corresponding group
of Lie type of simply connected type, and aim to show that L is p-good (in most cases). To do this,
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we will use a certain subgroup K < L of p’-index in L and described in [GL, Table 4-1]. We also
use the fact that 31 |X/[X, X]| for X = SL$(q), and set M := O (K).

First we handle the case (L,p) = (Es(¢),5). Then K =2 M - C5 with M = SLg (¢) o SLg (¢). Now
M is 5-good by Lemma 3.14, 5 1 |M/M’|, and K/M = Cj is also 5-good. Hence K is 5-good by
Corollary 3.6.

From now on we may assume p = 3. Let L =3Dy4(q). Then K = M - C3 and M = SL§(q). Now
M is 3-good by Lemma 3.14, 34 |M/M’| as noted above, and K/M = Cj is also 3-good. Hence K
is 3-good by Corollary 3.6.

Next let L = Fy(q). Then K =2 M - C3 and M = SL§(q) o SL5(q). Now M is 3-good by Lemma
3.14, 31 |M/M’|, and we can finish as above.

Suppose L = E§(q)sc- If o # €, then we can choose K = Fy(gq) which is already shown to be
3-good. Assume next that a = e. Then we can take K = M - (C3 x C3) and M = SL5(q) o SL§ (q) o
SL$(¢), and conclude that K and L are 3-good as above.

Suppose L = Eg(q). Then we can take K = M - C5 and M = SL5(q) o E§(q)sc, which is already
shown to be 3-good, and so we are again done.

(iv) Here we consider the case G = E;(q)aq and p = 3 as in (iii). As |GF/S| = ged(2,q — 1),
condition (a) of Proposition 4.2 holds; write F' = ™ and ¢ = ¢}* for m := |G/S|. Recall that d =1
if a =4 and d = 2 if @« = —. Note that there exists a y-stable maximal torus 7; of G such that 7y
is a Sylow 1-torus and Ngr(77) = T;f' - W where W = W(E-); furthermore, v acts on X (77) via
v qiv and on T; via t — t9'. Let j denote the central involution of W and let 75 = 2772~ with
x € G and 2~ 1y(z)T; = j. By [C, Proposition 3.3.4], v acts on X (73) via v — —q;v, whence ~y acts
on 7o via t — t~?. Thus 75 is a Sylow 2-torus. We have shown that 7; is a Sylow d-torus and -y
acts on Ty via t — t9,

By [LSS, Table 5.1], see also [GL, Table 4-1], there is a y-stable Levi subgroup D = Cg(T) such
that DI = (Cy_q 0 E§(q)sc) - C3. Here, [D, D] is of type Eg and T = Z(D)° is a one-dimensional
~-stable d-torus. By [MTe, Theorem 25.11], we may assume that 7 < 73, and so 7 acts on T via
t — t*@. Choosing s € T¥ of order (¢; — a)3, we then see that v(s) = s. As s € Z(DF), s is
3-central in G¥. We can also view s as a y*-stable 3-element in (G*)F". By Proposition 3.11(i),
(iii), 0 := (xs)s is a P-invariant p’-degree character in By(S), whence it is o.-fixed and so s and
1P are conjugate in (Q*)F This in turn implies by Lemma 3.12 that s*° = 1, and so

(422) (th - Ot)g S 3°.
Note that N := [D, D] = EZ(q)s. is perfect. Next, since [D, D] is connected, the map
g9 — gD, D]
yields a y-equivariant homomorphism from DF onto (D/[D, D])¥ with kernel N, and so we obtain
a y-equivariant isomorphism
D"/N = (D/[D,D)".

As D = [D,D|T, we then see that v acts on the quotient D /N (of order ¢ — ) via the map
y =y

Now we may assume that Q € Syly(S) is contained in O3 (DF) > N, and consider any P-invariant
linear character A of Q. As shown in (iii), N is 3-good. Moreover, (4.22) and the described action

of v on D¥ /N show that any P-invariant linear character of O3(D¥ /N) is o.-fixed. It follows by
Lemma 3.5 that A is o.-fixed, as desired. O

Proposition 4.8. Let S be as in (4.1), p = 2, and suppose that G¥' = E§(q)aq with 4|(q — €) for
some € = . Then Theorem 2.3 holds in this case.
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Proof. (a) Recall that G* is a simple, simply connected, algebraic group of type Fg defined over Fy,
and let 6 : G* — G* denote the standard Frobenius endomorphism of G* defined by this [Fy-structure.
Let 7 be a d-stable maximal torus of G* contained in an J-stable Borel subgroup B. As shown in
part (a) of the proof of [NT1, Proposition 4.3], there is an involutive graph automorphism 7 of G*
that commutes with d, stabilizes 7, and induces the involutive symmetry p of the Dynkin diagram
of the root system ® of G* with respect to 7 C B. In particular, if ¢ = ¢/, then

(G 2 Eg(@)se, (%) 22 %Ei()se-

Furthermore, there is some g € Ng«(7) such that the conjugation j, by g induces —p on X (7") and
commutes with 6. Moreover, there is a (j, 7, d)-stable one-dimensional subtorus 7o of 7 such that

is a maximal rank subgroup of type DsT} of G*, with £ := [C,C] simple, simply connected, of type
Ds.

(b) Suppose we are in the case e = —. We will use the following facts proved in part (b) of the
proof of [NT1, Proposition 4.3]. First, one has

H :=(G*)" = E(q)se,

where § := j,76/; furthermore, T = C’(?_H. Denoting L := £ < H and C :=C%, by [LSS, Table
5.1] we have that L 2 Spinj,(¢) and that

(4.23) 24 [H : C).

Recall that 4|(¢ + 1) in the case under consideration, whence |Out(S)|2 = 2. Suppose first that
S < @G. In this case, as shown in part (b2) of the proof of [NT1, Proposition 4.3], @/ Ker(}) is
elementary abelian for any P-invariant linear character of ), whence \ is o1-fixed.

Next suppose that G = S. As T is a Sylow 2-torus for (G*)?" and Ty < T, we see that T 2 Cyy1.
Now any generator s of Oy(T¢") (of order (q+1)3) centralizes C and so it is 2-central in H by (4.23).
Viewing S = [H*, H*] for H* dual to H, we see by Proposition 3.11(i), (iii), that 6 := (xs)s belongs
to By(S) and has odd degree. By hypothesis, 6 is o.-fixed, and so s and s'*2 are conjugate in H
by Proposition 3.11(iii). This in turn implies that s>° = 1 by Lemma 3.12. Thus

(4.24) (q+1)2 <25

in particular, e > 2.

Now, using the decomposition C = ToL and arguing as in part (iv) of the proof of Proposition
4.7, we can put @ inside L - C(411),, where C(gq1), = 0,((C/L£)%")). The inequality (4.24) clearly
implies that C(,41), is 2°-good. On the other hand, L = Spinjy(q), and so L/(z%) = Qj(q) is
2-good by [NT1, Proposition 3.7], where Z(L) = (z) = Cy. As |2?| = 2 < e, it follows that L is
22-good, whence it is 2°-good as well. We conclude that Q is 2°-good by Corollary 3.6.

(c) From now on we will assume that ¢ = +. Write ¢ = pf with f = £32%, where a > 0 and 21 fo,
and let §p := §70.

Note that j,7 normalizes 7 and acts via v — —v on X (7), whence j,7 acts as inversion on 7 by
[NT1, Lemma 4.2(ii)]. Furthermore, j,7 commutes with J, so j,7 acts on H := (G*) = Eg(q)se.
Without loss of generality, we will view j,7 as an automorphism of H and replace j,7 by its 2-part
T0-

Observe that the subgroups 7y, C, £, L := £ < H, and C = C% are all stable under 70 and
0. Also, C is a maximal rank subgroup of type D57} of G*, so by [LSS, Table 5.1] we have that
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L = Spinfy(q) and that

(4.25) 21[H:C].

We can view S as either H/Z(H) or [H*, H*], where H* 2 Fg(q)aq, and note that
Out(S) = H*/S % (19, 6).

As shown in part (c) of the proof of [NT1, Proposition 4.3, 7¢ € R := Og(T‘Sf), and (4.25) implies
that (C, 79, d0) has odd index in (H, 79, d). Extend (R, 79, Jo) to a Sylow 2-subgroup P of (C, 70, 00)-
Conjugating inside Aut(S), and using 2 { |Z(H)|, we may assume that P < P for P € Syl,(G) and
that G < PH. Then

Q=PNCESyL(C), P =Qn,d),
and in fact

(4.26) P/Q < P/Q = Cy x Ca,

with C5 generated by 79 and Cs. generated by dg.

(d) Let A be any P-invariant linear character of @ and let K := Ker(\). If P 3 7, then it was
shown in part (c) of the proof of [NT1, Proposition 4.3] that /K is elementary abelian, and so
A is op-fixed. From now on we may assume that P # 79. Then (4.26) implies that there is some
j€40,1} and 0 < b < a such that

P = <Qa 5ng>a

where §; := 68(1%. Setting ¢, := p/02" ", we note that
(4.27) Simg () = ¢V

for allt € T. Next, as 67 acts on T viat — t?, Ty < T is a 1-torus and so 765f = Cy—1. Furthermore,
the condition P # 7 implies that (b, ) # (0,1) and so ¢ — 1 = q%b — 1 is divisible by ¢; — (—=1)7. It
follows that we can find s € 765f < T% of order (g1 — (=1)7)2 > 2. By its choice, s € Z(C) and
so 21 [H : Cg(s)] by (4.25). Now Proposition 3.11(i), (iii) implies that 6 := (xs)s is irreducible,
of odd degree, and belongs to By(S5), if we view S as [H*, H*]. Also, s is 517'3—invariant, whence
6 is P-invariant. By the main hypothesis, 0 is o.-fixed, and so s and s'*2° are conjugate in H by
Proposition 3.11(iii). This in turn implies by Lemma 3.12 that 52" =1, and so

(4.28) (a1 = (=1))2 < 2.

Now, if (q1 — (=1)7)2 = 2, then it was shown in part (d) of the proof of [NT1, Proposition 4.3]
that Q/K is elementary abelian, and so A is again o;-fixed. So we may assume that e > 2. It was
also shown in part (d) of the proof of [NT1, Proposition 4.3] that

Q= Q1 % Ry,

with Q1 € Syly(L) and Ry = C(4_1), contained in 7. Recall that X is 6y7(-invariant. Hence
K = Ker()\) contains &7 (z)z " for all z € Q. If, in addition, z € T, then (4.27) and (4.28) imply
that &7 (z)z~! = 2D (@ =17 generates (22°). In particular, y2° € K for all y € Ry. On the
other hand, if Z(L) = (z) = Cy, then L/(2%) = Q7,(q) is 2-good by [NT1, Proposition 3.7], and so
Q1 is 2°-good as e > 2. We conclude by Lemma 3.2 that Q/K is 2¢-good, and so A is o.-fixed, as
desired. ]

Proposition 4.9. Theorem 2.3 holds in the case where S = PQF (q) and p=31q.
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Proof. (i) Recall [GLS, Theorem 2.5.12] that Aut(S) 22 G x (Cy x C3), where ¢ = r/ for a prime
£ # p, Cy is generated by the standard Frobenius automorphism ¢ induced by the field automorphism
z + 2, and O3 is generated by a triality graph automorphism. As G¥' /S is a 2-group, by a suitable
conjugation in Aut(S) we may assume that G < § x (Cy x C3). If furthermore G < S x Cy, then
the arguments in the proof of Proposition 4.3 apply and yield the result. In what follows we will
therefore assume that G = S x A with P=0Q x A, A< Cy x Cs but A £ Cy.

(i) Fix an orthonormal basis (e1, ea, €3, e4) of the Euclidean space R* and consider
Q1 =€)+ ey, o= —ey+e3, Q3:=—€3— €4, (4 := €4 — €3
as simple roots for a root system & of type D4. Then one can check that the maps
5261'—>€2’—>€3l—>61, €4 > €4, T . > Q3> Qg+~ ], Qg — Q9
are commuting isometries of order 3 of ®, and 5 € W (D), the Weyl group of ®.
Next we consider X := (eq, ea, €3, e4)z and an integer r € Z. Then
Yl = (ﬁ — 1)X = <61 — €2,€9 — €3>Z-
Furthermore,
Yy i= (Y1,2(rm — 1)X)z 2 4(r2 + 7 + Ve1, 4(r2 + 7 + 1ey.
Since 9 { (r?2 4+ r + 1), it follows that, for any k& > 2, we have that exp(X/Y) < 3 (in fact it is
generated by e; +Y), if we set
Y = (5,3 X)y.
(iii) Let ¢ = e(mod 3) and let (¢ — €)3 = 3*. Working in a subgroup
Q5(q)* = As < (),
we see that @ =2 C’gk x C3, with 0 acting on C§k via t +— t" for some n € Z. Since A £ Cf, we have
that A > 877, with 67 acting on Cg‘k via t + " with 7 :=n/J.

If K =1, then @ is 3-good, and so we are done. Suppose k > 2. We view e;,...,e4 as coroots
for G and identify X/3*X x (B) with Q. Also, let A € Irr(Q) be linear and §’7-invariant. The
calculations in (ii) then show that @/ Ker()) is 3-good, and so A is o-fixed, as desired. O

Proof of Theorem 2.3. Theorem 2.3 now follows from Corollary 3.10, Propositions 3.15, 4.3, 4.4,
4.5, 4.7, 4.8, and 4.9 (using the classification of finite simple groups). O

5. THEOREM C

In this section we prove Theorem C. We start with some general lemmas.

Lemma 5.1. Let G be a finite group. Suppose that o € Gal(Q||/Q) has order a power of p and
fizes p'-roots of unity. Suppose that N < G has p'-index, and let 6 € Irr(N) be o-invariant. Then
every x € Irr(G|0) is o-invariant.

Proof. By induction on |G : N| and using the Clifford correspondence, we may assume that 6 is G-
invariant. Now, let x € Irr(G|0), and let g € G. We want to show that x(g)° = x(g). Working with
the irreducible constituents of x4y, we may assume that G/N is cyclic. Then [Irr(G[0)| = |G/N]|
is not divisible by p. Let A = (o), which is a p-group which acts on the set Q = Irr(G|#). Then
1] = Qo] mod p, where Qq are the A-invariant elements in Q. We conclude that o fixes one
extension x € Irr(G|0). By Gallagher’s theorem (Corollary 6.17 of [Is]), all the other extensions are
products of x with linear characters of G/N, which are o-fixed. O
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Lemma 5.2. Let G be a finite group. Suppose that o € Gal(Q|g|/Q) has order a power of p.
Suppose that N <« G has p-power index, and let P € Sylp(G). Assume that every linear character of
P is o-invariant. Let x € Irr(G) be of p'-degree, and assume that xn = 0 is o-invariant. Then x is
o-invariant.

Proof. Let Q = PN N and A = P x (o). Then 6g is A-invariant, and has p’-degree. By Lemma
2.1(ii), we have that 6 contains a linear A-invariant constituent £ with p’-multiplicity. Then [xq, &]
is not divisible by p. By Lemma 2.1(i) (with H = Q, A = P, and ¢ = xp), we have that xp contains
an irreducible constituent 7 such that 7 = ¢, and [xp, 7] is not divisible by p. By hypothesis, we
have that 7 is o-invariant. Now [(7%)x, 0] = [¢V, 0] = [0, &] is not divisible by p. By Lemma 2.1(i)
applied to (o), 7¢ and H = N, we have that 7¢ contains an irreducible constituent p, o-invariant,
such that [py, 6] is not divisible by p. Then px = 6 (by Corollary (11.29) of [Is]) and x = Ap, for
some linear A € Irr(G/N), by Gallagher’s theorem. However, A is o-invariant by hypothesis and the
fact that G/N = P/Q, so x is o-invariant. O

Next we use character triples. The notation we follow is that of [N3].

Theorem 5.3. Suppose that N< G and let 6 € Trr(N) be G-invariant. Suppose that 6 can be afforded
by an absolutely irreducible F-representation, where Q C F C C is a field. Assume that M/N is
a non-trivial perfect normal subgroup of G/N. Then there exists a character triple (M*, N*,0*)
isomorphic to (M, N,0) such that:

(i) G acts as automorphisms on M*, centralizing N*, and such that

((mN)")? = (mIN)*
forme M and g € G.

(ii) M* is perfect, N* < Z(M*), N* is isomorphic to a finite subgroup of F*, and 0* is faithful.
(iii) If N <U <M and v € Irr(U|9), then (v*)9 = (v9)* for g € G.
(iv) If N <U <M and v € Irr(U|0), then F(v) = F(v*).

Proof. By hypothesis, we have that 6 can be afforded by an absolutely irreducible F N-representation
Y. Arguing as in Theorem (11.2) of [Is], there exists a projective representation X of G such that
x(g) € GL4(F) for g € G and satisfying conditions (a), (b), (¢) of Theorem (11.2) of [Is]. (See
the remark after the proof of (11.2) in [Is]. See also the proof of Theorem 5.1 in [NTT1].) If «
is the factor set associated to X we have that a(g,n) = a(n,g) = 1forn € N and g € G and
algn,hm) = a(g,h) for g,h € G and n,m € N.

Now, let F* be the multiplicative group of F. For any subgroup H < G, we define H = H x F*,
It is straightforward to check that G is a group with multiplication

(91, f1)(g2; f2) = (9192, (g1, 92) f1 f2) -

Also, H is a subgroup of G whenever H is a subgroup of G. We have that the map 7 : G — G
given by (g, f) — ¢ is an onto homomorphism with kernel 1 = 1 x F*. Hence, M and N are normal
subgroups of G. Furthermore, we can check that N x 1 (which we again call N) is a normal subgroup
of G, 1 is contained in Z(G) and N = N x 1.

Now, N/N < Z(G/N). Let M;/N = (M/N)'. Since M/N is perfect, we have that M = NM;.
Also, M;/N is perfect. Also, M;/N is finite, by Schur’s theorem. (See (IV.2.3) of [Hu].) In
particular, M is finite. Let Ny = M1 N ]\7, and F; = N1 N i, so that Ny = F; x N. Notice that [}
is a finite subgroup of F*.

Now, M; < G and thus G acts on M; by conjugation. Since 1 is in the kernel of the action, we
have that G acts on Mj.
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We define
X(9,f) = fx(9).
It is clear that X is an F-representation of G. Also, X(n) = Y(n) for n € N. Now, define
the linear character A € Irr(N;) by A(n, f) = f, where f is the complex conjugate of f. Let
01 = 1x 0 € Irr(Ny). Let 7 be the character of the representation of Xp;,. Note that 7 is G-
invariant and has its values in F. Also, 7y, = A1, where again X is the complex conjugate of A and
75 = 0. Thus 7 € Irr(My).

Now, the map x — m(z) is an onto group homomorphism from M; to M with kernel F;. Since
Fy < ker(f:), by Lemma (11.26) of [Is|, we have that (M7, N1,61) and (M, N,6) are isomorphic
character triples. This isomorphism commutes with G-conjugation and preserves field of values
of characters. Now, by the remark after Lemma (11.27) of [Is], we have that (M;, N1, ) and
(My, N1, 61) are isomorphic character triples. Furthermore, if v € Irr(U | A), we have that the image
of v under this isomorphism is v7y. Clearly, we have that F(ryr) C F(v). On the other hand, if
o € Gal(F(v)/F(tyv)), then

v = (tpv)° = V7 = Ty,
using that 7 is F-valued. By the uniqueness in Gallagher’s theorem, we conclude that v = v, and
F(ryv) CF(v). Also, this bijection v — 7yv commutes with G-action.

Finally, (M7, N1,A) and (M;/N,Ny/N,)\) are isomorphic by Lemma (11.26) of [Is] (with an
isomorphism that preserves fields of values and commutes with G-action). Now, write M* = M; /N,
N* = N;/N and 6* = \. O

We prove Theorem C by assuming a slightly weaker version of Conjecture A for almost quasi-
simple groups.

Conjecture 5.4. Let 0 = 0., as in Conjecture A. Suppose that S is a perfect group such that
S/Z(S) is a simple group, and |Z(S)| has order not divisible by p. Suppose that a p-group P acts
by automorphisms on S centralizing Z(S). Let Q be a P-invariant Sylow p-subgroup of S. Assume
that every linear P-invariant character of Q is o-invariant. Then every P-invariant x € Irry (S) is
o-invariant.

This is exactly how we will use Conjecture 5.4.

Corollary 5.5. Assume Conjecture 5.4, and let 0 = o.. Suppose that M is a perfect group acted
on by a p-group P. Suppose that |Z| is not divisible by p, where Z = Z(M) is centralized by P.
Assume that M/Z is a direct product of non-abelian simple groups transitively permuted by P. Let
Q be a P-invariant Sylow p-subgroup of M, and assume that every linear P-invariant character of
Q is o-invariant. Then every P-invariant x € Irry (M) is o-invariant.

Proof. Write
M/Z =51]Z x...x8,/]Z,
where S;/Z is simple and the S;’s are transitively permuted by P. Hence, for i # j, we have that
[Si, S;] = 1. Also S is perfect, by elementary group theory, and S; is the central product of S} and
Zi=ZNS;. Write Q; = QN S; € Syl,(S;). Since Z; is a p’-group, we also have that Q; € Syl,(S]).
Let P; be the stabilizer of Sy in P. Let {u1,...,u,} be a transversal for the right cosets of P; in P.
Let 6 € Irr(Z). By Lemma (4.1.ii) of [NTT1], there is a natural bijection

(1,3 %a) = Y1



24 GABRIEL NAVARRO AND PHAM HUU TIEP

from Irr(S1|0) x ... x Irr(S,|0) onto Irr(M|6). Furthermore, if ¢ € Irr(S51|6), then ¢ is P-invariant
if and only if %1 -.-4%e is P-invariant. Also, the map commutes with o. In the same way, we
have a natural bijection Irr(Qq) X --- x Irr(Q,) — Irr(Q) that commutes with o, and such that

Y1 X ... X 1, is P-invariant if and only if ¢ is Pi-invariant. Finally, observe that since S; is the
central product of S/ and Z, we have that Irr(S;|0) = {v - 0| v € Irr(S}|0;) }, where 6; = 6z,. Now
the proof easily follows by applying Conjecture 5.4 to each SJ. ]

In our next theorem we will use the following extension result, whose proof uses elementary but
non-trivial character theory.

Theorem 5.6. Suppose that G is a finite group, K = OP(G), and let P € Syl (G). Let P <V <G
and U=V NK. If0 € Irr(U) has p’-degree and is P-invariant, then 6 extends to V.

Proof. This is Theorem 2.6 of [NT2]. O
The following includes Theorem C.

Theorem 5.7. Assume Conjecture 5.4. Let G be a finite group, and let P € Syl,(G) such that the
exponent of P/P' is less than or equal to p°. Let L < G and suppose that 6 € Irr(L) has p'-degree,
extends to LP, and is o-invariant. Then all Irry (G|6) are o-invariant.

Proof. We argue by double induction, first on |G|, and then on |G : L|. By the Clifford cor-
respondence, we may assume that 6 is G-invariant. Let x € Irr, (G|6). We want to show that
x? = x. Notice that if P < H < G, then every p’-degree irreducible character of H is o-invariant
by induction.

Let K/L be a chief factor of G. We claim that we may assume that G = KP. Suppose that
KP < G. Let 7 € Irrpy (PK) be under x. Then 7 is o-invariant by induction, since we are assuming
that KP < G. Now, 7k € Irr(K) (because |KP : K| and 7(1) are coprime) is o-invariant, has
p’-degree, and extends to K P. Since |G : K| < |G : L|, by induction we are done. Hence, the claim
is proved, and we assume that G = PK.

We have now that yx = ¢ € Irr(K) is o-invariant of p’-degree. By Lemma 5.2, it suffices to
show that v is o-invariant.

Suppose first that K/L is a p-group. Then G/L is a p-group, and Lemma 5.2 applies. Assume
next that K/L is a p’-group. By Lemma 5.1, we have that ¢ is o-invariant, so again we are done.

So we are left with the case where K/L is perfect of order divisible by p.

Now, let M = OP(G) = OP(K), and let N = M NL. Notice that ML = K and that M/N = K/L
is a chief factor of G. Let @ = PN M € Syl,(M). Let 6, = 6 € Irr(N). Let F = Qg , (61).
Then 6; can be afforded by an absolutely irreducible F-representation by Corollary (10.13) of [Is] (in
the case p = 2 we also use [Is, Corollary (10.2.h)]). By Theorem 5.3, there exists a character triple
(M*, N*,07), where M* is perfect, N* < Z(M™*), 07 is faithful, among some further properties. Now,
Xy = Yar € Irr(M) = 7 has p’-degree and lies over 0;. Notice then that 7* is a p’-degree character
over 07 (use Lemma (11.24) of [Is]). Now, (7*)n+ = ef}. Since M* is perfect, the determinant of
7* is trivial. Hence 67 has p’-order, so N* is a p’-group (using that 67 is faithful).

Recall that by Theorem 5.3, we have that G acts on the group M™ centralizing N*, and that
M/N and M*/N* are G-isomorphic. Now, write (QN)* = Q* x N*, where we notice that Q* is
a P-invariant Sylow p-subgroup of M* (because QN is P-invariant). Let A* € Irr(Q*) be linear
P-invariant. We prove that A\* is o-invariant. We have that v* = \* x 07 is linear P-invariant.
Let v € TIrr(QN|6;) be the preimage under the character triple isomorphism. Notice that v has
p’-degree and is also P-invariant (by Theorem 5.3(iii)). By Theorem 5.6, we have that v extends to
some € € Irr(NP). Since NP < G, we have that € has p’-degree, and by induction, we have that it



SYLOW SUBGROUPS, EXPONENTS AND CHARACTER VALUES 25

is o-invariant. Therefore so is exyg = v. Now F = Q|G|p, (61), where 61 = 0. Since 0 is o-fixed and
o fixes p’-roots of unity, we conclude that o fixes every element of F. Since v is o-invariant, then o
also fixes every element of F(v) = F(v*) (by Theorem 5.3(iv)). We conclude that v* is o-invariant,
and therefore so is A*. By Corollary 4.5, we have that every p’-degree irreducible character of M*
is o-invariant. Hence, 7* is o-invariant. Again, by Theorem 5.3(iv), we have that F(7) = F(7*),
so we conclude that 7 is o-invariant. Now, xas = 7 and we use Lemma 5.2 to obtain that x is
o-invariant. ([l

We conclude this section by providing some evidence in support of Conjecture 5.4.

Theorem 5.8. If p > 2, then Conjecture 5.4 holds if S/Z(S) is an alternating group, a sporadic
group, or a simple group of Lie type in the same characteristic p.

Proof. First suppose that S/Z(S) is a simple group of Lie type in the same characteristic p. Since
p 1 |Z(S)|, we can find a simple, simply connected algebraic group G over a field of characteristic
p and a Steinberg endomorphism F : G — G such that S is a quotient of G = GF by a central
subgroup. Let K := Q(exp(27i/|G|,)). Since 4||G| and p > 2, note that K contains v/—1. Now, by
Theorem 1.3 and Proposition 10.12 of [TZ], Q(x) C K(exp(2wi/p)) for all x € Irr(G); in particular,
x is o1-fixed. Hence Conjecture 5.4 holds for S in this case.

Next assume that S/Z(S) = A,, for some n > 5 and let K := Q(exp(27i/|S],/)). Again, as p > 2,
we see that K 3 v/—1. It is a classical result of Schur (see eg. Theorems 8.6 and 8.7 of [HH] for the
case S = 2A,,) that for any x € Irr(S) and any g € S, x(g) € K(y/m) for some positive integer m
(which may depend on g), if |Z(S)| < 2. If |Z(S)| > 2, then S € {3A,,,6A,,} with m =6 or 7, and
p > 3. In this case, using eg. [GAP] one can check that x(g) € K for all g € S and x € Irr(G). Tt
follows that x(g) € K(exp(27i/p)) for all g € S, and so x is again o;-fixed.

Finally, the cases where S/Z(S) is a sporadic simple group can be verified using [GAP]. O
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