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Abstract. In this paper we clarify the quadratic irrationalities that can be admitted
by an odd-degree complex irreducible character χ of an arbitrary finite group. Write
Q(χ) to denote the field generated over the rational numbers by the values of χ, and

let d > 1 be a square-free integer. We prove that if Q(χ) = Q(
√
d) then d ≡ 1 (mod

4) and if Q(χ) = Q(
√
−d), then d ≡ 3 (mod 4). This follows from the main result of

this paper: either i ∈ Q(χ) or Q(χ) ⊆ Q(exp(2πi/m)) for some odd integer m ≥ 1.

1. Introduction

Browsing through character tables of finite groups, one never encounters an odd-
degree irreducible character with field of values Q(

√
2) or Q(

√
−2). Of course, Q(

√
−3)

occurs as the field of values of a linear character of order 3, but no example of Q(
√
3)

is found. Also, although the alternating group A5 has odd-degree irreducible characters
whose field of values is Q(

√
5), it seems that Q(

√
−5) shows up as the field of values

only for certain even-degree irreducible characters. A pattern is emerging, and one
naively thinks that such a simple-to-state fact should have an easy proof.

Recall that if χ ∈ Irr(G) is an irreducible complex character of a finite group G, then
Q(χ) denotes the field of values of χ, that is, the field generated over Q by the values
of χ.

Theorem A. Let G be a finite group, and let χ ∈ Irr(G), where χ(1) is odd. Also, let
d > 1 be a square-free integer.

(a) If Q(χ) = Q(
√
d) then d ≡ 1 (mod 4).

(b) If Q(χ) = Q(
√
−d) then d ≡ 3 (mod 4).

Of course, since d is square-free, we cannot have d ≡ 0 (mod 4), but note that it is a

consequence of Theorem A that if d ≡ 2 (mod 4), then Q(χ) cannot be either Q(
√
d)

or Q(
√
−d).
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Note that both (a) and (b) of Theorem A can occur. Consider, for example, G =
PSL2(p), where p is an odd prime. If p ≡ 1 (mod4), there exists χ ∈ Irr(G) with
χ(1) = (p + 1)/2, and Q(χ) = Q(

√
p). If p ≡ 3 (mod 4), however, there exists χ ∈

Irr(G) with χ(1) = (p− 1)/2 and Q(χ) = Q(
√−p).

The key to our proof of Theorem A is to consider separately the cases where the
character χ is or is not 2-rational. (Recall that a character χ is said to be 2-rational if
Q(χ) is contained in some cyclotomic field Qm = Q(exp(2πi/m)), where m is odd and
i =

√
−1.)

Let d > 1 be an odd integer. For notational convenience, we write εd = ±1, where
εd ≡ d(mod 4). (Equivalently, εd = (−1)(d−1)/2.) Using this notation, we can offer a
more complete version of Theorem A.

Theorem B. Let γ =
√
εd, where ε = ±1 and d > 1 is a square-free integer, and let χ

be a character of some finite group G.

(a) If χ is 2-rational and γ ∈ Q(χ), then d is odd, and ε = εd.
(b) If χ is not 2-rational and it is irreducible of odd degree, then i ∈ Q(χ) and

Q(χ) 6= Q(γ).

To see why Theorem A is a consequence of Theorem B, observe that in Theorem A,
we are assuming that Q(χ) = Q(γ), where γ =

√
εd for some sign ε and square-free

integer d > 1. Theorem B(b) guarantees that χ is 2-rational, and by Theorem B(a) we
see that d is odd and ε = εd, as required for Theorem A.

Theorem B is an easy consequence of the following main result of this paper, whose
proof relies on the simple group classification.

Theorem C. Suppose that G is a finite group, and χ ∈ Irr(G) has odd degree. If χ is
not 2-rational, then i ∈ Q(χ).

We will need the following result, which follows from results of [NT3] and [M], and
whose proof also relies on the simple group classification.

Theorem D. Let G be a finite group with a Sylow 2-subgroup P . Then exp(P/P ′) ≤ 2
if and only if all odd-degree irreducible characters of G are 2-rational.

Finally, we will also need to establish the following result on quasi-simple groups.
Recall that G is said to be quasi-simple if G is perfect and G/Z(G) is a simple group.

Theorem E. Suppose that G is a quasi-simple finite group. Assume that χ ∈ Irr(G)
has odd degree and is not 2-rational. Then there exists a 2-element g ∈ G such that
i ∈ Q(χ(g)).

Note that in Theorem E, we show not only that i ∈ Q(χ), which establishes The-
orem C for quasi-simple groups, but also, we prove more: that i ∈ Q(χ(g)) for some
2-element g of G. This suggests the possibility that Theorem C could be strengthened
to show for an arbitrary finite group G that if χ ∈ Irr(G) has odd degree and is not
2-rational, then i ∈ Q(χ(g)) for some 2-element g ∈ G. It is not clear, however, even for
solvable groups, if this enhanced version of Theorem C is true, but not surprisingly, the
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original statement of Theorem C can be proved for solvable groups without appealing
to the simple group classification. In fact, the enhanced version of this theorem holds
for groups G having a normal Sylow 2-subgroup. (See Section 5 below.)

The (as yet unproved) Galois–McKay conjecture [N1] offers a connection between
the fields of values of odd-degree characters of a finite group G and those of its 2-Sylow
normalizer. As we will discuss in Section 5, some cases of Theorem B are explained by
this conjecture, but not all.

2. Proofs assuming Theorem E

We follow the notation in [I2] for characters. If G is a finite group, then Irr(G) is
the set of its irreducible complex characters. If N is a subgroup of G and θ ∈ Irr(N),
then Irr(G|θ) is the set of the irreducible constituents of the induced character θG. By
Frobenius reciprocity, this is the set of the irreducible characters χ of G such that the
restriction χN contains θ as an irreducible constituent, and in this case, we say that χ
“lies over” θ. If n > 0 is an integer and p is a prime, we uniquely factor n = npnp′ ,
where np is the largest power of p dividing n. If g is an element of finite order of a group
G, then we can uniquely write g = gpgp′ , where gp, gp′ ∈ 〈g〉 have orders a p-power and
not divisible by p, respectively. In particular, this applies if G is the group of linear
characters of some group.

Lemma 2.1. Let G be a finite group, and let N be a normal subgroup of G. Suppose that
G/N has odd order. Let θ ∈ Irr(N) be 2-rational. Then every character χ ∈ Irr(G|θ)
is 2-rational.

Proof. We proceed by induction on |G|. Let T be the stabilizer of θ in G, and let
η ∈ Irr(T |θ) be the Clifford correspondent of χ with respect to θ, so ηG = χ. If T < G,
then η is 2-rational by the inductive hypothesis. Since Q(χ) ⊆ Q(η), we deduce that χ
is 2-rational, as required. We can assume, therefore, that T = G, so θ is invariant in G.
Now suppose that N ⊆ H < G. If ψ is an irreducible constituent of χH , then ψ

lies over θ, so by the inductive hypothesis, ψ is 2-rational. For all elements x ∈ H,
therefore, χ(x) has the form

∑
ψ ψ(x) and thus χ(x) is 2-rational.

It remains to show that χ(x) is 2-rational if x lies in no proper subgroup of G
containing N . We can assume, therefore, that G = N〈x〉, so G/N is cyclic, and since θ
is invariant in G, Corollary 11.22 of [I2] guarantees that θ extends to G. By Corollary
6.17 of [I2], the group of linear characters of G/N acts transitively by multiplication on
Irr(G|θ).

Let n = |G|, and m = |G|2′ , and let G = Gal(Qn/Qm). Then G is a 2-group, and
we let σ ∈ G. Since θσ = θ, both χ and χσ lie in Irr(G|θ), and thus χσ = χλ for some
linear character λ of G/N .

Since |G/N | is odd, λm is principal. Then λ has values in Qm, so λ
σ = λ, and we

have χσ
m

= χλm = χ. Also, since σ has 2-power order, we have σ ∈ 〈σm〉, and thus σ
fixes χ. Then G fixes χ, so χ has values in Qm, as required. �

Lemma 2.2. Suppose that G is a finite group and N / G. Let λ, θ ∈ Irr(N) be G-
invariant, and assume that λθ is irreducible and extends to G. If θ extends to G, then
λ extends to G.
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Proof. Let χ ∈ Irr(G) be an extension of θ. By the Gallagher correspondence (Theorem
6.16 of [I2]), the map β 7→ βχ defines a bijection Irr(G|λ) 7→ Irr(G|λθ). Suppose that
ψ ∈ Irr(G) extends λθ, and let β ∈ Irr(G|λ) be such that βχ = ψ. Then β(1)θ(1) =
β(1)χ(1) = ψ(1) = λ(1)θ(1), and we conclude that β(1) = λ(1). Since β lies over λ, we
conclude that βN = λ. �

Lemma 2.3. Let p be a prime. Suppose that G is a finite group and N / G. Let
λ, θ ∈ Irr(N) be G-invariant, and assume that λ is linear and λθ extends to G. Suppose
that χ ∈ Irr(G) has p′-degree and lies over θ ∈ Irr(N).

(a) If µ = λp′, then µθ extends to a character ψ ∈ Irr(G). Also, we can write
χ = ψξ, where ξ ∈ Irr(G|µ−1).

(b) If G/N is perfect and θ is p-rational, then ψ is p-rational.

Proof. (a) Let P/N be a Sylow p-subgroup of G/N . Since χ has p′-degree, some irre-
ducible constituent τ of χP has p′-degree. Then τ(1) and |P : N | are relatively prime,
so τN is irreducible by Corollary 11.29 of [I2]. Then τN = θ, and thus θ extends to P .
Also, λθ extends to G by hypothesis, so λθ extends to P , and we conclude by Lemma
2.2 that λ extends to P . It follows that λp extends to P because λp is a power of λ.

If Q/N is a Sylow q-subgroup of G/N , where q 6= p, Corollary 6.28 of [I2] guarantees
that λp extends to Q, and it follows by Corollary 11.31 of [I2] that λp extends to G.
Now λθ = λpλp′θ extends to G, and since λp also extends to G, we deduce from Lemma
2.2 that λp′θ = µθ extends to some character ψ ∈ Irr(G).

Now write ϕ = µθ so ψN = ϕ and θ = µ−1ϕ. Then χ ∈ Irr(G|µ−1ϕ), and so by
Theorem 6.16 of [I2], there exists a character ξ ∈ Irr(G|µ−1) such that χ = ξψ, and
this completes the proof of (a).

(b) By hypothesis, θ is p-rational, and since µ = λp′ is also p-rational, we see that ϕ is
p-rational. We are assuming that G/N is perfect, so by Gallagher’s theorem (Corollary
6.17 of [I2]) we deduce that ψ is the unique extension of ϕ to G. The Galois group
Gal(Q(ψ)/Q(ϕ)) thus fixes ψ, so the Galois group is trivial, and thus Q(ψ) = Q(ϕ).
We conclude that ψ is p-rational, as required. �

We will use the following well-known facts. We write R for the ring of algebraic
integers in C.

Lemma 2.4. Let χ be a character of a finite group G, and let p be a prime contained in
a maximal ideal M of R. Given g ∈ G, we have χ(g) ≡ χ(gp′) (mod M). In particular,
if g is a p-element, then χ(g) ≡ χ(1) (modM), and so if χ(g) = 0, then χ(1) is divisible
by p.

Proof. See, for instance, Lemma 4.19(b) of [N2]. �

Next is a standard result from the theory of projective representations.

Theorem 2.5. Let N / G, where G is a finite group, and let θ ∈ Irr(N) be G-invariant.
Then there is a finite group H and a surjective homomorphism π : H → G such that

Z = ker(π) ⊆ Z(H). Furthermore, if K = π−1(N) and θ̂ ∈ Irr(K/Z) corresponds to θ

via the induced isomorphism K/Z → N , then θ̂ is H-invariant, and there is a linear

H-invariant character λ ∈ Irr(K) such that λθ̂ extends to H.
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Proof. This is the content, for instance, of Theorem 5.6 of [N2]. �

The following result, which assumes Theorem E, will be essential in our proof of
Theorem C. In Lemma 2.1 we assumed that G/N has odd order, but now we assume
that G/N is simple.

Theorem 2.6. Suppose that N / G and let θ ∈ Irr(N) be G-invariant and 2-rational,
with θ(1) odd. Suppose that G/N is a non-abelian simple group, and let χ ∈ Irr(G|θ)
have odd degree. If χ is not 2-rational, then there exists a 2-element x ∈ G such that
i ∈ Q(χ(x)).

Proof. By Theorem 2.5, there is a finite group H with a central subgroup Z such that
H/Z = G (where we identify G with H/Z). Furthermore, if K/Z = N , then there
is a linear H-invariant character λ ∈ Irr(K) such that λθ extends to H, and θ is H-
invariant. Notice that now we view θ as an irreducible character of K with Z in its
kernel. Also, χ ∈ Irr(H) contains Z in its kernel. By Lemma 2.3, if µ = λ2′ , we
know that µθ extends to a 2-rational character ψ ∈ Irr(H). Furthermore, we can write
χ = ψξ for some character ξ ∈ Irr(H|µ−1). Notice that ξ and ψ have odd-degree, since
χ(1) is odd. Also, ξ is not 2-rational, since ψ is 2-rational and χ is not.

Write L = ker(µ−1), so K/L is a central odd-order subgroup of H/L because µ−1 is
invariant in H and has odd order. Let W/L be the final term of the derived series of
H/L, so W/L is perfect. Now KW = H because H/K is a nonabelian simple group,
and since W/(K ∩W ) ∼= H/K is simple and (K ∩W )/L is central in W/L, we see that
W/L is quasi-simple.

Now ξW is irreducible because KW = H and K/L is central in W/L. Also, |H :
W | = |K : (K ∩W )|, which divides |K : L|, so |H : W | is odd. It follows that ξW is
not 2-rational because otherwise, ξ would be 2-rational by Lemma 2.1, and this is not
the case.

By Theorem E applied to the character ξW of W/L, we deduce that there exists an
element w ∈ W such that w has 2-power order modulo L, and i ∈ Q(ξ(w)). Also,
observe that we can assume that w has 2-power order. Now χ(w) = ψ(w)ξ(w), and
ψ(w) ∈ Q because w has 2-power order and ψ is 2-rational. Furthermore, ψ(w) 6= 0
by Lemma 2.4 because w is a 2-element and ψ(1) is odd. It follows that Q(χ(w)) =
Q(ξ(w)), and the proof is complete since we can take x to be the image of w inH/Z = G,
so x is a 2-element and we have i ∈ Q(ξ(w)) = Q(χ(w)) = Q(χ(x)). �

Next we prove Theorem C (assuming Theorem E).

Theorem 2.7. Suppose that G is a finite group, and χ ∈ Irr(G) has odd degree. If χ
is not 2-rational, then i ∈ Q(χ).

Proof. We argue by induction on |G|. Let N be a normal subgroup of G. Let θ be an
irreducible constituent of χN and let T be the stabilizer of θ in G. Also, let ψ ∈ Irr(T ) be
the Clifford correspondent of χ over θ, so ψG = χ. Since Q(χ) ⊆ Q(ψ) (by the induction
formula), we know that ψ is not 2-rational. Notice that |G : T | is odd because χ(1) is
odd. We claim that |Q(ψ) : Q(χ)| is odd. Otherwise, let σ ∈ Gal(Q(ψ)/Q(χ)) have
order 2. Then χσ = χ. Thus θσ = θg for some element g ∈ G, using Clifford’s theorem.
Notice that g ∈ NG(T ). Recall that the action of G on Irr(N) and the Galois action
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commute. Now θ = θσ
2
= θg

2
, so g2 ∈ T . Since NG(T )/T has odd order, it follows that

g ∈ T , so θσ = θg = θ, and thus σ = 1. This is a contradiction, and so |Q(ψ) : Q(χ)| is
odd, as claimed.

Assume that T < G. In this case, i ∈ Q(ψ) by the inductive hypothesis. Since
|Q(ψ) : Q(χ)| is odd, we deduce that i ∈ Q(χ), as required.

Thus, we may assume that if N is any normal subgroup of G, then χN = eθ. In
particular, Q(θ) ⊆ Q(χ). Also, if N < G, we may assume that θ is 2-rational, by the
inductive hypothesis.

Suppose that N = O2(G) < G. Since χ has odd-degree, we see that θ has odd-

degree. By Theorem 6.28 of [I2], there is a unique extension θ̂ ∈ Irr(G) of θ to G

with determinantal order not divisible by 2. By uniqueness, notice that θ̂ is 2-rational,
because θ is. By the Gallagher correspondence, it follows that χ = λθ̂, where λ ∈
Irr(G/N) is linear (because G/N is a 2-group and χ(1) is odd). Since χ is not 2-
rational, λ has 2-power order exceeding 2. In particular, λ(g) = i for some 2-element

g ∈ G. Since g is a 2-element and θ̂ is 2-rational, we see that θ̂(g) is a rational number.

By Lemma 2.4, we have that θ̂(g) 6= 0. We deduce that i ∈ Q(χ) in this case.
If G/N has odd order, where N is proper in G, then since θ is 2-rational, we can

apply Lemma 2.1 to deduce that χ is 2-rational, contrary to hypothesis.
Thus, by taking a maximal normal subgroup N of G, we may assume that G/N is a

non-abelian simple group. Now we apply Theorem 2.6 to conclude that i ∈ Q(χ). �

Next we see that Theorem B is an easy consequence of Theorem C, using the following
well-known result.

Theorem 2.8. [W, Corollary 4.5.5] Let m ≥ 1 be an integer. Suppose that f is a
square-free integer. Set f ′ = |f | if f ≡ 1 (mod 4), and otherwise set f ′ = 4|f |. Then
Q(

√
f) ⊆ Qm if and only if f ′ divides m.

Proof of Theorem B. Let χ be a 2-rational character of a finite group G, and let γ =√
εd, where ε = ±1 and d > 1 is a square-free integer. Assume that γ ∈ Q(χ), and

let m ≥ 1 be an odd integer such that Q(χ) ⊆ Qm. Let f = εd, and let f ′ be as in
Theorem 2.8. By Theorem 2.8, we have that f ′ divides m. Since m is odd, we cannot
have that f ′ = 4|f |. Hence f ≡ 1 (mod 4). Therefore εd ≡ 1 (mod 4). Thus d is odd
and ε = εd. This proves Theorem B(a). To prove Theorem B(b), we assume now that
χ is irreducible and has odd degree, and that it is not 2-rational. We must show that
i ∈ Q(χ) and that Q(χ) does not have the form Q(

√
εd), where ε = ±1 and d > 1 is

a square-free number. By Theorem 2.7, we have that i ∈ Q(χ). Suppose finally that

Q(χ) = Q(
√
εd). Then i ∈ Q(

√
εd), and thus ε = −1. Hence i ∈ Q(i

√
d) and therefore√

d ∈ Q(i
√
d). Thus Q(i,

√
d) = Q(i

√
d), and this is impossible because these fields

have different degrees over Q. �

3. Proof of Theorem D

In this section, we give a proof of Theorem D, which we will need in order to prove
Theorem E. This theorem is a direct consequence of the main results of [NT3] and [M].
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We review some of these results for the reader’s convenience. We use Qab to denote the
field generated over Q by all complex roots of unity.

In [IN], Isaacs and Navarro conjectured the following.

Conjecture 3.1. Let e ≥ 1 be an integer. Let σe be the automorphism of Qab that fixes
roots of unity of order not divisible by p, and sends p-power roots of unity ξ to ξ1+p

e

.
Let G be a finite group, and let P ∈ Sylp(G). Then the exponent of P/P ′ is less than
or equal to pe if and only if all the irreducible characters of p′-degree of G are σe-fixed.

It has been recently proved in [NT3, Theorem B] that if the exponent of P/P ′ is
less than or equal to pe, then all the irreducible characters of p′-degree of G are σe-
fixed, thereby establishing one direction of Conjecture 3.1. Furthermore, it is proved
in the same paper [NT3, Theorem C] that the converse holds provided that it is true
for almost quasi-simple groups. In [M], this case has been solved for the case p = 2,
therefore establishing the full Conjecture 3.1 for p = 2. We will use this fact below in
Theorem 3.3.

We need an easy lemma.

Lemma 3.2. Let m ≥ 2 be an integer. Then the group Γ = (Z/2mZ)× is generated by
the two elements 3̄ = 3 + 2mZ and 5̄ = 5 + 2mZ.

Proof. The statement is obvious for m = 2, so we will assume m ≥ 3. Then |Γ| = 2m−1

and both 3̄ and 5̄ have order 2m−2 in Γ. However, 3̄ /∈ 〈5̄〉, hence Γ = 〈3̄, 5̄〉. �

Now we prove Theorem D, which we restate.

Theorem 3.3. Let G be a finite group with a Sylow 2-subgroup P . Then exp(P/P ′) ≤ 2
if and only if all odd-degree irreducible characters of G are 2-rational.

Proof. Again, for any integer e ≥ 1, let σe be the automorphism of the field Qab that
fixes roots of unity of odd order, and sends 2-power roots of unity ξ to ξ1+2e .

Suppose that all odd-degree irreducible characters of G are 2-rational. In particular,
they are all σ1-invariant. Hence exp(P/P ′) ≤ 2 by [NT3, Theorem B].

Conversely now, suppose that exp(P/P ′) ≤ 2. Let χ ∈ Irr(G) have odd-degree. By
Conjecture 3.1 for p = 2, we have that χ is invariant under both σ1 and σ2. Write
|G| = 2mn, where n is odd. By Lemma 3.2, we have that the restrictions of σ1 and σ2
to Q|G| generate Gal(Q|G|/Qn). Hence Q(χ) is contained in Qn, and this proves that χ
is 2-rational. �

4. Proof of Theorem E

In this section we prove Theorem E, which we restate:

Theorem 4.1. Suppose that G is quasi-simple, and that χ ∈ Irr(G) is not 2-rational
and has odd degree. Then there exists a 2-element g ∈ G such that i ∈ Q(χ(g)).
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4.1. Further reductions.

Lemma 4.2. The following statements hold.

(i) It suffices to prove Theorem 4.1 in the case where Z(G) is of odd order and
exp(P/P ′) > 2 for P ∈ Syl2(G).

(ii) Furthermore, Theorem 4.1 holds in the case G/Z(G) ∼= 2F4(2)
′.

Proof. (i) Modding out by Ker(χ) we may assume that χ is faithful. Since χ(1) is odd,
we then have that |Z(G)| is odd. Furthermore, since χ is not 2-rational, exp(P/P ′) > 2
by Theorem C.

(ii) Since 2F4(2)
′ has trivial Schur multiplier, we have that G ∼= 2F4(2)

′. Now the
statement can be checked using [Atlas]; indeed, g can be chosen to be of order 32. �

Proposition 4.3. Let G be a finite simple group and P ∈ Syl2(G). Then exp(P/P ′) ≤ 2
for P ∈ Syl2(G) if one of the following conditions holds.

(i) G = An for any n ≥ 5.
(ii) G any of the 26 sporadic simple groups.
(iii) G 6∼= 2F4(2)

′ a simple group of Lie type in characteristic 2.
(iv) q any odd prime power. Furthermore, G = PSp2m(q) with m ≥ 1, PΩ±

n (q) with
n ≥ 7, PSL2m(q) or PSU2m(q) with m ≥ 2, G2(q),

2G2(q),
3D4(q), F4(q), E8(q),

or the (simple) group E7(q).
(v) ε = ±1, q any prime power such that 4|(q + ε), and G = PSLεn(q) with n ≥ 3,

or G is the (simple) group Eε
6(q).

Proof. All these statements were proved in [NT1]. Case (i), respectively (ii), is handled
in Lemmas 3.3 and 3.4 of [NT1], respectively. Case (iii) is treated in [NT1, Proposition
4.5]. For (iv), see Propositions 3.5, 3.7, 3.8, and 4.1 of [NT1]. Finally, (v) is proved in
Propositions 3.8, 4.1, and Corollary 3.9 of [NT1]. �

Corollary 4.4. It suffices to prove Theorem 4.1 in the case where q is an odd prime
power, q ≡ ε(mod4) for some ε = ±1, and either G = SLεn(q) with n ≥ 3 not a
2-power, or G = Eε

6(q)sc.

Proof. Let S = G/Z(G) so that S is simple. By Lemma 4.2, we may assume that |Z(G)|
is odd, S 6∼= 2F4(2)

′, and that exp(P/P ′) > 2 for P ∈ Syl2(G). Hence, exp(Q/Q′) > 2
for Q ∈ Syl2(S). This implies by Proposition 4.3 that there is some q ≡ ε(mod4)
such that either S ∼= PSLεn(q) with n ≥ 3 not a 2-power, or S ∼= Eε

6(q) (the simple
group). Inspecting the Schur multiplier of S in those cases, we see that G is a quotient
of SLεn(q) or E

ε
6(q)sc. Inflating χ if necessary, we may thus assume that G = SLεn(q) or

Eε
6(q)sc. �

4.2. Special linear and unitary groups. In this subsection we prove Theorem 4.1
for G = SLεn(q). Let n ∈ Z≥1 and consider the 2-adic decomposition

(4.1) n = 2m1 + 2m2 + . . .+ 2mr ,

with m1 > m2 > . . . > mr ≥ 0. In what follows, we will refer to the summands 2mi in
(4.1) as 2-adic parts of n. A decomposition n = n1 + n2 + . . .+ nk of n will be called a
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proper decomposition of n, if

k ≥ 1, ni ∈ Z, n1 > n2 > . . . > nk ≥ 1,

and every 2-adic part of every summand ni, 1 ≤ i ≤ k, is also a 2-adic part of n. By
[GKNT, Lemma 2.2], the latter condition is equivalent to requiring n!/

∏k
i=1 ni! be odd.

For a fixed ε = ±1, let µq−ε = 〈ζ〉 be the cyclic subgroup of order q − ε of F×
q2 , and

let α := ζ(q−ε)2′ so that 〈α〉 = O2(µq−ε). Fix a (q − ε)th primitive root of unity ζ̃ ∈ C,

and set α̃ := ζ̃(q−ε)2′ , a (q − ε)th2 roof of unity in C. For s ∈ µq−ε, let [s] ∈ Z/(q − ε)Z
be such that s = ζ [s]. We will consider the map

F : x ∈ F
×

q 7→ xqε.

We will also use the Dipper-James labeling for irreducible characters of GLn(q) as in
[GKNT, (2.2)], and its analogue for a subset of Irr(GUn(q)) as explained in [GKNT,
Lemma 5.2].

To handle groups of type A we will need the following two statements.

Lemma 4.5. Let q be an odd prime power, ε = ±1, n ∈ Z≥3 not a 2-power, and let

G := SLεn(q) � GLεn(q) =: G̃. Let χ ∈ Irr(G) be of odd degree. Then the following
statements hold.

(i) χ extends to χ̃ ∈ Irr(G̃).
(ii) There exist a proper decomposition n = n1+n2+. . .+nk of n, k pairwise distinct

elements si ∈ µq−ε, 1 ≤ i ≤ k, and k partitions λi ` ni, 1 ≤ i ≤ k, such that

χ̃ = S(s1,λ1) ◦ S(s2,λ2) ◦ . . . ◦ S(sk,λk).
(iii) Suppose χ is not 2-rational. Then k ≥ 2 in (ii), and there exist 1 ≤ i < j ≤ k

such that (q − ε)2/2 does not divide [si]− [sj].

Proof. (i) follows from [ST, Lemma 10.2]. Next, (ii) is proved in [GKNT, Theorem 2.5]
for ε = 1 and [GKNT, Lemma 5.2] for ε = −1.

For (iii), note that, for a suitable choice of ζ̃, S(ζa, (n)) is the linear character of G̃

sending g ∈ G̃ with det(g) = ζb to ζ̃ab. Now suppose that χ is not 2-rational, but the
conclusion of (iii) does not hold. Multiplying χ̃ by S((s−1

1 , (n)), we may assume that
(q − ε)2/2 divides [si] for all i. Recall that S(1,λi) is a unipotent character of GLεni

(q)
and so takes only integer values. Since

(4.2) S(si,λi) = S(si, (ni))S(1,λi),

(see e.g. [GT, Lemma 2.9] for the case ε = 1 and the displayed formula right before
[GKNT, Lemma 5.1] in general), the condition on [si] now implies that S(si,λi) takes

values in Q(ζ̃(q−ε)2/2) = Q(q−ε)2′
, and so it is 2-rational. Note that χ̃ = ±RG

L (ψ), where

(4.3) ψ = S(s1,λ1)⊗ S(s2,λ2)⊗ . . .⊗ S(sk,λk),

that is, it is Lusztig induced from the Levi subgroup

(4.4) L = GLεn1
(q)×GLεn2

(q)× . . .×GLεnk
(q).

For future use we also note that NG̃(L) = L. Arguing as in the proof of [GKNT,
Theorem 5.3] we see that χ̃ and χ are 2-rational, a contradiction. �
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The next statement is extracted from [GLBST, Lemma 7.5] and its proof.

Lemma 4.6. Let G̃ = GLεn(q) with n ≥ 1, ε = ±1, and let q be any odd prime power.
Also fix the generator α of O2(µq−ε) as above. Then the following statements hold.

(i) If n = 2m for some m ∈ Z≥1, then there exists a regular 2-element gn(α) ∈ G̃

of determinant α, whose eigenvalues on F
n

q form an F -orbit

{λ, λqε, . . . , λ(qε)n−1}
of some generator λ of O2(F

×
qn). In particular, all eigenvalues of gn(α) lie in

Fq2m r Fq2m−1 .

(ii) For every 2-element δ of µq−ε, there exists a regular 2-element hn(δ) ∈ G̃ of

determinant δ and with all eigenvalues on F
n

q belonging to Fq2m1 , if n is written
in the form (4.1).

Theorem 4.7. Let n ∈ Z≥3 be not a 2-power, ε = ±1, and let q be an odd prime power
such that (q − ε)2 = 2a ≥ 4. Then Theorem 4.1 holds true for G = SLεn(q).

Proof. Let χ ∈ Irr(G) be of odd degree and not 2-rational. We set G̃ := GLεn(q) and

apply Lemma 4.5 to get the character χ̃ as in the lemma. We will write χ̃ = ±RG̃
L (ψ)

with ψ given in (4.3). Also let V := Fnq , respectively Fnq2 , denote the natural module

for G̃, and let Ṽ := V ⊗ Fq. Since n = n1 + . . . + nk is a proper decomposition, the
Levi subgroup L acts semisimply with pairwise non-isomorphic simple submodules on
V and on Ṽ . Also let Im denote the identity m×m-matrix over Fq2 , and set

g2m(α
−1) := (g2m(α))

−1.

(i) Case 1: There exist i0 < j0 such that 2a−2 - ([si0 ]− [sj0 ]).

Case 1a: Suppose in addition that the smallest 2-adic part 2mr of n, cf. (4.1), is
neither a 2-adic part of ni0 nor of nj0 .

Then we consider the following two elements in G̃ using Lemma 4.6:

g =
(
g2m1 (α), . . . , g2mi0 (α), . . . , g2mj0−1 (α), g2mj0 (α

−1), g2mj0+1 (α), . . . , g2mr−1 (α), h2mr (δ)
)
,

g′ =
(
g2m1 (α), . . . , g2mi0−1 (α), g2mi0 (α

−1), g2mi0+1 (α), . . . , g2mj0 (α), . . . , g2mr−1 (α), h2mr (δ)
)
,

each containing only one block g2mi (α−1) with 1 ≤ i ≤ r− 1, and with δ ∈ µq−ε chosen
so that g, g′ ∈ SLεn(q). In the case ε = −1, the above decomposition splits V into
an orthogonal direct sum of non-degenerate subspaces invariant under g, respectively
under g′.

We will show that

(4.5)
√
−1 ∈ Q(χ(g)) ∪Q(χ(g′)).

To do this, first we note that the assumption on 2mr implies that r ≥ 3. Now we show
by induction on r ≥ 3 that each of g and g′ is contained in a unique G̃-conjugate of
the Levi subgroup L given in (4.4); equivalently, if g ∈ Lx for some x ∈ G̃, then Lx is
uniquely determined by g, and similarly for g′. Note that the set of eigenvalues of g on
Ṽ has a unique F -orbit of length 2m1 , coming from the unique block g2m1 (β) of g, with
β = α±1. Recall that n = n1 + . . . + nk is a proper decomposition of n; in particular,
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each 2-adic part of each ni, 1 ≤ i ≤ k, is some 2mj , 1 ≤ j ≤ r. As n1 is the largest one,
it follows that 2m1 is a 2-adic part of n1, and

n2 + n3 + . . .+ nk ≤
m1−1∑

e=0

2e < 2m1 .

As the set of eigenvalues of the projection of g onto the factor GLεn1
(q) of Lx is F -

stable, we see that this projection has to afford the aforementioned F -orbit of length
2m1 , and this orbit accounts for the 2-adic part 2m1 of n1. Also note that the block
g2m1 (β) of g corresponds to a g-invariant subspace U which is an orthogonal direct
summand of the Hermitian space Fnq2 in the case ε = −1. Now we can mod out by U

and work inductively in V/U until we have exhausted all 2-adic parts 2mi , 1 ≤ i ≤ r−1.
The last block h2mr (δ) then contributes to the submodule of V for the last remaining
factor GLεne

(q). We have shown that all Lx-composition factors on V and on Ṽ are
uniquely determined by g. Since Lx acts semisimply on V with non-isomorphic simple
submodules, this uniqueness implies that Lx is unique.

Without loss we may now assume that g ∈ L. Since each of g2mi (α±1) and h2mr (δ) is
regular, the above argument also shows that

(4.6) CG̃(g) = CL(g).

According to [DM, Proposition 9.6],

(4.7) StG̃ · χ̃ = ±StG̃ ·RG̃
L (ψ) = ±(StL · ψ)G̃,

where StG̃, respectively StL, denotes the Steinberg character of G̃, respectively of L.
Applying this formula to g and using the fact just established that L is the unique
G̃-conjugate of L that contains g, we have that

StG̃(g)χ(g) = ±StL(g)ψ(g).

On the other hand, as g is semisimple, we have that StG̃(g) = ±|CG̃(g)|p and StL(g) =
±|CL(g)|p, see [DM, Corollary 9.3]. It follows that

(4.8) χ(g) = κψ(g), χ(g′) = κ′ψ(g′)

for some κ, κ′ ∈ Q×. (In fact, using (4.6) we see that κ = ±1 and likewise κ′ = ±1.)
It remains to evaluate ψ on g and g′, using (4.3). Since 2 - χ(1), the degrees of ψ

and of S(si,λi) are all odd, whence S(si,λi) evaluated at the GLεni
(q)-component of g

is nonzero by Lemma 2.4. Recalling the constructions of g and g′ and applying (4.2) to
S(si0 ,λi0) and S(sj0 ,λj0), we now have that

(4.9)
ψ(g)

ψ(g′)
= α̃2([si0 ]−[sj0 ]).

As |α̃| = 2a and 2a−2 - ([si0 ]− [sj0 ]), we see that ψ(g)/ψ(g′) is a root of unity of order
2f ≥ 4. On the other hand, as the unipotent characters S(1,λi) take only integer
values, (4.2) implies that ψ(g) is a Z-multiple of a 2-power root of unity. It follows
from (4.9) that this root of unity for at least one of g, g′ must have order ≥ 4, say for
g. We conclude by (4.8) that χ(g) is a Q-multiple of a 2-power root of unity of order
≥ 4, and χ(g) 6= 0 by Lemma 2.4. Thus

√
−1 ∈ Q(χ(g)), establishing (4.5).
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Case 1b: Suppose we are in Case 1, but the smallest 2-adic part 2mr of n, is a 2-adic
part, say of ni0 .

Then we consider the following two elements in G̃ using Lemma 4.6:

g =
(
g2m1 (α), g2m2 (α), . . . , g2mr−1 (α), h2mr (δ)

)
,

g′ =
(
g2m1 (α), . . . , g2mi0−1 (α), g2mi0 (α

−1), g2mi0+1 (α), . . . , g2mr−1 (α), h2mr (δα2)
)
,

with δ ∈ µq−ε chosen so that g, g′ ∈ SLεn(q). Now the same arguments as in Case 1a

show that each of g and g′ is contained in a unique G̃-conjugate of L, say g, g′ ∈ L, and
moreover (4.8) and (4.9) hold. Hence we conclude as above that (4.5) holds as desired.

(ii) Case 2: For all 1 ≤ i, j ≤ k, 2a−2 divides [si]− [sj].
Multiplying χ̃ by S(s−1

1 , (n)), we may assume that 2a−2 divides [si] for all 1 ≤ i ≤ k.
By Lemma 4.5(iii), there exist some i0 < j0 such that 2a−1 - ([si0 ] − [sj0 ]). Keeping in
mind the fact that n = n1 + . . .+ nk is a proper decomposition, we partition

{m1, . . . ,mr} = {m′
1, . . . ,m

′
s} ∪ {m′′

1, . . . ,m
′′
t },

with s+ t = r, m′
1 > . . . > m′

s, m
′′
1 > . . . > m′

t, such that
• each 2-adic part of ni with 2a−1 - [si] is among 2m

′

1 , . . . , 2m
′

s , and vice versa, and
• each 2-adic part of nj with 2a−1|[sj] is among 2m

′′

1 , . . . , 2m
′′

t , and vice versa.
Now write L = L1 × L2, where

L1 =
∏

i:2a−1-[si]

GLεni
(q), L2 =

∏

j:2a−1|[sj ]

GLεnj
(q).

We claim that, to prove (4.5), it suffices to find a 2-element g ∈ G such that, whenever
a conjugate gx of g is contained in L, then

(4.10) the projection of gx onto L1 has determinant ≡ α(mod α2).

Indeed, suppose h1h2 = gx ∈ L, with hi being the projection of gx onto Li for i = 1, 2.
As g is a 2-element, the determinant of the projection of h1 onto the direct factor
GLεni

(q) of L1 is α
ai for some ai ∈ Z, and similarly the determinant of the projection of

h2 onto the direct factor GLεnj
(q) of L2 is αbj for some bj ∈ Z. Recalling (4.2) and the

fact that unipotent characters S(1,λi) take only integer values, we see that there is an
integer κ(x) ∈ Z such that

ψ(gx) = κ(x)α̃m(x),

with

m(x) :=

( ∑

i:2a−1-[si]

[si]ai +
∑

j:2a−1|[sj ]

[sj]bj

)
≡ 2a−2

∑

i:2a−1-[si]

ai ≡ 2a−2(mod 2a−1),

since by (4.10) we have

α
∑

i:2a−1-[si]
ai = det(h1) ≡ α(mod α2).

But |α̃| = 2a, so we have that ψ(gx) = ±κ(x)
√
−1. It now follows from (4.7) that

χ(g) = κ
√
−1
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for some κ ∈ Q. Since κ 6= 0 by Lemma 2.4, we conclude that
√
−1 ∈ Q(χ(g)), as

desired.
We will now construct a 2-element g = g1g2 ∈ G∩L, with g1 ∈ L1 and g2 ∈ L2, that

satisfies (4.10).

Case 2a: We are in Case 2, but s and t are both odd.
Setting

g1 =
(
g
2m

′

1
(α), g

2m
′

2
(α−1), g

2m
′

3
(α), g

2m
′

4
(α−1), . . . , g

2
m′

s−2
(α), g

2
m′

s−1
(α−1), g2m′

s
(α)

)
,

g2 =
(
g
2m

′′

1
(α−1), g

2m
′′

2
(α), g

2m
′′

3
(α−1), g

2m
′′

4
(α), . . . , g

2
m′′

t−2
(α−1), g

2
m′′

t−1
(α), g

2m
′′

t
(α−1)

)
,

and arguing as in Case 1a, we see that L is the unique G̃-conjugate of L that contains
g. Clearly, det(g1) = α, and so we are done.

Case 2b: We are in Case 2, but s+ t is odd.
Multiplying χ̃ by S(α2a−2

, (n)) if necessary, we may assume that 2 - s and 2|t. We
set

g1 =
(
g
2m

′

1
(α), g

2m
′

2
(α−1), g

2m
′

3
(α), g

2m
′

4
(α−1), . . . , g

2
m′

s−2
(α), g

2
m′

s−1
(α−1), g2m′

s
(α)

)
,

g2 =
(
g
2m

′′

1
(α−1), g

2m
′′

2
(α), g

2m
′′

3
(α−1), g

2m
′′

4
(α), . . . , g

2
m′′

t−3
(α−1), g

2
m′′

t−2
(α), g

2
m′′

t−1
(α−1), g∗2

)
,

where

g∗2 =

{
I
2m

′′

t
, m′

s > m′′
t ,(

g
2m

′′

t
−1(α), g2m′′

t
−1(α−1)

)
, m′

s < m′′
t .

If m′
s > m′′

t or if m′′
t > m′

s + 1, then arguing as in Case 1a, we see that L is the unique
G̃-conjugate of L that contains g. As det(g1) = α, we are done in this case.

Suppose that m′′
t = m′

s + 1 and g ∈ Lx for some x ∈ G̃. Again we argue as in Case

1a and see that all the 2-adic parts 2mi > 2m
′′

t are filled up uniquely by the F -orbit of
g-eigenvalues of g2mi (α±1). This leaves three F -orbits of g-eigenvalues, of length 2m

′

s

each, and afforded by two blocks g2m′
s
(α) and one block g2m′

s
(α−1), to fill up the two

remaining 2-adic parts 2m
′′

t = 2 ·2m′

s and 2m
′

s . Clearly, all possible ways of filling up the
remaining 2-adic part 2m

′

s for Lx1 have determinant α or α−1, and so (4.10) is satisfied.

Case 2c: We are in Case 2, but s and t are even.
Multiplying χ̃ by S(α2a−2

, (n)) if necessary, we may assume that m′
s > m′′

t . We set

g1 =
(
g
2m

′

1
(α), g

2m
′

2
(α−1), g

2m
′

3
(α), g

2m
′

4
(α−1), . . . , g

2
m′

s−3
(α), g

2
m′

s−2
(α−1), g

2
m′

s−1
(α−1), g]1

)
,

g2 =
(
g
2m

′′

1
(α−1), g

2m
′′

2
(α), g

2m
′′

3
(α−1), g

2m
′′

4
(α), . . . , g

2
m′′

t−3
(α−1), g

2
m′′

t−2
(α), g

2
m′′

t−1
(α−1), g∗2

)
,

where
(
g]1||g∗2

)
is chosen to be

((
g2m′

s−1(α−1), g2m′
s−1(α3)

)
||I

2m
′′

t

)
, m′

s > m′′
t + 1,(

diag(1, α2)||I1
)
; m′

s = m′′
t + 1 = 1,((

g
2m

′′

t
−1(α), g2m′′

t
−1(α), g2m′′

t
−1(α), g2m′′

t
−1(α−1)

)
||
(
g
2m

′′

t
−1(α), g2m′′

t
−1(α−1)

))
, m′

s = m′′
t + 1 ≥ 2.

Suppose g ∈ Lx for some x ∈ G̃. Again we argue as in Case 1a and see that each 2-adic
part 2mi > 2m

′

s is filled up uniquely by the F -orbit of g-eigenvalues of g2mi (α±1).
Consider the case m′

s > m′′
t + 1. Then the smallest 2-adic part 2m

′′

t can only be
filled up by the block I

2m
′′

t
, because all other eigenvalues of g have F -orbit of length
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> 2m
′′

t . If moreover m′
s − 1 is not equal to any m′′

i , then the two blocks g2m′
s−1(α−1)

and g2m′
s−1(α3) can only fill up the 2-adic part 2m

′

s . Thus L is the unique G̃-conjugate
of L that contains g, and det(g1) = α as desired. Suppose m′

s − 1 = m′′
i . Then each

2-adic part 2m
′′

j with i < j < t must be filled up by the unique block g
2
m′′

j
(α±1) in g2.

Next, the 2-adic part 2m
′′

i can be filled up by an F -orbit of length 2m
′′

i coming from
the three remaining blocks g2m′

s−1(α−1), g2m′
s−1(α3), and g

2m
′′

i
(α±1). Any choice of such

filling gives the same determinant modulo α2. The two remaining F -orbits then fill up
the remaining 2-adic part 2m

′

s of Lx1 and thus gives the same determinant modulo α2

for the projection on g onto Lx1 , as required in (4.10).
Suppose m′

s = m′
t + 1. In this case, all 2-adic parts, but 2m

′

s = 2 · 2m′′

t and 2m
′′

t , are
already filled up uniquely by suitable blocks of g. If m′′

t = 0, then the 2-adic part 2m
′′

t

can be filled up by a g-eigenvalue 1 or α2. If m′′
t ≥ 1, then the 2-adic part 2m

′′

t can be
filled up by two F -orbits of g-eigenvalues of length 2m

′′

t −1, afforded by blocks g
2m

′′

t
−1(α)

or g
2m

′′

t
−1(α−1). Evidently, any choice of such filling gives the same determinant modulo

α2. The remaining F -orbits then fill up the remaining 2-adic part 2m
′

s of Lx1 and thus
gives the same determinant modulo α2 for the projection on g onto Lx1 , as required in
(4.10). �

This completes the proof of Theorem E for G = SLεn(q).

4.3. Groups of type E6 and 2E6(q). The rest of the section is devoted to prove
Theorem E for G = Eε

6(q)sc. First we recall a useful observation.

Lemma 4.8. Let G be a finite group with a subgroup L, and let t ∈ L be such that
CG(t

′) ≤ L for all t′ ∈ tG ∩ L. If {t1 = t, t2, . . . , ts} is a set of representatives of
L-conjugacy classes in tG ∩L and ϕ is a class function on L, then ϕG(t) =

∑s
i=1 ϕ(ti).

Proof. Write G = tmi=1Lgi with g1 = 1, gitg
−1
i ∈ L for 1 ≤ i ≤ k and gitg

−1
i /∈ L.

Then we have ϕG(t) =
∑k

i=1 ϕ(gitg
−1
i ). Suppose that gitg

−1
i is L-conjugate to gjtg

−1
j

for some 1 ≤ i, j ≤ k. Then gjg
−1
i (gitg

−1
i )gig

−1
j = xgitg

−1
i x−1 for some x ∈ L, and so

x−1gjg
−1
i ∈ CG(gitg

−1
i ) ≤ L. It follows that gjg

−1
i ∈ L, gj ∈ Lgi, and so i = j. This

shows that {gitg−1
i | 1 ≤ i ≤ k} is another set of representatives of L-conjugacy classes

in tG ∩ L, and the statement follows. �

In the treatment of groups G = GF = Eε
6(q)sc, we will make frequent use of an F -

stable subsystem subgroup D5T1 in G (with T1 denotes a one-dimensional torus). The
existence of such a subsystem can be seen from the extended E6 Dynkin diagram; it
is conjugate to a standard Levi subgroup of G, and has fixed point group Dε

5(q) · Cq−ε
under F . An explicit construction of this subgroup is also displayed in the proof of
[NT1, Proposition 4.3].

Proposition 4.9. Let G = GF = Eε
6(q)sc, and suppose that q ≡ ε(mod8). Write

(q − ε)2 = 2a. Then there exists an element t ∈ G with the following properties:

(i) t is a 2-element;
(ii) CG(t) is a maximal torus (q4 − 1)× (q2 − 1);
(iii) t centralizes a unique involution v that has centralizer of type D5T1 in G;
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(iv) if L = CG(v) and D = L′ ∼= Dε
5(q), then the coset tD ∈ L/D has order 2a;

(v) tG ∩ L = tL.

Proof. We will construct t inside a maximal rank subgroup A of G containing the
subgroup Aε5A1 = SLε6(q)◦SL2(q) with index 2. Let γ ∈ Fq4 have order (q

4−1)2 = 2a+2,

and set δ = γ−(q2+1) and λ = γ4. Define t = t1t2 ∈ Aε5A1, where t1 ∈ SLε6(q), t2 ∈ SL2(q)
are conjugate over F̄q respectively to

diag(γ, γεq, γq
2

, γεq
3

, δ, δεq), diag(λ, λ−1).

Then |CA(t)| = (q4 − 1)(q2 − 1). Also by [LS, 11.10], for the ambient algebraic group
E6,

(4.11) L(E6) ↓ A5A1 = L(A1A5) + (VA5(λ3)⊗ VA1(1)),

and the second summand is ∧3(V6)⊗V2, where V6, V2 are the natural modules for A5, A1.
Using the hypothesis that (q−ε)2 = 2a ≥ 8, we check that t has no nonzero fixed points
on this tensor product. It follows that dimCL(E6)(t) = 6, and so CG(t) is equal to the
maximal torus T := CA(t) of order (q4 − 1)(q2 − 1). The structure of T is a direct
product (q4 − 1)× (q2 − 1) (see [KS, p.377]).

Let Z(A) = 〈u〉, and let v = diag(−14, 12) ∈ SLε6(q). Then T contains precisely three
involutions, namely v, u and vu. Now vu is a central element of a root SL2(q), hence
has centralizer in the algebraic group E6 of type A5A1 (as does u). On the other hand,
v is central in a subsystem A3 subgroup, and restricting from (4.11), we have

L(E6) ↓ A3 = L(A3) + V (λ1)
4 + V (λ2)

4 + V (λ3)
4 + V (0)7.

It follows that dimCL(E6)(v) = 46, so that CG(v) is of type D
ε
5T1.

Next we establish part (iv). Observe that CG(v) contains a subgroup Aε3A1A1 <

Aε5A1, which lies in D = Spinε10(q). Also, if we write ω = γ2
a−1

(an 8th root of 1) and
ι = ω2, then

t2
a−1

= diag(ω, ω, ω, ω, ι, ι) · diag(−1,−1) ∈ Aε5A1,

and this centralizes Aε3A1A1. If t2
a−1 ∈ D, this implies that t2

a−1 ∈ CD(A
ε
3A1A1).

However, CD(A
ε
3A1A1) = Z(Aε3A1A1), and this does not contain t2

a−1
. Hence t2

a−1 6∈ D,
and part (iv) follows.
Finally, suppose xtx−1 ∈ L for some x ∈ G. Since L = CG(v), we see that t

centralizes the involution x−1vx, which has centralizer of type D5T1 in G. By (iii),
x−1vx = v, i.e. x ∈ CG(v) = L, as stated in (v). �

Proposition 4.10. Let G = Eε
6(q)sc, and suppose that (q − ε)2 = 4. Then there exists

an element t ∈ G with the following properties:

(i) t is a 2-element;
(ii) CG(t) is a maximal torus (q4 − 1)× (q − ε)× (q − ε);
(iii) there is an involution v ∈ G such that

(a) t ∈ L = CG(v) = D · Cq−ε, where D = [L,L] ∼= Spinε10(q),
(b) CG(t) ≤ L, and
(c) the coset tD ∈ L/D has order 4;
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(iv) the set tG ∩ L falls into five L-conjugacy classes; if we label representatives of
these classes t1, . . . , t5 (where t1 = t), then there are precisely three values of i
such that the coset tiD has order 4 in L/D.

Proof. The element t is again chosen inside a maximal rank subgroup Aε5A1, but is
slightly different from the element in Proposition 4.9. Let γ ∈ Fq4 have order (q

4−1)2 =
16, and let ι = γ4 ∈ Fq2 . Define t = t1t2 ∈ Aε5A1, where

t1 = diag(γ, γεq, γq
2

, γεq
3

, ι, 1), t2 = diag(ι,−ι).
It is shown in the proof of [GLBST, 7.16] that CG(t) is a maximal torus of order
(q4 − 1)(q − ε)2. Hence using [KS] as before, we have

CG(t) = T = (q4 − 1)× (q − ε)× (q − ε).

The involutions in T all lie in the subgroup 〈u, v, w〉, where
u = −I6 ∈ Aε5,
v = (−1,−1,−1,−1, 1, 1) ∈ Aε5,
w = ((ι, ι, ι, ι, ι,−ι), (ι,−ι)) ∈ Aε5A1.

Restricting the Lie algebra L(E6) to Aε5A1 as in the previous proof, we find that the
involutions in T that have centralizer in G of type Dε

5T1 are

(4.12) v, w, uw, vw and uvw.

We next show that (iii) holds. Let L = CG(v), and D = [L,L] ∼= Dε
5(q). Clearly

t ∈ L and T = CG(t) ≤ L, so it remains to prove (iii)(c). Now CAε
5A1(v)

′ = A3A
(1)
1 A1,

where A3A
(1)
1 < Aε5. Moreover,

(4.13) t2 = (−γ2,−γ2εq,−γ2q2 ,−γ2εq3 , 1,−1) ∈ Aε5.

Hence if t2 ∈ D, then t2 ∈ CD(A1); however CD(A1) = Aε3A
(1)
1 , and from (4.13) it is

apparent that t2 does not lie in A3A
(1)
1 . It follows that t2 6∈ D, proving (iii)(c).

Finally we prove (iv). Suppose tg ∈ tG ∩ L. Then t ∈ Lg
−1

= CG(v
g−1

), and so from

(4.12), we have vg
−1 ∈ {v, w, uw, vw, uvw}. Hence tG ∩ L falls into five L-classes, one

for each possibility for vg
−1
. Write t′ = tg and v′ = vg

−1
.

We consider in turn the possibilities for v′ and compute the order of the coset t′D in
L/D in each case. If v′ = v then the order is 4, by part (iii).

Next suppose that v′ = vw or uvw. Then from (4.13) we see that t2 ∈ Aε4 < CAε
5
(v′),

and hence t2 ∈ [CG(v
′),CG(v

′)] = Dg−1
. It follows that (t′)2 ∈ D, so t′D has order less

than 4 in this case.
Finally, suppose that v′ = w or uw. This time we write t2 as

t2 = (γ2, γ2εq, γ2q
2

, γ2εq
3

,−1, 1) u,

so that t2 = au, where a ∈ Aε4 < CAε
5
(v′). Clearly Aε4 < Dg−1

, so if t2 ∈ Dg−1
, then

u ∈ CDg−1 (Aε4). However, the only involution in Dε
5 = Spinε10 that centralizes an Aε4

subgroup is the central involution; this involution of course has centralizer in G of type
Dε

5T1, whereas u has centralizer Aε5A1. Hence t2 6∈ Dg−1
, which implies that the coset

t′D has order 4 in this case.
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We have shown that t′D has order 4 precisely in the cases where v′ = v, w or uw.
This completes the proof of (iv). �

Proof of Theorem 4.1. By Corollary 4.4 and Theorem 4.7, it suffices to prove Theorem
4.1 in the case G = GF = Eε

6(q)sc, with ε = ±1 and 4|(q−ε). Here, G is a simple, simply
connected algebraic group of type E6 in characteristic p|q and F : G → G a suitable
Steinberg endomorphism. Using [Lu] one can see that G has exactly 8(q−ε) irreducible
characters of odd degree, among which 8 are unipotent and listed in [C, §13.9]. As
shown in the proof of [M, Theorem 3.4], any unipotent character of odd degree of G lies
in the principal series and is 2-rational. So we may assume that χ is one of 8(q− ε− 1)
non-unipotent characters of odd degree and χ belongs to the rational series E(G, (s)),
labeled by a 2-central semisimple element s ∈ G∗. Here, G∗ = G∗F ∗

and (G∗, F ∗) is dual
to (G, F ).

As mentioned in the proof of [M, Theorem 3.4], CG∗(s) is connected. In fact, as one
can see using [LSS, Table 5.1], there are q − ε − 1 classes of such elements s ∈ G∗,
with CG∗(s) = L∗, an F ∗-stable Levi subgroup of type D5T1, dual to an F -stable Levi
subgroup L of G. Next, as mentioned in the proof of [NT2, Lemma 4.13], L := LF
and L∗F ∗

each has exactly 8 unipotent characters of odd degree, and furthermore their
degrees are pairwise distinct. The latter immediately implies that these unipotent
characters are rational-valued (indeed, any Galois automorphism of Q acts on the set
of unipotent characters and hence fixes each of these 8 characters).

Since CG∗(s) = L∗, Lusztig’s classification of irreducible characters of G in the ratio-
nal series E(G, (s)) [DM, §13] yields that

(4.14) χ = ±RG
L (ψλ),

where ψ ∈ Irr(L) is unipotent of odd degree, rational-valued as mentioned above, and
λ ∈ Irr(L) has degree 1. (Indeed, as s ∈ Z(L∗), by [DM, Proposition 13.30], there is a
linear character λ = ŝ of L such that the mutplication by λ gives a bijection between
E(L, (1)) and E(L, (s)). Next, by [DM, Theorem 13.25], there are some signs εG and εL
such that the map

εGεLR
G
L : E(L, (s)) → E(G, (s))

is a bijective isometry which sends true characters to true characters.) The formula for
the Lusztig induction functor RG

L , see [DM, p. 90], shows that it commutes with Galois
actions on characters. With the assumption that χ is not 2-rational, this implies that λ
is not 2-rational. As discussed in the proof of Proposition 4.9, D = [L,L] ∼= Spinε10(q)
and L/D ∼= Cq−ε. Hence λ is a character of L/D of order divisible by 4.

Let (q − ε)2 = 2a ≥ 4. We now consider the regular 2-element t ∈ L constructed in
Proposition 4.9 when a ≥ 3 and in Proposition 4.10 when a = 2. For any t′ ∈ tG ∩ L,
CG(t

′) is a maximal torus (of rank 6). At the same time, CL(t
′) contains a maximal

torus of rank 6. It follows that CL(t
′) = CG(t

′), and so CG(t
′) ≤ L for all t′ ∈ tG ∩ L.

Thus we can apply Lemma 4.8 to t and obtain from (4.7) and (4.14) that

(4.15) χ(t) = ±StG(t)χ(t) = ±(StG ·RG
L (ψλ))(t) = ±(StLψλ)

G(t) =
s∑

j=1

±ψ(tj)λj(tj),
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if {t1 = t, t2, . . . , ts} is a full set of representatives of L-conjugacy classes in tG ∩ L.
(Here we have used the fact that any t′ ∈ tG ∩ L is regular in both G and L, and so
StG(t

′) = ±1 and StL(t
′) = ±1.) Note that, by Lemma 2.4, ψ(tj) is an odd integer

since ψ is of odd degree and rational-valued.
Suppose a ≥ 3. Then s = 1 by Proposition 4.9. Also, the coset tD generates

O2(L/D). Since λ has order divisible by 4, it follows that λ(t) is a primitive root of
unity ξ of order 2b ≥ 4. Now (4.15) yields χ(t) = ±ψ(t)ξ, and ψ(t) is an odd integer as
mentioned above. Hence, i ∈ Q(χ(t)), as required.
Finally, consider the case a = 2. Then s = 5 by Proposition 4.10, and the order of

tjD in L/D is 4 if 1 ≤ j ≤ 3 and ≤ 2 of j = 4, 5. As the order of λ is divisible by 4 and
O2(L/D) = C4, it follows that λ(tj) = ±i if 1 ≤ j ≤ 3 and λ(tj) = ±1 if j = 4, 5. It
now follows from (4.15) that there are some odd integers aj ∈ Z, 1 ≤ j ≤ 5, such that

χ(t) = (a1 + a2 + a3)i+ (a4 + a5).

Since a1 + a2 + a3 is odd, we conclude that i ∈ Q(χ(t)). �

5. Galois–McKay connections

The main result of this section is Theorem 5.5, which is a weaker version of The-
orem B. Our proof of this result does not utilize the simple group classification, but
instead, it appeals to the (as yet unproved) Galois-McKay conjecture, which we will
explain.

To prove Theorem 5.5, we use the fact that if χ ∈ Irr(G) has odd degree and is not
2-rational, then i ∈ Q(χ). (This was proved using the classification in Theorem 2.7.)
Here, we need this result only in the case where G has a normal Sylow 2-subgroup, and
although the proof of Theorem 2.7 goes through, we have decided to give an independent
proof of a stronger fact: Corollary 5.2 below. We show there that in the case of interest,
where G has a normal Sylow 2-subgroup, not only is it true that i ∈ Q(χ), but in fact,
i ∈ Q(χ(x)) for some 2-element x of G. (We have been unable to determine if this
stronger conclusion is true more generally for arbitrary solvable groups.)

We begin with a general lemma.

Lemma 5.1. Let P be a normal Sylow 2-subgroup of G. Given a linear character λ of
P , write

Ξλ =
∑

g∈G

λg .

Then

(a) Q(Ξλ) = Q(λ) and
(b) If o(λ) ≥ 4, there exists an element x ∈ P such that i ∈ Q(Ξλ(x)).

Proof. For each element g ∈ G, we have Q(λg) = Q(λ), and it follows that Q(Ξλ) ⊆
Q(λ). Let f = o(λ), so f is a power of 2, and since λ is linear, we have Q(λ) = Qf .
Then |Q(λ) : Q(Ξλ)| divides |Qf : Q| = ϕ(f), where ϕ is Euler’s function. Since ϕ(f)
is a power of 2, we deduce that the Galois group G = Gal(Q(λ)/Q(Ξλ)) is a 2-group.
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To complete the proof of (a), we must show that G is trivial, so suppose that σ ∈ G.
Since σ fixes Ξλ, it permutes the irreducible constituents of this character, and thus
λσ = λg for some element g ∈ G.

Factoring g = g2g2′ , we see that g2 lies in P , so g2 fixes λ. We can thus assume that
g = g2′ , so o(g) is some odd integer r. The actions of G and G on characters of P
commute, and hence λ = λg

r

= λσ
r

, and we deduce that σr = 1. Now o(σ) is a power
of 2 that divides the odd number r, and we conclude that σ = 1, so G is trivial, as
required.

For (b), we have by hypothesis that f ≥ 4, and we proceed by induction on f .
If f = 4, then Q(Ξλ) = Q4 = Q(i), which has degree 2 over Q. For some element
x ∈ G, we have Ξλ(x) is not rational, so Q < Q(Ξλ(x)) ⊆ Q(i), and it follows that
Q(Ξλ(x)) = Q(i), and thus i ∈ Q(Ξλ(x)), as required.
Now assume that f > 4. Then o(λ2) = f/2, so we can apply the inductive hypothesis

with λ2 in place of λ, and we conclude that there exists x ∈ P such that i ∈ Q(Ξλ2(x)).
Finally, we observe that Ξλ2(x) = Ξλ(x

2), and this completes the proof. �

Corollary 5.2. Let χ ∈ Irr(G), where χ(1) is odd and χ is not 2-rational, and assume
that G has a normal Sylow 2-subgroup. Then there exists a 2-element x ∈ G such that
i ∈ Q(χ(x)).

As was mentioned, we will not need the full strength of Corollary 5.2; we will use
only the weaker conclusion that i ∈ Q(χ).

Proof of Corollary 5.2. Let P ∈ Sylp(G), so P / G. Since χ(1) is odd, we see that
χP has a linear constituent λ, and so by Clifford’s theorem, χP is a nonzero rational
multiple of the character Ξλ, as defined in Lemma 5.1.
By hypothesis, χ is not 2-rational, and it follows by Lemma 2.1 that λ is not 2-

rational, and thus o(λ) ≥ 4. By Lemma 5.1(b), there exists an element x ∈ P such
that i ∈ Q(Ξλ(x)) = Q(χP (x)) = Q(χ(x)), as required. �

We are now ready to discuss the Galois-McKay conjecture. Given a prime p and
a positive integer n, let Hp,n be the subgroup of Gal(Qn/Q) consisting of those auto-
morphisms of the field Qn that send each p′-order root of unity ξ to some power ξt,
where, t is an arbitrary power of p depending on ξ. In particular, observe that the
automorphisms of Qn that fix all p′-roots of unity lie in Hp,n, so Gal(Qn/Qm) ⊆ Hp,n,
where m = np′ .

Given a prime number p and a finite group X, recall that the set of irreducible
characters of X having p′-degree is denoted Irrp′(X), and that the “ordinary” McKay
conjecture asserts that for every finite group G and prime p, we have |Irrp′(G)| =
|Irrp′(NG(P ))|, where P is a Sylow p-subgroup in G.

The Galois-McKay conjecture (see Conjecture 9.8 of [N2]) strengthens the McKay
conjecture by asserting that there is a bijection f : Irrp′(G) → Irrp′(NG(P )) such that
f(χσ) = f(χ)σ for every field automorphism σ ∈ Hp,n, where n is a multiple of |G|.

Next, we concentrate on the prime p = 2. Let n be a positive integer, and write
m = n2′ . Also, write H = H2,n, and let F = QH

n be the fixed-field of H. Observe that
F ⊆ Qm because Gal(Qn/Qm) ⊆ H.
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Now if d is a positive square-free odd integer, we consider the “Gauss sum”

sd =
d−1∑

i=0

ζ i
2

where ζ = exp(2πi/d). It is well known, and not very hard to prove, that sd = ±
√
εdd,

where, as in the introduction, εd = ±1, where εd ≡ d (mod 4). It follows that
√
εdd lies

in the cyclotomic field Qd.

Lemma 5.3. Let d > 1 be a square-free odd integer divisor of n, and note that the
Gauss sum sd lies in Qn. Assume that there is at least one prime divisor p of d such
that 2 is not a square modulo p. Then there exists an element σ ∈ H such that σ fixes
all 2-power roots of unity in Qn and σ(sd) = −sd.
Proof. First, recall that for odd integers t, we have εt ≡ t mod 4, so we have

εd ≡ d =
∏

r

r ≡
∏

r

εr (mod 4) ,

where r runs over the distinct prime divisors of d. It follows that

εdd =
∏

r

εrr ,

and thus up to a sign, sd is the product of the Gauss sums sr as r runs over the prime
divisors of d.
Suppose that p is a prime divisor of d such that 2 is not a square modulo p, and let

σ be the unique automorphism of Qn that fixes p′-roots of unity and squares p-power
roots of unity, so in particular, σ fixes all 2-power roots of unity. Then σ ∈ H, and σ
fixes sr for all prime divisors r 6= p of d. We will show that σ(sp) = −sp, so σ(sd) = −sd,
as required.

Now let ζ be a primitive p-th root of unity so (up to a possible sign ambiguity) we
have

sp + σ(sp) =

p−1∑

k=0

ζk
2

+

p−1∑

k=0

ζ2k
2

= 2 +

p−1∑

k=1

ζk
2

+

p−1∑

k=1

ζ2k
2

.

Since p is prime, we see that as k runs over the set {1, . . . , p−1}, the values of k2 are
all of the (p−1)/2 quadratic residues modulo p, each taken twice. Also, by assumption,
2 is not a square modulo p, so the values of 2k2 are all of the (p − 1)/2 nonresidues
modulo p, each taken twice. We conclude that

sp + σ(sp) = 2 +

p−1∑

k=1

ζk
2

+

p−1∑

k=1

ζ2k
2

= 2 + 2

p−1∑

j=1

ζj = 2

p−1∑

j=0

ζj = 0

as wanted. �

Lemma 5.4. Let d > 1 be a square-free integer, and suppose that i and
√
d are contained

in Qn for some positive integer n. Let F be the fixed field of H, as above, write E =
Q(i,

√
d), and assume that F ∩ E > Q. Then d is odd and 2 is a square modulo each

prime divisor of d.



FIELDS OF VALUES OF ODD-DEGREE IRREDUCIBLE CHARACTERS 21

Proof. Since Q(
√
d) is a real field, we have Q(

√
d) 6= Q(i), and thus |E : Q| = 4. It

follows that E has exactly three subfields having degree 2 over Q, namely Q(i), Q(
√
d)

and Q(i
√
d). By assumption, E∩F > Q, so at least one member of the set {i,

√
d, i

√
d}

must lie in F.
The automorphism of Qn that fixes odd-order roots of unity and maps each 2-power

root of unity to its reciprocal lies in H, and it follows that i 6∈ F, so either
√
d or i

√
d

lies in F.
Suppose now that d is even. Write d = 2e, and note that since d is square-free, e

must be odd. By assumption,
√
d lies in Qn, so it follows by Theorem 2.8 that 8 divides

n, and thus Q8 ⊆ Qn.
Now Q8 has an automorphism that fixes i and maps

√
2 to −

√
2, and it is easy to

see by elementary Galois theory that this automorphism extends to an automorphism
τ of Qn that fixes all odd-order roots of unity. Then τ ∈ H, so τ acts trivially on F,
and thus τ fixes at least one of

√
d or i

√
d.

Now τ fixes i, and it follows that τ fixes
√
d. Also, since

√
d =

√
2
√
e and τ(

√
2) =

−
√
2, we see that τ(

√
e) = −√

e.
The Gauss sum se lies in Qe, and since τ fixes odd-order roots of unity, it follows

that τ fixes se. Also, either se = ±√
e or se = ±i√e, so τ fixes at least one of

√
e or

i
√
e. This is a contradiction, however, because τ fixes i, but it does not fix

√
e. We

deduce that d is odd, as required.
Now suppose that 2 is not a square modulo p for some prime divisor p of d, and let

σ ∈ H be as in Lemma 5.3, so σ fixes i and σ(sd) = −sd, where sd is the Gauss sum
for d.

Either
√
d or i

√
d lies in F, so σ fixes at least one of these elements. Also, σ fixes i,

and it follows that σ fixes both
√
d and i

√
d. One of these elements is sd (up to a sign)

and thus σ fixes sd. This is a contradiction, however, since σ(sd) = −sd and sd 6= 0. It
follows that 2 is a square modulo p for each prime divisor p of d. �

The following result is a weaker version of Theorem B. Its proof does not use the
simple group classification, but instead it assumes the validity of the (unproved) Galois-
McKay conjecture for the prime 2.

Theorem 5.5. Let χ ∈ Irr(G), where G is a finite group, and let γ =
√
εd, where

ε = ±1 and d > 1 is a square-free integer. Then

(a) If χ is 2-rational and γ ∈ Q(χ), then d is odd and ε = εd, where as before, εd ≡ d
mod 4.

(b) If χ is not 2-rational, suppose χ has odd degree, and assume that either 2 divides
d, or else that 2 is not a square for some prime divisor p of d. Then Q(χ) 6=
Q(γ).

Note that Theorem 5.5 differs from Theorem B in just two respects. Theorem 5.5(b),
requires the assumption that either 2 divides d, or else that 2 is not a square modulo
p for at least one prime divisor p of d. Also, there is no guarantee in Theorem 5.5(b)
that i ∈ Q(χ).
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Proof of Theorem 5.5 assuming Galois-McKay. In the case where χ is 2-rational, the
result follows from Corollary 2.11, exactly as in the proof of Theorem B. We can thus
assume that χ is not 2-rational, that it has odd degree, that either d is even or else 2
is not a square modulo some prime divisor p of d, and that Q(χ) = Q(γ), and we work
to derive a contradiction.

Let n = |G| and m = n2′ . Also, let P ∈ Syl2(G), and write N = NG(P ). By the
Galois-McKay conjecture for the prime 2, there exists an odd-degree character χ∗ ∈
Irr(N) such that the stabilizers in H of χ and χ∗ are identical, and thus F(χ) = F(χ∗).

Since χ is not 2-rational, F(χ) 6⊆ Qm and thus F(χ∗) 6⊆ Qm. We have seen, however,
that F ⊆ Qm, and we deduce that χ∗ is not 2-rational. Also, since χ∗ has odd degree,
we can apply Corollary 5.2 to the group N to deduce that

i ∈ Q(χ∗) ⊆ F(χ∗) = F(χ) = F(γ)

where the final equality holds because Q(χ) = Q(γ).

Now write E = Q(i, γ), and note that E is the field Q(i,
√
d) of Lemma 5.4. Observe

that E ⊆ F(γ) because F(γ) contains both i and γ. Also, since γ ∈ E, we see that no
proper subfield of F(γ) contains both E and F. By Theorem 18.22 of [I1], therefore, we
have |E : E ∩ F| = |F(γ) : F| ≤ 2, where the inequality holds because γ2 ∈ Q ⊆ F.

Now |E : Q| = 4 and |E : E ∩ F| ≤ 2, so E ∩ F > Q. We can thus apply Lemma 5.4
to deduce that d is odd and that 2 is a square modulo each prime divisor of d. This is
the desired contradiction. �
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