FIELDS OF VALUES OF ODD-DEGREE IRREDUCIBLE
CHARACTERS
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ABSTRACT. In this paper we clarify the quadratic irrationalities that can be admitted
by an odd-degree complex irreducible character y of an arbitrary finite group. Write
Q(x) to denote the field generated over the rational numbers by the values of x, and
let d > 1 be a square-free integer. We prove that if Q(x) = Q(v/d) then d = 1 (mod
4) and if Q(x) = Q(v/—d), then d = 3 (mod 4). This follows from the main result of
this paper: either i € Q(x) or Q(x) C Q(exp(27i/m)) for some odd integer m > 1.

1. INTRODUCTION

Browsing through character tables of finite groups, one never encounters an odd-
degree irreducible character with field of values Q(v/2) or Q(v/—2). Of course, Q(y/—3)
occurs as the field of values of a linear character of order 3, but no example of Q(y/3)
is found. Also, although the alternating group A5 has odd-degree irreducible characters
whose field of values is Q(+/5), it seems that Q(yv/—5) shows up as the field of values
only for certain even-degree irreducible characters. A pattern is emerging, and one
naively thinks that such a simple-to-state fact should have an easy proof.

Recall that if x € Irr(G) is an irreducible complex character of a finite group G, then
Q(x) denotes the field of values of x, that is, the field generated over Q by the values
of x.

Theorem A. Let G be a finite group, and let x € Irr(G), where x(1) is odd. Also, let
d > 1 be a square-free integer.

(a) If Q(x) = Q(Vd) then d =1 (mod 4).
(b) If Q(x) = Q(v/—d) then d = 3 (mod 4).

Of course, since d is square-free, we cannot have d = 0 (mod 4), but note that it is a
consequence of Theorem A that if d = 2 (mod 4), then Q(x) cannot be either Q(v/d)

or Q(v/—d).
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Note that both (a) and (b) of Theorem A can occur. Consider, for example, G =
PSLy(p), where p is an odd prime. If p = 1 (mod4), there exists y € Irr(G) with
x(1) = (p+1)/2, and Q(x) = Q(\/p). If p = 3 (mod4), however, there exists x €
lrr(G) with x(1) = (p — 1)/2 and Q(x) = Q(v=p).

The key to our proof of Theorem A is to consider separately the cases where the

character x is or is not 2-rational. (Recall that a character y is said to be 2-rational if
Q(x) is contained in some cyclotomic field Q,, = Q(exp(27i/m)), where m is odd and

i=+/—1)

Let d > 1 be an odd integer. For notational convenience, we write €¢; = 41, where
¢q = d(mod4). (Equivalently, e; = (—1)(¢~1/2)) Using this notation, we can offer a
more complete version of Theorem A.

Theorem B. Let v = Ved, where e = +1 and d > 1 is a square-free integer, and let x
be a character of some finite group G.

(a) If x is 2-rational and v € Q(x), then d is odd, and € = €,.

(b) If x is not 2-rational and it is irreducible of odd degree, then i € Q(x) and

Q(x) # Q).

To see why Theorem A is a consequence of Theorem B, observe that in Theorem A,
we are assuming that Q(x) = Q(v), where v = V/ed for some sign e and square-free
integer d > 1. Theorem B(b) guarantees that x is 2-rational, and by Theorem B(a) we
see that d is odd and € = ¢4, as required for Theorem A.

Theorem B is an easy consequence of the following main result of this paper, whose
proof relies on the simple group classification.

Theorem C. Suppose that G is a finite group, and x € Irr(G) has odd degree. If x is
not 2-rational, then i € Q(x).

We will need the following result, which follows from results of [NT3] and [M], and
whose proof also relies on the simple group classification.

Theorem D. Let G be a finite group with a Sylow 2-subgroup P. Then exp(P/P’) < 2
if and only if all odd-degree irreducible characters of G are 2-rational.

Finally, we will also need to establish the following result on quasi-simple groups.
Recall that G is said to be quasi-simple if G is perfect and G/Z(G) is a simple group.

Theorem E. Suppose that G is a quasi-simple finite group. Assume that x € Irr(QG)
has odd degree and is not 2-rational. Then there exists a 2-element g € G such that

i€ Q(x(g)).

Note that in Theorem E, we show not only that i € Q(x), which establishes The-
orem C for quasi-simple groups, but also, we prove more: that i € Q(x(g)) for some
2-element g of G. This suggests the possibility that Theorem C could be strengthened
to show for an arbitrary finite group G that if y € Irr(G) has odd degree and is not
2-rational, then ¢ € Q(x(g)) for some 2-element g € G. It is not clear, however, even for
solvable groups, if this enhanced version of Theorem C is true, but not surprisingly, the
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original statement of Theorem C can be proved for solvable groups without appealing
to the simple group classification. In fact, the enhanced version of this theorem holds
for groups G having a normal Sylow 2-subgroup. (See Section 5 below.)

The (as yet unproved) Galois-McKay conjecture [N1] offers a connection between
the fields of values of odd-degree characters of a finite group GG and those of its 2-Sylow
normalizer. As we will discuss in Section 5, some cases of Theorem B are explained by
this conjecture, but not all.

2. PROOFS ASSUMING THEOREM E

We follow the notation in [I2] for characters. If G is a finite group, then Irr(G) is
the set of its irreducible complex characters. If N is a subgroup of G and 6 € Irr(NV),
then Irr(G|0) is the set of the irreducible constituents of the induced character . By
Frobenius reciprocity, this is the set of the irreducible characters x of G such that the
restriction xy contains @ as an irreducible constituent, and in this case, we say that y
“lies over” 6. If n > 0 is an integer and p is a prime, we uniquely factor n = nyn,,
where n,, is the largest power of p dividing n. If g is an element of finite order of a group
G, then we can uniquely write g = g,g,7, where g,, g,» € (g) have orders a p-power and
not divisible by p, respectively. In particular, this applies if G is the group of linear
characters of some group.

Lemma 2.1. Let G be a finite group, and let N be a normal subgroup of G. Suppose that
G/N has odd order. Let 0 € Irr(N) be 2-rational. Then every character x € Irr(G|6)
15 2-rational.

Proof. We proceed by induction on |G|. Let T be the stabilizer of 6 in G, and let
n € Irr(T)0) be the Clifford correspondent of x with respect to 8, so n® = x. If T < G,
then 7 is 2-rational by the inductive hypothesis. Since Q(x) C Q(n), we deduce that y
is 2-rational, as required. We can assume, therefore, that 7' = G, so 6 is invariant in G.

Now suppose that N C H < G. 1If ¥ is an irreducible constituent of xp, then ¥
lies over 6, so by the inductive hypothesis, v is 2-rational. For all elements z € H,
therefore, x(z) has the form }_ 1 (x) and thus x(z) is 2-rational.

It remains to show that x(x) is 2-rational if z lies in no proper subgroup of G
containing N. We can assume, therefore, that G = N(x), so G/N is cyclic, and since 6
is invariant in G, Corollary 11.22 of [I2] guarantees that 6 extends to G. By Corollary
6.17 of [I12], the group of linear characters of G/N acts transitively by multiplication on
Irr(G10).

Let n = |G|, and m = |G|y, and let G = Gal(Q,/Q,,). Then G is a 2-group, and
we let o € G. Since 87 = 0, both x and x7 lie in Irr(G|#), and thus x7 = A for some
linear character A of G/N.

Since |G/N| is odd, A™ is principal. Then A has values in Q,,, so A = A, and we
have x°" = yA™ = x. Also, since o has 2-power order, we have o € (¢™), and thus o
fixes x. Then G fixes x, so x has values in Q,,, as required. O

Lemma 2.2. Suppose that G is a finite group and N < G. Let \,0 € Irr(N) be G-
invariant, and assume that A0 is irreducible and extends to G. If 0 extends to G, then
A extends to G.
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Proof. Let x € Irr(G) be an extension of §. By the Gallagher correspondence (Theorem
6.16 of [I2]), the map § +— [Bx defines a bijection Irr(G|\) — Irr(G|A\F). Suppose that
Y € Irr(G) extends A0, and let 8 € Irr(G|A) be such that Sy = ¢. Then £(1)0(1) =
B(1)x(1) =1(1) = A(1)0(1), and we conclude that 5(1) = A(1). Since j3 lies over A, we
conclude that Sy = . O

Lemma 2.3. Let p be a prime. Suppose that G is a finite group and N < G. Let
A, 0 € Irr(N) be G-invariant, and assume that X is linear and N0 extends to G. Suppose
that x € Irr(G) has p'-degree and lies over 6 € Irr(N).

(a) If p = Ay, then p@ extends to a character ¢ € Irr(G). Also, we can write
X = V&, where £ € Irr(Glp™).
(b) If G/N 1is perfect and 0 is p-rational, then 1 is p-rational.

Proof. (a) Let P/N be a Sylow p-subgroup of G/N. Since x has p’-degree, some irre-
ducible constituent 7 of xp has p’-degree. Then 7(1) and |P : N| are relatively prime,
so Tn is irreducible by Corollary 11.29 of [I12]. Then 7y = #, and thus 6 extends to P.
Also, A0 extends to GG by hypothesis, so A extends to P, and we conclude by Lemma
2.2 that X extends to P. It follows that A, extends to P because ), is a power of \.

If Q/N is a Sylow g-subgroup of G/N, where g # p, Corollary 6.28 of [I2] guarantees
that A, extends to (), and it follows by Corollary 11.31 of [I2] that A, extends to G.
Now A0 = A\ )\ 0 extends to GG, and since A, also extends to G, we deduce from Lemma
2.2 that A\y0 = (0 extends to some character ¢ € Irr(G).

Now write ¢ = uf so vy = ¢ and 0 = u~te. Then y € Irr(G|u~'p), and so by
Theorem 6.16 of [12], there exists a character & € Trr(G|u~!) such that y = &, and
this completes the proof of (a).

(b) By hypothesis, 0 is p-rational, and since ;1 = A is also p-rational, we see that ¢ is
p-rational. We are assuming that G/N is perfect, so by Gallagher’s theorem (Corollary
6.17 of [I2]) we deduce that v is the unique extension of ¢ to G. The Galois group
Gal(Q(v)/Q(¢p)) thus fixes 1, so the Galois group is trivial, and thus Q(¢) = Q(¢p).
We conclude that 1 is p-rational, as required. 0

We will use the following well-known facts. We write R for the ring of algebraic
integers in C.

Lemma 2.4. Let x be a character of a finite group G, and let p be a prime contained in

a mazimal ideal M of R. Given g € G, we have x(g) = x(gy) (mod M). In particular,

if g is a p-element, then x(g) = x(1) (mod M), and so if x(g) = 0, then x(1) is divisible

by p.

Proof. See, for instance, Lemma 4.19(b) of [N2]. O
Next is a standard result from the theory of projective representations.

Theorem 2.5. Let N< G, where G is a finite group, and let 0 € Irr(N) be G-invariant.
Then there is a finite group H and a surjective homomorphism ©m : H — G such that
Z = ker(m) C Z(H). Furthermore, if K = 7'(N) and g c Irr(K/Z) corresponds to 6
via the induced isomorphism K/Z — N, then 0 is H-invariant, and there is a linear
H-invariant character A € Irr(K) such that N0 extends to H.
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Proof. This is the content, for instance, of Theorem 5.6 of [N2]. 0

The following result, which assumes Theorem E, will be essential in our proof of
Theorem C. In Lemma 2.1 we assumed that G/N has odd order, but now we assume
that G/N is simple.

Theorem 2.6. Suppose that N <« G and let 6 € Irr(N) be G-invariant and 2-rational,
with (1) odd. Suppose that G/N is a non-abelian simple group, and let x € Irr(G|0)
have odd degree. If x is not 2-rational, then there exists a 2-element x € G such that

i€ Qx(x)).

Proof. By Theorem 2.5, there is a finite group H with a central subgroup Z such that
H/Z = G (where we identify G with H/Z). Furthermore, if K/Z = N, then there
is a linear H-invariant character A € Irr(K) such that A0 extends to H, and 6 is H-
invariant. Notice that now we view 6 as an irreducible character of K with Z in its
kernel. Also, x € Irr(H) contains Z in its kernel. By Lemma 2.3, if u = Ay, we
know that pf extends to a 2-rational character ¢ € Irr(H). Furthermore, we can write
x = € for some character £ € Irr(H|p™t). Notice that ¢ and 1) have odd-degree, since
x(1) is odd. Also, £ is not 2-rational, since v is 2-rational and x is not.

Write L = ker(u™1), so K/L is a central odd-order subgroup of H/L because p~! is
invariant in H and has odd order. Let W/L be the final term of the derived series of
H/L, so W/L is perfect. Now KW = H because H/K is a nonabelian simple group,
and since W/(KNW) = H/K is simple and (K NW)/L is central in W/L, we see that
W/L is quasi-simple.

Now &y is irreducible because KW = H and K/L is central in W/L. Also, |H :
W| = |K : (K nNW)|, which divides |K : L|, so |H : W| is odd. It follows that &y is
not 2-rational because otherwise, £ would be 2-rational by Lemma 2.1, and this is not
the case.

By Theorem E applied to the character {y of W/ L, we deduce that there exists an
element w € W such that w has 2-power order modulo L, and i € Q(&(w)). Also,
observe that we can assume that w has 2-power order. Now y(w) = ¥ (w)&(w), and
Y(w) € Q because w has 2-power order and v is 2-rational. Furthermore, ¥(w) # 0
by Lemma 2.4 because w is a 2-element and (1) is odd. It follows that Q(y(w)) =
Q(&(w)), and the proof is complete since we can take x to be the image of win H/Z = G,
so z is a 2-element and we have i € Q(&(w)) = Q(x(w)) = Q(x(x)). O

Next we prove Theorem C (assuming Theorem E).

Theorem 2.7. Suppose that G is a finite group, and x € Irr(G) has odd degree. If x
is not 2-rational, then i € Q(x).

Proof. We argue by induction on |G|. Let N be a normal subgroup of G. Let 6 be an
irreducible constituent of xy and let T" be the stabilizer of 6 in G. Also, let ¢ € Irr(T') be
the Clifford correspondent of x over 6, so ¢ = x. Since Q(x) C Q(¢) (by the induction
formula), we know that 1 is not 2-rational. Notice that |G : T| is odd because x(1) is
odd. We claim that |Q(¢)) : Q(x)| is odd. Otherwise, let 0 € Gal(Q(¢)/Q(x)) have
order 2. Then x? = x. Thus 67 = 69 for some element g € GG, using Clifford’s theorem.
Notice that g € Ng(T'). Recall that the action of G on Irr(N) and the Galois action
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commute. Now 6 = 7" = 09", so g*> € T. Since Ng(T)/T has odd order, it follows that
g€ T, s06” =09=40, and thus 0 = 1. This is a contradiction, and so |Q() : Q(x)| is
odd, as claimed.

Assume that " < G. In this case, i € Q(¢)) by the inductive hypothesis. Since
|Q(v) : Q(x)] is odd, we deduce that i € Q(x), as required.

Thus, we may assume that if N is any normal subgroup of GG, then xyy = ef. In
particular, Q(6) C Q(x). Also, if N < G, we may assume that 6 is 2-rational, by the
inductive hypothesis.

Suppose that N = O?*(G) < G. Since x has odd-degree, we see that 6 has odd-
degree. By Theorem 6.28 of [I2], there is a unique extension 6 € Irr(G) of 6 to G
with determinantal order not divisible by 2. By uniqueness, notice that 0 is 2-rational,
because # is. By the Gallagher correspondence, it follows that y = M, where \ €
Irr(G/N) is linear (because G/N is a 2-group and x(1) is odd). Since x is not 2-
rational, A has 2-power order exceeding 2. In particular, A(g) = i for some 2-element
g € G. Since g is a 2-element and 6 is 2-rational, we see that é(g) is a rational number.
By Lemma 2.4, we have that 6(g) # 0. We deduce that i € Q(y) in this case.

If G/N has odd order, where N is proper in G, then since 6 is 2-rational, we can
apply Lemma 2.1 to deduce that y is 2-rational, contrary to hypothesis.

Thus, by taking a maximal normal subgroup N of GG, we may assume that G/N is a
non-abelian simple group. Now we apply Theorem 2.6 to conclude that i € Q(x). O

Next we see that Theorem B is an easy consequence of Theorem C, using the following
well-known result.

Theorem 2.8. [W, Corollary 4.5.5] Let m > 1 be an integer. Suppose that [ is a
square-free integer. Set f' = |f| if f =1 (mod 4), and otherwise set f' = 4|f|. Then
QW/f) € Q,, if and only if ' divides m.

Proof of Theorem B. Let x be a 2-rational character of a finite group G, and let v =
Vied, where ¢ = 1 and d > 1 is a square-free integer. Assume that v € Q(x), and
let m > 1 be an odd integer such that Q(x) C Q,,. Let f = ed, and let f’ be as in
Theorem 2.8. By Theorem 2.8, we have that f’ divides m. Since m is odd, we cannot
have that f’ = 4|f]. Hence f =1 (mod 4). Therefore ed = 1 (mod 4). Thus d is odd
and € = ¢4. This proves Theorem B(a). To prove Theorem B(b), we assume now that
X is irreducible and has odd degree, and that it is not 2-rational. We must show that
i € Q(x) and that Q(x) does not have the form Q(v/ed), where ¢ = 1 and d > 1 is
a square-free number. By Theorem 2.7, we have that i € Q(x). Suppose finally that
Q(x) = Q(Ved). Then i € Q(ved), and thus ¢ = —1. Hence i € Q(iv/d) and therefore
Vd € Q(ivd). Thus Q(i,vd) = Q(iv/d), and this is impossible because these fields
have different degrees over Q. O

3. PrROOF OF THEOREM D

In this section, we give a proof of Theorem D, which we will need in order to prove
Theorem E. This theorem is a direct consequence of the main results of [NT3] and [M].
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We review some of these results for the reader’s convenience. We use Q* to denote the
field generated over Q by all complex roots of unity.

In [IN], Isaacs and Navarro conjectured the following,.

Conjecture 3.1. Let e > 1 be an integer. Let o, be the automorphism of Q* that fizes
roots of unity of order not divisible by p, and sends p-power roots of unity & to £71P°.
Let G be a finite group, and let P € Syl (G). Then the exponent of P/P' is less than

or equal to p¢ if and only if all the irreducible characters of p'-degree of G are o.-fized.

It has been recently proved in [NT3, Theorem B] that if the exponent of P/P’ is
less than or equal to p®, then all the irreducible characters of p’-degree of G are o.-
fixed, thereby establishing one direction of Conjecture 3.1. Furthermore, it is proved
in the same paper [NT3, Theorem C] that the converse holds provided that it is true
for almost quasi-simple groups. In [M], this case has been solved for the case p = 2,
therefore establishing the full Conjecture 3.1 for p = 2. We will use this fact below in
Theorem 3.3.

We need an easy lemma.

Lemma 3.2. Let m > 2 be an integer. Then the group T' = (Z/2™7)* is generated by
the two elements 3 = 3+ 2™7Z and 5 =5 + 2™ 7.

Proof. The statement is obvious for m = 2, so we will assume m > 3. Then |['| = 2!
and both 3 and 5 have order 272 in I'. However, 3 ¢ (5), hence I' = (3, 5). O

Now we prove Theorem D, which we restate.

Theorem 3.3. Let G be a finite group with a Sylow 2-subgroup P. Then exp(P/P’) < 2
if and only if all odd-degree irreducible characters of G are 2-rational.

Proof. Again, for any integer e > 1, let o, be the automorphism of the field Q* that
fixes roots of unity of odd order, and sends 2-power roots of unity & to £172°.

Suppose that all odd-degree irreducible characters of GG are 2-rational. In particular,
they are all oy-invariant. Hence exp(P/P’) < 2 by [NT3, Theorem B].

Conversely now, suppose that exp(P/P’') < 2. Let x € Irr(G) have odd-degree. By
Conjecture 3.1 for p = 2, we have that x is invariant under both o and o,. Write
|G| = 2™n, where n is odd. By Lemma 3.2, we have that the restrictions of oy and o9
to Q|| generate Gal(Q|¢/Q,). Hence Q(x) is contained in @Q,, and this proves that x
is 2-rational. OJ

4. PROOF OF THEOREM E

In this section we prove Theorem E, which we restate:

Theorem 4.1. Suppose that G is quasi-simple, and that x € Irr(G) is not 2-rational
and has odd degree. Then there exists a 2-element g € G such that i € Q(x(g))-



8 I. M. ISAACS, M. W. LIEBECK, GABRIEL NAVARRO, AND PHAM HUU TIEP

4.1. Further reductions.

Lemma 4.2. The following statements hold.

(i) It suffices to prove Theorem 4.1 in the case where Z(G) is of odd order and
exp(P/P’) > 2 for P € Syl,(G).
(ii) Furthermore, Theorem 4.1 holds in the case GZ(G) = ?F,(2)'.

Proof. (i) Modding out by Ker(y) we may assume that y is faithful. Since x(1) is odd,
we then have that |Z(G)| is odd. Furthermore, since y is not 2-rational, exp(P/P’) > 2
by Theorem C.

(ii) Since ?Fy(2) has trivial Schur multiplier, we have that G = ?F;(2)’. Now the
statement can be checked using [Atlas|; indeed, g can be chosen to be of order 32. [

Proposition 4.3. Let G be a finite simple group and P € Syl,(G). Thenexp(P/P’) <2
for P € Syl,(G) if one of the following conditions holds.
(i) G = A, for any n > 5.
(ii) G any of the 26 sporadic simple groups.
(iii) G % ?Fy(2)" a simple group of Lie type in characteristic 2.

(iv) q any odd prime power. Furthermore, G = PSp,,,(q) with m > 1, PQF(q) with
n > 7, PSLan(q) or PSUgn(q) with m > 2, Go(q), G2(q), *Di(q), Fi(q), Es(q),
or the (simple) group Er(q).

(v) € = %1, q any prime power such that 4|(¢ + €), and G = PSL;,(q) with n > 3,
or G is the (simple) group E§(q).

Proof. All these statements were proved in [NT1]. Case (i), respectively (ii), is handled
in Lemmas 3.3 and 3.4 of [NT1], respectively. Case (iii) is treated in [NT1, Proposition
4.5]. For (iv), see Propositions 3.5, 3.7, 3.8, and 4.1 of [NT1]. Finally, (v) is proved in
Propositions 3.8, 4.1, and Corollary 3.9 of [NT1]. O

Corollary 4.4. It suffices to prove Theorem 4.1 in the case where q is an odd prime
power, ¢ = €(mod4) for some ¢ = +1, and either G = SL{(q) with n > 3 not a
2-power, or G = E§(q)sc.

Proof. Let S = G/Z(Q) so that S is simple. By Lemma 4.2, we may assume that |Z(G)|
is odd, S % ?F4(2)’, and that exp(P/P’') > 2 for P € Syl,(G). Hence, exp(Q/Q’) > 2
for @ € Syly(S). This implies by Proposition 4.3 that there is some ¢ = e(mod4)
such that either S = PSL: (¢) with n > 3 not a 2-power, or S = E§(q) (the simple
group). Inspecting the Schur multiplier of S in those cases, we see that G is a quotient
of SL¢ (q) or E§(q)se. Inflating x if necessary, we may thus assume that G = SL (¢q) or
E§(q)se- O

4.2. Special linear and unitary groups. In this subsection we prove Theorem 4.1
for G = SL; (¢q). Let n € Z>; and consider the 2-adic decomposition
(4.1) n=2"42Mm2 4 4 2™

with mqy > mg > ... > m, > 0. In what follows, we will refer to the summands 2™ in
(4.1) as 2-adic parts of n. A decomposition n = n; +ng + ...+ ng of n will be called a
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proper decomposition of n, if
k>1, ng€Z, ng >mno>...>n; > 1,

and every 2-adic part of every summand n;, 1 < i < k, is also a 2-adic part of n. By
[GKNT, Lemma 2.2], the latter condition is equivalent to requiring n!/ H?:l n;! be odd.

For a fixed € = £1, let g = (() be the cyclic subgroup of order ¢ — € of F;, and
let o := @2 so that (a) = Oy(pe—c). Fix a (g — €)™ primitive root of unity ¢ € C,
and set & := (092 a (¢ — )t roof of unity in C. For s € u,_, let [s] € Z/(q — €)Z
be such that s = ¢[*/. We will consider the map

F:xe qu — 2l

We will also use the Dipper-James labeling for irreducible characters of GL,(q) as in
[GKNT, (2.2)], and its analogue for a subset of Irr(GU,(q)) as explained in [GKNT,

Lemma 5.2].
To handle groups of type A we will need the following two statements.

Lemma 4.5. Let g be an oc{d prime power, € = £1, n € Z>3 not a 2-power, and let
G = SL{(q) < GL; (q) =: G. Let x € Irr(G) be of odd degree. Then the following

statements hold.

(i) x extends to x € Irr(G).
(ii) There exist a proper decomposition n = ni+na+...+ng of n, k pairwise distinct
elements s; € g, 1 <1 <k, and k partitions X; = n;, 1 <1 <k, such that
X = S(81,A1) 0 S(82,A2) 0...085(sk, Ag).

(iii) Suppose x is not 2-rational. Then k > 2 in (ii), and there exist 1 <i < j <k
such that (q — €)2/2 does not divide [s;] — [s;].

Proof. (i) follows from [ST, Lemma 10.2]. Next, (ii) is proved in [GKNT, Theorem 2.5]
for e = 1 and [GKNT, Lemma 5.2] for e = —1.

For (iii), note that, for a suitable choice of ¢, S(¢%, (n)) is the linear character of G
sending ¢ € G with det(g) = ¢b to f“b. Now suppose that y is not 2-rational, but the
conclusion of (iii) does not hold. Multiplying ¥ by S((s;', (n)), we may assume that
(q — €)2/2 divides [s;] for all i. Recall that S(1, ;) is a unipotent character of GL;, (¢)
and so takes only integer values. Since

(4.2) S(S’MA’L) = S(s,,(n,))S(l,Az),

(see e.g. [GT, Lemma 2.9] for the case ¢ = 1 and the displayed formula right before
[GKNT, Lemma 5.1] in general), the condition on [s;] now implies that S(s;, A;) takes
values in Q(¢792/2) = Q4_¢),,, and so it is 2-rational. Note that ¥ = £R7(¢), where

(43) w:S(Sl,)\l)®S(82,>\2)®...®S(8k,Ak),
that is, it is Lusztig induced from the Levi subgroup
(4.4) L =GL;, (q) x GL;,(q) x ... x GL;, (q).

For future use we also note that Ns(L) = L. Arguing as in the proof of [GKNT,
Theorem 5.3] we see that y and x are 2-rational, a contradiction. 0
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The next statement is extracted from [GLBST, Lemma 7.5] and its proof.

Lemma 4.6. Let G = GLS(q) withn > 1, e = +1, and let q be any odd prime power.
Also fix the generator o of Oa(pg—c) as above. Then the following statements hold.
(i) If n = 2™ for some m € Zs1, then there exists a regular 2-element g,(a) € G
of determinant o, whose eigenvalues on IFZ form an F-orbit

ISV LN (O

of some generator X of O(Fy.). In particular, all eigenvalues of gn(a) lie in

Fqu AN Fqgm—l .

(ii) For every 2-element 0 of p,—., there exists a reqular 2-element h,(0) € G of

determinant 0 and with all eigenvalues on FZ belonging to I 21, if n is written
in the form (4.1).

Theorem 4.7. Let n € Z>3 be not a 2-power, e = £1, and let q be an odd prime power
such that (¢ — €)a = 2% > 4. Then Theorem 4.1 holds true for G = SLS,(q).

Proof. Let x € Irr(G) be of odd degree and not 2-rational. We set G = GL;(¢q) and

apply Lemma 4.5 to get the character Y as in the lemma. We will write y = £R%(v))
with 1 given in (4.3). Also let V' := [}, respectively [F72, denote the natural module
for G, and let V =V ® Fq. Since n = ny + ...+ n; is a proper decomposition, the
Levi subgroup L acts semisimply with pairwise non-isomorphic simple submodules on
V and on V. Also let I,,, denote the identity m x m-matrix over F,2, and set
gam(a™h) = (gam(a)) "

(1) Case 1: There exist ig < jo such that 2721 ([s;,] — [8,,])-

Case la: Suppose in addition that the smallest 2-adic part 2™ of n, cf. (4.1), is
neither a 2-adic part of n;, nor of n;,.

Then we consider the following two elements in G using Lemma 4.6:
9= (g2 (@), gamio (@), -, ggmio-1 (@), gamio (™), gymigs (@), ., game—s (@), e (9))
g = (92’”1 (@), -+, Gamig-1 (), Gamig (a_l)a Gomigt1 (@), -+ oy Gomig (@), - .oy gamr—a (@), hgmer (5))>
each containing only one block gom; (o) with 1 <i <7 —1, and with § € p,_, chosen

so that ¢g,¢" € SL{(q). In the case ¢ = —1, the above decomposition splits V' into
an orthogonal direct sum of non-degenerate subspaces invariant under g, respectively
under ¢'.

We will show that

(4.5) V=1€Q(x(9)) UQ(x(g)).

To do this, first we note that the assumption on 2™ implies that » > 3. Now we show
by induction on r > 3 that each of ¢ and ¢ is contained in a unique G-conjugate of
the Levi subgroup L given in (4.4); equivalently, if g € L* for some x € G, then L7 is
uniquely determined by g, and similarly for ¢’. Note that the set of eigenvalues of g on
V has a unique F-orbit of length 2, coming from the unique block gqmi (3) of ¢, with
B = at!l. Recall that n = ny + ...+ ny is a proper decomposition of n; in particular,
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each 2-adic part of each n;, 1 <i <k, is some 2™, 1 < j <r. As nq is the largest one,
it follows that 2™ is a 2-adic part of ny, and
mi1—1

no+ng+...+n, < Z2e<2m1‘
e=0

As the set of eigenvalues of the projection of g onto the factor GL;, (¢) of L* is F-
stable, we see that this projection has to afford the aforementioned F-orbit of length
2™ and this orbit accounts for the 2-adic part 2™ of n;. Also note that the block
gami () of g corresponds to a g-invariant subspace U which is an orthogonal direct
summand of the Hermitian space IFZQ in the case ¢ = —1. Now we can mod out by U
and work inductively in V/U until we have exhausted all 2-adic parts 2™, 1 < i < r—1.
The last block hgm, (d) then contributes to the submodule of V' for the last remaining
factor GL;, (¢). We have shown that all L*-composition factors on V' and on V are
uniquely determined by g. Since L* acts semisimply on V' with non-isomorphic simple
submodules, this uniqueness implies that L* is unique.

Without loss we may now assume that g € L. Since each of gom; (a*!) and hgm. (§) is
regular, the above argument also shows that

(4.6) Calg) = Cvr(g).
According to [DM, Proposition 9.6,
(4.7) Sty - ¥ = £Sts - RE(¢) = £(Sty, - )%,

where Stg, respectively St, denotes the Steinberg character of G, respectively of L.
Applying this formula to g and using the fact just established that L is the unique
G-conjugate of L that contains g, we have that

Sta(g9)x(g) = £StL(g)¥(g).

On the other hand, as g is semisimple, we have that Stxz(g) = £/Cx(9)|, and Stz(g) =
+|CL(9)|p, see [DM, Corollary 9.3]. It follows that

(4.8) x(9) = w¥(9), x(9") = x'¥(g")

for some k, k' € Q*. (In fact, using (4.6) we see that k = £1 and likewise v’ = +1.)

It remains to evaluate 1) on g and ¢, using (4.3). Since 2 1 x(1), the degrees of ¥
and of S(s;, A;) are all odd, whence S(s;, A;) evaluated at the GL; (¢)-component of g
is nonzero by Lemma 2.4. Recalling the constructions of g and ¢’ and applying (4.2) to
S(8iy, Aig) and S(sj,, Aj,), we now have that

(4.9) D9) _ 22sig)-lsi0)
U(g')

As |a] = 2% and 2°7% 1 ([s;,] — [85,]), We see that ¥(g)/¢¥(¢') is a root of unity of order
2/ > 4. On the other hand, as the unipotent characters S(1,\;) take only integer
values, (4.2) implies that ¥(g) is a Z-multiple of a 2-power root of unity. It follows
from (4.9) that this root of unity for at least one of g, ¢" must have order > 4, say for
g. We conclude by (4.8) that x(g) is a Q-multiple of a 2-power root of unity of order
>4, and x(g) # 0 by Lemma 2.4. Thus v/—1 € Q(x(g)), establishing (4.5).
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Case 1b: Suppose we are in Case 1, but the smallest 2-adic part 2™ of n, is a 2-adic
part, say of n;,. 3

Then we consider the following two elements in G using Lemma 4.6:

g = (gzml (04)7 goma (Oé)a ceey gomr-1 (Oé)> h2mr(5)),

g = (ggml (@), ..., Gomig—1 (), gymio (@™ 1), gymigs1 (@), ..., gamr—1 (), hgm, (5042)),
with 6 € p,—. chosen so that g,¢' € SL;(¢). Now the same arguments as in Case la
show that each of g and ¢’ is contained in a unique G-conjugate of L, say g, ¢' € L, and
moreover (4.8) and (4.9) hold. Hence we conclude as above that (4.5) holds as desired.

(ii) Case 2: For all 1 < 4,5 <k, 2*72 divides [s;] — [s;].

Multiplying ¥ by S(s;?, (n)), we may assume that 2°~2 divides [s,] for all 1 <i < k.
By Lemma 4.5(iii), there exist some iy < jo such that 27 { ([s;,] — [s;,]). Keeping in
mind the fact that n = n; 4+ ... + n; is a proper decomposition, we partition

{my,....m.} ={m},....m.yu{m{, ..., m/},

with s +t =r, m{ > ... >ml, m{ > ... > mj, such that
e cach 2-adic part of n; with 271 { [s,] is among 2™, ...,2™, and vice versa, and
e cach 2-adic part of n; with 297!([s,] is among 21, ... 2™ and vice versa.
Now write L = Ly X Ly, where

1:20~14[s;] §:2071|[s;]

We claim that, to prove (4.5), it suffices to find a 2-element g € G such that, whenever
a conjugate ¢g* of g is contained in L, then

(4.10) the projection of g” onto L; has determinant = a(mod a?).

Indeed, suppose h1hy = ¢* € L, with h; being the projection of g* onto L; for ¢ =1, 2.
As ¢ is a 2-element, the determinant of the projection of h; onto the direct factor
GL;, (q) of Ly is a® for some a; € Z, and similarly the determinant of the projection of
hy onto the direct factor GL;, (g) of L» is a’i for some b; € Z. Recalling (4.2) and the

fact that unipotent characters S(1,A;) take only integer values, we see that there is an
integer k(z) € Z such that

U(g") = K(z)a™®,
with

m(z) = ( Z [si]a; + Z [sj]bj) =202 Z a; = 2°%(mod 2°71),
i:207 H[s] 3:2071|[s4] i:207 H[s]
since by (4.10) we have
aZi2* el " = det(hy) = a(mod o?).
But |&| = 2%, so we have that 1(¢g*) = £kr(z)v/—1. It now follows from (4.7) that
x(g) = rv =1
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for some k € Q. Since k # 0 by Lemma 2.4, we conclude that v/—1 € Q(x(g)), as
desired.

We will now construct a 2-element g = g19o € GN L, with g; € L and g, € Lo, that
satisfies (4.10).

Case 2a: We are in Case 2, but s and ¢ are both odd.
Setting

g1 = (927”'1 (Oé), Ggmh (a_l)a Goml (Oé), Gomy (Oé_l), e Ggml (Oé), 9oml_y (a_l)v Gomi (a)) )
g2 = (g2m/1/ (Oé*l)’ ngg (Oé)7 gzmg (0571)7 g2m£1/ (CY), FEPN 7927712’72 (O[*l)’ '927712/71 (Oé)’ ngg (C(il))7

and arguing as in Case la, we see that L is the unique G-conjugate of L that contains
g. Clearly, det(g;) = «, and so we are done.
Case 2b: We are in Case 2, but s + ¢ is odd.

Multiplying ¥ by S(a2" ", (n)) if necessary, we may assume that 2 { s and 2|t. We
set

91 = (Ggmt (@) Gym (@), Gyt (@) Gyt (1), s Gt (@), Gt (@71), Gyt (@),

92 = (9 (@), Gomg (@) Gy (1), Gty (@), Gt (@), Gy, (@), Gy, (71, 95),

where
* IQWQU m; > m;/:
9 = { (Gyrs(0), gygs(@™)), ], < ml.
If m!, > mj or if m{ > m! + 1, then arguing as in Case la, we see that L is the unique
G-conjugate of L that contains g. As det(g;) = o, we are done in this case.

Suppose that m; = m/ + 1 and g € L* for some z € G. Again we argue as in Case
la and see that all the 2-adic parts 2™ > 2™ are filled up uniquely by the F-orbit of
g-eigenvalues of gom,(a®!). This leaves three F-orbits of g-eigenvalues, of length 2
each, and afforded by two blocks g,.; () and one block g,.. (™), to fill up the two
remaining 2-adic parts 2™ = 2-2™ and 2™s. Clearly, all possible ways of filling up the
remaining 2-adic part 2™ for L? have determinant o or o', and so (4.10) is satisfied.

Case 2c: We are in Case 2, but s and t are even.

Multiplying ¥ by S(a2* ", (n)) if necessary, we may assume that m/, > m/”. We set

91 = (Gt (), Gy, (1), s (@), Gyt (@71, G (@), G, (@), g (@7), g),
g2 = (g2'rrL’1’ (ail)a g2m’2’ (CY), Qng (ail)a ngﬁ{ (CO? SRR g2m;’,3 (0571)7 927"2’,2 (Oé), g2m,'5',1 (Oéil)a g;)a

where (g§|| g3) is chosen to be

((ggms—1 (™), gymt—1 (P L ), my > my + 1,
diag(1, a?)||11); m,=mj+1=1,
(g2m£/71(a>, g2m2/71(a), g2m2/,1 (Oé), g2m2/71 (a—l)) | ’ (g2m%/71 (Oé), 92m2’71 (05—1>))7 m; = mé’ +1 2 2.

Suppose g € L* for some z € G. Again we argue as in Case 1a and see that each 2-adic

part 2™ > 2™ is filled up uniquely by the F-orbit of g-eigenvalues of gom; (a!).
Consider the case m’ > m! + 1. Then the smallest 2-adic part 2™ can only be

filled up by the block I, .», because all other eigenvalues of g have F-orbit of length
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> 2™, If moreover m, — 1 is not equal to any m/, then the two blocks gy, 1 (a™!)
and g,,.,_1(a®) can only fill up the 2-adic part 2™:. Thus L is the unique G-conjugate
of L that contains g, and det(g;) = « as desired. Suppose m. —1 = m/. Then each
2-adic part 2™ with i < J < t must be filled up by the unique block ng;/(ozﬂ) in g.
Next, the 2-adic part 27 can be filled up by an F-orbit of length 2™ coming from
the three remaining blocks gy, 1 (a™"), gym,—1(a?), and g v (a*!). Any choice of such
filling gives the same determinant modulo o?. The two remaining F-orbits then fill up
the remaining 2-adic part 2™ of L¥ and thus gives the same determinant modulo o2
for the projection on g onto L7, as required in (4.10).

Suppose m!, = m} + 1. In this case, all 2-adic parts, but 2ms = 2.2m and 2™, are
already filled up uniquely by suitable blocks of g. If m{ = 0, then the 2-adic part omi
can be filled up by a g-eigenvalue 1 or a?. If m/ > 1, then the 2-adic part 27 can be
filled up by two F-orbits of g-eigenvalues of length 2™~ afforded by blocks Gomyy -1 (@)
or gzmg,l (a™'). Evidently, any choice of such filling gives the same determinant modulo
a?. The remaining F-orbits then fill up the remaining 2-adic part 2™ of L? and thus

gives the same determinant modulo a? for the projection on g onto L?, as required in
(4.10). 0J

This completes the proof of Theorem E for G' = SL,(q).

4.3. Groups of type FEg and %Eg(q). The rest of the section is devoted to prove
Theorem E for G = E§(q)sc. First we recall a useful observation.

Lemma 4.8. Let G be a finite group with a subgroup L, and let t € L be such that
Co(t') < L for allt € tSN L. If {t; = t,ty,...,t,} is a set of representatives of
L-conjugacy classes in t N L and ¢ is a class function on L, then o%(t) = > 7, o(t:).

Proof. Write G = L™ Lg; with g; = 1, gitg; ' € L for 1 < i < k and gitg; ' ¢ L.
Then we have ©(t) = Zle ©(gitg; ). Suppose that gitg; ' is L-conjugate to gjtgj’1
for some 1 < i,5 < k. Then gjgi_l(gitgi_l)gigj_l = xg;tg; *o~! for some ¥ € L, and so
v g9 € Cql(gitg; ') < L. Tt follows that g;9; ' € L, g; € Lg;, and so i = j. This
shows that {gitg; ' | 1 < i < k} is another set of representatives of L-conjugacy classes
in t“ N L, and the statement follows. 0

In the treatment of groups G = G = E§(q)s, we will make frequent use of an F-
stable subsystem subgroup D57} in G (with 77 denotes a one-dimensional torus). The
existence of such a subsystem can be seen from the extended Fg Dynkin diagram; it
is conjugate to a standard Levi subgroup of G, and has fixed point group Dg(q) - Cy—
under F. An explicit construction of this subgroup is also displayed in the proof of
[NT1, Proposition 4.3].

Proposition 4.9. Let G = GF = E§(q)s., and suppose that ¢ = e(mod8). Write
(q — €)o = 2%. Then there exists an element t € G with the following properties:
(i) t is a 2-element;
(ii) Cg(t) is a mazimal torus (¢* — 1) x (¢* — 1);
(iii) ¢ centralizes a unique involution v that has centralizer of type DsTy in G;
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(iv) if L = Cg(v) and D = L' = Dg(q), then the coset tD € L/D has order 2%;
(v) t“N L=tk

Proof. We will construct ¢ inside a maximal rank subgroup A of G containing the
subgroup A$A; = SL§(q) o SLa(q) with index 2. Let v € F 4 have order (¢* —1), = 272,
and set § = 7_(‘12“) and A = v*. Define t = t1t € ASA;, where t; € SL§(q), t2 € SLa(q)
are conjugate over Fq respectively to

diag(y, 7,77, 7", 8,6),  diag(A, A7),

Then |C4(t)] = (¢* — 1)(¢* — 1). Also by [LS, 11.10], for the ambient algebraic group
E67

(4.11) L(Es) L AsA1 = L(A145) + (Vs (A3) @ Vg, (1)),

and the second summand is A3(V;) @ V5, where Vi, V3 are the natural modules for As, A;.
Using the hypothesis that (¢ —¢€), = 2% > 8, we check that ¢ has no nonzero fixed points
on this tensor product. It follows that dim Cp g, (t) = 6, and so Cg(t) is equal to the
maximal torus T := C4(t) of order (¢* — 1)(¢> — 1). The structure of T is a direct
product (¢* — 1) x (¢* — 1) (see [KS, p.377]).

Let Z(A) = (u), and let v = diag(—1%,12) € SL§(¢q). Then T contains precisely three
involutions, namely v, u and vu. Now vu is a central element of a root SLs(g), hence
has centralizer in the algebraic group Eg of type AsA; (as does u). On the other hand,
v is central in a subsystem Az subgroup, and restricting from (4.11), we have

L(Eg) | As = L(A3) + VOO + V(A)* + V(As)* + V(0)".

It follows that dim Cp g, (v) = 46, so that Cg(v) is of type DgTy.

Next we establish part (iv). Observe that Cg(v) contains a subgroup A5A;1A4; <
At Ay, which lies in D = Spin,(q). Also, if we write w = 42" (an 8th root of 1) and
L = w?, then

27 = diag(w, w, w,w, 1, 1) - diag(—1, —1) € ALA,,

and this centralizes A5A;A;. If 2" € D, this implies that ' € Cp(ASA1A).
However, Cp(A5A,A;) = Z(ASA, Ay), and this does not contain t2* . Hence t** & D,
and part (iv) follows.

Finally, suppose xtz™! € L for some z € G. Since L = Cg(v), we see that ¢
centralizes the involution z~lvx, which has centralizer of type D57} in G. By (iii),
r'vr = v, i.e. ¥ € Cg(v) = L, as stated in (v). O

Proposition 4.10. Let G = E§(q)s., and suppose that (q — €)o = 4. Then there ezists
an element t € G with the following properties:
(i) t is a 2-element;
(i) Cq(t) is a mazimal torus (¢* — 1) x (¢ —¢€) x (¢ —€);
(iii) there is an involution v € G such that
(a) t € L=Cg(v) =D -Cy_, where D = [L, L] = Spinj,(q),
(b) Calt) < L, and
(c) the coset tD € L/D has order 4;
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(iv) the set t“ N L falls into five L-conjugacy classes; if we label representatives of
these classes ti,...,ts (where t; = t), then there are precisely three values of i
such that the coset t;D has order 4 in L/D.

Proof. The element ¢ is again chosen inside a maximal rank subgroup AfA,, but is
slightly different from the element in Proposition 4.9. Let v € F 1 have order (¢*—1)y =
16, and let . = v* € F2. Define t = t1ty € A5A;, where

b = dlag(% ,yeq’ ’7q2’ ,quS, Ly ]-)7 o = dia’g(b7 _L)‘
It is shown in the proof of [GLBST, 7.16] that Cg(t) is a maximal torus of order
(¢* — 1)(q — €)*. Hence using [KS] as before, we have

Cot) =T =(¢"—1)x (g—¢) x (g —¢).
The involutions in 7" all lie in the subgroup (u, v, w), where
U = _[6 S Ag,
v=(-1,-1,-1,-1,1,1) € Ag,
w=((tytyt,0,0,—1), (1, =) € AFA;.

Restricting the Lie algebra L(Es) to ASA; as in the previous proof, we find that the
involutions in 7" that have centralizer in G of type DgT} are

(4.12) v, w, uw, vw and uvw.

We next show that (iii) holds. Let L = Cg(v), and D = [L, L] = Dg(q). Clearly
te€ L and T = Cg(t) < L, so it remains to prove (iii)(c). Now Caca, (v)" = A3A§1)A1,
where A;;Agl) < Ag. Moreover,

(4.13) t2 = (=%, —%, A2 AR’ ] —1) € A:.
Hence if t* € D, then > € Cp(A;); however Cp(4;) = AgAgl), and from (4.13) it is
apparent that 2 does not lie in A3A§”. It follows that t* & D, proving (iii)(c).

Finally we prove (iv). Suppose t9 € t N L. Then t € L9 ' = Cg(v? '), and so from
(4.12), we have v e {v, w, uw,vw, uvw}. Hence t N L falls into five L-classes, one
for each possibility for v9 . Write ¢/ = 9 and v/ = v9 .

We consider in turn the possibilities for v and compute the order of the coset ¢ D in
L/D in each case. If v" = v then the order is 4, by part (iii).

Next suppose that v = vw or uvw. Then from (4.13) we see that t* € A < Cy(v'),
and hence t2 € [Cg(v'), Ca(v')] = D9 . Tt follows that (¢')2 € D, so #'D has order less
than 4 in this case.

Finally, suppose that v/ = w or ww. This time we write t? as

12 = (72,724 % 420 1 1),

so that t* = au, where a € A < Cye(v'). Clearly Aj < DY soif t2 € DY ', then
u € Cp,-1(Aj). However, the only involution in D§ = Spinj, that centralizes an Aj
subgroup is the central involution; this involution of course has centralizer in G of type
DETy, whereas u has centralizer ASA;. Hence t* ¢ D9 which implies that the coset
t'D has order 4 in this case.
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We have shown that ¢'D has order 4 precisely in the cases where v/ = v, w or uw.
This completes the proof of (iv). O

Proof of Theorem /.1. By Corollary 4.4 and Theorem 4.7, it suffices to prove Theorem
4.1 in the case G = G = E§(q)se, with € = 1 and 4|(¢—¢). Here, G is a simple, simply
connected algebraic group of type Fg in characteristic p|¢ and F' : G — G a suitable
Steinberg endomorphism. Using [Lu] one can see that G has exactly 8(q — ¢) irreducible
characters of odd degree, among which 8 are unipotent and listed in [C, §13.9]. As
shown in the proof of [M, Theorem 3.4], any unipotent character of odd degree of G lies
in the principal series and is 2-rational. So we may assume that x is one of 8(q — e — 1)
non-unipotent characters of odd degree and x belongs to the rational series £(G, (s)),
labeled by a 2-central semisimple element s € G*. Here, G* = G*/'" and (G*, F*) is dual
to (G, F).

As mentioned in the proof of [M, Theorem 3.4], Cg«(s) is connected. In fact, as one
can see using [LSS, Table 5.1], there are ¢ — ¢ — 1 classes of such elements s € G*,
with Cg«(s) = L*, an F*-stable Levi subgroup of type D57}, dual to an F-stable Levi
subgroup £ of G. Next, as mentioned in the proof of [NT2, Lemma 4.13], L := LF
and £*f" each has exactly 8 unipotent characters of odd degree, and furthermore their
degrees are pairwise distinct. The latter immediately implies that these unipotent
characters are rational-valued (indeed, any Galois automorphism of Q acts on the set
of unipotent characters and hence fixes each of these 8 characters).

Since Cg-(s) = L*, Lusztig’s classification of irreducible characters of G in the ratio-
nal series £(G, (s)) [DM, §13] yields that

(4.14) X = £RE(YN),

where ¢ € Irr(L) is unipotent of odd degree, rational-valued as mentioned above, and
A € Irr(L) has degree 1. (Indeed, as s € Z(L*), by [DM, Proposition 13.30], there is a
linear character A = § of L such that the mutplication by A gives a bijection between
E(L,(1)) and E(L, (s)). Next, by [DM, Theorem 13.25], there are some signs ¢ and ¢y,
such that the map

cqeLRS 1 E(L,(s)) — E(G, (s))

is a bijective isometry which sends true characters to true characters.) The formula for
the Lusztig induction functor R¥, see [DM, p. 90], shows that it commutes with Galois
actions on characters. With the assumption that x is not 2-rational, this implies that A
is not 2-rational. As discussed in the proof of Proposition 4.9, D = [L, L] = Spin{,(q)
and L/D = C,_.. Hence X is a character of L/D of order divisible by 4.

Let (¢ — €)2 = 2% > 4. We now consider the regular 2-element ¢ € L constructed in
Proposition 4.9 when a > 3 and in Proposition 4.10 when a = 2. For any ¢ € t“ N L,
Cg(t') is a maximal torus (of rank 6). At the same time, C,(#') contains a maximal
torus of rank 6. It follows that C.(#) = Cg(t'), and so Cg (') < L for all ¢ € t9 N L.
Thus we can apply Lemma 4.8 to ¢ and obtain from (4.7) and (4.14) that

(4.15) x(t) = £Sta(t)x(t) = £(Ste - RE(YN)(t) = £(StLyA) 9 (t) = Z (L) A4 (t5),
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if {t, = t,ty,...,t,} is a full set of representatives of L-conjugacy classes in t% N L.
(Here we have used the fact that any ¢ € t“ N L is regular in both G and £, and so
Ste(t') = £1 and Sty (') = £1.) Note that, by Lemma 2.4, ¢(¢;) is an odd integer
since 9 is of odd degree and rational-valued.

Suppose a > 3. Then s = 1 by Proposition 4.9. Also, the coset tD generates
O,(L/D). Since A has order divisible by 4, it follows that A(t) is a primitive root of
unity € of order 2° > 4. Now (4.15) yields x(¢) = £ (¢)&, and () is an odd integer as
mentioned above. Hence, i € Q(x(t)), as required.

Finally, consider the case a = 2. Then s = 5 by Proposition 4.10, and the order of
t;Din L/Dis4if1 <j <3 and <2of j =4,5. As the order of X is divisible by 4 and
Oy(L/D) = Cy, it follows that A(t;) = i if 1 < j <3 and A(¢;) = £1if j =4,5. It
now follows from (4.15) that there are some odd integers a; € Z, 1 < j <5, such that

x(t) = (a1 + az + as)i + (as + as).
Since a; + as + as is odd, we conclude that i € Q(x(t)). O

5. GALOIS—-MCcKAY CONNECTIONS

The main result of this section is Theorem 5.5, which is a weaker version of The-
orem B. Our proof of this result does not utilize the simple group classification, but
instead, it appeals to the (as yet unproved) Galois-McKay conjecture, which we will
explain.

To prove Theorem 5.5, we use the fact that if y € Irr(G) has odd degree and is not
2-rational, then ¢ € Q(x). (This was proved using the classification in Theorem 2.7.)
Here, we need this result only in the case where GG has a normal Sylow 2-subgroup, and
although the proof of Theorem 2.7 goes through, we have decided to give an independent
proof of a stronger fact: Corollary 5.2 below. We show there that in the case of interest,
where G has a normal Sylow 2-subgroup, not only is it true that i € Q(x), but in fact,
i € Q(x(z)) for some 2-element = of G. (We have been unable to determine if this
stronger conclusion is true more generally for arbitrary solvable groups.)

We begin with a general lemma.

Lemma 5.1. Let P be a normal Sylow 2-subgroup of G. Given a linear character A of

P, write
=\ = E M.
geG

Then

(a) Q(E\) = Q(N) and
(b) If o(\) > 4, there exists an element x € P such that i € Q(Ex(z)).

Proof. For each element g € G, we have Q(\?) = Q()), and it follows that Q(=,) C
Q(N). Let f = o0(N), so f is a power of 2, and since A is linear, we have Q(\) = Qy.
Then |Q(X) : Q(=))| divides |Qf : Q| = ¢(f), where ¢ is Euler’s function. Since ¢(f)
is a power of 2, we deduce that the Galois group G = Gal(Q(\)/Q(Z,)) is a 2-group.
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To complete the proof of (a), we must show that G is trivial, so suppose that o € G.
Since o fixes =), it permutes the irreducible constituents of this character, and thus
A% = )\ for some element g € G.

Factoring g = gogor, we see that gs lies in P, so go fixes A. We can thus assume that
g = g, s0 o(g) is some odd integer r. The actions of G and G on characters of P
commute, and hence A = A9 = \?" | and we deduce that 0" = 1. Now o(c) is a power
of 2 that divides the odd number r, and we conclude that o = 1, so G is trivial, as
required.

For (b), we have by hypothesis that f > 4, and we proceed by induction on f.
If f =4, then Q(Z,) = Q4 = Q(¢), which has degree 2 over Q. For some element
r € G, we have Z,(z) is not rational, so Q < Q(=,(z)) € Q(i), and it follows that
Q(Ex(x)) = Q(7), and thus i € Q(Ex(x)), as required.

Now assume that f > 4. Then o(\?) = f/2, so we can apply the inductive hypothesis
with A? in place of A, and we conclude that there exists z € P such that i € Q(Z)2(x)).
Finally, we observe that Zy2(z) = Zy(2?), and this completes the proof. O

Corollary 5.2. Let x € Irr(G), where x(1) is odd and x is not 2-rational, and assume
that G has a normal Sylow 2-subgroup. Then there exists a 2-element x € G such that

i € Qx(z)).

As was mentioned, we will not need the full strength of Corollary 5.2; we will use
only the weaker conclusion that i € Q(x).

Proof of Corollary 5.2. Let P € Syl,(G), so P < G. Since x(1) is odd, we see that
xp has a linear constituent A\, and so by Clifford’s theorem, yp is a nonzero rational
multiple of the character =y, as defined in Lemma 5.1.

By hypothesis, y is not 2-rational, and it follows by Lemma 2.1 that A\ is not 2-
rational, and thus o(\) > 4. By Lemma 5.1(b), there exists an element x € P such

that i € Q(Ex(x)) = Q(xp(z)) = Q(x(x)), as required. O

We are now ready to discuss the Galois-McKay conjecture. Given a prime p and
a positive integer n, let H,, be the subgroup of Gal(Q,,/Q) consisting of those auto-
morphisms of the field @, that send each p’-order root of unity £ to some power &,
where, ¢ is an arbitrary power of p depending on &£. In particular, observe that the
automorphisms of Q,, that fix all p-roots of unity lie in #H,,, so Gal(Q,,/Q..) C Hpn,
where m = n,y.

Given a prime number p and a finite group X, recall that the set of irreducible
characters of X having p’-degree is denoted Irr, (X), and that the “ordinary” McKay
conjecture asserts that for every finite group G and prime p, we have |Irr,(G)| =
|Irr,y (Ng(P))|, where P is a Sylow p-subgroup in G.

The Galois-McKay conjecture (see Conjecture 9.8 of [N2]) strengthens the McKay
conjecture by asserting that there is a bijection f : Irry (G) — Irr,y (Ng(P)) such that
f(x?) = f(x)° for every field automorphism o € H, ,, where n is a multiple of |G].

Next, we concentrate on the prime p = 2. Let n be a positive integer, and write
m = ny. Also, write H = Ha,,, and let F = Q¥ be the fixed-field of H. Observe that
F C Q,, because Gal(Q,,/Q,,) C H.
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Now if d is a positive square-free odd integer, we consider the “Gauss sum”

sa=) ("
i=0
where ¢ = exp(27i/d). It is well known, and not very hard to prove, that s; = ++/€4d,
where, as in the introduction, ¢; = 1, where ¢; = d (mod 4). It follows that \/e4d lies
in the cyclotomic field Q.

Lemma 5.3. Let d > 1 be a square-free odd integer divisor of n, and note that the
Gauss sum sq lies in Q,. Assume that there is at least one prime divisor p of d such
that 2 is not a square modulo p. Then there exists an element o € H such that o fizes
all 2-power roots of unity in Q, and o(sq) = —Sq4.

Proof. First, recall that for odd integers t, we have ¢, =t mod 4, so we have
GdEdZHTEHET (mod 4),
where r runs over the distinct prime divisors of d. It follows that

€qd = HETT,
T

and thus up to a sign, sy is the product of the Gauss sums s, as r runs over the prime
divisors of d.

Suppose that p is a prime divisor of d such that 2 is not a square modulo p, and let
o be the unique automorphism of Q,, that fixes p’-roots of unity and squares p-power
roots of unity, so in particular, o fixes all 2-power roots of unity. Then ¢ € H, and o
fixes s, for all prime divisors r # p of d. We will show that o(s,) = —s,, s0 0(s4) = —Sa,
as required.

Now let ¢ be a primitive p-th root of unity so (up to a possible sign ambiguity) we
have

p—1 p—1 p—1 p—1
2 2 2 2
spto(s) =Y Y =24 Y .
k=0 k=0 k=1 k=1
Since p is prime, we see that as k runs over the set {1,...,p— 1}, the values of k? are

all of the (p—1)/2 quadratic residues modulo p, each taken twice. Also, by assumption,
2 is not a square modulo p, so the values of 2k? are all of the (p — 1)/2 nonresidues
modulo p, each taken twice. We conclude that

p—1 p—1 p—1 p—1
spto(s) =24+ F=2+2) " =2> =0
k=1 k=1 j=1 j=0
as wanted. O

Lemma 5.4. Let d > 1 be a square-free integer, and suppose that i and \/d are contained
in Q, for some positive integer n. Let F be the fized field of H, as above, write E =
Q(1, \/E), and assume that FNE > Q. Then d is odd and 2 is a square modulo each

prime divisor of d.
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Proof. Since Q(v/d) is a real field, we have Q(v/d) # Q(i), and thus |[E : Q| = 4. Tt
follows that E has exactly three subfields having degree 2 over Q, namely Q(i), Q(V/d)
and Q(@\/E) By assumption, ENF > Q, so at least one member of the set {3, Vi, Z\/E}
must lie in FF.

The automorphism of Q,, that fixes odd-order roots of unity and maps each 2-power
root of unity to its reciprocal lies in H, and it follows that ¢ & F, so either v/d or iv/d
lies in FF.

Suppose now that d is even. Write d = 2e, and note that since d is square-free, e
must be odd. By assumption, v/d lies in Q,,, so it follows by Theorem 2.8 that 8 divides
n, and thus Qg C Q,,.

Now Qg has an automorphism that fixes i and maps /2 to —v/2, and it is easy to
see by elementary Galois theory that this automorphism extends to an automorphism
7 of Q, that fixes all odd-order roots of unity. Then 7 € H, so 7 acts trivially on F,
and thus 7 fixes at least one of vd or iv/d.

Now 7 fixes i, and it follows that 7 fixes v/d. Also, since vd = v/2y/e and 7(v/2) =
—/2, we see that 7(\/e) = —y/e.

The Gauss sum s, lies in QQ., and since 7 fixes odd-order roots of unity, it follows
that 7 fixes s.. Also, either s, = ++/e or s, = +iy/e, so 7 fixes at least one of /e or
iy/e. This is a contradiction, however, because 7 fixes i, but it does not fix \/e. We
deduce that d is odd, as required.

Now suppose that 2 is not a square modulo p for some prime divisor p of d, and let
o € H be as in Lemma 5.3, so o fixes ¢ and o(sq) = —s4, where sy is the Gauss sum
for d.

Either v/d or iv/d lies in F, so o fixes at least one of these elements. Also, o fixes i,
and it follows that o fixes both v/d and iv/d. One of these elements is s4 (up to a sign)
and thus o fixes s;. This is a contradiction, however, since o(s;) = —sq and s4 # 0. It
follows that 2 is a square modulo p for each prime divisor p of d. O

The following result is a weaker version of Theorem B. Its proof does not use the
simple group classification, but instead it assumes the validity of the (unproved) Galois-
McKay conjecture for the prime 2.

Theorem 5.5. Let x € Irr(G), where G is a finite group, and let v = V/ed, where
e =241 and d > 1 is a square-free integer. Then

(a) If x is 2-rational and v € Q(x), then d is odd and € = €4, where as before, €, = d
mod 4.

(b) If x is not 2-rational, suppose x has odd degree, and assume that either 2 divides
d, or else that 2 is not a square for some prime divisor p of d. Then Q(x) #

Q(v)-

Note that Theorem 5.5 differs from Theorem B in just two respects. Theorem 5.5(b),
requires the assumption that either 2 divides d, or else that 2 is not a square modulo
p for at least one prime divisor p of d. Also, there is no guarantee in Theorem 5.5(b)

that i € Q(x).
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Proof of Theorem 5.5 assuming Galois-McKay. In the case where y is 2-rational, the
result follows from Corollary 2.11, exactly as in the proof of Theorem B. We can thus
assume that x is not 2-rational, that it has odd degree, that either d is even or else 2
is not a square modulo some prime divisor p of d, and that Q(x) = Q(v), and we work
to derive a contradiction.

Let n = |G| and m = ny. Also, let P € Syl,(G), and write N = Ng(P). By the
Galois-McKay conjecture for the prime 2, there exists an odd-degree character x* €
Irr(N) such that the stabilizers in H of x and x* are identical, and thus F(x) = F(x*).

Since y is not 2-rational, F(x) € Q,, and thus F(x*) € Q,,. We have seen, however,
that F C Q,,, and we deduce that y* is not 2-rational. Also, since x* has odd degree,
we can apply Corollary 5.2 to the group N to deduce that

i€ Q(x") CF(x") =F(x) =F(v)

where the final equality holds because Q(x) = Q(v).

Now write E = Q(4, ), and note that E is the field Q(i,v/d) of Lemma 5.4. Observe
that E C F(v) because F(v) contains both ¢ and ~. Also, since v € E, we see that no
proper subfield of F(«y) contains both E and F. By Theorem 18.22 of [I1], therefore, we
have |E : ENTF| = |F(v) : F| < 2, where the inequality holds because 72 € Q C F.

Now [E:Q|=4and [E:ENF| <2,s0 ENF > Q. We can thus apply Lemma 5.4
to deduce that d is odd and that 2 is a square modulo each prime divisor of d. This is
the desired contradiction. [J
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