IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF
SYMMETRIC GROUPS IN SMALL CHARACTERISTICS:
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ABSTRACT. We study irreducible restrictions of modules over symmetric groups
to subgroups. We get reduction results which substantially restrict the classes of
subgroups and modules for which this is possible. Such results are known when
the characteristic of the ground field is greater than 3, but the small characteristics
cases require a substantially more delicate analysis and new ideas. This work fits
into the Aschbacher-Scott program on maximal subgroups of finite classical groups.

1. INTRODUCTION

Let F be an algebraically closed field of characteristic p > 0, and H be a finite
almost quasi-simple group. This paper is a contribution to the following

Irreducible Restriction Problem. Classify the subgroups G < H and FH -modules
V' of dimension greater than 1 such that the restriction Vg is irreducible.

A major application of the Irreducible Restriction Problem is to the Aschbacher-
Scott program on maximal subgroups of finite classical groups, see [A,Sc,Mag, KIL,
BDR)|] for more details on this. We point out that for the purposes of the applications
to the Aschbacher-Scott program we may assume that G is almost quasi-simple, but
we will not be making this additional assumption.

Suppose now that soc(H/Z(H)) = A,. We assume that n > 8 to avoid small
special cases. Then H is one of A,,S,, or their double covers. If p = 0 and H is a
symmetric or alternating group, the Irreducible Restriction Problem has been solved
by Saxl [S]. If p = 0 and H is a double cover of symmetric or alternating groups, the
problem was essentially solved by Kleidman and Wales [KIW].

Let us assume from now on that p > 0. We point out that it is the positive
characteristic case which is important for the Aschbacher-Scott program. The positive
characteristic analogues of the results of Saxl and Kleidman-Wales mentioned in the
previous paragraph are currently available only for p > 3, see [BrKs]| for symmetric
groups, [KSs| for the alternating groups, and [KT;] for the double covers. It is very
important to extend the classification to the case of characteristics 2 and 3.
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However, there are formidable technical obstacles which make the small character-
istic cases much more complicated. The most serious difficulty is that the submodule
structure of certain important permutation modules over symmetric groups gets very
complicated for p = 2 and 3. This in turn necessitates a rather detailed study of
branching for symmetric groups.

The main result of this paper extends reduction theorems obtained in [KS;] and
[BrK5| and strengthens the main results of [KST]. These reduction theorems were
crucial for the eventual resolution of the Irreducible Restriction Problem for the cases
p > 3, and their small characteristic analogues will also play a key role in our future
work [KMT].

To formulate our main result we recall that the irreducible FS,,-modules are labeled
by the p-regular partitions of n. If X\ is such a partition, we denote by D* the
corresponding irreducible FS,-module, and define A" from DN~ D g sgn. If A =
(M1 > A2 > -+ > A\, > 0), we write 2(A) for k. It is known that D*|g s irreducible
if and only if A is in the explicitly defined class of Jantzen-Seitz (or JS) partitions
which go back to [JaS,K;]. There is a special irreducible FS,,-module in characteristic
2 called the basic spin module DP. Finally, recall that a subgroup of S,, is called k-
transitive (resp. k-homogeneous) if it acts transitively on the set of all ordered (resp.
unordered) k-tuples of different elements in {1,2,...,n}. We refer the reader to the
main body of the paper for more details on all of this.

It is convenient to formulate our main result for all characteristics, although it is
only new for p =2 and 3:

Theorem A. Letn > 8 and D> be an irreducible representation of FS,, with dim D >
1. If G < 'S, is a subgroup such that the restriction D is irreducible, then one of
the following holds:

(i) G is 3-homogeneous.

(ii) G is 2-transitive and min(h(\), h(A")) = 2;

(i) G < Sp—1 and X is JS;

(iv) p =2, n is even, G is 2-transitive, h(\) > 3 and there exists 1 < j < h(}\)
with A\j = A\jy1+2 and

MELLENIZENENZE N2 = = Ay (mod 2)

vip=2,n=2(mod4), A\=(n—-1,1), G<S,,/91S52 and G £S,,/9 X S,,/2-
/ / /
(vi) p =2 and D* is the basic spin module.

In case (v) of Theorem A, we have a complete classification of subgroups giving
irreducible restrictions (see Example 7.24 for some examples of such subgroups G):

Theorem B. Let 6 < n = 2(mod 4), p = 2, and let G < W := S, 51Sa. Then
D(”*MUG is irreducible if and only if both of the following two conditions hold.
(i) G is transitive on {1,2...,n}.
(ii) If B = Sy /2 x Sy2 is the base subgroup of W, then the projection of G N B
onto each factor S, 5 of B induces a 2-transitive subgroup of S, /5 over which

D™/2=LY) s irreducible, and the restrictions of the two modules D"/2~11) K
1s, , and 1s, , X D/2-1Y) 4o G N B are non-isomorphic.

In case (vi) of Theorem A, we can also say much more:
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Theorem C. Let n > 5, p = 2, D be the irreducible basic spin module over Sy,
and G < S, be a subgroup of S, such that Dﬁ"LG 1s irreducible. Then one of the
following happens:

(i) G < S 1Sy with n = ab, a,b € Z~1 and a is odd. Moreover if b > 2 then
G LSy x -+ xS, In fact,

Dﬂnisazs,, =~ pDPa ) DPe

is indeed irreducible.
(ii) G < Sp—k X S with n — k and k odd. In fact,

Dﬁn‘l’sn,kXSk o Dbk [g DBk

15 indeed irreducible.
(iii) G is primitive, in which case DP | is irreducible if and only if one of the

following happens:

(a) n=2 (mod 4) and G = Ay;

(b) n:5, G:C5>4C4;

(C) n= 67 G = 55;

(d) n = 10, G = 567 M10 or Aut(Aﬁ);

(e) n = 12, G = M12.

We give some additional comments on the statements of our main results. First
of all, taking into account Theorems B and C, let us exclude the cases of the natural
and basic spin modules for p = 2 as appear in parts (v) and (vi) of Theorem A. Then,
we obtain the statement that the restriction D*| is irreducible only if either (A)
G <S,,—1 or (B) G is 2-transitive.

In case (A), the restriction D>‘¢STL7 , must be irreducible, so A must be J S. Moreover,
then D’\isn_1 = DF for the partition p of n—1 which is obtained from A by removing
the top removable node. So in this case one can proceed by induction on n.

In case (B), one can use the classification of doubly transitive permutation groups
[C,Ka]. In fact, parts (ii) and (iv) of Theorem A often allow us to assume that
G is even 3 homogeneous, and there are very few such permutation groups. The
exceptional cases are mostly related to 2-row partitions. For example, the exceptions
in case (ii) correspond to the cases where either \ is a 2-row partition or D* ® sgn
corresponds to a 2-row partition. In a forthcoming paper [KMT] we will analyze
case (B) further.

We now outline the proof of the main results and the contents of the paper. Sec-
tion 2 is preliminary. In particular, in §2.2 we discuss combinatorics of good and
normal nodes which will be crucial for branching results obtained later. In §2.3, we
discuss irreducible FS,-modules, and obtain in Lemma 2.18 our main general tool for
proving reducibility of D*| . Basic facts on Specht, Young and permutation modules
are discussed in §2.4. The information on the G-invariant spaces in some dual Specht
modules is obtained in §2.5.

Section 3 is on branching. After recording the basic branching rules in §3.1, we
study in §3.2 some important filtrations that arise in the restriction DALSH_ .- The
technical §3.3 is devoted to the study of restrictions of JS modules in characteristic 2
to the natural subgroups S,,_x. In §3.4 we obtain characterizations of certain classes
of irreducible modules via their branching properties.
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Section 4 is on the submodule structure of the permutation modules My, = M ("—k:k)
in characteristics 2 and 3 for k = 1,2,3. Section 5 is on the submodule structure of
the module £(\) := Endp(D) = D* @ D*. We show that some quotients of the
permutation modules My, for k = 1,2,3 arise as submodules of £()). Section 6 gives
an alternative way of constructing interesting homomorphisms from M} to E(A),
which develops the ideas of [KS;, Theorem 3.3] and [BrKp, §3|. Finally, in Section 7
we establish the main results.

Acknowledgement. We are grateful to the anonymous referee and Gunter Malle
for careful reading of the paper and multiple useful remarks.

2. PRELIMINARIES

2.1. Groups and modules. Throughout the paper we work over a fixed alge-
braically closed ground field F of characteristic p > 0. We do not yet assume that
p =2 or 3 but will do this when necessary.

For a finite group G, we denote by FG-mod the category of finite dimensional
FG-modules. For U,V € FG-mod we denote by Homg (U, V') the space of all FG-
module homomorphisms from U to V, and by Homp(U, V) the space of all linear
maps considered as an FG-module via (g - f)(u) = gf (g~ u) for all f € Homp(U, V),
uwe U and g € G.

We denote by 1 the trivial FG-module. Let G be a subgroup of a group H, V be
an FH-module and W be an FG-module. We denote by V] or Vig the restriction
of V from H to G, and by Wt or WTg the induction of W from G to H. As a
special case, for a subgroup G < S,,, we will often be using the permutation module

Z(G) == 175" (2.1)

If
Su=S5, x--xS5,, <S,

is a Young subgroup corresponding to a composition g = (p1,. .., fiq) of n, then we
write M* instead of Z(S,,).

Let V be an FG-module. We denote by V& the set of G-invariant vectors in V.
We write soc V' and head V' for the socle and head of V', respectively.

If Ly,..., L, are irreducible FG-modules, we denote by Li|---|L, a uniserial FG-
module with composition factors Lq,..., L, listed from socle to head. If V is an
FG-module, we use the notation

Vng‘...|La @D Kl""‘Kb

to indicate that V' is (isomorphic to) a direct sum of the uniserial modules L] - - - |Lq,
, K1| -+ |Kp. On the other hand, if Vi,...,V, are any FG-modules, we write
Ve~V |V,

to indicate that V has a filtration with subquotients V1, ..., V, listed from bottom to
top. We use the notation

VWV, & Wil |W,
to indicate that VX @ - @Y for X ~ Ly|--|Lg, ..., Y ~ Kq| - |K}.
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Lemma 2.2. Let L be an irreducible FG-module, and M be an FG-module with
submodules X CY C M such that Homg(L,Y) = 0 and soc(M/X) CY/X. Then
Homg(L, M) = 0.

Proof. If1¢ : L — M is a non-zero homomorphism, then (L) is simple and (L) Z Y.
In particular, ¥(L) € X, so (¢(L) + X)/X is a simple submodule of M /X and so
Y(L)+ X CY, a contradiction. O

2.2. Partitions. We denote by #(n) the set of all partitions of n and by Z,(n)
the set of all p-regular partitions of n, see [J1, 10.1]. We identify a partition \ =
(A1, A2, ...) with its Young diagram {(r,s) € Zso X Z>o | s < A\.}. We have a
dominance order > on partitions, see [Jq, 3.2]. The number of non-zero parts of a
partition A is denoted by A(\). The following 2-row partitions will play a special role
in this paper:

ap = (n—1,1) (2.3)
B, = { (n/24+1,n/2—-1) %fn%s even, (2.4)
" (n+1)/2,(n—1)/2) if n is odd.
We set
I:=7/pZ
identified with {0,1,...,p — 1}. Given a node A = (r,s) in row r and column s, we

consider its residue
resA:=s—r (modp) € I.
The residue content of a partition A is the tuple
cont(A) 1= (a;)ier
such that A has exactly a; nodes of residue i for each ¢ € I. For j € I, let ;

be the tuple (a;)ier with a; = 0;;. We consider the tuples (a;)ic; as elements of
© =) ;1 Z -, the free Z-module with basis {v; | i € I'}. Let

0, = {HZZai’yie@’aiZO, Zai:n}. (2.5)
icl iel

Partitions A, u € Z(n) have the same residue contents if and only if they have the

same p-cores, see [JK, 2.7.41].

Let i € I and A € Z(n). A node A € X (resp. B ¢ \) is called i-removable
(resp. i-addable) for X\ if res A = i and Agq := A\ {4} (resp. AP = AU {B}) is
a Young diagram of a partition. A node is called removable (resp. addable) if it is
i-removable (resp. i-addable) for some i. Labeling the i-addable nodes of A by 4+ and
the i-removable nodes of A by —, the i-signature of X\ is the sequence of pluses and
minuses obtained by going along the rim of the Young diagram from bottom left to
top right and reading off all the signs. The reduced i-signature of A is obtained from
the i-signature by successively erasing all neighbouring pairs of the form —4. The
nodes corresponding to —’s (resp. +’s) in the reduced i-signature are called i-normal
(resp. i-conormal) for X\. There are equivalent definition of normal (resp. conormal)
nodes involving the i-removable and i-addable nodes above (resp. below) a given
node; for example an i-removable node A is normal if and only if for any i-addable
node B above A there exists an i-removable node Cg between A and B with the
property that if By and By are distinct i-addable nodes above A then Cp, # Cp,.
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The leftmost i-normal (resp. rightmost i-conormal) node is called i-good (resp. i-
cogood) for \. A node is called normal (resp. conormal, good, cogood) if it is i-normal
(resp. i-conormal, i-good, i-cogood) for some i. We denote

i(A) := #{i-normal nodes of A},
©i(A) := #{i-conormal nodes of A\}.

There exists an i-good (resp. i-cogood) node for A if and only if €;(A\) > 0 (resp.
@i(A) > 0).
Let A € Zy(n). If €;(A\) > 0, we denote by A the i-good node of A and set

éi)\ = )\A-
If ;(\) > 0, we denote by B the i-cogood node for A and set
fid = \B.

We will repeatedly use the known fact that é;A and fi)\ are p-regular, whenever A is
so. The following three known statements follow easily from the definitions:

Lemma 2.6. [Mo, Lemma 2.8] Any partition has one more conormal node than it
has normal nodes.

Lemma 2.7. Let A € P(n) and i € I. Assume that A is i-normal and B is i-
conormal for \. Then B is conormal for 4.

Proof. Notice first that the set of i-removable and i-addable nodes of A is equal to the
set of i-removable and i-addable nodes of A 4. We can obtain the reduced i-signature
of A4 as follows: start by deleting a sequence of pairs —+ which is deleted from the
i-signature of A to obtain the reduced i-signature of A\. The reduced ¢-signature of A
and the partly reduced i-signature of A4 look as follows:

B A
A 4+ + i+ == = ==
Ag: +4+ + e+ ==+ ==
It is then easy to see that B is conormal in A 4. ]

Lemma 2.8. Leti € I and A € Z,(n).
(i) If i(A) > 0 then i(éX) > 0 and fig;d = \.
We will need more results on combinatorics of normal nodes.

Lemma 2.9. Let A € Z,(n) and i € I with €;(\),pi(A) > 0. Let B = (a,b)
C

and C = (¢,d) be the i-good and i-cogood nodes of X\, respectively. Then (Ap)~ is
p-singular if and only ifc=a+p—1 andd=>b—1.
Proof. Notice that a < ¢ and that
A= (A1, s Aa—1, A0 — L, g1, - 0),
A= (A, Aem b Ae + 1 Ay, -0,
AB)Y = (A AamhAa — L Aagts oo s Aemt de 4+ 1, Aegts -2 ).

Since Ag and \Y are p-regular, we have that (Ag)® is p-singular if and only if ¢ =
a+p—landb—1=X,—1=XA+1=d. O
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Lemma 2.10. [Mo, Lemma 6.1] Let p = 2 and A € Pa(n) satisfy eg(A) +e1(N\) = 2.
For 1 < k < h()\) let ay be the residue of the removable node in the k-th row of \.
Further let 1 < by < ... < by < h(\) be the set of indices k for which a = ag_1.
Then the normal nodes of X are in rows 1 and by, while the conormal nodes of \ are
in rows by — 1, h(X) and h(X) + 1. Further ay, # ap,_, for all1 < k <t.

Lemma 2.11. Let p = 2, A € Ps(n) and i € I. If g;(\) = 2, e1-;(\) = 0 and
vi(A) =0 then n is odd.

Proof. This follows from Lemma 2.6 and [Mo, Lemma 6.2]. O

Lemma 2.12. Let p =2, A € Pa(n) and let i be the residue of the bottom normal
node of A. If eg(A) = e1(A) =1 and p;(\) = 3 then n is odd.

Proof. Let j :=1—1i € I. For 1 <k < h()) let a; be the residue of the removable
node in the k-th row of A. Also let 1 < b < ... < by < h(\) be the set of indices
k for which ar = ar_1. The top removable node is always normal, so it must have
residue j. Moreover, by Lemma 2.10, the removable node in row b; is i-normal, and
the conormal nodes for A are the addable nodes on rows by — 1, h(A) and h(\) + 1.
As i(\) = 3 it follows that aj, 1 = ap(y) = j and h(A) =4 (mod 2).

Notice that by definition of by, the residues a; alternate for 1 < k < by — 1. Also
we have that a1 = j # i = ap, = ap,—1. So

Al =...=\p,—1 (mod 2)
and b; — 1 is even.

For 1 < m < t we similarly have that the residues ay alternate for b,,, < k < by, 41—1
and by Lemma 2.10, we have ay,, # ap so that

(mod 2)

m+1—1

Ao =+ = Aoy —1
and by, 41 — by, is even.
Further, the residues ay, alternate for by < k < h(X) and ap, = ap,_, = ap(y) by the
first paragraph, so
Ap, = .. = A (mod 2)
and h(X\) — b + 1 is odd.
It follows that

t—1
B = (b1 = 1)+ 3 (st — bun) + (h(X) = by + 1)
m=1

is odd and then i =1, ay(y) = 0 by the first paragraph. Hence A (y) is odd. So
t—1
n = )\1 . (bl — 1) + Z /\bm . (bm+1 - bm) + )‘h()\) . (h()\) - bt + 1) (mod 2) s

m=1
and we deduce that n is odd. O
Lemma 2.13. Let p =2, i € I, and A\ € Pa(n) satisfy 9(A) + e1(\) = 2. Assume

that €;(A), pi(A) > 0, and let B be the i-good and C be the i-cogood nodes of A,
respectively. If (Ag)© is 2-singular then one of the following holds:

(a) h(X\) > 3 and there exists 1 < j < h(\) such that A\j = \j11 +2 and
MELENAZENE N ZENp2= .. = Ay (mod 2).
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(b) A1y, Apay—1 are odd and Ay = 2.

Proof. By Lemma 2.9, we can write B = (a,b), C = (a+ 1,b—1). Let by,...,b; be
as in Lemma 2.10.

Assume first that B is in the first row. Then C' is not in the first column, for
otherwise A = (2) which contradicts the assumption go(A) + e1(A\) = 2. If C is in
the last row of A then h(\) = 2 and X is a JS-partition, which again contradicts
the assumption €o(A) + €1(A) = 2. So we may now assume that h(\) > 3 and by
Lemma 2.10 we are in case (1) for j = 1.

Assume now that B = (j, ;) with 2 < j < h(A). Since B is normal in A we have
by Lemma 2.10 that b; = 7 and then

)\15...5)\3‘,1;7_5)\]' (mod2)

If 5 = h()) then we are in case (b). If j = h(\) — 1, then we are in case (a). Finally,
if 2<j < h(A) —1 then by Lemma 2.10 we have
)\j+1 7_é )\j+2 =...= )\hO\) (mod 2) .

So we are in case (a). O

We now define the Mullineux bijection referring the reader to [FK,BO] for more
details. Let A € Z,(n). The rim of X is defined to be the set of all nodes (r,s) € A
such that (r+1,s+ 1) € X\. The p-rim of X is the union of the p-segments which are
defined as follows. The first p-segment is the first p nodes of the rim, reading from
top-right to bottom-left. The next p-segment is then obtained by reading off the next
p nodes of the rim, but starting from the row immediately below the last node of the
first p-segment. The remaining p-segments are obtained by repeating this process.
All but the last p-segment contain exactly p nodes, while the last may contain less.
Set AV = X, and define A®) to be A1\ {the p-rim of A=V}, Let m be the largest
number such that A(™) # @&. The Mullineuz symbol of X is defined to be the array

G = <a1 as ... am)7

rn Tro ... Tm
where a; is the number of the nodes of the p-rim of A®) and r; := h(A(®)). The tth
column (it) of G(A) is denoted G¢(A). The partition can be uniquely reconstructed
t

from its Mullineux symbol. The Mullineuz bijection A — A" on 2, (n) is defined from

G\ = < ap as am, ) ,

a1 +x1—1r1 a+T2—To ... Qm+Tm —Tm

where x; := 0 if p | a; and 24 := 1 otherwise.

2.3. Irreducible modules over symmetric groups. We use James’ notation
{D* [ X e Zp(n)}

for the set of the irreducible FS,-modules up to isomorphism, see [J;, §11]. For
example, D = 15 . By [J1, 11.5], we have (D*)* = D> for all A € Z,(n). We
denote by sgn the sign module over S,,. Then by [FK] (see also [BO]), we have

D* @ sgn = DY
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Lemma 2.14. [BrKj, Lemma 1.11] If A € Z,(n) and p € P,(m) then D)X DH is
a composition factor of D)‘J”%Sn,m, where A+ is the partition (A1 + p1, A2+ p2, ... ).

Recalling (2.3), D" is the heart of the natural module of dimension n — 1 — dy,,

where we have put d,p, := 1 if p | n and J,, := 0 otherwise. Recalling (2.4), DFn s
the basic spin module if p = 2. It often plays a special role as indicated for example
by the following result:

Proposition 2.15. Let A\ € P5(n) with dim D* > 1. If2 < k < n/2 then D’\isn_lC .
is irreducible if and only if p = 2, n is even, k is odd and A\ = B,,. In the exceptional
case, we have Dﬁnianc = DBn—k 4 DPx,

Proof. By [JaS, Theorem 5.1] and [P, Theorem 10], D)\isn,k . is irreducible if and
only if p =2, n is even, k is odd and A = 3,. The second statement then follows for
example from Lemma 2.14. O]

For A € Z#,(n), we consider the FS,-module
E(N) := Endg(D?). (2.16)

Recall the notation Z(G) from (2.1). A fundamental trick that will be used to prove
that D*| is reducible for a subgroup G < S,,, is as follows:

Lemma 2.17. Let A € &,(n), and G <S,, be a subgroup such that
dim Homs (Z(G),E(N)) > 1.
Then D>\ is reducible.
Proof. This follows from
Homs, (Z(G), £(A)) = Homs,, (1¢1°", £())) = Homg (16, E(\)g) = Enda(DY)
and Schur’s lemma. O

Lemma 2.18. Let A € Zy(n), and G < S,, be a subgroup such that there exists
Y I(G) — E(N) with v non-zero and such that imv % 1s, . Then D] is reducible.

Proof. This follows from Lemma 2.17, since there always exists a homomorphism
¢ : I(G) — £(N\) with image 1s,, and so ¢ and ) are linearly independent. O

We will need one more general result on reducibility of D*|:

Lemma 2.19. Letn > 5, H =S, or A,,, L be an irreducible FH-module of dimension
greater than 1, and G < H be a subgroup with O,(G) # 1. Then Ll is reducible.

Proof. The assumptions n > 5 and dim L > 1 guarantee that L is faithful. Hence the
invariants L9 (%) form a non-trivial proper submodule of Llg. ]

2.4. More modules over symmetric groups. As in [J, §4], we have Specht mod-
ules S* and permutation modules M?* over S,, for all A\ € Z(n). The module M*
is the permutation module on the set of A-tabloids {t}, which are row-equivalence
classes of A-tableaux t, while S* C M* is spanned by the polytabloids

e = Z (sgno)o - {t} € M, (2.20)
oeCy
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where C; denotes the column stabilizer of the A-tableau ¢. In fact, any e; generates
S* as an FS,,-module. It is well-known that (M*)* = M?.

We will also use Young modules Y which can be defined using the following well-
known facts contained for example in [J3] and [Ma, §4.6]:

Lemma 2.21. There exist indecomposable FS,,-modules {Y* | X € 2(n)} such that
M 2 Y* @ D, (YH)Emu for some my, \ € Zxo. Moreover, Y can be char-

acterized as the unique indecomposable direct summand of M> such that S C Y.
Finally, we have (Y)* 2 Y for all A € 2 (n).

Lemma 2.22. [JK, 6.1.21] The irreducible FS,-modules D* and D" are in the same
block if and only if cont(\) = cont(u). All composition factors of S¥ and YV are of
the form D" where cont(k) = cont(v).

In view of the lemma, blocks of FS,, are determined by the residue contents of
irreducible modules contained in the block, which are elements of ©,,, see (2.5). The
block of FS,, corresponding to 6 € ©,, will be denoted By. If 8 € O, does not arise
as a residue content of any A € #(n), we set By := 0, so that we have

FS, = € Be. (2.23)
0cO,
Two-row partitions will play a special role in this paper, so it is convenient to
introduce the following notation. Let 0 < k < n/2. We denote
My == MO=RR) g = kR Dy = DRy sy (nRR),

Strictly speaking, when p = 2 and n is even, Dy, is only defined if £ < n/2. We denote
by € the set of all k-elements subsets of {1,...,n} so that M} is the permutation
module on .

For 0 < k,l < n/2, we will use special homomorphisms between permutation
modules:

My s My — M, X — Z Y,
Y €eQ;,Y incident to X

where Y is incident to X means Y C X or X C Y.

Lemma 2.24. [Wi, Theorem 1] If 0 < k <1 <n/2 then

rank () = rank(n, ;) = Z (:) B <r ﬁ 1)’

where the sum is over all r = 0,...,k such that (,i::) is not divisible by p.

Let 0 < k <n/2, G <S5, and A € &,(n). We denote by i;(G) the number of
G-orbits on ;. Note that
ir(G) = dim MS = dim Homs, (Z(G), My,). (2.25)
Define also
mi(A) := dim Homs,, (M, £(X)) = dimEnds,_, , (D5 ). (2.26)

Our main tools are Lemmas 2.17 and 2.18, which motivate us to study homomor-
phisms from Z(G) to £(A). We plan to do it by studying homomorphisms from Z(G)
to My and then from Mj to £(\) for appropriate small k’s. This is why we need
dimensions defined in (2.25) and (2.26).
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Lemma 2.27. [Mo, Lemma 4.14] If p =2 and V is an S,-module then
dimEnds, ,(V ]s, ,) <2dim End5n72,2(V isnfw).

2.5. Invariants. In this section, for various transitive G < S,,, we will study the
invariants (S7)“ of the dual Specht module S; = S™~11_ Our goal is to establish
that (S7)¢ = 0 in many situations. The following lemma will allow us to reduce to
the case p | n.

Lemma 2.28. If ptn and G < S,, is transitive then (S})¢ = 0.

Proof. Since G is transitive, we have dim MIG = 1, and the result follows since under
the assumption p { n we have M; = 15, & S7. O

If p | n we can use the following criteria for (S})¢ = 0.
Lemma 2.29. If G is a transitive subgroup of S, with G = OP(G) then (S7)% = 0.

Proof. Since G is transitive, we have dim MlG = 1. Now the result follows by con-
sidering the long exact sequence in cohomology corresponding to the short exact
sequence 0 — 1g — M; — S§ — 0 and using H(G, 1¢) = 0, which comes from the
assumption G = OP(G). O

Corollary 2.30. Let G be a subgroup of S, such that OP(G) is transitive. Then
()¢ =0.

Proof. Since OP(OP(G)) = OP(G), the previous lemma applies to show that (S7)0" (@) =
0, which implies the result. ]

The following result shows that we can apply Corollary 2.30 to primitive subgroups
with non-abelian socle:

Lemma 2.31. Let G be a primitive subgroup of S,, with non-abelian socle S. Then S
and OP(QG) are transitive. If, in addition, G is 2-transitive then either S and OP(Q)
are 2-transitive or (n,G,S) = (28,5L2(8).3, SLa(8)).

Proof. Since S is normal in G, then G permutes the S-orbits on {1,2,...,n}. But
G is primitive, so there is only one S-orbit. Further, by inspection of the list of
2-transitive groups, see [C, Note 2, p. 9], we see that if G is 2-transitive then either
S is 2-transitive or (n, G, S) = (28,5L2(8).3,5L2(8)).

Finally, by the O’Nan-Scott Theorem, see e.g. [C, Theorem 4.1], S is a direct
product of non-abelian simple groups. But

S/(SNOP(G)) = OP(G)S/0M(G) < G/OP(G)
is a p-group, so OP(G) > S, and the statements on OP(G) also follow. O

Corollary 2.32. If G is a primitive subgroup of S, with non-abelian socle then
(1) = 0.

Proof. Follows from Corollary 2.30 and Lemma 2.31. O
For primitive subgroups with abelian socle we have:

Lemma 2.33. Let G be a primitive subgroup of S, with abelian socle. Then either

(SH)Y =0 or O,(G) # 1.
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Proof. By the O’Nan-Scott Theorem, n = r" and .S := soc G is an elementary abelian
r-group of order v for a prime r. If r = p we have O,(G) > S # 1. Otherwise p { n,
and we are done by Lemma 2.28. 0

The following result will allow us to assume that (S7)¢ = 0 for primitive subgroups
G <S,.

Corollary 2.34. Letn > 5, G < 'S,, be a primitive subgroup, and D be an irreducible
FS,,-module of dimension greater than 1. If D\ is irreducible then (S7)¢ = 0.

Proof. This follows from Lemmas 2.19, 2.33 and Corollary 2.32. g
For imprimitive subgroups we will be using the following lemma:

Lemma 2.35. Let n = ab for some a,b € Z~1. Then (SF)° =0 unless p = b = 2
in which case dim(S;)%0 = 1.

Proof. This is an explicit check. We use the standard basis v1,...,v, in M; and
the corresponding elements vy, ...0, € S] = M1/<Z?:1 vj). Then {v1,...,0,—1} is
a basis of S]. Suppose that a non-trivial linear combination Z;:ll ¢iv; is (Sq U Sp)-
invariant. The (S, X - -+ X Sg)-invariance is equivalent to cxey1 = ... = C(k+1)a for
all 0 <k <b—2and cp_1)q41 = ... = cp—1 = 0. Action of S which permutes the
blocks of size a leaves such a vector invariant if and only if all ¢; = -+ = ¢pp_q, p = 2
and b = 2. O

3. RESULTS ON BRANCHING

3.1. Modular branching rules. Here we review some results from [Kj, K3, Ks].
Let V' be an FS,-module in a block By for some 6 € O, cf. (2.23). For any i € I,
we define e;V’ to be the projection of V]|g | to the block By_,, and f;V to be the

projection of V45"+1 to the block Bgi,. We then extend the definition of e;V and
fiV to arbitrary FS,-modules additively, yielding the functors

e; : FSp-mod — FS,,_1-mod, f; : FS,-mod — FS,,11-mod.
More generally, for any r € Z>; we have divided power functors
ez(r) : FS,-mod — FS,,_,-mod, fi(r) : FS,,-mod — FS,,4,-mod,

see [Ks, §11.2]. The following is well-known, see e.g. [K5, Lemma 8.2.2(ii), Theorems

8.3.2(i), 11.2.7, 11.2.8]:
Lemma 3.1. For anyi € I and r € Z>1, the functors egr) and fi(r) are biadjoint and
commute with duality. Moreover, for any FS,-module V' we have

Vis,  ZeVed...@ep 1V and VS 2 V... @ faV.

Recall &, fi, i, @; from §2.2. The following two results are contained in [Kj5, The-
orems 11.2.10, 11.2.11], [K4, Theorem 1.4] and [BrK;, Theorems E(iv), E/(iv)].

Lemma 3.2. Let A € Zy(n), i € I and r € Z>g. Then:
(i) erD* = (e DYyer!;
(ii) el(-T)D’\ # 0 if and only if r < g;(\), in which case eET)D)‘ is a self-dual
indecomposable module with socle and head both isomorphic to D™,
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(iii) ["D*: D% = (V) = dimEnds, (" D*);

(iv) if D" is a composition factor of el(-T)DA then g;(p) < €;(X) — r, with equality
holding if and only if p = €} \;

(v) dimEnds,_,(D*s, ) =3 ;e €5(A).-

(vi) Let A be a removable node of X\ such that \a is p-reqular. Then DM is
a composition factor of e;D* if and only if A is i-normal, in which case
[e;D* : D] is one more than the number of i-normal nodes for X above A.

Lemma 3.3. Let A € Zy(n), i € I and r € Z>g. Then:

(i) f7D* = (£ DN

(ii) fi(r)D’\ # 0 if and only if r < ;(N), in which case fi(r)DA is a self-dual
indecomposable module with socle and head both isomorphic to DFIA,

(it)) [£{7D*: DI = (V) = dim Ends, ,, (£ D);

(iv) if D* is a composition factor of fi(T)D)‘ then v;i(p) < wi(X) —r, with equality
holding if and only if p = fi'\.

(v) dimEnds,, , (DM>1) = 3. ¢;().

(vi) Let B be an addable node for \ such that AP is p-regular. Then DY s

a composition factor of f;D* if and only if B is i-conormal, in which case
[f;D* : D’\B] is one more than the number of i-conormal nodes for X below B.

Lemma 3.4. [K;, Lemma 8.5.4(ii)] Leti € I and A € Z,(n). Then soc(fie;D*) =
(DA)GBEZ'(A)'

Lemma 3.5. Let A € Zy(n) and i € I. Then

Proof. This follows from [Ks, Lemma 8.5.4(i), Corollary 8.5.7] since &;(fi\) = &;(\)+1
and @;(€;A) = p;(A) + 1. O
Lemma 3.6. Let p = 2, n be even, and A € P2(n) have ezxactly two normal nodes. If
D?* is a direct summand Of(D/\isn_l)TS" then foeoD* & fre1 D> = D & X, where X is
a self-dual FS,,-module with socle and head both isomorphic to D with [X : D] > 2.
Proof. By Lemma 3.1, we have

(DMs, 1> = foeoD* @ fre1D* @ foer D @ freoD*

with foelD/\ @ fleoD)‘ in different blocks from D*. So D* is a direct summand of
foeoD)‘ @ flelD’\, and we can write fOeOD’\ @ flelD’\ ~ DA @ X for some self-dual

module X. By Lemma 3.4, we only have to check that dim Homs, (D*, X) = 1 and
[X : D > 2. The first statement follows from

dim Homs  (D?, foeoD* @ fie1D*) = dim Ends, (egD*) + dim Ends,, (e; D*)
=¢eo(A) +e1(N) =2,
where we have used Lemmas 3.1 and 3.2(iii). To prove the second statement, we show
that [foeoD? @ fie; D : D] > 3.
If e9(A) = €1(A) = 1 then, noting that ¢;(A\) > 0 for some i € I the second

statement follows from Lemma 3.5. So we may assume that £;(\) = 2 and £1_;(\) = 0.
Then by Lemma 2.11, we have ¢;(A) > 0, and so we again conclude by Lemma 3.5. [
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Lemma 3.7. Let A € Z,(n) and i € I. If D" is a composition factor of e;D* then
there exists a removable node A for A with res A =i and > Aa. In particular, if D*
is a composition factor of D)‘isn,l then there exists a removable node A for A with
> Aa.

Proof. If D* is a composition factor of e; D then it is a composition factor of e;S™.
By [J1, 9.2] and Lemma 2.22, ¢;S* has a filtration with subquotients of the form S*4
for removable nodes A for A with res A = 4. The result now follows from [Jq, 12.2]. O

A partition A € Z,(n) is called a JS partition and D* is called a JS module
if D*|g, | is irreducible. JS partitions were first studied in [JaS]. These can be
explicitly classified, see [Kj, Theorem D]. It is easy to see that A is JS if and only if
A has exactly one normal node. In particular:

Lemma 3.8. Let p = 2 and A € P5(n). Then X is JS if and only if all parts of A
have the same parity, in which case D)‘isn_1 >~ DA1=LA2As,),

3.2. Some general branching lemmas. We will study some important filtrations
that arise in the restriction D*|g ..

Lemma 3.9. Let A € Zy(n), i € I and g;(\) > 0. Then, for 1 < a < g;(X), there
exist quotients V, of e;D* such that the following hold:
(i) [Va: D% =a,
(ii) V, has socle and head both isomorphic to D%?,
(iii) Vg is a quotient of Vay1 for 1 <a < g;(N),
(iv) Vg is self-dual.

Proof. Set ¢ := &;()\). By [Ks, Theorem 11.2.7(ii)], the algebra Ends_,(e;D?)
is isomorphic to the truncated polynomial algebra F[z]|/(z%), so there exists i) €
Ends, _, (e;D*) with ¢*=! # 0 and ¢°* = 0. For 1 < a < ¢ let

V, = e; D/ Ker(y).

Clearly such quotients V, satisfy (iii). Moreover, head V, = D%* by Lemma 3.2(ii).
Since =% # 0 for 1 < a < € by assumption on 1, we have that

0V, =im (%) C ;D

So soc V,, & D%* by Lemma 3.2(ii), and (ii) holds.
From the assumption *~! # 0 and 9* = 0 we have that V, # V,,; for each
1 <a <e. By (ii), (iii) and Lemma 3.2(iii), we then have that

1<[Vi:D% < [Va: D% < ... < [V.: D% =¢,

which implies (i).

We now prove (iv). As e;D* is self-dual by Lemma 3.2(ii), we identify e;D* and
(e;DM)* so that 1 and 9* are both endomorphisms of e; D*. Since v has nilpotency
degree ¢ and so does 1*, we must have

(") = c"Y" + (a linear combination of terms ¢* with s > r)

for some non-zero scalar ¢. Hence im ((¢")*) = im (¢0") for all r. Since im ((¢/")*)
(im (¢"))*, we conclude that V, = im (¢*7¢) = V.

O IR
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Remark 3.10. (i) Using Lemma 3.2, one can easily see that we must have V; =
head(e;D*) and V,,(,) = ¢;D* in Lemma 3.9.

(ii) In the proof of Lemma 3.9, we have used the fact that ¢* = cip+(higher terms).
One can use the explicit construction of ¢ in terms of a Murphy element in [Ks] to
deduce that y* = 1.

A proof similar to that of Lemma 3.9 yields:

Lemma 3.11. Let A € Z,(n), i € I and p;(\) > 0. Then, for 1 < a < @;(N), there
exist quotients V, of f;D* such that the following hold:
(i) [Va: DI =a,
(ii) Vi has socle and head both isomorphic to D,
(i) V4 is a quotient of Vai1 for 1 < a < ¢;()),
(iv) Vg is self-dual.

Lemma 3.12. Let p divide n and A € Zp(n). Then
dim Homs,, (S1,€(N) <) &i(N).

i€l
If equality holds then there exists i with ;(\) >0 and D* C (f;D%*)/D?.
Proof. By [Mo, Lemma 4.12], we have

dim Homs,, (S1,E(V) < 3 _&i(A) =1+ m
i€l

where

m := min {i:g(§§(>0[soc((fiéiD/\)/D/\) : D, i:;rilg?);o[soc((eiﬁD)‘)/D)‘) : D)‘]} .

So it is enough to prove that if i € I with g;(\) > 0, then [soc((f;D%*)/D?) :
D?] < 1. By Lemmas 3.3(iii) and 3.11, there exists a quotient V, (EN—1 = ;D% X
such that socV,, (3)-1 = D*, socX = D* and [X : D) = 1. The inequality
[soc((f; D%*)/D?*) : D] < 1 follows. O

Lemma 3.13. Let A € Py(n), i € I, €;(\) > 0 and D* C (f;D%")/D*. Then
©i(\) > 0 and (A\)© is p-singular, where B and C are the i-good and i-cogood nodes
of \ respectively.

Proof. Set M := (f;D%)/D*. Tt suffices to prove that D* ¢ M if ¢;(\) = 0 or
(Ag)Y is p-regular. If ;(A\) = 0, then ¢;(é;A) = 1 and so f; D%* = D* by Lemma 3.3.
In particular, M = 0, and we are done. So we may assume that o;(\) > 0 and (Ag)®
is p-regular. Note that €;A = Ap, B is the top i-conormal node for Ag, and C' is the
second i-conormal node for Ap from the top.

By [BrK;, Remark on p.83] and the self-duality of f;D%*, we have that

€; QA\*|( Q C %
JiD™ ~ (878

where S is a non-zero quotient of S* and S5 )“ is a non-zero quotient S5 )“ with
[SAB) . DA = 1.
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Let Z be the submodule (S’A)*]ZS(AB)C)* of f;D%* and Z = Z/Dj be the corre-
sponding submodule of M. Note that [Z : D] = 1, and Homs, (D, Z) = 0 since D*
is not a composition factor of (§*)*/D* and soc(S<’\B)O)* ~ pOs)® 2 DX,

Let V :=V,, (1) -1 be as in Lemma 3.11. Then socV & D* and

[V : DN = @i(é\) —1=[M : DY,
where the second equality is by Lemma 3.3(iii). Let X C M be a submodule such
that M/X = V. By the last equality, [X : D] = 0. So, setting Y := X 4 Z, we now
deduce from the previous paragraph that Homs, (D*,Y) = 0. Note that Y 2 X since
[X : D =0, while [Y : D*] > [Z : D] = 1. Since V has simple socle, it follows that
soc M/X CY/X, and we can now apply Lemma 2.2. O

3.3. Some branching for JS modules. In this subsection we will always assume
that p = 2 and A is a JS partition. By definition, the top removable node A of \ is its
only normal node, and D/\¢SW1 = DM, In this sense JS modules have very simple
branching. However, we need to prove some results about their restrictions to other
subgroups.

Lemma 3.14. Letp =2, A € Po(m+n), p € Po(m) andv € Z(n). If p+v =\
and (A1, ... ,)\h(l,)) is a JS-partition, then D is a composition factor of D/\¢Sm.

Proof. We apply induction on n, the case n = 0 being clear. Let

Ki= A= (")) = (0 = Lo Ay = LAyt - o Amegn)-

Note that x is 2-regular, since A and p are 2-regular and by definition
Kh(v) = M) — 1 2 fa@w) > Brw)+1 = A@w)+1 = Kha(p)+1-

Further h(v — (1"")) < h(v), K = pu + (v — (1"))) and (K1, -y Kp(w)) is a JS-
partition, see Lemma 3.8. By the inductive assumption, it suffices to prove that
D" is a composition factor of D/\ism%ih@). Let Bs := (s,As) be the last node
in row s of A\, s = 1,2,.... Using for example Lemma 3.8, it is easy to see that
the node Bj is good for A, By is good for Ap,, B3 is good for (Ap,)B,, etc. By
Lemma 3.2(ii), we have that D?B1 is a composition factor of D)‘ismﬂ,la DWB1)B,
is a composition factor of D81 ls, nzy €bC, and the required result on D" follows
sincen:(...()\Bl)BZ...)Bh(V). ]

Lemma 3.15. Let p = 2, n be even and X\ € P5(n) be a JS-partition with odd parts.
Then D)‘isn/2 has at least three non-isomorphic composition factors, unless one of
the following holds:

(i) n>4 and X\ = oy,

(ii) n > 8 withn =0 (mod 4) and A = 3,

(iii) n > 24 withn =0 (mod 8) and A = (n/4+3,n/4+1,n/4—1,n/4—3),
(iv) m > 22 withn =4 (mod 6) and A= ((n—4)/3+3,(n—4)/3+1,(n—4)/3—

1,1).

Proof. From Lemma 3.14 it is enough to find distinct p,o,m € HP2(n/2) such that
A — p, A — o and A\ — 7 are partitions. Notice that h()) is even since n is even and A
consists of odd parts.
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Case 1. A(A\) > 6. In this case we can take
(Mt Any/2 1 Apy 241 — 1 Aoy — 1
- 2 PR 2 ) 2 PR 2 )
> M+3 A+1 Anny/2—1 1 Apoye — 1 Ay — 1
= 2 ; 72 PRI 2 9 2 L] 2 :
If Ap(n) > 3 then we can also take
. <)\1 +3 A +1 Anoy2 1 Apoy/o41 — 1 Ann—1 — 1 Apn) — 3>

2 b 2 AR | 2 bl 2 AR 2 9 2
while if Aj(y) =1 we can take
o AM+3 A+1 A2 1 Apy/241 — 1 Anoy—2 — 1 Apy-1—3
- 2 ) 2 PR ] 2 ) 2 yr 2 b 2 .
Case 2. h(A) = 4. In this case we can take
p=(M+1)/2,(Aa+1)/2, (A3 —1)/2,(A\s — 1)/2).
If A1 > Ay +4 we can also take
o= ((M—-1)/2,(A2+1)/2,(A3 +1)/2,(A — 1)/2)
T=((AM+3)/2,(Aa—1)/2,(A3—=1)/2,(\y — 1)/2).
If Ay > A3 +4 we can also take
o= ((A1=1)/2,(A2 =1)/2,(A3 +1)/2, (A + 1)/2)
™= ((M+1)/2,(A2 —1)/2, (A3 + 1)/2, (A — 1)/2).

We can now assume that A\j = Ao +2 = A3 + 4.

If A3 — Ay = 2, then either we are in the excluded case (iii) or A = (7,5,3,1).
By Lemma 3.14, D™*3:21 is a composition factor of D(7’5’371)¢sw. Since D®3:21) =~
S43.21) (as (4,3,2,1) is a 2-core), it follows from [Jy, 9.3, Tables] that D(4’3’2’1)¢58
and then also D(7’5’3’1)¢58 has at least three non-isomorphic composition factors.

If A3 — Ay > 2, then either we are in the excluded case (iv) or Ay > 3. In this case
we can take

o = (A +1)/2, (02 = 1)/2, (g — 1)/2, (A +1)/2)
m=((M+3)/2,(A2+1)/2,(A3 =1)/2, (M = 3)/2).

Case 3. h(\) = 2. If A2 = 1, we are in the exceptional case (i). So from now on we
suppose that Ao > 3. Moreover, if \j — Ay = 2, we are in the exceptional case (ii). So
from now on we also assume that \; — Ay > 4.

Assume first that A\; — A2 > 6. If Ay < n/4 we take

pw=(n/2), co=(n/2—-1,1), 7= (n/2 —2,2).
If Ao > n/4 we take
p= (A1 = [n/4], A2 — [n/4]),
o=\ —[n/4] =1, — [n/4] + 1),
= (A1 — [n/4] =2, 2 — [n/4] + 2).



18 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

Assume finally that A\; — Ao = 4, ie. A = (n/2+ 2,n/2 —2). Then n =
2 (mod 4) and we may assume that n > 10 as for n = 6 we are in the excep-
tional case (i). We can take u = ((n + 6)/4,(n —6)/4) and 0 = ((n + 2)/4, (n —
2)/4). We complete the proof by showing that D(("+10)/4.(n=10)/4) i also a compo-
sition factor of D(”/2+2’”/2_2)¢5n/2. By Lemma 3.8, we have D("/2+2n/2=2) | o

n—1
D(/2+1n/2=2)  Fyrther, by Lemma 3.2 we have that D(/2+27/2=4) i5 4 compo-
sition factor of D(/2+2n/2=2) | o Since (n/2 + 2,n/2 — 4) is a JS-partition, it

then follows from Lemma 3.14 that D((»+10)/4.(n=10)/4) i 5 composition factor of
D(n/2+2,n/2—2)\l/s ] ]

n/2
3.4. Branching recognition. In this subsection we obtain characterizations of cer-

tain classes of irreducible modules by their branching properties.
The following lemma develops [BrKs, Lemma 2.7].

Lemma 3.16. Let p =3, n > 6 and A\ € P3(n). Suppose that h(u) <2 or h(pM) < 2
for all composition factors D* of D)‘isn_l. Then h(\) <2 or h(\1) < 2.

Proof. Pick a good node A of . By [K3], we have that (Aq)" = (\") 5 for some good
node B of \'. By Lemma 3.2, D*4 is a composition factor of D’\¢5n71 and D)5
is a composition factor of D/\Misn,l' If h(\) > 4 then h(A4g) > 3. If A(A\M) > 4 then
h((Aa)") = h((\")g) > 3. So we cannot have both h(\) > 4 and h(A\") > 4. So,
tensoring with sign if necessary, we may assume that h(\) = 3 < h(A"). Recall that
G1(X) denotes the first column of the Mullineux symbol for A.

Claim. If B is a normal node of \ such that Ap is 3-regular, then G1(Ag) # G1(A).

Indeed, by Lemma 3.2(vi), D?B is a composition factor of D)\isn, .- By assumption,
we must then have h(Ag) < 2 or h(Ap)") < 2. If h(Ap) < 2, then G1(Ag) # G1(N)
since h(A) = 3 and h(\) is part of the data Gy()\). If h((Ap)") < 2, then similarly
G1((A)M) # G1(A\") since h(A\M) > 3; hence G1(Ap) # G1(N\). The Claim is proved.

The first 3-segment of A has one of the following forms, which we will consider case
by case (nodes of the first 3-segment are marked with x’s):

(a) | | X

. lx|x
() | | x| x|
(c) - x|x|x

Case (a). Let A be the top removable node of A\. Then G;(\) = G1(\4), which
contradicts the Claim.
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Case (b). If A3 < A2 and A is the top removable node of A, then G1(\) = G1(\a),
which contradicts the Claim. Otherwise, A is of the form (k + 1, k, k). In the excep-
tional case, the bottom removable node A is normal for A. By Lemma 3.2(vi), D
is a composition factor of DAis,H- On the other hand, h(A4) = 3 and it is easy to
see that h((Aa)") > 3 unless n = 7. For n = 7 we have A = (3,2,2) and \" = (5,1, 1).
Hence D™D is a composition factor of DAM¢S6, and, since (4,1, )" = (4,1,1), we
deduce that D*1Y is a composition factor of D)‘Ls6 violating our assumptions.

Case (c). If Ay < A1 —2 and A is the top removable node of A, then G1(\) = G1(\4),
which contradicts the Claim. So we may assume that Ay = Ay — 2. Consider the
second 3-segment. We now have the following cases (nodes of the second 3-segment
are marked with e’s):

(C.l) - X X|X|

(c2) | | x|x|x]

(e3) [] x|x|x]
|| [o]efe

In the case (c.1), the bottom removable node A is normal for A\, and G1(\) = G1(\a),
which contradicts the Claim. In the case (c¢.2), the second removable node A is normal
for A, and, unless n = 7, we get G1(\) = G1(A4), which contradicts the Claim. In the
exceptional case A = (4,2,1) and Aq = (4,1,1), and so we get a contradiction as in
the case (b). In the case (c.3), we have A = (k+2,k,[) for 1 <[ < k—2. The second
removable node A is normal for A and if I < k — 2 we get G1(\) = G1(A4), which
contradicts the Claim. Let [ = & — 2. In this case the bottom removable node B is
normal for A, and, unless | < 3, we get G1(\) = G1(\4), which contradicts the Claim.
In the exceptional cases, the second removable node A is normal for A which yields a
composition factor Dk+2k-11) of D)‘isn, , which violates the assumptions. ]

Lemma 3.17. Let p = 2, n > 6 and A € Pa(n). Suppose that h(p) < 2 for all
composition factors D* of D/\isn,y Then h(\) < 2.

Proof. Since D*4 is a composition factor of D)‘is% , for any good node A for A, we
may assume that A(\) = 3. But in this case, the assumption n > 6 guarantees that
there always is a normal node A for A such that A4 is 2-regular and h(A4) =3. O

Recall the partition 3, defined in (2.4).

Lemma 3.18. Let p = 2, n > 7 and A\ € Po(n). If all composition factors of
D/\¢Sn7 are of the form 1g or DPn=1 then either D = 1s, or A = f,.

1 n—1

Proof. By Lemma 3.17, we may assume that h(A) = 2. If \; — A9 < 2, then A\ = 3,,.
If Ay — A2 > 3, then (A1 — 1, A\2) # Bp—1, while DM—1X2) g 4 composition factor of
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D)‘¢Sn71 by Lemma 3.2(vi). Finally, if Ay — Ay = 3, then A9 > 2 since n > 7 and

A, Ao —1) € {(n—1),Bp_1}, while DX1:2271) ig a composition factor of D | by
Sn—l

Lemma 3.2(vi). O

4. PERMUTATION MODULES

4.1. Some general results. We record two known general results concerning per-
mutation modules My and Specht modules Sj.

Lemma 4.1. [J], 17.17] IfO < k < n/2 then Mk ~ Sk|Sk_1| ‘e |SD

Given a,b € Z>( with p-adic expansions a = Y ;_jap’, b = > ;_, bip' such that
ar # 0, bs # 0, we say that a contains b to the base p if s < r and for all ¢ we have
bt:Oorbt:at.

Lemma 4.2. [Jy, 24.15] All composition factors of Sy, are of the form D; with j < k.
Moreover, [S : D;| =1 if n —2j + 1 contains k — j to the base p, and [Si : D;] =0
otherwise.

4.2. The case p = 3.
Lemma 4.3. Let p=3, n =0 (mod 3) withn > 6. Then
M = Dy|D1|Dy, M= Dy® M, and MgNDQEB((Do@STNS;).

Proof. The structure of M; and Mj has been described for example in [BeK, Lemmas
1.1, 1.2]. From the same lemmas we also have that S; = Dy|D; and that So = Ds.
From Lemma 2.22 we have that Dy, D; and D3 are contained in the same block,
while D5 is contained in a different block. From Lemma 4.1 and from self-duality of
M3 and of the simple S,,-modules, we then have that

Mz ~ 5]57155]S3 ~ D2 @ (Do|S7[53)-

From Lemma 2.24 we have that rank(n; 3) = n — 1 = dim(M;) — 1. From M; =
Do|D1|Dg ~ Dyl|S7, it then follows that im (1; 3) ~ S7. In particular ST C Mjz. Since
Dy & Dy C M3 and neither Dy nor Dy is contained in ST = D;|Dy, the fact that
ST € M3 implies that there exists a module N with

N = Dy ® Dy @ Sy € Ms.

Notice that N does not have any composition factor isomorphic to D3 = soc(S3).
Since there exists a quotient of M3 isomorphic to 53, it follows that the same holds
for M3/N. By comparing dimensions we then have that M3z/N = S3. In particular,
by block decomposition,

Mz ~ N|(M3/N) ~ Dy & (Do & 57)|53).

Lemma 4.4. Let p=3,n=1 (mod 3) withn > 7. Then

M, = Dy @ Dy, My = Dy @ Dgy|Ds| Dy,
522D0|D2, MSNDl@((DO@S;MS;)
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Proof. The structure of M; and M; has been described for example in [BeK, Lemmas
1.1, 1.2]. From the same lemmas we also have that S; = D; and that Sy = Dg|Ds.
From Lemma 2.22 we have that Dy, Dy and D3 are contained in the same block,
while D1 is contained in a different block. From Lemma 4.1 and from self-duality of
M3 and of the simple S,,-modules, we then have that

M3 ~ Sp|57]53]53 ~ D1 @ (Do|52]53)-

From Lemma 2.24 we have that

rank(1,3) = (Z) —1 = dim(Ms) — 1.

As M> =2 D@ (D0|D2|D0) and dlm(Dl) > 1, it then follows that im (172’3) ~ D1 @S;
Since Dy @& Dy C M3 and neither D nor Dy is contained in S5 = Ds|Dy, the fact
that S5 C M3 implies that there exists a module N with

N =Dy ®Dy®S; C Ms.

Notice that N does not have any composition factor isomorphic to D3 =2 soc(S3).
Since there exists a quotient of M3 isomorphic to 53, it follows that the same holds
for M3/N. Again by comparing dimensions we have that M3z/N =2 S5, and it follows
by block decomposition that

Mz ~ N|(M3/N) ~ D1 & (Do & 53)|53).

Lemma 4.5. Let p=3, n > 8 with n =2 (mod 3). Then
M, =2 Do® Dy, My=Dy® D1|D2|Dy, and Ms~ Ms|S3.
Moreover,
(i) If n=2 (mod 9) then
Ms =2 (Do|D3|Dy) @ (D1|D2|Dy).
(ii) If n =5 (mod 9) orn =8 (mod 9) then
M3 = Dy @ D3 & (D1|D2|Dy).

Proof. The structure of M; and M, follows for example from [BeK, Lemmas 1.1,
1.2]. Since n = 2 (mod 3), Lemma 2.22 shows that Sp and S3 are in the same block,
as are S7 and So, but Sy and S3 are contained in a different block from S; and Ss.
From Lemma 4.1 it then follows that

M3 ~ S3]55|51|So ~ (S3]S0) @ (S2/S1).
From Lemma 4.2 it follows that
Ss3 So Sa S1
M3 ~ (D0|D3‘ D() ) D (Dl’DQ‘ Dl )
if n =2 (mod 9), while
53 So S2 51
A e A
Mz~ (D3 | Do) @ (D1|D2| Dy)

if n="5or 8 (mod 9). The lemma now follows from Lemma 2.21 and self-duality of
Ms. O
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4.3. The case p = 2.
Lemma 4.6. Let p = 2 andn > 7 be odd. Then My = Dy & Dy, My C M3, and
Ms /My = S5. Moreover:
(i) Ifn=1 (mod 4), then My = D1 & Dy|D2|Dy, M3 == D3 @ M>, and S3 = Ds.
(ii) Ifn=3 (mod 4), then My = Dy @ D1 @ Dy, M3 = Dy @ Dy @ Dl‘Dg‘Dl,
and S3 = D1’D3.

Proof. The structure of M; and M, follows for example from [BeK, Lemmas 1.1,
1.3]. By Lemma 2.22, Sy and S are in the same block, as are S and S, but Sp and
Sy are contained in a different block from S; and S3. From Lemma 4.1 it then follows
that

Mg ~ 53’52|81‘S() ~ (SQ‘S()) ©® (53‘51)

From Lemma 4.2 it follows that
52 So 53 51

—~— A~ N~
M;z ~ (Do|D2| Do) & (D3 | D1)
if n =1 (mod 4), while
Sa So S3 St
A~~~
Mz~ (D | Do) (D1|Ds| Dy)
if n =3 (mod 4). The lemma now follows from self-duality of M3 and Lemma 2.21.
O
Lemma 4.7. Let p =2 and n > 6 be even. Then
My = Do|D1|Do ~ Dy|ST,
S1 = Do|Dy,
My ~ (Do @ S7)|55.
Moreover,
(i) If n =0 (mod 4) then Sy = D1|D2 and My = Y3 ~ S¥|D2]S:.
(ii) If n =2 (mod 4) then
My = Dy & Y,
Yy 2 D1|Dy|D2|Dy| Dy ~ D1|Dy|S5,
Sy 2 D1|Dy|Ds.
Proof. The structure of M; and S; is well-known, see e.g. [BeK, Lemma 1.1]. By

Lemma 2.24, we have rank(n; 2) = n—1 = dim(M;) —1. It then follows that S7 C M.
From Lemma 4.1 and self-duality of Ms we have that

Ms ~ 55]57153 ~ Do|ST|S3- (4.8)
Since Dy, S7 C My and Dy € S} = D1|Do, there exists a module N with

Note that Dy = soc(.S5) is not a composition factor of N. Since there exists a quotient
of My isomorphic to S;, it follows that the same holds for My/N. By comparing
dimensions we then have that My/N = S3. In particular

My ~ N|(Mp/N) ~ (Do & S)|S5.
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For n =2 (mod 4) the structures of Ms and Sy are described in [MO, (1.1), (2.4)].
So let us assume that n = 0 (mod 4). By [MO, (1.1)], we have My = Y5. We also
have S = D1|Dy by Lemma 4.2. To prove that My ~ S¥|D2|S1, let A := Ker(nz1).
Since 72,1 = 1y 5 we have that My/A = S;.

Let {v; | 1 < i < n} be the standard permutation basis of M; and {v;; | 1 <i <
j < n} be the standard permutation basis of My, so that 72 1(v; ;) = v; + v;. The
only submodule of M5 isomorphic to Dy is (3, vi ;). Note that

772,1(2”1’,]’) =Y (witv) =) (n—1uv £0,

i<j i<j i
hence Dy € A. Since N = Do® ST = Do@ D1|Dg and M; = Dy|D1|Dg, we must have
n2,1(N) = Dy and AN N = S} using the Krull-Schmidt Theorem. The composition
factors of A are Dy, D1, D3, so it follows that A/ANN = Dy, completing the proof. [

Lemma 4.9. Let p =2 and n > 8 even. Then M3 ~ S3|Sa|My. Moreover:
(i) If n =0 (mod 4) then
Ss3 Sa
—_—— —
M3 = M, @ (DQ‘Dl‘D3 | Dl‘DQ)
(i) If n =2 (mod 4) then
S3 = Do|D2| D3, Msz ~ (Y2/D1)|57]55,
and there exists A C Yo/ Dy with A= Dy|Da|Dy and Ms ~ A|D3|S2]S5.

Proof. By Lemma 4.1, we have M3 ~ S3|52]51|Sp. Note that M3 has a unique
submodule isomorphic to S3, since M3 has a unique composition factor isomorphic to
D3 = head S3. Similarly M3/S3 has a unique submodule isomorphic to Sa. So there
is a unique submodule X C Mj3 such that X ~ S3|S3. Moreover, X is the unique
minimal submodule of M3 with [X : D3] = [M3: D3] and [X : Dy] = [M3 : Ds].
Since rank 731 = n by Lemma 2.24, we have that M; is a quotient of Mj3. Since
M, = Dg|D1|Dy ~ S1|So by Lemma 4.7, it follows from the first paragraph by
comparing dimensions that M3 ~ X|M; ~ S3|Sa|M;.
(i) By [KST, Lemma 5.4(i)], M3 = M; @ Ds3|D;|D3|D1|D2, and we are done by
the first paragraph.
(ii) Let n =2 (mod 4) . By [KST, Lemmas 5.4(ii), 5.5], we have that:
(a) imng 3 = Do|D32|Do|Dy;
(b) the composition factors of M3z are Dy with multiplicity 4, Dy with multiplicity
2, Do with multiplicity 2, and D3 with multiplicity 1;
(c) soc M3 = Dy.
(d) immy 3 is the unique submodule of M3 isomorphic to M; and kerns is the
unique submodule N of M3 such that Ms/N = M;.

Since S3 C M3, the structure of S3 follows from (c) and Lemma 4.2. By (a),(d) and

Lemma 4.7 there exist modules B,C' C M3 with B = Y,/D; and C' = M;. Moreover,

by Lemma 4.7, we have B/soc Mg = S5, C/soc M3 = S§ and BN C = soc M3. So
M3 ~ B|(C/soc M3)|D ~ (Yo/D1)|ST|D,

for a certain quotient D of M3. Since M3 has a quotient of the form S3 and D3 =
soc(S3) is not a composition factor of neither B nor C, it follows that D also has a
quotient of the form S5 and then by dimensions D = S5, so that M3 ~ (Y2/D1)|S7|S5.
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By what has just been proved, soc(Ms/Dy) is isomorphic to a submodule of
soc(Ya/(D1|Dy)) @ soc(ST) @ soc(S3) = Dy @ Dy @ Ds.

In particular there exists a unique submodule of M3/Dy of the form Ds. So there
exists a unique submodule E C Ms3 with £ = Dg|Dy. Then E C S3. Let A C B be
the unique submodule with A = Dy|D2|Dy. Again, we have E C A. It follows that
A+ S3 ~ A|D3 and A + S3 ~ S3|Dy. Since soc S = D; (from Lemma 4.7), we have

that
Do S

—_—~——— ——
((A+ S3)/53) N (X/S3) = 0.
and then that
(A+X)/(A+53) 2 (A+S3+X)/(A+S3) ZX/((A+ S3)NX) = X/S3 = S5,.
In particular,
A+ X ~ (A+ 53)[S2 ~ A|D3|S.

Comparing composition factors we have that Ms/(A + X) has composition factors
Dy and D; with multiplicity 1 and no other composition factors. Since M3/(A + X)
is a quotient of

M3/ X = My = Dy|D1|Dg ~ Dy|ST,
it follows that Ms3/(A + X) = ST and so

Ms ~ (A+ X)/(Ms/(A+ X)) ~ A|Ds|S,|S.

Lemma 4.10. Let p = 2 and n > 6 with n = 2 (mod 4). Then M®=21L1) =
My &Y (=21 with

S S5
y (=211 =~ DDy | Dy| Do| Dy | Do| D2| Do| Dy .
~—— N—— S——
Sy S1 S1

Further Ys is a submodule and a quotient of Y ("=21L1)

Proof. Since M(=21) =~ p(n=1) g D(=2.1) " we have
By [Mo, Lemma 3.13],
D215 & Dy| Do| D2| Do| D1 | Do| Da| Do| Dy

In particular, D(”_ZI)TS" ~ y(n=211) gee Lemma 2.21. The rest comes from Mo,
Lemmas 3.5, 3.12]. O

Remark 4.11. The following diagrams give information on the structures of My and
M3 in the cases the structures were not completely determined, but will not be used
in the proofs. Edges indicate existence of uniserial subquotients; see [Al, BC] for
precise meaning of the pictures.
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(i) If p=3 and n =0 (mod 9) then
Dy Dy
Ms; = Dy & \D3\
b By
(ii) If p=3 and n =3 (mod 9) then
M3z = Do & Dy & (D1]Do| D3| Do| D).

(iii) If p=3 and n =6 (mod 9) then

D,
e
M3 = Dy ® Dy® Dy Dg
~N |
D,
(iv) fp=3and n=1 (mod 9) then
Dy Do
|
M;= Dy & D3
|
Dy Dy

(v) If p=3 and n =4 (mod 9) then
M3 = Do & Dy & (D2|Do| D3| Do| D2).
(vi) If p=3 and n =7 (mod 9) then

Do

e

M3=Dy® D1® Dy Ds
N

Dy

(vii) If p=2 and n =0 (mod 4) then
Do

D,
|

My = \DQ
|

D; Dy

25
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(vii) If p=2 and n =2 (mod 4) then

M3

I
S
S
S

5. RESULTS ON THE MODULE &(\)

In this section we study the submodule structure of the module
E(N\) = Endp(DY) = D* ® D
We try to show that some quotients of small permutation modules M), arise as sub-
modules of (), which is needed to obtain homomorphisms % as in Lemma 2.18.
Lemma 5.1. Let p = 2, n > 6 be even, and let A € Pa(n) be not a JS-partition.
Then ST C E(N).
Proof. 1t suffices to prove that dim Homs, (S, E(X)) > 2 since ST = D;|Dy by Lemma
4.7 and Dy = 1g, is contained exactly once in the socle of £(A) by Schur’s Lemma.
On the other hand,
Homs, (S1,€(\)) & Homs, (S, (D*)* @ D) = Homs, (D* @ Sf, D).
So it is enough to prove that
dim Homs, (D* ® S5, D) > 2.
We have a commutative diagram

0—Dy— M — S —=0
al )
0—=Dy—S5—=D;—0

(|

0 0

whose rows and columns are exact. By tensoring with D* we get a commutative
diagram
0—-D" %D oM —-D*®Sf =0 (5.2)
al f f
0—>D) >D @S, —D*®D; —0
0 0

whose rows and columns are exact.
Applying Homs, (—, D*) to the short exact sequence in the first row of (5.2) and
using the fact that Homs (D, D*) 2 F by Schur’s Lemma, we get an exact sequence

0 — Homs,, (D* ® S}, D*) — Homs, (D* ® M, D*) " F. (5.3)
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Furthermore, by Lemma 3.2(v), we have
dim Homs , (D* ® My, D*) = dim Homs, (M, Endp(D?))
= dimEnds, ,(D*s, )
=¢eo(A) +e1(N),

which is just the number of normal nodes in A. By assumption, A has at least two
normal nodes. If it has three, we are now done. Moreover, if 7 is the zero map, we
are also done. So we may assume that A has two normal nodes and 7 # 0. We will
show that this leads to a contradiction.

Since 7 # 0, there exists a homomorphism ¢ € Homs, (D* ® My, D*) with 7(p) =
@ ot =1idpx, i.e. the short exact sequence in the first row of (5.2) splits. Hence the
short exact sequence in the second row of (5.2) splits.

By the the splitting of the first row of (5.2), we have

D @ M, = D" (D*® S}).
Moreover, by Lemma 3.1, we have
D@ My = D/\isn,lTs" >~ foeoD* @ fre1 D @ foer DX @ freo D

So by Lemma 3.6,
foeoD)\ D flelD)‘ ~ DA e X

where X is a self-dual module with socle and head both isomorphic to D* and [X :
D?] > 2. Using the Krull-Schmidt Theorem, we deduce that

D)@ S = X & foer D & fregD.
By dualizing, it follows that
D*® 81 2 X & foer D & firegD?.

But by the splitting of the second row of (5.2), we know that D? is a direct summand
of D* ® S; which leads to a contradiction by the structure of X and the fact that
foelD)‘ &) fleoD)‘ is in blocks different from that of D?. O

Recall the numbers my(A) from (2.26).

Lemma 5.4. Let p = 2, n > 6 be even and A € Pa(n) have at least three normal
nodes. Then

dim Homs, (M™=25D (X)) > 2my()\) + 2 dim Homs, (S1,E(N)) + 1.
Proof. In this proof we denote ¢; := €;(\), p; := p;(A), and h := h(\). Note that the

left hand side of the inequality in the lemma equals dim End5n72(DA¢Sn72), which
by [Mo, Lemma 4.9] is bounded below by

2e0(e0 — 1) +2e1(e1 — 1) + 2(550,5121(50 + &1+ €0e1).

On the other hand, by Lemma 3.12, we have dim Homs_(S1,E(X)) < gp + €1, while
by Lemma 3.2(v) we have mj(\) = &g + 1. So it suffices to prove that

250(60 — 1) =+ 261(61 — 1) + 255075121(60 +e1 + 6061) > 4(50 + 61) + 1.

By the assumption that A has at least three normal nodes, we have ¢y + 1 > 3.
If either ¢; > 2 and e1_; > 1 or ¢; > 4 and £1—; = 0 for some 7 € I then the above
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inequality holds. Thus, we are left with the case where ¢; = 3 and €;_; = 0 for some
1 € I, which we assume from now on.
By Lemmas 3.1 and 3.2, we have that mq(\) = 3 and

dim Homs, (M"=211 £(\)) = dimEnds, ,(D g )
= dimEnds, ,(e?D*) + dimEnds, _,(e1_se;D")
=12+ dimEnds,,_,(e1_;e; D).

By Lemmas 3.12 and 3.13, if ¢; = 0, then dim Homsg_(S1,£()\)) < 2 and so in this
case the lemma holds. So we may assume that ¢; > 0. If e1_;e;D* is non-zero and
not simple then by self-duality, dim Ends, ,(e1_;je;D*) > 2, and so in this case the
lemma holds again by Lemma 3.12. So we will complete the proof by establishing the
following

Claim. If ¢;, =3, e1—; = 0 and ¢; > 0 then e1—;e; D is non-zero and not simple.

Notice that A > 3 since A\ has 3 normal nodes. Also, since the top removable
node A = (1, ;) is always normal, it has residue i. Below we will repeatedly use
Lemma 3.2 without further notice.

Case 1. A\ = A2 (mod 2). Then A\ > A2 + 2 and (2, A2) has residue 1 — 7. Since
A1 > Ao + 2, the partition A4 is 2-regular. Further the two top removable nodes of
Aa are (1,A\; — 1) and (2, A\2) which both have residue 1 — i and then they are both
normal in 4. Therefore e;_;e; D? is non-zero and not simple.

Case 2. A1 # A2 = A3 (mod 2). We have that B := (2, \2) is i-normal for A\, A\p
is 2-regular, [e;D* : D8] = 2, and (3, \3) is normal of residue 1 — i in A\g. Hence
e1_;e; D> is non-zero and not simple.

Case 3. A\; # A2 # A3 (mod 2). In this case (1, A1), (2,2) and C := (3, \3) are
exactly the i-normal nodes of A, and C' is the i-good node of A.

Case 3.1. h = 3. As n is even, we must have that A1 and A3 are odd and \s is even.
So ¢ = (0. In this case all addable nodes for A also have residue 1, so ¢; = 0, which
contradicts the assumptions of the claim.

Case 3.2. h > 4. Then Ay = A3 (mod 2), since otherwise (4, A1) would also have
residue ¢ and then it would also be normal. Now, since A1 + Ay + A3 + A4 is odd,
we must have h > 5. If A\c has a normal node of residue 1 — i, then ej_;e; D? is
non-zero and not simple. So we may assume that £1_;(A¢) = 0. On the other hand,
gi(Ac) = 2. So A¢ has exactly two normal nodes. For 1 < k < h let ay be the residue
of the removable node on the k-th row of A\¢ and let 1 < b1 < ... < b; be the set of
indices k for which a; = aj_1. Note that by = 2 and by = 4.

Case 3.2.1. t = 2. In this case ((Ac)4, ..., (Ac)n) = (M4,..., Ap) is a JS-partition.
So the only conormal nodes for A on row 4 or below are the two bottom addable nodes
(hyA\n+1) and (h+1,1). Since A1 + A2+ A3+ s is odd and n is even A5 +...+ Ay is
odd and then, since (A5, ..., Ay) is also a JS-partition, h and A, are both odd. From

MZEXNZENM=M=...= ), (mod 2)

it follows that A\; is odd and so ¢ = 0. So the nodes (h,A\s, + 1) and (h + 1,1) both
have residue 1, as have the addable nodes for A in the first three rows. In particular
p; = 0 giving a contradiction.

Case 3.2.2. t > 3. By Lemma 2.10, ap, # ap, = a4 = 1 — i (mod 2), so ap, = i.
By definition of a;, the sequence of residues of the removable nodes of A in its first
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bs rows is given by

1—i¢ and ¢ alternate

(a1,a2,1 —as,aq,...,ap,) = (4,0,4,1 —i,4,...,1 —1,1,1).
By the definition of normal nodes, we then have that (b3, Ap,) is normal in A, contra-
dicting the assumption that A has only 3 normal nodes. ([l

Lemma 5.5. Let p = 2, n > 6 be even and A € P3(n) have exactly two normal
nodes. Then ma(A) > mi(A\) +1 =3 and

dim Homs , (M"=25D (X)) > my(\) + 3.

Proof. By Lemma 3.2 and the assumption that A has exactly two normal nodes, we
have mj(\) = 2, hence the equalities in the lemma.
Case 1. g;(A) = 2 and £;_;(\) = 0 for some ¢ € I. Then by Lemmas 3.1 and 3.2,
we have
DM _=elD @ey je; DA
and e?DA and ej_;e; D are in different blocks of S,,_o. Hence we can write

D =FEi @© Ei_ig,

n—2,2

n—2

where Ei’i\l/Sn_Q = G?D)\, El*i,i\l/Sn_g = 61,i6iD/\, and Ei,i and Elfi’l' are in different
blocks of S,,_22. We deduce that E;; and F1_;; are self-dual.

By Lemma 3.2, we have ¢2D* = D& ¢ D& and by [Mo, Lemma 6.4] we have
that e;_;e; D* is non-zero and not simple. So F;; and Fi_;; are both non-zero and
not simple, since all simple FSs-modules are 1-dimensional. Using self-duality of the
modules involved, we now get

ma(\) = dimEnds,_, ,(DYs, )
=dimEnds,_,,(E;;) + dimEnds,_,,(F1-;)
>242
and
dim Homs, (M™=211 £(\)) = dimEnds, ,(DMs )
= dimEnds, ,(e?D*) + dim Ends, ,(e1—;e; D)
>4+ 2.
Case 2. £9(A) =¢e1(A\) = 1. Then by Lemmas 3.1 and 3.2, we have
D/\isn,z >~ epe1 DN @ e1eg DN 22 eg DN @ e DO,
So we have
Homs, (M("~211 £()\)) = Ends, ,(DMs )
Ends, ,(eoD%*) @ Ends, _,(e; D%)
@® Homs, _,(e3 D% eq D)
@® Homs,_,(egD?*, ey D).

By [Mo, Lemma 4.8], the last two Hom-spaces are non-zero, while by Lemma 3.2, we
have

1

dim Ends, ,(egD%?) = ¢¢(é;)\) and dimEnds, ,(e; D®*) = e1(&p)).
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Moreover, by [Mo, Lemma 4.4], 9(é1A) 4+ €1(égA\) > 4. Therefore
dim Homs, (M =211 £(X)) > e(é1A) + €1 (o)) + 2 > 6,

as required.
By Lemma 2.27, we further have

2ma(N) > dim Homg, (M™=250 £(0)) > 0(E1A) + £1(EoA) + 2.
So if gg(€1A) + €1(épA) > 4, the inequality mgo(A) > 3 also follows. Thus we may
assume that eo(é1\) + 1(épA) = 4.

Let i := res(1,A1). Then (1, A1) is the only i-normal node of . By [Mo, Lemma
4.4], we have £1_;(é;\) = 3. So €;(€1_;\) = 1. Therefore e;Df1~i* =2 D%€1-iA thanks
to Lemma 3.2. On the other hand, as we have pointed out above,

HOInSn_2 (eiDélfiA, el_iDéi/\) 75 0,
hence €;61_;\ = €1_;€; A again by Lemma 3.2. Set p := é;61_;\.
Notice that
(soc(DMis

Hence either soc(D*|s ,,) = D" K 1g, or soc(D*|g
latter case, we have by self-duality that

ma(A) = dimEnds,,_,,(DYs, ,,) >4,

s, , C SOC(DAJ,Sn72) >~ soc(e; D= @ ey_; D) = DM @ DM,
) = (D* K 1s,)®2. In the

n—2,2

n—2,2

as desired. So we may assume that soc(D g, ,,) = D" K 1s,.

By Lemma 3.9, e;_; D% has a self-dual quotient V with [V : D#] = 2 and soc V =2
head V' = D#. In particular, dim Ends,_, (V') = 2. Writing FSs for the regular module
over So, we have

Homs, ,,(D*|g, ,,,V BFS;) = Homs, ,,(D g, ,,,V1>"2?)
o Homsn_z(D’\isnﬂ, V)
>~ Homs, ,(e; D%~ V) @ Homs,_,(e;_; D% V).

Since e;Df1-i* = DI we have dim Homsg,, _,(e; D1~ V') = 1. Since V is a quotient
of e;_;D%* and dim Ends, (V) = 2, we have dim Homs _,(e;_;D%* V) > 2. So

dim Homs,,_,,(D*|g, ,,,V KFS,) > 3.
Since VXIFSy ~ (VX 1g,)|(V K 1s,) it follows that
dim Homs,,_, ,(D*g, ,,,V K 1s,) > 2. (5.6)

,2,2?

A similar argument with D* in place of V shows that
dim Homs,,_, ,(D*]g, ,,, D" RFSy) = 2. (5.7)

Since head(D*)s, ,,) & D K 1s,, head(V K 1s,) & D* K 1s, and [V K s, :
DF K 1g,] = 2, we conclude from (5.6) that V' K 1s, is a quotient of D)\isn,m- By
self-duality, V X 1g, is also a submodule of D)‘isn_m. A similar argument using (5.7)
instead of (5.6), shows that D* K FS,y is a quotient and a submodule of D’\isn_u.
Therefore there exist endomorphisms 9,13 € Endsn72’2(D’\¢Sn_272) with imy =
DFXFSy and im3 = V K 1g,. Let us also define 94 :=id € Endsnfw(D’\LSn_Q,g)



IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF SYMMETRIC GROUPS 31

and ¢y € Ends, ,,(D*|s, ,,) to be a homomorphism with im¢; = D* X 1g,. Note
that D¥ X FS, 2 V X 1g,, S0 imo # imaps, ime; C imhe N imeps, and imape +
ims C imy4. These facts easily imply that 1y, 12,13, 4 are linearly independent,
completing the proof of mgy(A) > 4. O

Lemma 5.8. Let p = 2, n > 8 with n = 0 (mod 4) and A € P3(n) with X\ ¢
{(n), Bn}. If e0(N) +e1(\) = 2 assume further that dim Homs  (S1,E(N)) < 2. Then
Dy CEN).

Proof. If X is a JS partition this holds by [Mo, Lemma 7.5]. So we may assume that
Eo()\) + 81()\) > 2.
Since ST is a quotient of M, we have that

dim Homsg_ (S7,£(A)) < dim Homg (M7,E(X)) = mi(N).
If e0(A) 4+ €1(N\) > 3 then, by Lemmas 2.27 and 5.4, we have
my(\) = dimEnds,,_,,(D*s, ,,)
> (dimEnds, ,(D*s, ,))/2
= (dim Homs , (M™% £(X)))/2
> m1(A) + dim Homs,, (S1,E(N))
> dim Homsg, (57, £(A)) + dim Homs,, (S1,E(N)).

On the other hand, if £9(\) +€1(A) = 2 and dim Hom(.S1,&(\)) < 2, then by Lemma
9.9, we get

ma(A) > mq(A) +1 > dimHoms, (S7,E(N)) + dim Homs,, (S1,E(N)).
By Lemma 4.7, we have My ~ S| D3|S1, so the inequality
dim Homg, (Ma,E(N)) = m2(A) > dim Homs (ST, E(N)) + dim Homs (S1,E(N))
implies that dim Homs, (D2, £(A)) > 0, which yields the lemma. O
>

Lemma 5.9. Letp=2,n> 6 withn =2 (mod 4) and A € P5(n). Ifeg(\)+e1(N)
3 then S5 C E(N).

Proof. From Lemma 4.10 it is enough to prove that
dim Homs , (M2 £(X)) > my(\) + 2dim Homs (S5, E(N))
+ dim Homs, (S7,E(N)) + 1.
This follows from Lemma 5.4 since dim Homs, (S7,E(A)) < mi(N). O

Lemma 5.10. Let p =2, n > 6 with n = 2 (mod 4) and A € Py(n). Assume that
A& {(n), Bn} is a JS-partition or that e9(X)+e1(A) = 2 and dim Homs, (S1,E(N)) < 2.
Then S5 or Ya/Dy is contained in E(N).

Proof. If A is a JS-partition with A & {(n), 55}, this holds by [Mo, Lemma 7.4] and
Lemmas 4.7,4.10 since D245 o y(n=2,1.1)
If e0(A) + e1(N) = 2 and dim Homs,, (S1,£(A)) < 2, then by Lemma 5.5 we have

dim Homs, (M™=25Y (X)) > my(\) + 3dim Homs, (S1, E(N)).
Since D; is a quotient of S7, from Lemma 4.10 we then also have that
dim Homs, (Y™=251_£(\)) > 2dim Homs,, (S, E(A)) + dim Homs, (D1, E()).
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From Lemmas 4.7 and 4.10 we also have that

Y2/D1 Y2/D1
53 53
y (=211 = D\ | Do| Dy| Do| Dy | Do| Da| Do| D1,
N—— SN——
S1 Sl
from which the lemma follows. OJ

6. SPECIAL HOMOMORPHISMS M} — E()\)

6.1. The homomorphism (;. Let 1 <k <n/2 and J € Q. We denote by S the
subgroup of S,, consisting of all permutations fixing the elements of {1,...,n}\ J.
Clearly Sy &£ S;,.

Let A € Zp(n). Recalling that M}, denotes the permutation module on €, we
define the homomorphism ¢ € Homg, (M, E(N)) via

(Ck(J))(v) = Z qgu (J € Q, ve D).

geSy
Let ¢ be the (n — k, k)-tableau
k+1 k+2 -+ 2k 2k4+1 -+ n
1 2 ...k

and Cy be the column stabilizer of ¢. Recalling (2.20), the corresponding polytabloid
e = Z(sgna)a-{l,...,k} € My
oeCy
generates the submodule S C Mj. Define
T = Z (sgno)ogo™t € FS,,.
gESk,0€C:

Note that actually xy € FSyy | ory < FS,. It follows from the definitions that for any
v € D* we have

(Culer)) (v) = apv,

SO

Lemma 6.1. The homomorphism (i is zero on the submodule S C My if and only
Zf $kD’\ =0.

The elements x5 and x3 will play a special role, so we will spell them out explicitly.
We have

xo = (1,2) — (1,4) — (2,3) 4+ (3,4).
For distinct a,b,c € {1,...,n}, we consider the sum of 3-cycles
[abc] := (a,b,c) + (a,c,b) € FS,,.
Then it is easy to see that, after some cancellation, we get

w3 = [123] — [234] — [135] — [126] + [345] 4 [246] + [156] — [456].
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6.2. The case k£ =2 and p = 2.
Lemma 6.2. Let p = 2. Then 5D £ 0 and xo D321 +£ 0.

Proof. We have D*1) = §(41D 5o the module has a basis {&, + &,41 | 7 = 1,...,4}
with the action of S5 on the indices. An easy computation now shows that zo(e1 +
62) =¢e3+¢e4 #0.

We also have D321 = §B:21)  Recalling (2.20), we realize SG21) as a submodule
of M®21) spanned by polytabloids. For distinct a,b,¢ € {1,...,6}, the tabloid
corresponding to a,b in the second row and c¢ in the third row will be denoted ab|c.
Thus ab|c = ba|e, and

{ablc | a,b,c € {1,...,6} are distinct and a < b}
is a basis of M (321 Consider the (3,2,1)-tableau

1 4 6
t=2 5
3

and the corresponding polytabloid
er =25(3 4+ 35|24 15|3 + 15|2 + 35|1 + 25|1 4 243
+ 34|2 + 143 4+ 14]2 + 34|1 + 241

(since p = 2 we ignore the signs). Now an explicit calculation shows that the basis
element 12|3 appears in xge; with coefficient 1, in particular, xoe; # 0. U

Lemma 6.3. Let p =2, n > 5, and A € Po(n) with A & {(n), Bu}. Then x2D* # 0.

Proof. We apply induction on n. If n = 5, the only A that satisfies the assumptions
is (4,1), and we can apply Lemma 6.2. If n = 6, the only partitions that we have
to check are (5,1) and (3,2,1). For (3,2,1) see Lemma 6.2. As for (5,1), we have
D(571)¢S5 =~ D1 and so the same lemma applies.

Let n > 6. Since x5 € FSy < FS,,_1, we have 25D* = 0 only if 332(D)‘¢sn,1) =0,
which happens only if xoD#* = 0 for all composition factors D* of D)‘isn_l. Then
by the inductive assumption we have that all of these composition factors are of the
form D™~ or DP»-1. By Lemma 3.18, we conclude that A € {(n), 8,}. O

Corollary 6.4. Let p =2, n > 5, and A € Pa(n) satisfy X & {(n),Bn}. Then the
FS,,-homomorphism (s : My — E(N) is non-zero on Sa.

Proof. Apply Lemmas 6.1 and 6.3. O
6.3. The case k=3 and p = 3.
Lemma 6.5. Let p = 3. Then 3D £ 0.

Proof. We use the known fact that D*11) is the exterior square of D> —this can
be seen for example by comparing the Brauer characters of the two modules. The
module D®V has basis vy, ..., vs, where v, := & — &.41, where {€1,...,€6} is the
natural basis of the permutation module M (5.1 and for v € MY we denote

@ZZU—FF'(El‘F"‘—FEﬁ)GM(5’1)/F'(81+-~—|—66).



34 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

We now compute

(1,2,3)v1 = vg, (1,2,3)vg = —v1 — vy,

(1,3 2)U1 —v1 — U9, (1,3,2)v9 = vy,

(2,3,4)v1 = vy + va, (2,3,4)v9 = vs,

(2,4,3)v1 = vy + vy + v3, (2,4,3)vg = —vg — v3,
(1,3,5)v1 = —vg, (1,3,5)v9 = vy + v3 + vy,
(1,5,3)v1 = —vg — w3 —vg, (1,5,3)vy = —vy,

(1,2,6)v; = vy + v3 — vy, (1,2,6)vyg = —vy + vy — v3 + vy,
(1,6,2)v1 = v1 — v3 + vy, (1,6,2)ve = vy + vg,

(3,4,5)v1 = vy, (3,4,5)v9 = vy + v3,

(3,5,4)v1 = vy, (3,5,4)v9 = vy + v3 + vy,
(2,4,6)v; = vy + vy + v3, (2,4,6)v9 = —v3,

(2,6,4)v1 = —vy +v3 —vg, (2,6,4)vg = —v1 + v — V3 + vy,
(1,5,6)v1 = —vg —wv3 —vg, (1,5,6)ve = vo,

(1,6,5)v1 = —v1 — w3 +vg, (1,6,5)ve = vo,

(4,5,6)v; = vy, (4,5,6)v9 = vg,

(4,6,5)v1 = vy, (4,6,5)vy = vy

Hence

x3(v1 Avg) = va A (—v1 —v2) + (—v1 —v2) Avg

— (v1 +v2) Avg — (v1 +v2 +v3) A (—v2 — v3)

— (—va) A (v2 +v3 +v4) — (—v2 —v3 —v4) A (—v1)
— (v1 +v3 —vg) A (—v1 +v2 —v3 +v4) — (V1 —v3 4+ V) A (V1 + v2)
+ v A (vg +v3) + v A (v2 + v+ vg)
+ (v1 +v2 +v3) A (—v3) + (—v1 +v3 — vg) A (—v1 + v2 — v3 + v4)
+ (—v2 — w3 —vg) ANvg + (—v1 —v3 + vg) A V2
—v1 Avg —v1 Ay

= v1 ANvg — V2 A\ vy,
which is non-zero, completing the proof. O

Lemma 6.6. Let p = 3, n > 6, and X\ € P5(n) satisfy h(\) > 3, h(A\") > 3. Then
$3D)‘ 7é 0.

Proof. We apply induction on n. If n = 6, the only A that satisfies the assumptions
h(\) > 3, h(A\") > 3 is (4,1,1), and we can apply Lemma 6.5. Let n > 6. Since
z3 € FSg < FS,,_1, we have z3D* = 0 only if :L“g(D’\LSn_l) = 0, which happens
only if x3D* = 0 for all composition factors D* of D)‘isn_l. Then by the inductive
assumption we have that h(u) < 2 or h(u") < 2 for all composition factors D of
D*|s, .. By Lemma 3.16, we have h(A) < 2 or h(\") < 2, which is a contradiction.

O
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Corollary 6.7. Let p=3, n > 6, and A € P3(n) satisfy h(\) > 3, h(\1) > 3. Then
the FS,,-homomorphism (3 : M3 — E(X) is non-zero on Ss.

Proof. Apply Lemmas 6.1 and 6.6. U

6.4. The case k=3 and p = 2.
Lemma 6.8. Let p = 2. Then z3DG2D £ 0.

Proof. Since (3,2,1) is a 2-core, we have DG21) o~ §B.21) 5o we will just prove
that 23521 £ 0. We use the same polytabloid basis of S®21) as in the proof of
Lemma 6.2 and the same polytabloid

e; = 25|34 352 4 15]3 + 15]2 + 35|1 + 251 + 243
+ 34]2 4 143 + 14]2 4 34|1 + 241

Now an explicit calculation shows that the basis element 12|4 appears in x3e; with
coefficient 1, in particular, zse; # 0. ([l

Lemma 6.9. Let p =2, n > 6, and A € P(n) satisfy h(\) > 3. Then x3D* # 0.

Proof. We apply induction on n. If n = 6, the only A that satisfies the assumption
h(\) > 3is (3,2,1), and we can apply Lemma 6.8. Let n > 6. Since z3 € FSg <
FS,,_1, we have z3D* = 0 if and only if $3(D)‘$sn,1) = 0 only if x3D* = 0 for
all composition factors D* of D)‘isn7 .- Then by the inductive assumption we have
that h(p) < 2 for all composition factors D of D>‘¢5n_1. By Lemma 3.17, we have
h(A) < 2, which is a contradiction. O

Corollary 6.10. Let p = 2, n > 6, and A € P5(n) satisfy h(\) > 3. Then the
FS,,-homomorphism (3 : M3 — E(X) is non-zero on Ss.

Proof. Apply Lemmas 6.8 and 6.9. 0

7. REDUCTION THEOREMS

7.1. First reduction theorems. The reduction results that we need are substan-
tially more difficult to prove in the case p = 2|n. In this section, we deal with all the
other cases.

Lemma 7.1. Let p=3, n =0 (mod 3) and n > 6. Suppose that G is a 2-transitive
subgroup of S,, which is not 3-homogeneous and such that (S})¢ = 0. If A € P3(n)
with h(\), h(\") > 3, then D] is reducible.

Proof. As G is 2-transitive, we have i3(G) = 1, hence p(Z(G)) = Dy for every non-
zero ¢ € Homs,, (Z(G), M2). Since Ds is a submodule of My by Lemma 4.3, it follows
that Do does not appear in the head of Z(G), i.e. Homs, (Z(G), D2) = 0. Moreover,
Homs, (Z(G), S7) = (S7)¢ = 0 by assumption.

On the other hand, i3(G) > 1 means that there is a non-zero homomorphism
1 € Homs, (Z(G), M3) whose image is not Dy. So Lemma 4.3 implies that D3 is a
composition factor of im .

Now we deduce from Corollary 6.7 that D3 is a composition factor of im ({3 o ).
So the proof is complete by Lemma 2.18. O
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Lemma 7.2. Let p =3, n =1 (mod 3), n > 7, and G be a transitive subgroup
of S, which is not 3-homogeneous and such that (S3)¢ = 0. If A\ € P3(n) with
h(N), h(A") > 3, then D>\ is reducible.

Proof. Since G is transitive, we have i;(G) = 1, we have ¢(Z(G)) = Dy for every
non-zero ¢ € Homs, (Z(G), My). Since D; is a submodule of Mj, it follows that D
does not appear in the head of Z(G), i.e. Homs, (Z(G), D1) = 0.

The assumption that G is not 3-homogeneous means that i3(G) > 1. So there
is a non-zero homomorphism ¢ € Homs (Z(G), M3) whose image is not Dy. The
assumption (S3)¢ = 0 is equivalent to Homs, (Z(G),S3) = 0. Taking into account
the previous paragraph, we now deduce from Lemma 4.4, that D3 is a composition
factor of imy. Now by Corollary 6.7, we have that D3 is a composition factor of
im ({3 0 1). So the proof is complete by Lemma 2.18. O

Lemma 7.3. Let p =3, n =2 (mod 3), n > 8, and G be a 2-transitive subgroup of
S, which is not 3-homogeneous. If X\ € P3(n) with h(\), h(A\") > 3, then DM is
reducible.

Proof. By Lemma 4.5, we have a short exact sequence
0— My — Ms — S5 — 0.

Since i2(G) = 1 < i3(G), we deduce that Homs, (Z(G), S5) # 0. So there is an FS,,-
homomorphism ¢ : Z(G) — M3 such that D3 is a composition factor of im. Now
we deduce from Corollary 6.7 that Dj3 is a composition factor of im ({3 o0 ¢). So the
proof is complete by Lemma 2.18. O

Lemma 7.4. Let p=3, n=1 (mod 3) and G be a 2-transitive subgroup of S,, with
G = 03(G). Then (S3)¢ = 0.

Proof. By Lemma 4.4, we have My = D1®Y with Y ~ Dy|S5. Since G is 2-transitive,
we have dim M§ = 1 and D{ = 0, hence dimY% = 1. Now the result follows by
considering the long exact sequence in cohomology corresponding to the short exact
sequence

0—-Dyg—Y —S55—0
and using H'(G, Do) = 0, which comes from the assumption G = O3(G). O

Corollary 7.5. Let p = 3, n = 1 (mod 3) and G be a 2-transitive subgroup of S,
with non-abelian socle. Then (S3)¢ =0, unless possibly n = 28 and G = SLy(8).3.

Proof. This follows from Lemma 2.31, and Lemma 7.4 applied to O3(G) in place of
G. O

The exceptional case in Corollary 7.5 does not create problems:

Lemma 7.6. Let G = SLy(8) x O3 < Sag be a 2-transitive subgroup, and D> be an
irreducible FSag-module with D*, D* @ sgn % D@8 DETY - Thep D is reducible.

Proof. The largest degree of any irreducible FG-module is < 27, cf. [Atl]. On the
other hand, by the assumptions on D* we have dim D* > 27 by [J2, Theorem 6]. [J

Lemma 7.7. Let p = 3, 7 < n = 1 (mod 3), and let G < S,, be a 2-transitive
subgroup with abelian socle S. Then one of the following statements holds.

(a) (85)¢ =0.
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(b) n =1 for a prime r, and either G < ATLy(r%) or d = 2 and G < AGLs(r).

Proof. By the O’Nan-Scott Theorem [C, Theorem 4.1] (and the remarks after it), S
is an elementary abelian 7-group of order n = ¢, for a prime r, and G = S x Gy
with Gg < GLg4(r). The 2-transitivity of G implies that G acts transitively on the
nonzero vectors of F¢. If d = 1 or 2, then (b) holds.

Let d > 3. We apply to the subgroup Gq a version of Hering’s theorem as given
in [KTy, Proposition 3.3]. Denoting Z := Z(GL4(r)), we conclude that one of the
following holds:

(i) Go> SLa(q1) with ¢f =™ and a > 2;
(ii) Go > Sp2a(q1)’ with ¢?* = r™ and a > 2;
(iii) Go > Ga(q1) with ¢f = 7™ and 2|r;
(iv) GoZ is contained in I'L; (r™);
(v) (r",GoZ) is (3%, < 271 S5), (3%, >8L4(5)), (24, A7) or (3%, 5L,(13)).
If case (iv) occurs, then Gy < I'L1(r?) and conclusion (b) holds. In all other cases,
we see that Gy contains a perfect subgroup K which is still transitive on the nonzero
vectors of Y, unless (n,Go) = (2%,G2(2)). In the exceptional case, we take K :=
G2(2) and note that O3(K) = K. Thus in all cases, G contains the 2-transitive
subgroup H := S x K with O3(H) = H, hence we are done by Lemma 7.4. O

The exceptions in Lemma 7.7(b) can be dealt with easily:

Lemma 7.8. Suppose we are in the case (b) of Lemma 7.7. If D* is an irreducible
FS,,-module with D, D & sgn % D™ D then D is reducible.

Proof. Assume the contrary. If d = 1, then n = r and |G| < |AGLi(r)|=7r(r—1) <
n?. If d = 2, then n = 72 and |G| < |AGLy(r)] < 7% = n3. If d > 3, then
|G| < |ATLy(r%)| = n(n — 1)d < n3. In all cases, dim D* < |G|"/? < n®?2. On the
other hand, the assumption on D* implies by [J3] that dim D* > (n? — 5n + 2)/2,
which is larger than n3/2 if n > 13, yielding a contradiction. The only remaining case
is n = 7, in which case dim D* < 6, again contradicting the assumption on D*. [

Theorem 7.9. Let p = 3, n > 6, A € P3(n) with h(\),h(\") > 3, and G be a
2-transitive subgroup of S,. If D\ is irreducible then G is 3-homogeneous.

Proof. If n = 2 (mod 3), the result follows from Lemma 7.3. If n = 0 (mod 3),
the result follows from Lemma 7.1 and Corollary 2.34. If n = 1 (mod 3), the result
follows from Lemmas 7.2, 7.6, 7.7, 7.8 and Corollary 7.5. O

Theorem 7.10. Let p = 2, n > 7 be odd, A\ € Pa(n) with h(\) > 3, and G be a
2-transitive subgroup of Sn. If D)‘ig 1s 1rreducible then G is 3-homogeneous.

Proof. The proof is similar to that of Lemma 7.3, but uses Lemma 4.6 instead of
Lemma 4.5, and Corollary 6.10 instead of Corollary 6.7 0

7.2. Reduction theorems for p =2 | n.
Lemma 7.11. Let p =2, n > 6 even and A € P2(n) \ {(n), Bn}. If
ig(G) > 1+ dim(S;)¢

then D* | is reducible.
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Proof. By Lemma 4.7 there exists L C My with L = Dy & ST and My/L = S5. Note
that

dim Homs , (Z(G), L) = dim Homs, (Z(G), Do @ S7) = 1 + dim(S})“,

so by assumption, there exists g : Z(G) — My such that the image of 1¢ is not
contained in L. So, since soc(S5) = Ds, we deduce that Ds is a composition factor
of imvYg.

By Corollary 6.4, (2 : My — £()\) is non-zero on Sy C My. But head So = D, so
Dy is a composition factor of im (5. Since Dy appears with multiplicity 1 in Ms it
follows that the image of (2 0 ¢g : Z(G) — E£(N) has Dy as composition factor. The
lemma then holds from Lemma 2.18. ]

Lemma 7.12. Let p =2 | n > 6 and A € Pa(n) not be a JS-partition. If D | is
irreducible then G is 2-homogeneous and (S7)¢ = 0.

Proof. If (S7)¢ # 0 then there is a non-zero homomorphism Z(G) — Si. But S}
is a submodule of £(\) by Lemma 5.1, and soc ST = Dj, so this yields a non-zero
homomorphism ¢ : Z(G) — £(A) with im 2 1s,. By Lemma 2.18, this contradicts
the irreducibility of D*|, thus (S7)¢ = 0. By Lemma 7.11 we now have that

0 = dim(S})% > is(G) — 1,
hence i5(G) = 1, i.e. G is 2-homogeneous. O

Lemma 7.13. Let p =2, n > 8 with n = 0 (mod 4), and \ € Py(n). If DN is
irreducible and Dy C E(X) then DS = 0.

Proof. If DS # 0 then there is a non-zero homomorphism Z(G) — Dy C £(\), which
yields a non-zero homomorphism ¢ : Z(G) — £(A) with im % 1s,. By Lemma 2.18
this contradicts the irreducibility of D*|. O

Lemma 7.14. Let p =2, n > 8 withn =0 (mod 4), and A € P3(n). Assume that
Dy CEN), (SH)Y =0 and D is irreducible. Then:
(i) G is 2-homogeneous, (S3)% =0, S§¥ = 0, dim S§ = i3(G)—1, and dim(S3)¢ >
i3(G) — 1.
(ii) If h(X) > 3 then G is 3-homogeneous.

Proof. (i) By Lemma 7.11, using the assumption (S})% = 0 we get io(G) = 1, i.e. G
is 2-homogeneous. This also implies that i1 (G) = 1.

As S} = Dq| Dy, the equality (S7)¢ = 0 implies D = 0, so Homs, (Z(G), D;) = 0,
i.e. Dy is not a quotient of Z(G). By 7.13, we have D2G = 0, so by a similar argument,
Dy is also not a quotient of Z(G). By Lemma 4.7 we have that S5 = Dy|D; and
Sy 2 D1| D2, hence (S3)¢ =0 and S§’ = 0.

By Lemma 4.9 and self-duality of M; and Ms we have M3 ~ M; & (S5]53) and
Ms ~ My @ (Sg|52), SO

i3(@) < i1(G) + dim(S3)¢ + dim(S5)% = 1 + dim(S5)“.
Since S§ = 0, we have dim(S3|52)¢ = dim S$, hence
i3(G) = i1(G) 4 dim(S3|S2)¢ = 1 + dim SS'.

(ii) If G is not 3-homogeneous, then dim S§ = i3(G) — 1 # 0. From Lemma 4.9
and by self-duality of M3 we have that S3 =2 Dg|D;|D3 ~ Si|Ds. From (53)¢ =0 it
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follows that S3 C M3 is a quotient of Z(G). In particular there exists ¢ : Z(G) — M3
with D3 as a composition factor of im. So D3 is a composition factor of im ({3 o))
from Corollary 6.10. We are now done by Lemma 2.18. U

Lemma 7.15. Let p =2, n > 6 with n = 2 (mod 4) and X\ € P(n). Assume that
Sy C E(N). If DM is irreducible then (S3)¢ = 0.

Proof. If (S3)¢ # 0 then there is a non-zero homomorphism Z(G) — S3. As S5 C
E(A) by assumption, and soc S5 = Ds, this yields a non-zero homomorphism 1 :
Z(G) — E(N) with im 22 1s,. By Lemma 2.18, this contradicts the irreducibility of
DA . O

Lemma 7.16. Let p = 2, n > 6 with n = 2 (mod 4) and A\ € Py(n). If DM is
irreducible and S§ or Yo/ Dy is contained in E(N) then dim(Ya/D1)% = 1.

Proof. By Lemma 4.7, we have Ys/D; = Dgy|D2|Dg|Dy ~ Dp|S5. In particular
(Y2/D1)¢ # 0. Assume that dim(Ya/D;)¢ > 2. Then there exists a homomor-
phism 1 : Z(G) — Ya/D; such that imt) has Dy as a composition factor. It follows
that there also exists a homomorphism ¢’ : Z(G) — S35 such that im has Dy as a
composition factor. By Lemma 2.18, this contradicts the irreducibility of D|,. O

Lemma 7.17. Let p =2, n > 10 with n = 2 (mod 4) and A € P5(n). Assume that
S3 or Ya/Dy is contained in E(N), (S;)¢ =0 and DM is irreducible. Then:
(i) G is 2-homogeneous, S = 0 and dim(S3)% > i3(G) — 1.
(ii) If h(X) > 3 then G is 3-homogeneous.
Proof. (i) By Lemma 7.11, the assumption (S7)% = 0 implies i2(G) = 1, i.e. G is
2-homogeneous. This also implies i1 (G) = 1.
From Lemma 4.7(ii), we have that Dy @ So C My, so
1 =iy(@) = dim MS > dim D§ + dim S = 1 4 dim SY,
hence S§' = 0.
By Lemma 4.9, we have M3 ~ (Y2/D1)|S7|S5. So, using Lemma 7.16 we get
i3(G) = dim M§ < dim(Ya/D1)¢ 4 dim(S7)¢ 4 dim(S3)¢ = 1 + dim(S3)¢

which completes the proof of (i).

(ii) By Lemma 4.9(ii), there exist submodules A C Y5/D; and B C M3 such that
A = Dy|D3|Do, B ~ A|D3 and M3 ~ B|S3|ST. If G is not 3-homogeneous, i.e.
i3(G) = dim M§' > 2, then, by (i) and Lemma 7.16, we have

dim BY > i3(G) — dim S§ — dim(S})“
= i3(G) > 2> 1 = dim(Yy/D;)% > dim A,

Hence there exists a homomorphism ¢ : Z(G) — B C Ms with im¢ € A. In
particular, D3 is a composition factor of imt. So Ds is a composition factor of
im ({3 0 ¢) from Corollary 6.10, and we are done by Lemma 2.18. O

Lemma 7.18. Let p = 2, n > 8 be even, A € P2(n) \ {(n),Bn} be a JS partition,
DA be irreducible, and (S7)¢ = 0. Then:

(i) G is 2-homogeneous.
(ii) If h(X) > 3 then G is 3-homogeneous.
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Proof. If n =0 (mod 4), then Dy C £()\) by Lemma 5.8, and the result follows from
Lemma 7.14. The case n =2 (mod 4) is handled similarly but using Lemma 5.10 in
place of Lemma 5.8 and Lemma 7.17 in place of Lemma 7.14. 0

7.3. Wreath products and proofs of Theorems B and C. In this subsection,
we assume that n = ab for some a,b € Z~1 and consider restrictions of irreducible
FS,,-modules to the natural subgroup

Sa 1Sy =(Sa X -+ xSg) X Sy.
—_—————
b times
A special role will be played by the irreducible F(S, ¢ Sp)-modules of the form D) DY

which as a vector space is (D*)®*® DY, and the action on v1®- - -QuRw € (D*)®*® D
is determined from the following requirements: (gi,...,gs) € Sq X -+ X S, acts as

(G153 90) - (1@ Qv @w) = (g1v1) ® -+ @ (govp) @ W
and h € Sy, acts as
he(v1®: @up@w) = (vp-1(1) @+ @ V1)) ® (hw).

Lemma 7.19. Let p = 2 and n = ab for some a,b € Z~y1. Then Dﬂ”isazsb 18
irreducible if and only if a is odd, in which case D5”¢Salsb = Dhay DPs,

Proof. Recall, see [W], that dim Df» = 2l(n=1)/2] " and furthermore DP" can be ob-
tained by reducing modulo 2 a basic spin complex representation D, ¢ of a double
cover S,, of S,. As in the proof of [KTy, Theorem 4.3, we let G (resp. K, B) be the
full inverse image in S,, of S, 1Sy (resp. S2 = Su X --- xS, S U Ay). Tt was shown
b times
there that D, ¢ lg = Ve ® W¢ or indg(VC ® We). Here, Vi is a (possibly projective)
CG-representation which is irreducible over K, whose restriction to the full inverse
image Sa of Sy x1...x1in S, is a sum of basic spin representations. Next, W is
a (possibly projective) irreducible representation of G, respectively of B, in which K
acts trivially, and which gives rise to a basic spin representation of Sy, respectively of
Ap.

It follows by reducing modulo 2 that all composition factors of the restriction of
DPn t0 S, x 1...x 1 are isomorphic to D?. Hence, all composition factors of Dﬁnisg
are isomorphic to

D, :=DP*@ D@ ...® DP,
which can easily be seen to extend to the module D%y D®) of S,1S;. This implies that
every irreducible F(S, ! Ap)-representation X lying above D, is isomorphic to D% Y
for some irreducible FA,-representation Y. A similar statement holds for S,1S;. Now,
the aforementioned statement about W¢ implies by reducing modulo 2 that if such X
occurs in DP» Is.a,, then Y is basic spin for Ay, i.e. a composition factor of DﬁbiAb.
Therefore, all composition factors of Dﬁ"isazsb are of the form D% { D%. Now the
result follows by dimension considerations. ([

Lemma 7.20. Let p = 2, n be even and X € Po(n) be a JS-partition with \ ¢
{(n), Bn}. Then D>‘¢sn/2252 is wrreducible if and only if n > 6 with n = 2 (mod 4)
and A = ay,, in which case

~ S, /215
Dan\LSn/2152 ~ (DOZn/Q X D(n/Q))TS /2092

n/2,n/2 ’
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Proof. By Clifford theory (see e.g. [CR, 51.7]), D/\isn /2155 1 irreducible if and only
if one of the following conditions holds:
(a) D)‘isn/ln/2 is of the form D* X D*, in which case D)‘isn/ﬂs2 is D" D®),
(b) D)‘isn/2 o 18 of the form (D* X DY) @ (D¥ X D*) with u # v, in which case

~ CIY IS
D)\isn/2252 o (D“ X D )TS /2022

n/2,n/2 ’

By dimensions, if n =2 (mod 4) , we have

D g >~ (D2} D)) @ (D) ) D¥n/2).

n/2,n/2

If n =0 (mod 4), then in the Grothendieck group we have
[D™ds, 2] = (D72 8 DIV 4 [DV2 0 Do) 9D @ DI/,

omitting the first two summands if n = 4. So we may assume that A # a,.

If the parts of A are all even, let p := (A1/2,...,A4(n)/2). Then p € Pa(n/2)
and by Lemma 2.14 we have that D* X D* is a composition factor of D’\¢Sn/2 2
So D/\isn /2152 is irreducible if and only if D/\isn Jom)o is irreducible. By Proposition
2.15, this happens only in the basic spin case, which has already been excluded by
assumption.

So we can now assume that all parts of A\ are odd. If D/\isn P has at least 3
non-isomorphic composition factors then D’\isn /2152 is not irreducible. So by Lemma

3.15 and since the cases «,, and (3, have already been excluded, there are only the
exceptional cases (iii) and (iv) of Lemma 3.15 to consider.

Case 1. n > 24, n =0 (mod8) and A = (n/4+3,n/4+ 1,n/4 —1,n/4 — 3).
Suppose that D)‘isn /2152 is irreducible. Let

w:=(n/8+3,n/8+1,n/8—1,n/8—3),
v:i=n/8+2,n/8+1,n/8—1,n/8—2).

By Lemma 3.14, D* and D" are composition factors of D)‘isn P It then follows that

DM ~ (D" K D") @ (D” K DM).

n/2,n/2

Let

m:=(n/8+2,n/84+1,n/8n/8—1),
Y:=(n/8+1,n/8n/8—1,n/8 —2).

From Lemma 2.14 we have that D™ K D¥ is a composition factor of D)‘Lsn/2+2 .
As v = é&m, by Lemma 3.2, we have that D" K 1s, , X DY is a composition factor

A
of D ‘Lsn/2,1,1,n/2—2'
Lemma 3.7.
Case 2. n>22,n=4(mod6), A= ((n—1)/34+2,(n—-1)/3,(n—1)/3 —2,1).
Suppose that D)‘isn /2152 is irreducible. Let
wi=((n—-4)/6+2,(n—-4)/64+1,(n—4)/6 —1),
vi=_((n-4)/64+2,(n—4)/6,(n—4)/6 —1,1).

So DY is a composition factor of D#ls P which contradicts
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By Lemma 3.14, D* and D" are composition factors of D)‘isn e It then follows that
DM, .= (D"BD")& (D' R DY),
Let
m:=((n—-4)/64+2,(n—4)/6+1,(n—4)/6),
Y:=((n—4)/64+1,(n—4)/6,(n—4)/6 —1,1).

From Lemma 2.14 we have that D™ X DV is a composition factor of D)‘Lsn/2+1 .
By Lemma 3.2, we have

A
[DMs, 310ay @ DM K15, BDY] > 3.
In particular [D”¢57L/2_1 : D¥] > 3, which contradicts Lemma 3.2(vi). O

Lemma 7.21. Let p = 2, n > 8 even and A\ € Po(n) be a JS partition with \ ¢
{(n),Bn}. If n = ab with a,b € Z~1 and b > 3 then DAisazs,, is reducible.

Proof. It follows from Lemmas 7.18 and 2.35 since S,1S;, < Sy, is not a 2-homogeneous
subgroup. O

Proposition 7.22. Let n = ab with a,b € Zs1, A\ € P,(n) and suppose that
dimD* > 1. Then DAiSasz is reducible unless p = 2 and one of the following
holds:

(i) A =By and a is odd, in which case Dﬂ"isazsb >~ DFa ) D,

(ii) n=2 (mod 4), A = oy, and b = 2, in which case

Do, s, = (D2 D(n/z))@gfj?,

Proof. The small cases n = 4 and 6 are easy to check. So let n > 8. If either p > 2, or
p=2tnand X # (,, then [KS;, Theorem 3.10] gives the result since our subgroup is
transitive but not 2-transitive. The case where A = 3, is considered in Lemma 7.19.
So we may assume that p = 2 | n and A € {(n),B,}. The case where A is JS is
handled in Lemma 7.20 for b = 2 and Lemma 7.21 for b > 2. If X is not JS, we can
apply Lemma 7.12. ]

Proof of Theorem C. By Propositions 2.15 and 7.22 we may assume that G is
primitive. If G = A,,, the result follows from [B, Theorem 1.1]. So we may assume that
G does not contain A,,. Since D is reduction modulo 2 of the basic spin module By
in characteristic 0, if Df» l¢ is irreducible then the restriction Byl is also irreducible

for the corresponding subgroup G <S,,. The list of such G is available from KTy,
Theorem B]. One easily checks that it is precisely the cases (a),(b),(e),(g) which
remain irreducible in characteristic 2. Those are, respectively, the cases (b),(c),(d),(e)
of Theorem C.

Proof of Theorem B. Let ¢ denote the Brauer character of D% and let 1 4 x
denote the permutation character of S,, on {1,2...,n}. Then ¢ = x° — 1, where x°
denotes the restriction of x to 2’-elements in S,,. Note that ¢| 5 = @1 + @2, where ¢
induces the module D2 of the first factor By = S,,/o x {1} < B and ¢ is trivial
on the second factor By = {1} x S, /5, and similarly for s.

(a) Assume first that s is irreducible. It follows that G £ B, [G : GN B] = 2,
and the projection of G'N B onto B; induces a subgroup X; <S,, /5 over which D%/2
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is irreducible, and ; := (;)lqnp s irreducible. Since 2 1 n/2 > 3, this irreducibility
condition implies that X; is 2-transitive for ¢ = 1, 2; in particular, G N B acts doubly
transitively on {1,2,...,n/2} and on {n/2+1,...,n—1,n}. As [G:GNB] =2, it
also follows that G is transitive, i.e. (i) holds. Furthermore, as ¢gnp = 11 + 12 and
@l is irreducible, we must have that 11 # 1, i.e. (ii) holds.

(b) Assume now that (i) and (ii) hold, and let X; denote the projection of G N B
onto B; for ¢ = 1,2. By (ii), G N B is 2-transitive on {1,2,...,n/2} and on {n/2 +
1,...,n—1,n}, and 9; := (vi)lgnp is irreducible. Thus

elanp = Y1 + 2. (7.23)

Next, (i) implies again that G £ B, and G = (G N B,g), where g interchanges
{1,2,...,n/2} and {n/2 +1,...,n — 1,n}. Now g interchanges 11 and 1y, and
1 # 12 by (ii). Hence (7.23) implies that ¢l is irreducible.

Example 7.24. Let 6 < n = 2(mod4) and let L < S, /5 be any 2-transitive sub-
group such that D/2=11) | is irreducible. (There are many such pairs (n, L) with
L not containing A,, /5, for instance, n = (¢ —1)/(q — 1) for some odd d > 3 and
some odd prime power ¢, and PSL4(q) < L < PI'L4(q).) Then the subgroup LS,
obviously satisfies the conditions (i) and (ii) of Theorem B. But not every subgroup
G satisfying these two conditions are of this wreath product type, as one can see on
the example of (S,,/51S2) N A,.

More generally, we claim that any subgroup G < (S,,/21S2) with the two properties
(a) G is transitive on {1,2,...,n}, and
(b) the projection of G'N B onto the first factor S, , of B has nontrivial kernel and

induces a 2-transitive subgroup of S,, , over which D™/2=11) ig irreducible,

satisfies the conditions (i) and (ii) of Theorem B. Indeed, (a) implies that G =
(G N B, g) with g interchanging the two factors S,,/» of B, and so (b) also holds for
the second factor S, /5. In the notation of the proof of Theorem B, the kernel K of the
projection onto Bj is a nontrivial normal subgroup of the image L of the projection
onto By =S, /5. Using the description of 2-transitive subgroups of S, 5 [C] and the
assumption 2 {f n/2 > 3, it is straightforward to check that K acts nontrivially on
1s, , X D(®/2-L1) byt it clearly acts trivially on D®/2-11) K 1s, - Thus both of
the conditions (i) and (ii) of Theorem B are satisfied, as claimed. It remains an open
question whether (i) and (ii) of Theorem B must imply the above condition (b).

7.4. Main results for p =2 | n and proof of Theorem A.
Theorem 7.25. Let p = 2, n > 8 be even, A\ € HPo(n) not be a JS partition, and

DA be irreducible. Then:

(i) G is 2-homogeneous and (S§)¢ = 0.
(ii) G is 3-homogeneous unless h(A\) > 3 and there exists 1 < j < h(X\) with
Aj = Ajt1+2 and

MELLENIZENZENLZE A2 = = Ay (mod 2)

Proof. (i) holds by Lemma 7.12.
(ii) Suppose that A is not of the exceptional form as described in part (ii). Assume
first that e9(A) +€1(A) = 2. Then Lemma 2.13 implies that whenever ¢;()), ;(A) >
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0 for some i € I, B is i-good for A and C is i-cogood for X\, then (Ag)® is 2-
regular. Hence by Lemma 3.13, we have D € (f;D%")/D* whenever £;(\) > 0. By
Lemma 3.12, we now conclude that dim Homs, (S1,£())) < 2.

Now, by Lemma 5.8, if n = 0 (mod 4) then Dy C £()\), and by Lemmas 5.9,5.10,
if n =2 (mod 4) then S C £(A) or Ya/Dy C E(N). Moreover (S§)¢ = 0 by (i). Since
p = 2 and n is even all two-row partitions are JS, so we must have h(\) > 3. Now,
by Lemmas 7.14(ii) and 7.17(ii), we have that G is 3-homogeneous. O

Theorem 7.26. Let p = 2, n be even, A € Po(n) be a JS partition with A ¢
{(n), an, Bn}, G £ Sn_1, and D | be irreducible. Then:
(i) G is primitive.
(ii) If (S7)% = 0 then G is 2-homogeneous.
(iii) If (S7)¢ = 0 and h()\) > 3, then G is 3-homogeneous.

Proof. Part (i) follows from Propositions 2.15 and 7.22. Parts (ii) and (iii) follow
from Lemma 7.18. u

Theorem 7.27. Let p =2, n be even, G £ S,,—1, and D] be irreducible. Then:
(i) G is primitive or n =2 (mod 4) , G < S, /51Se and G £ S, 2. ,/2- Further-
more, in the second case we have

[e% ~J « n S’ﬂ Zs
D s, s, = (D2 ® DU p /2=

TL/2,7L/2'
(ii) If (S7)% = 0 then G is 2-homogeneous.

Proof. Part (i) holds by Propositions 2.15 and 7.22, while part (ii) holds by Lemma 7.18.
]

Theorem 7.28. Let p = 2, n > 8 be even, and D be an irreducible representation
of FS,, with dim D* > 1. Suppose that D* is not basic spin. If G <'S,, is a subgroup
such that the restriction D is irreducible, then one of the following holds:
(i) G <Sp—1 and X is JS.
(ii) n =2 (mod 4),, A = an, G < S,,/21S2 and G £ Sy, )2 /2. Moreover, in this
case we have that

S, /215
~ n/2(92
Dan¢5n/2152 = (Dan/Q X 1S7L/2)T5n/2,n/2

15 1rreducible.
(i) G is 2-transitive and either h(\) = 2 or h(\) > 3 and there exists 1 < j <
h(X) with A\j = Xj11 +2 and

M= ENIZENENZEN2= .. = Ay (mod 2).
(iv) G is 3-homogeneous.

Proof. If G < S,,_1 then D)‘LSTH1 is irreducible and so A is JS by definition. Let us now
assume that G £ S,,_1. By Corollary 2.34, we have that (S7)¢ = 0 if G is primitive.
Now the result follows from Theorems 7.25, 7.26 and 7.27 and [KS;, Proposition
2.5]. O
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Proof of Theorem A. For p > 3 the theorem holds by [BrKjs].

Assume now that either p = 3 or p = 2, n is odd and A\ # ,. Then by [KS;,
Theorem 3.10] we have G < S,,_1 or G is 2-transitive. If G < S,,_1 then A is JS. So
we may now assume that this is not the case. For p = 3 the theorem then holds by
Theorem 7.9, while for p = 2, n odd and A # 3, the theorem holds by Theorem 7.10.

For p =2, n even and A # (3, the theorem holds by Theorem 7.28.
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