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BRAUER CORRESPONDENT BLOCKS WITH ONE SIMPLE MODULE

GABRIEL NAVARRO, PHAM HUU TIEP, AND CAROLINA VALLEJO

Abstract. One of the main problems in representation theory is to understand the exact relation-
ship between Brauer corresponding blocks of finite groups. The case where the local correspondent
has a unique simple module seems key. We characterize this situation for the principal p-blocks
where p is odd.

1. Introduction

Let G be a finite group, let p be a prime, and let F be an algebraically closed field of characteristic
p. The blocks of G are the indecomposable two-sided ideals of the group algebra FG. Richard Brauer
associated to each block B of G a p-subgroup D of G, up to conjugation, and a block b of the local
subgroup NG(D), which is called the Brauer first main correspondent of B. What is the exact
relationship between these two algebras, and what invariants they share is one of the main problems
in representation theory of finite groups. Our major interest is in the invariants k(B), k0(B) and
l(B) (which are the number of complex irreducible characters in B, those of them which have height
zero, and the number of simple modules in B over F, respectively) and their relation with k(b), k0(b)
and l(b). For instance, k0(B) = k0(b) is the Alperin-McKay conjecture, and l(B) ≥ l(b) would be a
consequence of the Alperin weight conjecture.

In this paper, we wish to understand how the local condition l(b) = 1 affects B, and the other
way around. Already the key case where B and b are the principal blocks (the blocks containing
the trivial representation of the group) is hard to handle. This is our main result.

Theorem A. Let G be a finite group, let p be an odd prime, and let P ∈ Sylp(G). Let B be the

principal block of G, and let b be the principal block of NG(P ). Then B contains no non-trivial

p-rational height zero irreducible character if and only if l(b) = 1.

As we will point out in Conjecture 6.4 below, we have an ad hoc statement for the prime p = 2,
but to prove it seems presently out of reach. As it seems also out of reach to prove the following.

Conjecture B. Let G be a finite group, let p be an odd prime, let B be a p-block of G and let

b be the Brauer first main correspondent of B. If B contains exactly one p-rational height zero

irreducible character, then l(b) = 1.
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Outside principal blocks, the converse of Conjecture B is not true, even in blocks with normal
maximal defect. For instance, the SmallGroup(72,22) in [GAP] is a counterexample for p = 3.

There is a related characterization of when l(b) = 1 for p-solvable groups. If χ is an ordinary
character of G, then χ0 is the Brauer character obtained by restricting χ to the p-regular elements
of G.

Theorem C. Suppose that G is p-solvable, with p odd. Let B be a p-block with defect group P
and let b be its Brauer first main correspondent. Then l(b) = 1 if and only if there is exactly one

p-rational χ ∈ Irr(B) of height zero and such that χ0 ∈ IBr(B).

Unfortunately, the “only if” direction of Theorem C is false outside p-solvable groups. LetG = A6,
p = 3 and B the principal block of G. Then B contains a unique p-rational p′-degree irreducible
character that lifts an irreducible Brauer character while l(b) = 4. In this case, the defect groups of
B are abelian. The same situation happens in PSL2(p) when p ≥ 5. In this case, l(b) = (p − 1)/2
and the defect groups of B are cyclic. It is interesting to speculate to what extent the “only if”
direction holds.

For a character theorist it is always pleasant to find new properties of a finite group which can
be read off from its character table. By a result of R. Brauer, the principal block of a group has a
unique irreducible Brauer character if and only if it has a normal p-complement (see Corollary 6.13
of [N1]). Hence Theorem A is equivalent to the following.

Theorem D. Let G be a finite group, let p odd, and let P ∈ Sylp(G). Then NG(P ) has a normal p-
complement if and only if there are no non-trivial p-rational p′-degree complex irreducible characters

in the principal block of G.

In general, it is not easy to produce p-rational irreducible characters. Even with the strong
hypotheses that θ ∈ Irr(N) is a p-rational character of p′-degree in the principal block of N / G,
G/N is cyclic of p′-order and θ extends to G, then it is not necessarily true that θ has a p-rational
extension to G. Our way to produce p-rational characters is indirect, by using some results which
we believe are of independent interest. The first of these is a relative to normal subgroups version
of the Glauberman correspondence.

If P is a group acting by automorphisms on G, then IrrP (G) is the set of P -invariant irreducible
characters of G. In Theorem E below, the Glauberman correspondence is obtained when N = 1. If
χ is a character, then we denote by Q(χ) the smallest field containing the values of χ.

Theorem E. Suppose that a p-group P acts as automorphisms on a finite group G. Let N / G
be P -invariant such that G/N is a p′-group. Let C/N = CG/N (P ). Then there exists a natural

bijection ∗ : IrrP (G) → IrrP (C). In fact, if χ ∈ IrrP (G), then

χC = eχ∗ + p∆+ Ξ ,

where ∆ and Ξ are characters of C or zero, p does not divide e, and no irreducible constituent of

Ξ lies over some P -invariant character of N . In fact, e ≡ ±1 mod p. In particular, Q(χ) = Q(χ∗).
Also, if χ has p′-degree, then χ lies in the principal block of G if and only if χ∗ lies in the principal

block of C.

Several particular cases of Theorem E have appeared previously in the literature (see, for instance,
Theorem 5.1 of [IN]).

We will also need a result on extension of characters that generalizes results of Alperin and Dade
(see [A] and [D]).
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Theorem F. Suppose that N / G. Let θ ∈ Irr(N) be p-rational, G-invariant of p′-degree in the

principal block of N , where p is odd. Let Q ∈ Sylp(N), and assume that |G : NCG(Q)| is a p-
power. Then θ uniquely determines a character χ ∈ Irr(G) in the principal block of G such that χ
is p-rational and χN = θ.

Under the hypotheses of Theorem F, it is false that θ has a unique p-rational extension in the
principal block of G. For instance, take p = 3, G = C3 × S3, N = C3, and θ the principal character
of N . In this case, the character χ determined by Theorem F is the trivial character of G, but there
is another p-rational extension of θ to G.

2. The Relative Glauberman Correspondence

We follow the notation of [I2] for ordinary characters and the notation of [N1] for modular characters
and blocks. In particular, if p is a prime number, and R is the ring of algebraic integers in C, we
choose M a maximal ideal of R containing pR, with respect to which the Brauer characters of any
finite group G are constructed. We also let ∗ : R → R/M be the canonical ring epimorphism.
(Later on, we will also denote by ∗ several character correspondences, but we believe that there is
no risk of confusion.) If N / G and θ ∈ Irr(N), then Irr(G|θ) is the set of irreducible constituents of
the induced character θG. Also, Gθ is the stabilizer of θ in G. Sometimes, we will denote by B0(G)
the set of the irreducible complex characters of G which lie in the principal p-block of G, where p is
a prime. By a block, we mean a p-block. Throughout this paper, we will denote by G = Gal(Q̄/Q)
the absolute Galois group. By elementary character theory, we know that G acts on the irreducible
complex characters of every finite group G.

We begin by proving the following.

Lemma 2.1. Suppose that P is a p-group acting as automorphisms on a finite group G. Suppose

that N / G is P -invariant with G/N a p′-group. Let θ ∈ Irr(N) be P -invariant. If P acts trivially

on G/N , then every ψ ∈ Irr(G|θ) is P -invariant.

Proof. By the Clifford correspondence (Theorem 6.11 of [I2]), we may assume that θ is G-invariant.
Let g ∈ G, x ∈ P and ψ ∈ Irr(G|θ). We want to show that ψx(g) = ψ(g). Write H = N〈g〉, a
P -invariant subgroup of G. By considering the irreducible constituents of χH , all of which lie over
θ, we may assume that H = G. That is to say, we assume that G/N is cyclic. Hence θ extends
to G, by Corollary 11.22 of [I2]. By coprime action (Theorem 13.31 of [I2]), there is χ ∈ Irr(G|θ)
which is P -invariant. By Gallagher’s theorem (Corollary 6.17 of [I2]), every ψ ∈ Irr(G|θ) is of the
form βχ for β ∈ Irr(G/N). Since P acts trivially on G/N , then every β ∈ Irr(G/N) is P -invariant,
and the statement follows. �

Lemma 2.2. Suppose that P is a p-group acting as automorphisms on a finite group G. Suppose

that N / G is P -invariant with G/N a p′-group, and let C/N = CG/N (P ). Suppose that χ ∈ Irr(G)
is P -invariant. Then χN has a P -invariant constituent θ ∈ Irr(N), and any two such constituents

are C-conjugate.

Proof. The first part is Theorem 13.27 of [I2]. The second part follows from Corollary 13.9 of
[I2]. �

We can now prove Theorem E.

Theorem 2.3 (Relative Glauberman Correspondence). Suppose that P is a p-group acting as

automorphisms on a finite group G. Let N / G be P -invariant such that G/N is a p′-group. Let

C/N = CG/N (P ). Then there exists a natural bijection

∗ : IrrP (G) → IrrP (C).
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In fact,

χC = eχ∗ + p∆+ Ξ ,

where ∆ and Ξ are characters of C or zero, e ≡ ±1 mod p, and no irreducible constituent of Ξ lies

over some P -invariant character of N . In particular,

Q(χ) = Q(χ∗).

Also, if χ has p′-degree, then χ lies in the principal block of G if and only if χ∗ lies in the principal

block of C.

Proof. We first prove the part of the statement concerning the existence of a bijection.
Notice that C acts on IrrP (N). Indeed, if θ ∈ IrrP (N), x ∈ P and c ∈ C, then cx = nc for some

n ∈ N . Hence (θc)x = θx
−1cx = θc, and θc is P -invariant. Let Λ be a complete set of representatives

of the C-orbits on IrrP (N). We claim that

IrrP (G) =
⋃

θ∈Λ

IrrP (G|θ)

is a disjoint union. Let χ ∈ IrrP (G). By Lemma 2.2 we have that χN has a P -invariant irreducible
constituent θ, and that all of them are C-conjugate. This proves the claim. By the same argument,
we have that

IrrP (C) =
⋃

θ∈Λ

IrrP (C|θ)

is a disjoint union. Then it suffices to prove that there are bijections
∗ : IrrP (G|θ) → IrrP (C|θ)

satisfying the conditions in the statement of the theorem. We prove this by induction on |G : N |.

Let χ ∈ IrrP (G), let θ ∈ Λ be under χ, let T be the stabilizer of θ in G, and let ψ ∈ Irr(T |θ) be
the Clifford correspondent of χ. Let T be a set of representatives of the double cosets of T and C
in G with 1 ∈ T. By the Mackey formula, we have that

χC = (ψT∩C)
C + δ ,

where δ =
∑

1 6=t∈T
(ψt

T t∩C)
C . We claim that no irreducible constituent of δ lies over θ. Otherwise,

let η be an irreducible constituent of (ψt
T t∩C)

C for some 1 6= t ∈ T lying over θ. Then η lies over θ
and over θt. By Clifford’s theorem (Theorem 6.2 of [I2]), we have that θ = θtc for some c ∈ C, but
this is a contradiction since 1 6= t ∈ T. This proves the claim.

Notice that, in fact, no irreducible constituent of δ lies over any P -invariant irreducible character
τ ∈ Irr(N). Otherwise, τ and θ are P -invariant characters of N lying under χ. By Lemma 2.2 τ is
C-conjugate to θ, and thus θ lies under δ, a contradiction.

Suppose now that T < G. By induction, there is a bijection
∗ : IrrP (T |θ) → IrrP (T ∩ C|θ)

such that ψT∩C = eψ∗ + p∆, where ∆ is a character or zero, and e ≡ ±1(mod p). Then

χC = (ψT∩C)
C + δ = e(ψ∗)C + p∆C + δ .

By the Clifford correspondence (Theorem 6.11 of [I2]), we know that induction defines bijections
IrrP (T |θ) → IrrP (G|θ) and IrrP (T ∩ C|θ) → IrrP (C|θ). Since

χ∗ = (ψ∗)C ∈ Irr(C|θ),

we conclude that we may assume that θ is G-invariant.
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We have to show that for χ ∈ IrrP (G|θ), we have that that χC = eχ∗ + p∆, where χ∗ ∈ Irr(C), p
does not divide e, and that the map χ 7→ χ∗ is a bijection IrrP (G|θ) → IrrP (C|θ). We consider the
semidirect product Γ = GP of G by P . Since θ is Γ-invariant, we have that (Γ, N, θ) is a character
triple. By Theorem 11.28 of [I2] there is an isomorphism (τ, σ) : (Γ, N, θ) → (Γτ , Nτ , θτ ) of character
triples, where Nτ is central in Γτ . Recall that τ : Γ/N → Γτ/Nτ is a group isomorphism. We are
going to write τ(H/N) = Hτ/Nτ for every subgroup N ≤ H ≤ Γ. Since (NP )τ/Nτ is a p-subgroup
of Γτ/Nτ , and Nτ is central, then (NP )τ has a unique Sylow p-subgroup which we denote by
P τ . Now P τ acts on Gτ/Nτ the same way as (PN)τ acts on Gτ/Nτ . Hence, by the properties
of character triple isomorphisms in Definition 11.23 of [I2], it is no loss to assume that N ≤ Z(Γ).
Hence we may assume that [N,P ] = 1 and that N ≤ Z(G). In particular, G has a central Sylow
p-subgroup Np, a normal p-complement K, and in particular C = CK(P )×Np. Write θ = θp′ × θp,
where θp′ = θK∩N and θp = θNp

. We have that

IrrP (G|θ) = {µ× θp |µ ∈ IrrP (K|θp′)}

and
IrrP (C|θ) = Irr(C|θ) = {ε× θp | ε ∈ Irr(C ∩K|θp′)}.

By Theorem 13.29 of [I2], we have that the Glauberman correspondence
∗ : IrrP (K) → Irr(C ∩K)

sends IrrP (K|θp′) bijectively onto Irr(C ∩K|θp′). Since µC∩K = eµ∗ + p∆, where e ≡ ±1(mod p),
the first part of the proof of the statement is now complete.

The action of the absolute Galois group G on characters commutes with the action of P and with
restriction of characters. Hence our map ∗ : IrrP (G) → IrrP (C) is G-equivariant. This implies that

Q(χ) = Q(χ∗)

for χ ∈ IrrP (G).

We finally prove the statement about blocks. Let χ ∈ Irr(G) be P -invariant of p′-degree. We
have that χC = eχ∗ + p∆ + Ξ, where p does not divide e and no irreducible constituent of Ξ lies
over a P -invariant character of N . We prove that χ lies in the principal block of G if and only if χ∗

lies in the principal block of C. We proceed by induction on |G : N |.
Let θ ∈ Irr(N) be P -invariant under χ. Let T be the stabilizer of θ in G, and let ψ ∈ Irr(T |θ)

be the Clifford correspondent of χ. We have that ψ(1) is a p′-number and ψ is P -invariant. By
the first part of the proof ψT∩C = fψ∗ + p∆′, where p does not divide f , and we know that
ψ∗ ∈ Irr(T ∩C) is the Clifford correspondent of χ∗. By induction, if T < G, then ψ ∈ B0(T ) if and
only if ψ∗ ∈ B0(T ∩ C). Thus, in this case the statement follows from Corollaries 6.2 and 6.7 of
[N1].

We may assume that θ is G-invariant, and therefore we have that

χC = eχ∗ + p∆

and so χ∗ has p′-degree. Again, let Γ = GP be the semidirect product of G and P . Since NP
has p′-index in Γ, we can choose P ≤ R a Sylow p-subgroup of Γ contained in NP , so that
NP = NR. Also NΓ/N (NP/N) = NΓ/N (NR/N), and we see that CG/N (P ) = CG/N (R) and that
IrrP (G) = IrrR(G). Write

M/N = NΓ/N (NR/N) = NNΓ(R)/N,

so that M ∩ G = C. By Corollary 9.6 of [N1], let B be the unique block of Γ covering the block
of χ and let b be the unique block of M covering the block of χ∗. Since χ has p′-degree, it enters
with p′-multiplicity in (11)

G = ((1P )
Γ)G. If ψ ∈ Irr(Γ) lies over χ, then [ψG, χ] is a p-power, by
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Corollary 11.29 of [I2] and and using that χ is Γ-invariant. Therefore χ extends to some χ̃ ∈ Irr(Γ).
By the same argument χ∗ extends to χ̃∗ ∈ Irr(M). Of course, B = B0(Γ) if and only if χ belongs to
the principal block of G and b = B0(M) if and only if χ∗ belongs to the principal block of C (using
Corollary 9.6 of [N1]).

Since χ̃ and χ̃∗ have p′-degree, then we know that B and b have defect group R, by Theorem 4.6
of [N1]. By Problem 4.5 of [N1], we have that B = B0(Γ) if and only if

(

|clΓ(x)|χ̃(x)

χ̃(1)

)∗

= |clΓ(x)|
∗

for every p-regular x ∈ Γ such that R ∈ Sylp(CΓ(x)). Similarly, b = B0(M) if and only if
(

|clM (y)|χ̃∗(y)

χ̃∗(1)

)∗

= |clM (y)|∗

for every p-regular y ∈M such that R ∈ Sylp(CM (y))

Suppose that K = clΓ(x), where x is p-regular and R ∈ Sylp(CΓ(x)). Notice that x ∈ G, since
Γ/G is a p-group. Now

CG(R)N/N ≤ CG/N (R) = CG/N (P ) = C/N,

and therefore x ∈ CG(R) ≤ C. Let L = clM (x). By Lemma 4.16 of [N1] we have that K ∩CΓ(R)
is the conjugacy class of x in NΓ(R). Also,

|K| ≡ |K ∩CΓ(R)|(mod p)

by counting. By the same argument, L ∩CΓ(R) is the conjugacy class of x in NΓ(R) and also

|L| ≡ |L ∩CΓ(R)|(mod p).

Since K ∩CΓ(R) = L ∩CΓ(R), we see that |K| ≡ |L|(mod p). Also, since

χC = eχ∗ + p∆,

we have that χ(x) ≡ eχ∗(x)(mod p) and χ(1) ≡ eχ∗(1)(mod p), where p does not divide e. Thus
χ∗(1)χ(x) ≡ χ(1)χ∗(x)(mod p) and χ̃∗(1)χ̃(x) ≡ χ̃(1)χ̃∗(x)(mod p). Since |K| = |L|(mod p), we
deduce that

|K|χ̃∗(1)χ̃(x) ≡ |L|χ̃(1)χ̃∗(x) mod p .

Using the fact that the degrees of χ and χ∗ are p′-numbers, we deduce that
(

|K|χ̃(x)

χ̃(1)

)∗

=

(

|L|χ̃∗(x)

χ̃∗(1)

)∗

.

The result follows from the discussion in the preceding paragraph using, as we have proved, that
|clΓ(x)|

∗ = |clM (x)|∗ for every p-regular x ∈ CΓ(R). �

3. An extension theorem

The aim of this section is to prove Theorem F. We first need some lemmas.

Lemma 3.1. Suppose that N / G and that ψ ∈ Irr(G) has p′-degree and is such that ψN = θ ∈
Irr(N). Assume that ψH belongs to the principal block of H whenever H/N is a cyclic p′-group.
Then ψ belongs to the principal block of G.
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Proof. Since ψ lies in a block of maximal defect, by Problem 4.5 of [N1], we want to show that
(

|K|ψ(x)

ψ(1)

)∗

= |K|∗,

where K = clG(x) is the conjugacy class of a p-regular x ∈ G with |G : CG(x)| a p
′-number. Since

ψ(1) is not divisible by p, it suffices to show that ψ(x)∗ = ψ(1)∗. Let H = N〈x〉. We know that there
is P ∈ Sylp(G) such that P ≤ CG(x). Let Q = P ∩ N ∈ Sylp(N), so that Q ≤ CN (x) ≤ CH(x).
Since H/N is a p′-number, it follows that Q ∈ Sylp(H). In particular, p does not divide |L|, where
L = clH(x). By hypothesis ψH belongs to the principal block of H, and we conclude that

|L|∗ψ(x)∗ = |L|∗ψ(1)∗.

Then ψ(x)∗ = ψ(1)∗, as desired. �

We remind the reader that, in general, if ψ ∈ Irr(G) lies in the principal block of G and ψH ∈
Irr(H), then ψH needs not to be in the principal block of H. For instance, take G = A4, p = 2, and
H is a Sylow 3-subgroup of G. However, the following statement holds.

Lemma 3.2. Suppose that ψ ∈ Irr(G) lies in the principal block of G, and assume that H / /G. If

ψH ∈ Irr(H), then ψH lies in the principal block of H.

Proof. Arguing by induction on |G : H|, we may assume that H / G. Then the result follows by
Theorem 9.2 of [N1]. �

Lemma 3.3. Let K / G with G/K being a p-group and p > 2. If γ ∈ Irr(K) is p-rational and
G-invariant, then γG contains a unique p-rational irreducible constituent γ̂ ∈ Irr(G). Furthermore,

γ lies in the principal block of K if and only if γ̂ lies in the principal block of G.

Proof. This is Theorem 6.30 of [I2] together with Corollary 9.6 of [N1]. �

We can now prove Theorem F, which is a variation of Theorem 3.2 of [NT3].

Theorem 3.4. Suppose that N / G. Let θ ∈ Irr(N) be p-rational, G-invariant of p′-degree in the

principal block of N , where p is odd. Let Q ∈ Sylp(N), and assume that |G : NCG(Q)| is a power

of p. Then θ uniquely determines a character χ ∈ Irr(G) in the principal block of G such that χ is

p-rational and χN = θ.

Proof. Let M = NCG(Q). By the Frattini argument, we have that M / G.
We next show that if N ≤ U ≤ M and U/N has a normal p-complement, then there exists a

unique p-rational extension η(U) ∈ Irr(U) of θ in the principal block of U . Let V/N be the normal
p-complement of U/N . We have that V = NCV (Q) and V/N is a p′-group. Since V/N is a p′-group,
then CV (Q)/CN (Q) is a p′-group. By elementary group theory, Z(Q) is a central Sylow p-subgroup
of CV (Q), and therefore there exists Y ≤ CV (Q) of p′-order such that CV (Q) = Y × Z(Q). By

Theorem 3.2 of [NT3], there exists a unique θ̂ ∈ Irr(V ) in the principal block of V lying over θ. In

fact θ̂N = θ. By uniqueness, θ̂ is p-rational and U -invariant. (This is a standard argument. For

instance, if σ ∈ G fixes Q(θ), then θ̂σ is a p-rational extension of θ in the principal block, so by

uniqueness θ̂σ = θ̂. Thus Q(θ) = Q(θ̂) and θ̂ is p-rational.) By Lemma 3.3, θ̂ has a unique p-rational
extension η to U , which lies in the principal block of U . If η′ is another p-rational extension of θ in
the principal block of U , then η′V = ρ ∈ Irr(V ) lies in the principal block of V (by Lemma 3.2), and

extends θ. By Theorem 3.2 of [NT3], ρ = θ̂. So η′ is a p-rational extension of θ̂, and then η′ = η by
Lemma 3.3.
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We now define a class function η ofM , which is uniquely determined by θ, as follows: for m ∈M ,
let H = N〈m〉 ≤ M , and, by the previous paragraph, let η(H) ∈ Irr(H) be the unique p-rational
extension of θ in the principal block of H. Set η(m) = η(H)(m). It is straightforward to check that
η is a G-invariant class function of M by using that θ is G-invariant and that η(Hz) = (η(H))

z for
z ∈ G. Notice that η(n) = θ(n) for n ∈ N .

Next we prove that η is a generalized character. Suppose that E/N is nilpotent, where N ≤
E ≤ M . By the second paragraph of this proof, there exists a unique p-rational ψ ∈ Irr(E) in the
principal block extending θ. We prove that ηE = ψ. Let g ∈ E and write H = N〈g〉. Then ψH is
p-rational. Since H / /E, we have that ψH lies in the principal block of H by Lemma 3.2. Since
ψH extends θ, then ψH = η(H). Consequently ψ(g) = η(g), and ψE = ηE , as wanted. By Theorem
8.4(a) of [I2], we have that η is a generalized character of M . By using Lemma 8.14(c) of [I2] it is
easy to prove that [η, η] = 1, so that η ∈ Irr(M) by Theorem 8.12 of [I2]. Also, ηN = θ. By Lemma
3.1, we have that η lies in the principal block of M (because we have shown that if E/N is nilpotent
and N ≤ E ≤M , then ηE is the unique p-rational extension of θ in the principal block of E). Also
η is p-rational by definition. We already know that η is G-invariant. By Lemma 3.3, we know that
there is a unique p-rational χ ∈ Irr(G) extending η, which lies in the principal block of G. �

The following result is a suitable extension of Theorem 6.1 of [NTT].

Corollary 3.5. Let N / G. Let p be an odd prime and let P ∈ Sylp(G). Suppose that PN/N is

self-normalizing in G/N . Suppose that ν ∈ Irr(N) is P -invariant, p-rational, has p′-degree, and lies

in the principal block of N . Then there exists a p-rational χ ∈ Irr(G|ν) of p′-degree lying in the

principal block of G.

Proof. We proceed by induction on |G : N |.

We may assume that ν is G-invariant. Indeed, let T = Gν be the stabilizer of ν in G. If T < G
then, by the inductive hypothesis, there is a p′-degree p-rational ψ ∈ Irr(T ) lying over ν, in the
principal block of T . Then, χ = ψG ∈ Irr(G|ν) is p-rational and has p′-degree (for PN ≤ T ). Also,
by Corollary 6.2 and Theorem 6.7 of [N1] χ lies in the principal block, as wanted.

Let M/N be a chief factor of G. We claim that we may assume that G = MP . Notice that
PM/N has a self-normalizing Sylow p-subgroup. If MP < G, then by the inductive hypothesis
there is η ∈ Irr(MP ) of p′-degree, p-rational lying over ν, in the principal block of MP . Let
τ = ηM ∈ Irr(M), which is p-rational of p′-degree, P -invariant, in the principal block of M .
Since PM/M is self-normalizing in G/M , again by the inductive hypothesis, there is a p-rational
χ ∈ Irr(G) of p′-degree lying over τ and in the principal block of G. Hence the claim follows.

Let Q be a Sylow p-subgroup of N . By the Frattini argument G = NNG(Q). Then NCM (Q) is
normal in G and so, either M = NCM (Q) or CM (Q) ≤ N . In the first case, the result follows from
Theorem 3.4 since G/M is a p-group.

Assume finally that CM (Q) ≤ N . In this case, by Lemma 3.1 of [NT3], the only block of M
covering the principal block of N is the principal block of M , and the only block of G covering the
principal block of M is the principal block of G because G/M is a p-group (by Corollary 9.6 of
[N1]). Hence the principal block of G is the only block of G covering the principal block of N . By
Theorem 6.1 of [NTT], there exists χ ∈ Irr(G) of p′-degree, p-rational lying over ν. Since ν lies in
the principal block of N , necessarily χ lies in the principal block of G by Theorem 9.2 of [N1], and
the proof of the statement is complete. �

As we have said before, there are examples where G/N is a cyclic p′-group, θ ∈ Irr(N) is p-
rational of p′-degree and lies in the principal block of N , the principal block of G is the only block
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of G, and yet no irreducible constituent of θG is p-rational. The smallest counterexample we have
found is the SmallGroup(216,158) for p = 3 (see [GAP]).

4. Proof of the main results

In this section we prove the main results in this paper, assuming Theorem 4.1 below on simple
groups, which we will prove in the next section.

Theorem 4.1. Let p be an odd prime. Let S / G, where CG(S) = 1 and S is a non-abelian simple

group of order divisible by p. Suppose that G/S is a p-group. Then G has a self-normalizing Sylow

p-subgroup if and only if there is no nontrivial p-rational character of p′-degree in the principal block

of G.

In several parts of this paper, we will use the fact that Irr(B0(G/N)) ⊆ Irr(B0(G)) if N / G.
(See, for instance, the discussion before Theorem 7.6 of [N1].)

Corollary 4.2. Let p be an odd prime. Suppose that G is a finite group such that G = NP , where
P ∈ Sylp(G) and N / G is a direct product of non-abelian simple groups of order divisible by p.
If there are no non-trivial p-rational irreducible characters of p′-degree in the principal block of G,
then P = NG(P ).

Proof. We proceed by induction on |G|. Suppose that L 6= M are proper normal subgroups of G
contained in N such that L ∩M = 1 (i.e. P is not transitive on the simple normal factors of N).
By induction, we have that NG(P )L = PL and NG(P )M = PM . Then

NG(P ) ≤ NG(P )L ∩NG(P )M = PL ∩ PM = P (L ∩M) = P.

Hence we may assume that N is a minimal normal subgroup of G. Write

N = S1 × · · · × St,

where Si = Sui

1 for some ui ∈ P . Write H = NG(S1), P1 = P ∩H, Q = P ∩N and Q1 = Q ∩ S1.
By Lemma 4.1 and Lemma 2.1(ii) of [NTT] we have that: P is self-normalizing in G if, and only if,
CNN (Q)/Q(P ) = 1 if, and only if, CNS1

(Q1)/Q1
(P1) = 1 if, and only if, P1 is self-normalizing in S1P1.

Hence it suffices to show that P1 is self-normalizing in S1P1. Assume the contrary. Let H = H/C,
where C = CG(S1). We have that S1

∼= S1C/C = S1 / H, H/S1 is a p-group and CH(S1) = 1. We

have that P1 = P1C/C ∈ Sylp(H), and H = S1 P1. We can check that P1 is not self-normalizing in

H. By Theorem 4.1, H has a non-trivial p-rational character γ of p′-degree in the principal block.
Let γ1 = γS1

. Then γ1 ∈ Irr(S1) is P1-invariant and lies in the principal block of S1. By Lemma
4.1 of [NTT], we have that

θ = γu1

1 × · · · × γut

1 ∈ Irr(N)

is P -invariant. Of course θ is p-rational of p′-degree and lies in the principal block of N . By Lemma
3.3, we get a contradiction. �

The following easy observation is stated as a lemma for the reader’s convenience.

Lemma 4.3. Let N and M be distinct normal subgroups of a group G. Let P be a Sylow p-subgroup
of G. Suppose that NG/N (PN/N) and NG/M (PM/M) have a normal p-complement. If N∩M = 1,
then NG(P ) has a normal p-complement.

Proof. By elementary group theory, NG/N (PN/N) = NG(P )N/N . Hence we have that

NG(P )/NN (P ) ∼= NG(P )N/N
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has a normal p-complement. Similarly, NG(P )/NM (P ) has a normal p-complement. Hence also

NG(P ) = NG(P )/(NN (P ) ∩NM (P ))

has a normal p-complement. �

We are now ready to prove the main result of this paper, which is Theorem D of the introduction
(recall that this is equivalent to Theorem A by using Corollary 6.13 of [N1]).

Theorem 4.4. Let p be an odd prime. Let G be a finite group and let P ∈ Sylp(G). Then NG(P )
has a normal p-complement if and only if the only p-rational irreducible character of p′-degree lying

in the principal block of G is the principal character of G.

Proof. Suppose that NG(P ) has a normal p-complement. By Theorem A of [NTV], we have that
there is a canonical bijection

∗ : Irrp′(B0(G)) → Irrp′(B0(NG(P ))).

In fact, if χ ∈ Irrp′(B0(G)), then χNG(P ) = χ∗ + ∆, where χ∗ ∈ Irr(NG(P )) is linear in the
principal block of NG(P ), and ∆ is zero or a character such that all its irreducible constituents
have degree divisible by p. In particular, we see that ∗ commutes with the action of the absolute
Galois group G, and therefore Q(χ) = Q(χ∗). Since NG(P ) has a normal p-complement X, we have
that χ∗ ∈ Irr(NG(P )/X) is the character of an odd-order p-group P . Hence χ∗ is never p-rational,
unless χ∗ = 1. Therefore, unless χ = 1. This proves one direction.

We assume now that the only p-rational irreducible character of p′-degree lying in the principal
block of G is the principal character of G, and we prove that NG(P ) has a normal p-complement,
by induction on |G|.

Step 1. We may assume that G has a unique minimal normal subgroup N . AlsoNG(P )N/N has a

normal p-complement V/N ≤ K/N = Op′(G/N), and G/K has self-normalizing Sylow p-subgroups.

Let N and M be distinct minimal normal subgroups of G. Since

Irr(B0(G/N)) ⊆ Irr(B0(G)), Irr(B0(G/M)) ⊆ Irr(B0(G)),

by the inductive hypothesis, we have that G/N and G/M have Sylow normalizers with a normal
p-complement. By Lemma 4.3, NG(P ) has a normal p-complement too.

WriteNG(P )N/N = PN/N×V/N . By Theorem 3.2 of [NTV], we have that V/N ≤ Op′(G/N) =
K/N . Also, NG(P )K = PK, and G/K has self-normalizing Sylow p-subgroups.

Step 2. We may assume that N is not a p′-group. In particular Op′(G) = 1.

We know that NG/N (PN/N) = PN/N × V/N . If N is a p′-group, then V is a normal p-
complement of NG(P )N . Hence V ∩ NG(P ) / NG(P ) is a p-complement of NG(P ) and we are
done.

Step 3. We may assume N is not a p-group. In particular, N is a direct product of isomorphic

non-abelian simple groups of order divisible by p.

Suppose that N is a p-group. We know that

NG(P )/N = NG/N (P/N) = P/N × V/N,

so that K is a p-solvable group and Op(K) = N . Recall that Op′(K) = 1, by Step 2. By Hall-
Higman Lemma 1.2.3 CK(N) ≤ N . We have that

Op′(NG(P )) ≤ CK(N) ≤ N.
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Hence Op′(NG(P )) = 1. By Problem (4.8) of [N1], we have that G has a unique p-block of maximal
defect, namely the principal one. Consequently every irreducible character of G of p′-degree lies in
B0(G). We have that V/K = CK/N (P/N). By the Glauberman correspondence

|IrrP (K/N)| = |Irr(V/N)|.

If V/N = 1, then NG(P ) = P and we would be done. Hence we may assume that there is some
non-trivial γ ∈ IrrP (K/N). In particular, γ is p-rational and has p′-degree. Since G/K has a self-
normalizing Sylow p-subgroup, we have that Theorem 6.1 of [NTT] produces a p′-degree p-rational
character χ ∈ Irr(G) lying over γ. Since 1 6= χ lies in the principal block of G we get a contradiction.

Step 4. We may assume that PN / G. Hence G/N = K/N × PN/N .

Recall that by induction
NG/N (PN/N) = PN/N × V/N,

where V/N ≤ Op′(G/N) = K/N . Notice that V/N = CK/N (PN/N). Let γ ∈ Irr(PV ) be p-rational
of p′-degree lying in B0(PV ). Hence, γV ∈ Irr(V ) lies in B0(V ). By the relative Glauberman
correspondence, Theorem 2.3, there is a unique τ ∈ IrrP (K) such that τ∗ = γV . Also τ lies in
B0(K). By Corollary 3.5, there exists χ ∈ Irr(G) over τ which is p-rational of p′-degree and lies
in the principal block. By assumption, χ is the trivial character and hence τ = 1. We conclude
τ∗ = γV = 1. Now, γ ∈ Irr(PV/V ) is linear and rational. Since p is odd, it must be γ = 1PV . We
have shown that PV = NG(P )N has a unique p-rational irreducible character of p′-degree in its
principal block. If PV < G, then by induction NPV (P ) = NG(P ) is p-decomposable. Hence, we
may assume PV = G. In particular, PN / G and V = K.

Step 5. Let Q = P ∩N ∈ Sylp(G). We may assume NCK(Q) = K.

By the Frattini argument G = NNG(Q). Then NCK(Q) / K. Assume that NCK(Q) < K. By
Lemma 3.1 of [NT3], we have that B0(K) is the unique block of K that covers the principal block
of NCK(Q). Let 1 6= γ ∈ Irr(K/NCK(Q)). Then γ lies in B0(K) and is p-rational of p′-degree.
Since G/N = K/N × PN/N , by Lemma 3.3, we have that γ extends to a p-rational character of
p′-degree in B0(G). This is a contradiction because 1 6= γ.

Step 6. We may assume that p = 3 and that N is a direct product of groups isomorphic to

PSL2(3
3a), for some a ≥ 1. In particular, Q is abelian. Also NP < G.

Let η ∈ Irr(PN) be p-rational of p′-degree lying in B0(PN). Then ν = ηN ∈ Irr(N) is P -
invariant, p-rational of p′-degree and lies in B0(N). By Theorem 3.2 of [NT3], ν extends to a unique
ν̂ ∈ Irr(Kν) in B0(Kν), where Kν is the stabilizer of ν in K. In particular, by uniqueness, we have
that ν̂ is p-rational and P -invariant. Write ρ = (ν̂)K ∈ Irr(K). Then ρ is p-rational, P -invariant and
of p′-degree. By Lemma 3.3 we conclude that ρ has an extension to a p′-degree p-rational character
in the principal block of G. We conclude that ρ = 1K . This implies ν̂ = 1K . Hence ν = 1N .
Thus η ∈ Irr(PN/N) is linear and rational. Since p is odd, this implies η = 1. We have proved
that PN has a unique p′-degree p-rational irreducible character in B0(PN). If G = NP , then the
theorem follows from Corollary 4.2. Hence, we may assume that PN < G. Then, by the inductive
hypothesis, NPN (P ) = P ×Y . By Theorem 3.2 of [NTV], we have that Y ≤ Op′(PN) ≤ N . Hence
Y = 1 (by Step 3). By the main result of [GMN], we have that the non-abelian composition factors
of PN are of type PSL2(3

3a) with a ≥ 1.

Step 7. The final contradiction.

We have that CK(Q) = Y0 ×Q, where Y0 is a p′-group. If

N = S1 × · · · × St,
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where each Si is isomorphic to PSL2(3
3a), then write Qi = Q ∩ Si ∈ Sylp(Si). Since Y0 centralizes

1 6= Qi, it follows that Y0 normalizes Si. We have that

Yi = Y0CG(Si)/CG(Si) ≤ Aut(Si)

centralizes Qi. By Lemma 3.1(i) of [NTV], it follows that Yi = 1. Thus Y0 ≤ CG(Si) for every i,
and so Y0 ≤ CG(N). By Step 1, G has a unique minimal normal subgroup, so CG(N) = 1. Hence
Y0 = 1 and K = N . This implies that G = NP , but this is impossible by Step 6. �

5. Simple Groups

The aim of this section is to prove Theorem 4.1. We begin with some observations.

Lemma 5.1. Let p be a prime and let S be a normal subgroup of G of p-power index.

(a) The principal block B0(G) is the only block of G that covers the principal block B0(S) of S.
(b) Suppose that p > 2 and that Irr(S) ∩B0(S) contains a rational G-invariant character α. Then

α extends to a rational character β ∈ B0(G).
(c) Theorem 4.1 holds if G has a self-normalizing Sylow p-subgroup P .

Proof. (a) By Green’s Theorem 8.11 of [N1], 1G is the unique irreducible p-Brauer character of G
that lies above 1S . Hence the statement follows.

(b) By [NT1, Lemma 2.1], α has a unique real extension β to G, whence β is also rational. Since
α ∈ B0(S), β ∈ B0(G) by (a).

(c) By [NTT, Theorem A], 1G is the unique p-rational irreducible character of p′-degree of G,
whence the claim follows. �

By virtue of Lemma 5.1(c), it remains to prove the “if” direction of Theorem 4.1.

Lemma 5.2. Theorem 4.1 holds if S is either 2F4(2)
′ or one of the 26 sporadic simple groups.

Proof. Direct computation using [GAP]; note that in this case G = S. �

Lemma 5.3. Theorem 4.1 holds if S = An, n ≥ 5, is an alternating group.

Proof. As mentioned above, it suffices to prove the “if” direction of Theorem 4.1, that is, B0(G)
contains a nontrivial p-rational irreducible character of p′-degree, where G = S = An. Let H := Sn.

Suppose that p|(n− 1). Then the character χ of H labelled by the partition (n− 2, 2) has degree
n(n− 3)/2 ≥ 5 that is coprime to p, and p-core (1), whence χ ∈ B0(H). Since χS is irreducible, it
has the desired properties.

Assume now that p - (n−1). Write n−1 =
∑k

i=1 aip
i with ai ∈ Z, 0 ≤ ai < p, and ak > 0. Then

the character χ of H labelled by the partition (n− pk, 1p
k

) has degree
(

n−1
pk

)

> 1 that is coprime to

p, and the same p-core as of 1H , whence χ ∈ B0(H). Since n 6= 2pk + 1, the partition (n− pk, 1p
k

)
is not self-associate, and so χS is irreducible and has the desired properties. �

In the case of Theorem 4.1 where S is a simple group of Lie type, we will actually prove more
than what is needed for the “if” direction; we believe the established results will be useful in other
applications as well. We refer the reader to [C] and [DM] for basics on complex representations of
finite groups of Lie type.

Theorem 5.4. Let S 6∼= 2F4(2)
′ be a finite simple group of Lie type in characteristic r and p 6= r an

odd prime. Then there exists a non-trivial, rational-valued, Aut(S)-invariant, unipotent character
of p′-degree that belongs to the principal p-block of S.
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Proof. (i) We work in the following setting. Let G be a simple, simply connected linear algebraic
group over an algebraic closure of Fr with a Steinberg map F : G → G such that S = G/Z(G)
where G = GF . (This is possible since S 6∼= 2F4(2)

′.) The unipotent characters of S are then (by
definition) precisely the unipotent characters of G (which all have Z(G) in their kernel).

(ii) We first assume that F is a Frobenius endomorphism defining an Fq-rational structure on G

(i.e., G is not a Suzuki or Ree group). We let d denote the order of q modulo p. By results mainly
of Broué, Malle, and Michel, and of Cabanes and Enguehard, summarised in [KM, Theorem A], the
unipotent characters in a block of G are unions of d-Harish-Chandra series. Moreover, individual
d-Harish-Chandra series are in bijection with irreducible characters of the corresponding relative
Weyl groups (see [KM, Theorem B]). Thus by the degree formula for Lusztig induction, the blocks
of maximal defect are those parametrized by cuspidal pairs (L, λ) with d-cuspidal λ ∈ Irr(L) of
degree coprime to p, hence with the d-split Levi subgroup L having a d-torus in its centre, so with
L being the centralizer CG(T) of a Sylow d-torus T of G. In particular if CG(T) is a maximal
torus of G, that is, if d is a regular number (in the sense of Springer) for the Weyl group W of G,
then there is just one such block, which must be the principal block. In this case, the Steinberg
character lies in the principal block, is rational and Aut(G)-invariant (see e.g. [M2, Theorem 2.5]),
and its degree is a power of r, hence coprime to p, so we are done.

Consider the case G is of exceptional type. Then all relevant numbers are regular for W unless G
is of type E7 (see the tables given in [BMM]). Hence we only have to consider the latter type. The
non-regular numbers are d = 4, 5, 8, 10, 12. Here, eight unipotent characters are irrational (those
lying in the Harish-Chandra series above the two cuspidal unipotent characters of E6, those two
in the principal series belonging to the non-rational characters of the Hecke algebra, and the two
cuspidal unipotent characters). It is immediate from the explicit list of d-Harish-Chandra series in
[BMM, Tab. 2] that in each case there exists a unipotent character of p′-degree in the principal
block that is Aut(S)-invariant. (This concerns the lines 24, 30, 34, 37 in loc. cit.)

Now assume that S, and hence G, is of classical type. Then the unipotent characters are uniquely
determined by their multiplicities in the Deligne–Lusztig characters and hence in particular they are
rational. Moreover, all unipotent characters are invariant under all outer automorphisms of S unless
either G is of type Dn with n ≥ 4, or G is of type B2 in characteristic r = 2, see [M2, Theorem 2.5].
Since the relative Weyl group of any non-trivial d-torus is a non-trivial complex reflection group, it
has a non-trivial linear character ψ. The unipotent character in the principal block parametrized by
ψ then has degree congruent to 1 modulo p by [M1, Theorem 4.2] and is not the trivial character,
and hence we are done except for types Dn and B2. In the cases of types D4 and B2, again all
relevant d are regular for W , and thus the Steinberg character does the job. So now assume that G
is of type Dn with n ≥ 5. According to [M2, Theorem 2.5] the unipotent characters not stable by
outer automorphisms are those labelled by degenerate symbols. On the other hand, the unipotent
characters in the principal block are those labelled by symbols with d-core (respectively e-cocore
if d = 2e is even) being the symbol of the trivial character (see [BMM, §3A]). Clearly the d-core
(respectively e-cocore) of a degenerate symbol is again degenerate, and the symbol for the trivial
character is only degenerate when n = 0. But in this case, n is divisible by d (respectively by e)
and then d is a regular number for W , whence we conclude as before.

(iii) Finally we deal with the case of Suzuki and Ree groups. The theory of d-Harish-Chandra
series and p-blocks holds with minor modifications in this case as well, see [BMM] and [M1]. And
again all numbers d are regular for the corresponding Weyl groups, whence the Steinberg character
has the desired properties. �
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Theorem 5.5. Let S be a finite simple group of Lie type defined over a field of characteristic p > 2.
If p = 3, assume in addition that S 6∼= PSL2(3

2a+1) for any a ∈ N. Then S has a non-trivial,

rational-valued, Aut(S)-invariant, irreducible character of p′-degree that belongs to the principal

block of S.

Proof. We keep the notation (G, F,G) as in Step (i) of the proof of Theorem 5.4. According to
[Hum, Theorem, p.69], B0(S) = Irr(S) \ {St}, if St denotes the Steinberg character of G (and S).
In particular, any irreducible character of p′-degree of S belongs to B0(S).

First we note that the result in the case S is an exceptional group of Lie type, respectively S =
PSLn(q) or PSUn(q) with n ≥ 3, has already been established in Example 5.3(a), (c), Proposition
5.5, and Proposition 5.10 of [NT2], respectively.

In the remaining cases (and viewing SL2(q) as Sp2(q)), we have that G = Sp(V ) or Spin(V ) for a
suitable vector space V over Fq. Let the pair (G∗, F ∗) be dual to (G, F ), and set G∗ := (G∗)F

∗

, so
that G∗ = SO(W ), PCSp(W ), or PCO(W )0, where W = Fn

q for a suitable n ∈ N. If p 6= 3, it is easy
to see that G∗ has a unique conjugacy class of rational elements s ∈ [G∗, G∗] of order 3 such that an
inverse image in GL(W ) of order 3 of s has a fixed point subspace of dimension n−2 onW . Likewise,
if p = 3 and n ≥ 4, then G∗ has a unique conjugacy class of rational elements s ∈ [G∗, G∗] of order
5 such that an inverse image in GL(W ) of order 5 of s has a fixed point subspace of dimension n−4
on W . Finally, if S = PSp2(3

2a) (and so G∗ = SO3(q) with q = 32a ≡ 1(mod8)), we can choose
γ ∈ F×

q of order 8, t = diag(1, γ, γ−1) ∈ G∗, and s = t2 ∈ [G∗, G∗]. In all cases, s has connected
centralizer in G∗. It follows that the corresponding semisimple character χs of G is irreducible,
trivial at Z(G), rational-valued, of degree |G∗ : CG∗(s)|p′ > 1, and Aut(S)-invariant. �

Proof of Theorem 4.1. By Lemma 5.1(c), it remains to prove the “if” direction of the theorem. By
Lemmas 5.2 and 5.3 we may assume that S 6∼= 2F4(2)

′ is a simple group of Lie type. If (S, p) 6=
(PSL2(3

2a+1), 3), then Theorems 5.4 and 5.5 yield a non-trivial Aut(S)-invariant rational irreducible
character of p′-degree in B0(S), whence the same holds for B0(G) by Lemma 5.1(b). Assume now
that (S, p) = (PSL2(3

2a+1), 3) and that P ∈ Sylp(G) is not self-normalizing. By direct computation
(or by using [NTT, Theorem A]), one sees that Irr(G) contains a non-trivial p-rational irreducible
character of p′-degree χ. Since |G/S| is a p-power, χS is irreducible and belongs to B0(S) as we
noted in the proof of Theorem 5.5, whence χ ∈ B0(G) by Lemma 5.1(a). �

6. Theorem C and final remarks

We start this section by proving Theorem C of the introduction, which is implied by the deepest
parts of the block theory of p-solvable groups. We assume that the reader is familiar with the theory
of blocks and normal subgroups (see, for instance, Chapter 9 of [N1]).

Recall that if B is a block of G with defect group P , then B uniquely determines, up to NG(P )-
conjugacy, a p-defect zero character θ ∈ Irr(PCG(P )/P ) lying in a block b of PCG(P ) that induces
B (see discussion after Theorem 9.12 in [N1]). This character θ is called a canonical character of
B. We first need to prove the following lemma.

Lemma 6.1. Suppose that B is a block of G with normal defect group P . Let θ ∈ Irr(PCG(P )/P )
be a canonical character of B. Then:

(a) All irreducible Brauer characters in B have height zero.

(b) l(B) = 1 if and only if θ is fully ramified in Gθ/PCG(P ).
(c) Suppose that p is odd. Then l(B) = 1 if and only if there is a unique p-rational χ ∈ Irr(B) such

that χ0 ∈ IBr(G).
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Proof. Let C = CG(P ) / G and L = PC / G. Let b be a block of L covered by B. We know that
B = bG by Corollary 9.21 of [N1], and that b has defect group P (for instance, by Lemma 4.13 and
Theorem 4.18 of [N1]). By Theorem 9.12 of [N1], we may assume that IBr(b) = {θ0}. By using
Theorem 9.2 of [N1], we conclude that IBr(B) = IBr(G|θ0). Let T be the stabilizer of the Brauer
character θ0 in G. Since θ vanishes off p-regular elements, we also have that T = Gθ. We even have
that T is the stabilizer of b in B, by using Theorem 9.12 of [N1]. Recall that T/L is a p′-group, by
Theorem 9.22 of [N1]. By the Fong-Reynolds correspondence (Theorem 9.14 of [N1]) it is enough
to prove that the irreducible Brauer characters of T lying over θ0 have height zero. This is clear,
using that T/L is a p′-group. This proves part (a).

Also, we see that |IBr(B)| = 1 if and only if |IBr(G|θ0)| = 1. By the Clifford correspondence for
Brauer characters (Theorem 8.9 of [N1]), this happens if and only if |IBr(T |θ0)| = 1. Since T/L
is a p′-group, then every ψ ∈ Irr(T |θ) has p-defect zero, and it follows that restriction to p-regular
elements defines a bijection Irr(T |θ) → Irr(T |θ0). We deduce that θ is fully ramified in T , hence
proving (b).

In order to prove (c), we claim first that Irr(G|θ) is exactly the set of p-rational characters in
B that lift irreducible Brauer characters. We already know that B = bG is the only block of G
covering b, so Irr(G|θ) ⊆ Irr(B). Let χ ∈ Irr(G|θ) and let ψ ∈ Irr(T |θ) be its Clifford correspondent.
Since T/L is a p′-group, then ψ has defect zero. In particular ψ0 ∈ IBr(T ) and ψ is p-rational.
Hence χ = ψG is also p-rational. By the Clifford correspondence for Brauer characters (Theorem
8.9 of [N1]), we have that χ0 = (ψ0)G ∈ IBr(G). Conversely, suppose that χ ∈ Irr(B) is a p-rational
character that lifts an irreducible Brauer character. By Lemma X.2.4 of [F], we have that P ≤ kerχ.
By Theorem 9.12 of [N1], it follows that χ lies over θ. This proves the claim.

We have that

|Irr(G|θ)| = |Irr(T |θ)| = |Irr(T |θ0)| = |IBr(G|θ0)| = |IBr(B|θ0)|

and the proof of the lemma follows. �

Next is Theorem C of the introduction.

Theorem 6.2. Suppose that G is p-solvable, with p odd. Let B be a block with defect group P
and let b be its Brauer first main correspondent. Then l(b) = 1 if and only if there is exactly one

p-rational χ ∈ Irr(B) of height zero and such that χ0 ∈ IBr(B).

Proof. Let IBr0(B) be the set of irreducible Brauer characters of B with height zero. By Theorem
23.9 of [MW], we know that |IBr0(B)| = |IBr0(b)|. By Lemma 6.1(b), we have that |IBr0(B)| =
|IBr(b)|. Hence |IBr(b)| = 1 if and only if |IBr0(B)| = 1.

By Theorem 10.6 of [N1], for each φ ∈ IBr(B) there exists a unique p-rational character χ ∈ Irr(G)
such that χ0 = φ. Hence |IBr0(B)| is the number of p-rational characters in B of height zero. This
concludes the proof of the statement. �

It is interesting to speculate up to what level the local condition l(b) = 1 affects the representation
theory of its global Brauer correspondent B. As we have proved in this section, this condition implies
that B has a unique height zero p-rational character χ lifting an irreducible Brauer character for
p-solvable groups, and for blocks with a normal defect groups. It seems that this might be also the
case for blocks with abelian defect groups. This would follow from the Alperin weight conjecture
together with a conjecture by G. R. Robinson on the uniqueness of p-rational liftings in blocks with
a unique simple module (see [MNS]).

Remark 6.3. Let p > 2 be a prime and letO be the (unique up to isomorphism) absolutely unramified
complete discrete valuation ring with Fp as its residue field. Let G be any finite group and B a
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p-block of OG. Suppose that B is Morita equivalent to a p-block B′ of OH, where H is a finite
p-solvable group, and suppose that the Brauer correspondent b′ of B′ satisfies l(b′) = 1. Applying
Theorem C to B′ and the main result of [K], see also [KL, Corollary 1.7], we see that there is exactly
one p-rational χ ∈ Irr(B) of height zero and such that χ0 ∈ IBr(B).

We have mentioned in the introduction that we believe that there might be a version of Theorem
A for the prime p = 2. We finish this paper with the following conjecture and some remarks on it.

Conjecture 6.4. Let G be a finite group. Let P ∈ Syl2(G). Then NG(P ) has a normal 2-
complement if and only if all odd-degree irreducible characters in the principal 2-block of G are

σ-invariant, where σ is the Galois automorphism that fixes 2-power roots of unity and squares 2′-
roots of unity.

Remark 6.5. We offer some evidence in support of Conjecture 6.4, which includes all finite solvable,
symmetric, and general linear or unitary groups.

(i) Suppose that G is solvable. Let L = O2′(G). Then it is well-known that

Irr(B0(G)) = Irr(G/L).

Since NG(P ) has a normal 2-complement if and only if NG/L(PL/L) has a normal 2-comp-
lement, we may assume that L = 1. We know by the main result in [I1] that there is a natural
bijection Irr2′(G) → Irr2′(NG(P )) that commutes with Galois action. Hence it is no loss to
assume that P / G. Assume now that G has a normal 2-complement. Then G is a 2-group,
and we are done in this case. Conversely, if all the odd-degree irreducible characters of G are
σ-invariant, then all characters of G/P are σ-invariant. Then G = P by Lemma 5.1 of [N2].

(ii) Suppose G = Sn. Then P ∈ Syl2(G) is self-normalizing, and certainly all χ ∈ Irr(G) are
rational-valued, hence σ-invariant.

(iii) More generally, suppose that G is any finite group with self-normalizing Sylow 2-subgroups.
Then a consequence of the Galois refinement of the McKay conjecture [N2] implies that all
odd-degree irreducible characters of G are σ-invariant. (A reduction of this statement to
quasisimple groups has been given in [NT5, Theorem 5.1] and [Sch, Theorem 3.7].)

(iv) Let G = GLn(q) with 2|q and P ∈ Syl2(G), chosen to be the subgroup of upper unitriangular
matrices in G. Then NG(P ) = P o T , where T is the subgroup of diagonal matrices in G.
In particular, NG(P ) has a normal 2-complement precisely when q = 2. The degree formula
for unipotent characters [C, §13.8] shows that the only unipotent character of GLk(q

l) of odd
degree is the principal character. Hence Lusztig’s parametrization of irreducible characters
of G [C], [DM] implies that χ ∈ Irr(G) has odd degree precisely when it is the semisimple
character χs labeled by a semisimple element s ∈ G (if we identify the dual group G∗ with
G). Arguing as in the proof of [NT1, Lemma 9.1], one can show that χs is σ-invariant exactly
when χs = χs2 , i.e. when s2 and s are G-conjugate. Furthermore, [Hum, Theorem, p. 69]
implies that χs belongs to the principal block of G precisely when χs is trivial at Z(G), which,
by [NT4, Proposition 4.5], is equivalent to that s ∈ [G,G] = SLn(q). Now it is straightforward
to check that s2 and s are G-conjugate for all semisimple elements s ∈ SLn(q) if and only if
q = 2. Thus Conjecture 6.4 holds in this case.

A similar argument, applied to GUn(q) with 2|q, shows that Conjecture 6.4 holds in this
case as well.

(v) Let G = GLn(q) with q odd and n ≥ 2. By [GKNT, Theorem 2.5], if χ ∈ Irr(G) has odd
degree, then

χ = S(s1, λ1) ◦ S(s2, λ2) ◦ . . . ◦ S(sm, λm)
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in James’ notation [J], where si ∈ F×
q are pairwise distinct, λi ` ki,

∑m
i=1 ki = n, and

[n]2 = [k1]2 < [k2]2 < . . . < [km]2,

if [a]2 denotes the 2-part of any a ∈ N. Furthermore, results of Fong and Srinivasan [FS] imply
that such a character belongs to the principal 2-block of G only when all si are 2-elements.
Note that in this case S(si, λi) is a product of the rational-valued (unipotent) character S(1, λi)
of GLki

(q) with a linear character of 2-power order of GLki
(q), whence it is σ-invariant. Since

χ is obtained from the character

S(s1, λ1)⊗ S(s2, λ2)⊗ . . .⊗ S(sm, λm)

of the Levi subgroup
GLk1

(q)×GLk2
(q)× . . .×GLkm

(q)

by Harish-Chandra induction, it follows that χ is σ-invariant. On the other hand, NG(P ) has
a normal 2-complement if P ∈ Syl2(G), see e.g. [GKNT, (5.3), (5.5)]).

In fact, we note that [GKNT, Theorem E] implies that Conjecture 6.4 also holds for GUn(q)
whenever q is odd.

(vi) Let G = Sp2n(q) with q ≡ ±3(mod8). As shown in the proof of [Ko, Theorem 1], the
normalizer of P ∈ Syl2(G) contains SL2(3) as a subgroup, and so NG(P ) does not have a
normal 2-complement. It is well known, see eg. [TZ, §2], that G has a pair of the so-called
Weil characters ξn, ηn ∈ Irr(G) of degree (qn ± 1)/2, such that the restriction of ξn to 2′-
elements of G equals to the restriction of 1G + ηn to 2′-elements of G. In particular, they
belong to the principal 2-block of G, and one of them has odd degree. Inspecting the values
of ξn and ηn at a transvection t ∈ G [TZ, Lemma 2.6], one can check that neither ξn nor ηn
is σ-invariant.

Certainly, the arguments given in (iv)–(vi) also apply to many other finite groups of Lie type.
We also note that Conjecture 6.4 has now been reduced to almost simple groups, see [NV].

Acknowledgements. We thank Gunter Malle for useful conversations on this paper, and for kindly
providing us with the proof of Theorem 5.4. We also are grateful to the referee for helpful comments
on the paper.
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