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Abstract. The principal p-block of a finite group G contains only one real-valued
irreducible ordinary character exactly when G/Op′(G) has odd order. For p 6= 3, the
same happens with rational-valued characters. We also prove an analogue for p-Brauer
characters with p ≥ 3.

1. Introduction

Let G be a finite group and let p be a prime. Richard Brauer partitioned the set of
the irreducible complex characters of G into p-blocks, which are permuted by complex
conjugation. The study of real (self-conjugate) blocks was initiated by Brauer himself in
[2]. R. Gow extensively studied the real blocks for p = 2 in [17], and he showed that,
unless they consist of a single character, they should contain an even number of real-valued
irreducible characters. Here we study real-valued irreducible characters in principal blocks
(those containing the trivial representation) for every prime, and this is our first main
result. Recall that Op′(G) is the largest normal subgroup of G of order not divisible by
p.

Theorem A. Let G be a finite group, let p be a prime and let B be the principal p-block
of G. Then the only irreducible complex character in B which is real-valued is trivial if
and only if G/Op′(G) has odd order. If this is not the case and p is odd, then B has at
least three real-valued irreducible characters, no two of which are algebraic conjugates.

Outside principal blocks, there are various examples of simple and quasi-simple groups
having blocks of maximal defect with exactly one real-valued ordinary irreducible char-
acter, like G = PSL2(11) for p = 3, or G = 2A8 for p = 5, so the natural object of our
investigation here is principal blocks.

Once we know that the principal block of G has at least two real-valued irreducible
characters, we produce a third one by a general argument (Theorem 3.4). Many examples
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show that three is the best that we can obtain in general, for instance G = A5 for p = 3
or G =M11 for p = 5. For p = 2, this number is two, as shown by G = PSL2(11).

Theorem A can be significantly improved, especially if p 6= 3, in which case we may
replace real-valued with rational-valued characters.

Theorem B. Let G be a finite group, let p be a prime and let B be the principal p-block
of G. Then the following conditions are equivalent:

(a) If p 6= 3, the only irreducible complex character which is rational valued in B is trivial;
and if p = 3, the only irreducible complex character which is real valued and p-rational
in B is trivial.

(b) G/Op′(G) has odd order.

For p = 3, the group PSL2(27) has no non-trivial rational character in its principal
3-block. Also, contrary to the case of Theorem A, where we showed that there are no
principal blocks with exactly two real-valued characters for p odd, we notice that A5, for
instance, has exactly two rational-valued characters in its principal 5-block.

Another natural hypothesis that looks plausible in Theorem A is the following: can we
add the condition of p′-degree on our real characters? (Real characters of p′-degree were
first studied in [25].) The answer is no, however. There are solvable groups of even order
with only one block such that the trivial character is the only p′-degree real character.
For instance, for p = 7, the group G = V H, where H = (C2)

3 oC7, and V an irreducible
7-module of H of dimension 7. For p = 3, PSL2(27) o C3 provides an example with no
non-trivial real-valued irreducible character of p′-degree.

Our proofs of Theorems A and B rely on the Classification of Finite Simple Groups.
But we do have some general arguments for some special cases that may have independent
interest, and that avoid the use of the Deligne-Lusztig theory in some cases. (See Section
3.)

Finally, we consider real-valued Brauer characters in the principal block, a much more
difficult territory. After a clever argument by T. Breuer that handles the sporadic groups,
using Brauer trees for cyclic Sylow subgroups, and relying on the Deligne-Lusztig theory
and deep results on modular representations of finite group of Lie type, we have been able
to prove the following modular version of Theorem A.

Theorem C. Let G be a finite group, let p be an odd prime and let B be the principal
p-block of G. Then the only irreducible p-Brauer character which is real-valued in B is
trivial if and only if G/Op′(G) has odd order.

As shown by SL3(2), Theorem C does not hold for p = 2.

2. Complex Characters in the Principal Block

We use the notation of [24] for characters and [30] for blocks. For instance, Q(θ) is the
field of values of the character θ, and B0(G) is the principal p-block of G. Recall that
χ ∈ Irr(G) is p-rational if Q(χ) is contained in some cyclotomic field Qn with p - n.

Theorem 2.1. Let p be any prime, and let S be a non-abelian simple group of order
divisible by p.
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(a) If p 6= 3, then S has an irreducible non-trivial rational-valued character γ in the
principal block of S.

(b) If p = 3, then S has an irreducible non-trivial real-valued p-rational character γ in
the principal block of S.

Proof. The cases where S is one of the 26 sporadic simple groups or S ∼= 2F4(2)
′ can

be checked directly using [13]. We will now prove the theorem for the remaining simple
groups.

First assume that p > 2. If S = An, then the statements follow from the proof of [36,
Lemma 5.3]. If S is a simple group of Lie type and furthermore S 6∼= PSL2(3

2a+1) for
any a ≥ 1 if p = 3, then the statements follow from Theorems 5.4 and 5.5 of [36]. If
p = 3 and S ∼= PSL2(3

2a+1), then it is easy to check using the character table of S, see
eg. [9, Theorem 38.1], that B0(S) contains a non-trivial real-valued p-rational irreducible
character (say of degree 32a+1 + 1).
It remains to consider the case p = 2. By [33, Theorem 9.5], Irr(S) contains a non-

trivial rational-valued character γ of odd degree. Let γ◦ denote its restriction to odd-order
elements in S. By Fong’s Theorem (2.30) of [30], if 1S 6= ψ ∈ IBr2(S) is real-valued, then
2|ψ(1). Since 2 - γ(1), it follows that γ◦ contains 1S as an irreducible constituent. Hence
γ belongs to B0(S), and so we are done. �

We continue with the following lemma.

Lemma 2.2. Let G be a finite group, and suppose that N / G has odd index. Let p
be any prime. Let θ be an irreducible ordinary (modular) real-valued character of N
in the principal p-block. Then there exists an irreducible ordinary (modular) real-valued
character η of G over θ in the principal p-block such that Q(θ) = Q(η), if θ and η are
ordinary.

Proof. We know that there exists a unique irreducible real-valued character η of G over θ.
(This follows by Corollary 2.2 of [33] if θ ∈ Irr(N), and by Lemma 5 of [32] if θ ∈ IBr(N).)
By uniqueness, it follows that Q(θ) = Q(η), if θ and η are ordinary. It remains to prove
that η belongs to B0(G). We argue by induction on |G : N |, and we may easily assume
that G/N is cyclic of prime order q. If q = p, then η lies in the principal p-block of G,
because there is only one block covering B0(N). In this case, we are done. So we may
assume that q 6= p. Let P ∈ Sylp(G), and let K = NCG(P ). If K = N , then, again
B0(G) is the only block covering B0(N) by Lemma 3.1 of [35], and we are done.
Hence, we may assume that G = NCG(P ). By [1], we have that θ has a unique

extension γ to G in the principal block of G. By uniqueness, γ is real-valued, η = γ, and
the proof is finished. �

In the proof of Theorem 2.3 below, we will use the fact that the only finite groups that
do not possess non-trivial rational-valued irreducible characters are the groups of odd
order. A proof of this result, which uses the Classification of Finite Simple Groups, can
be found as Theorem 8.2 in [33].

Theorem 2.3. Let G be a finite group, let p be a prime and let B be the principal block
of G. Then the following conditions are equivalent:
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(a) If p 6= 3 or G is p-solvable, the only irreducible complex character which is rational-
valued in B is trivial; and if p = 3, the only irreducible complex character which is
real valued and p-rational in B is trivial.

(b) We have that G/Op′(G) has odd order.

Proof. Assume (b). Then G is p-solvable, and we know that Irr(B) = Irr(G/Op′(G)) by
Fong’s Theorem 10.20 of [30]. Since G/Op′(G) is a group of odd order, then it does not
have non-trivial real-valued irreducible characters, by a well-known result of Burnside.
This shows (a).

To prove the converse, we argue by induction on |G|. We may assume that G has no
odd index normal subgroups, by Lemma 2.2. If 1 < N is a normal subgroup of G, then
by using induction in G/N and the previous sentence, we have that G/N has order not
divisible by p. Hence, we may also assume that Op′(G) = 1, and we want to show that
G has odd order. Notice that we may also assume that G has a unique minimal normal
subgroup N .

Suppose that N is a p-group. Then G is p-solvable, has a unique p-block (by Fong’s
Theorem) with only one rational character (by hypothesis). We conclude that G has odd
order by Theorem 8.2 in [33].

Hence, we may assume that G has a unique minimal normal subgroup N , non-abelian,
of order divisible by p, and p - |G/N |. Let P ∈ Sylp(G). Then all the irreducible characters
of G/NCG(P ) are in the principal p-block of G by Lemma 3.1 of [35]. Thus G/NCG(P )
is a group with no rational characters. Therefore, this is a group of odd order by Theorem
8.2 in [33]. By the second paragraph, we conclude that G = NCG(P ). Therefore we can
apply the Alperin’s theory of isomorphic blocks ([1]). That is, if γ ∈ Irr(N) is in the
principal block, then there exists γ̂ ∈ Irr(G) that extends γ, lies in the principal block
of G, and has the same field of values of γ. Using that N is a direct product of simple
groups of order divisible by p, we use Theorem 2.1, to finish the proof. �

To finish this section, we show that it suffices to prove Theorem C for simple groups.
Since the proof is quite similar to the proof of Theorem 2.3, we simply give a sketch of it.

Theorem 2.4. Let G be a finite group, let p be an odd prime and let B be the principal
block of G. Assume that every non-abelian simple group of order divisible by p has at
least two real-valued irreducible p-Brauer characters in its principal p-block. Then B has
exactly one real-valued irreducible p-Brauer character if and only if G/Op′(G) has odd
order.

Proof. First, notice that the only groups with exactly one p-Brauer real-valued irreducible
character are the groups of odd order. This follows from Brauer’s Lemma on character
tables.

If G/Op′(G) has odd order, then G is a p-solvable group, and we know that Irr(B) =
Irr(G/Op′(G)) by Fong’s Theorem 10.20 of [30]. Since G/Op′(G) is a group of odd order,
then it does not have non-trivial real-valued irreducible Brauer characters.

To prove the converse, we argue by induction on |G|. As in the proof of Theorem 2.3,
we may also assume that G has a unique minimal normal subgroup N of order divisible by
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p, and that G/N has order not divisible by p. If N is a p-group, then G is p-solvable and
IBr(G) has a unique real-valued irreducible Brauer character. Thus |G| has odd order.
Hence, we may assume that N is non-abelian. Let P ∈ Sylp(G). Then all the irreducible

characters of G/NCG(P ) are in the principal p-block of G by Lemma 3.1 of [35]. Thus
G/NCG(P ) is a group with no real-valued Brauer characters. Therefore, it is a group
of odd order and we conclude that G = NCG(P ). Since N is a direct product of non-
abelian simple groups, by hypothesis we know that N has a non-trivial irreducible Brauer
character in its principal block. We finally apply Alperin’s theory of isomorphic blocks
([1]), this time for Brauer characters. �

3. Some General Arguments

In the first part of this section, we give a general argument for a block to contain
a real-valued character. When χ is an irreducible character, we let ν(χ) denote the
Frobenius-Schur indicator of χ. Also, if g ∈ G then we let Sq(g) be the set of square roots
of g, that is the set {x ∈ G | x2 = g}. Recall that

|Sq(g)| =
∑

χ∈Irr(G)

ν(χ)χ(g)

by Lemma 4.4 of [24].

Theorem 3.1. Let G be a finite group, and x be a p-element of G of odd order such that
CG(x) has even order. Let y be a 2-element of CG(x) of maximal order. Then xy has no
square root in G, and there is a non-trivial real-valued χ ∈ Irr(G) with χ(xy) 6= 0.

Proof. Suppose that u ∈ G has u2 = xy. Let w be the p-part of u and z be the p′-part of
u. Then w2 = x and z2 = y. However, we then have CG(w) ≤ CG(x), so that z ∈ CG(x).
But then |〈z〉| = 2|〈y〉|, contrary to the fact that y is a 2-element of CG(x) of maximal
order. Therefore

0 = |Sq(xy)| =
∑

χ∈Irr(G)

ν(χ)χ(xy) .

The trivial character contributes 1 to the latter sum, so there must be a non-trivial
irreducible character χ with ν(χ) 6= 0 and χ(xy) 6= 0. In particular, χ is real-valued by
Theorem 4.5(c) of [24]. �

Corollary 3.2. Let G be a finite group, let p be an odd prime, and let x be a p-element of
G such that CG(x) has even order. Then G has a p-block B whose defect group D contains
a conjugate of x, and which contains a non-trivial real-valued irreducible character.

Proof. Let y be a 2-element of CG(x) of maximal order. By Theorem 3.1, we know that
there is a non-trivial real-valued irreducible character χ of G with χ(xy) 6= 0. Then the
p-block B which contains χ must have a defect group D which contains a conjugate of x
(by Corollary 5.9 of [30]). �
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Corollary 3.3. Let G be a finite simple group of Lie type in characteristic p. Then the
principal p-block of G contains a non-trivial real-valued irreducible character.

Proof. Recall G has only two blocks, the principal block and the p-block of defect zero
consisting of the Steinberg character St, and that this character is real-valued and has
degree |G|p. Hence, the result follows from Corollary 3.2 if G contains an element of order
2p. Suppose then that G contains no element of order 2p, and that the principal p-block
contains no non-trivial real-valued irreducible character. Then every conjugacy class of
involutions of G has size divisible by |U |, where U is a Sylow p-subgroup of G. Now, we
know that

∑

χ∈Irr(G)

ν(χ)χ(1) = 1 + ν(St)St(1)

is the number of square roots of the identity in G. Since this number is positive, then
ν(St) = 1 and G has exactly |U | involutions. Hence G has a single conjugacy class of
involutions of size |U |. This is impossible in a finite simple group by a well-known theorem
of Burnside (Theorem 3.9 of [24]). �

In the second part of this section, we show the following.

Theorem 3.4. Suppose that p is odd. Let G be a finite group and let B be the principal
p-block of G. Assume that Irr(B) contains a non-trivial real-valued irreducible character
α. Then Irr(B) contains a non-trivial real-valued irreducible character β different from
α, and β may be chosen not algebraically conjugate to α.

Proof. Let G0 be the set of p-regular elements of G. We claim that
∑

g∈G0

|Sq(g)| = |G0| .

Notice that if g ∈ G0, then Sq(g) ⊆ G0, using that p is odd. Also, g2 is p-regular and
g ∈ Sq(g2). This easily implies that

G0 =
⋃

g∈G0

Sq(g)

is a disjoint union, and the claim is proved. Again, recall that

|Sq(g)| =
∑

χ∈Irr(G)

ν(χ)χ(g) .

Hence, if aχ :=
∑

g∈G0 χ(g) for χ ∈ Irr(G), we deduce that

|G0| =
∑

g∈G0





∑

χ∈Irr(G)

ν(χ)χ(g)



 =
∑

χ∈Irr(G)

ν(χ)aχ .

By Brauer’s Corollary 3.25 of [30], we know that χ is in the principal block of G if and
only if aχ 6= 0. Then

0 =
∑

1G 6=χ∈Irr(B)

ν(χ)aχ ,
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using that ν(1G)a1 = |G0|. Now, since ν(χ) 6= 0 if and only if χ is real-valued (Theorem
4.5 of [24]), and we know that ν(α)aα 6= 0, necessarily there exists β ∈ Irr(B) − {α, 1G}
such that ν(β) 6= 0. Since ν(α)aα is unchanged if we replace α by an algebraic conjugate,
we may choose β not to be an algebraic conjugate of α, as claimed. �

Notice that the proof of Theorem 3.4 actually establishes the conclusion that ifG/Op′(G)
has even order, then Aut(G) has at least three orbits on real-valued irreducible characters
in the principal p-block of G. This is because the quantity ν(χ)aχ only depends on the
Aut(G)-orbit of χ ∈ Irr(G).

Now, we can combine Theorem 2.3 with Theorem 3.4 to complete the proof of Theorem
A.

Corollary 3.5. Let G be a finite group, let p be an odd prime and assume that G/Op′(G)
has even order. Then the principal p-block of G has at least three real-valued irreducible
characters. Furthermore, if there are exactly three such characters, they are all rational-
valued.

We should mention that this result would not work for Brauer characters (as shown by
any dihedral group of order 2p).

4. Real Brauer Characters in the Principal Block

We start with the case where Sylow p-subgroups are cyclic.

Theorem 4.1. Let G be a finite group such that P ∈ Sylp(G) is cyclic, where p is odd.
Assume that G/Op′(G) even order. Then the principal p-block of G contains at least one
non-trivial real-valued irreducible Brauer character.

Proof. We know by Theorem A that there is χ ∈ Irr(G), non-trivial, real-valued in the
principal block B of G. We show first that we may assume that χ is a non-exceptional
character. Let N = NG(P ), C = CG(P ), and write e = |N : C|. (Notice that e > 1
by a well-known group theoretical argument and our hypothesis.) By the cyclic defect
theory [6], we know that |IBr(B)| = e. If φ ∈ IBr(B), then φ̄ ∈ IBr(B) (because B is a
real block), and therefore, by counting we may assume that e is odd. We know that if ∆
is a complete set of representatives of N -action on Irr(P ) − {1P}, then the exceptional
characters in B can be written as {χλ |λ ∈ ∆}, and that χλ is uniquely determined by
the N -conjugacy class of λ. By Dade’s construction, we have that

χλ = χµ ,

where µ is N -conjugate to λ̄. Now, if χ = χλ for some λ, then it follows that λ and λ̄ are
N -conjugate. Therefore λx = λ̄ for some x ∈ N . Since x2 stabilizes λ and N/C has odd
order, it follows that λ = λ̄, but this implies that λ = 1P , a contradiction. Hence, χ is a
non-exceptional character.

By Corollary 3.5, we know that the Brauer tree of the principal p-block has at least
three real vertices (including the exceptional vertex). Complex conjugation acts on the
principal p-block: there is a unique path between any two real vertices of the Brauer
tree, and this unique path must be fixed under the action of complex conjugation (both
vertex-wise and edge-wise). A fixed edge (under complex conjugation) of the Brauer tree
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corresponds to a real Brauer irreducible character, so there are at least two real Brauer
irreducible characters. �

In what follows, we use the notation χ◦ to denote the restriction of a complex character
χ of a finite group G to the set of p′-elements of G. For a p-block B and a set X of
irreducible complex characters belonging to B, we say that X◦ := {χ◦ | χ ∈ X} is a
spanning set for B if

〈χ◦ | χ ∈ X〉C = 〈ϕ | ϕ ∈ IBrp(G) ∩ B〉C.

Similarly, X◦ is called a generating set for B if

〈χ◦ | χ ∈ X〉Z = 〈ϕ | ϕ ∈ IBrp(G) ∩ B〉Z.

Finally, if X◦ is a Z-basis of 〈ϕ | ϕ ∈ B ∩ IBrp(G)〉Z, then X
◦ is called a basic set for B.

Lemma 4.2. Suppose that the principal p-block B0(G) contains exactly l irreducible
Brauer characters. Then B0(G) contains a nontrivial real-valued irreducible Brauer char-
acter, if at least one of the following conditions holds.

(i) 2|l.
(ii) (Thomas Breuer) The restrictions of χ+ χ̄ to p′-classes in G, where χ runs over all

complex irreducible characters belonging to B0(G), span a C-space R of dimension
≥ l/2 + 1.

(iii) B0(G) has a spanning set X◦, where X ⊆ Irr(G) ∩ B0(G), and the number of non-
real-valued characters in X is at most l/2− 1.

(iv) B0(G) has a spanning set X◦, where X ⊆ Irr(G) ∩ B0(G) and X is stable under
complex conjugation, and furthermore the number of non-real-valued characters in
X is at most l − 2.

Proof. Let C denote the C-span of χ◦ for all χ ∈ Irr(G) ∩ B0(G). It is well known that
IBrp(G) ∩ B0(G) is a basis of C, and so dimC = l.

(i) This is obvious, since B0(G) is stable under complex conjugation.

(ii) Assume the contrary: 1G is the unique real-valued irreducible Brauer character in
B0(G). Recall again that B0(G) is stable under complex conjugation. Let {ϕi, ϕ̄i | 1 ≤
i ≤ (l− 1)/2} denote the set of non-principal irreducible Brauer characters in B0(G). For
any χ ∈ Irr(G) ∩B0(G) we have

χ◦ = a · 1G +

(l−1)/2
∑

i=1

(biϕi + ciϕ̄i)

for some a, bi, ci ∈ C. It follows that

χ◦ + χ̄◦ = 2a · 1G +

(l−1)/2
∑

i=1

(bi + ci)(ϕi + ϕ̄i),

and so dimR ≤ (l + 1)/2, a contradiction.

(iii) By assumption, 〈X◦〉C contains IBrp(G) ∩ B0(G), and the latter set is linearly
independent over C. Hence X◦ spans the space C defined above, and we can choose a
basis {χ◦

1, . . . , χ
◦
l } of C, where χi ∈ X and χi = χ̄i exactly when 1 ≤ i ≤ m ≤ l. By the

assumption l −m ≤ l/2 − 1, and so m ≥ l/2 + 1. Now the space R (as defined in (ii))
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contains χ◦
1, . . . , χ

◦
m, which are linearly independent over C. Thus dimR ≥ m ≥ l/2 + 1,

and we are done by (ii).

(iv) By assumption, we can write

X = {χ1, . . . , χm, χm+1, χ̄m+1, . . . , χm+n, χ̄m+n},

where χi is real-valued exactly when 1 ≤ i ≤ m, m+ 2n = l, and 2n ≤ l − 2. As in (iii),
the space R (as defined in (ii)) contains

χ◦
1, . . . , χ

◦
m, χ

◦
m+1 + χ̄◦

m+1, . . . , χ
◦
m+n + χ̄◦

m+n;

in particular, R has codimension at most n in 〈X◦〉C = C. It follows that

dimR ≥ l − n ≥ l − (l − 2)/2 = l/2 + 1,

and so we are again done by (ii). �

We will also need the following simple observation:

Lemma 4.3. Let E = B1 ∪ B2 ∪ . . . ∪ Bm be a union of p-blocks of a finite group G,
where B1 is stable under complex conjugation. Let Y ⊆ Irr(G) be stable under complex
conjugation and suppose that Y ◦ is a spanning set, respectively, a generating set, or a
basic set, for E . Then there is a subset X ⊆ Y stable under complex conjugation such
that X◦ is a spanning set, a generating set, or a basic set for B1, respectively.

Proof. Write Y = ∪m
i=1Yi, where Yi consists of the characters in Y that belong to Bi, and

let X = Y1. Since Y and B1 are stable under complex conjugation, so is X. Now we show
that X◦ is a spanning set for B1. Let G

0 denote the set of p′-elements in G, and consider
the Hermitian product

(f, g)′ =
∑

x∈G0

f(x)g(x)

on the space of complex-valued functions on G0. Consider any ϕ ∈ IBrp(G) ∩ B1. Then
we can write ϕ = ϕ1 + ϕ2, where

ϕ1 =
∑

χ∈X

aχχ
◦, ϕ2 =

∑

ρ∈Y rX

bρρ
◦,

and aχ, bρ ∈ C. By [9, Theorems 60.5 and 48.8], (ψ1, ψ2)
′ = 0 whenever ψ1 ∈ IBrp(G)∩B1

and ψ2 ∈ IBrp(G) ∩ ∪m
i=2Bi. It follows that

(ϕ2, ϕ2)
′ = (ϕ− ϕ1, ϕ2)

′ = 0,

whence ϕ2 = 0 and ϕ = ϕ1 is a C-combination of X◦. In the case Y ◦ is a generating
set for E , then we can choose aχ, bρ ∈ Z, and the same argument shows that X◦ is a
generating set for B1. Finally, if Y

◦ is linearly independent then so is X◦. �

To handle exceptional groups of Lie type, we will use the following statement:

Lemma 4.4. Let G be a simple, simply connected algebraic group with a Frobenius en-
domorphism F : G → G, and let G := GF ∼= F4(q), E6(q)sc,

2E6(q)sc, E7(q)sc, or E8(q).
Let p - 2q be a prime, and let St denote the Steinberg character of G. Then St

◦ contains
a nontrivial real-valued ϕ ∈ IBrp(G) as an irreducible constituent, if at least one of the
following conditions holds:

(i) 2 - q and p - (q + 1).
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(ii) 2|q, p|(q + 1), and G 6∼= 2E6(q)sc.
(iii) 2|q, and either p - (q + 1) or G ∼= 2E6(q)sc, and, moreover, there is a real p′-element

g ∈ G such that St(g) = ±1.

Proof. In the case of (i), the desired conclusion follows from the fact that 2 - St(1) and
St

◦ does not contain 1G by [20, Theorem B]. Similarly, in the case of (ii), the statement
follows from the fact that 2|St(1) and St

◦ contains 1G with multiplicity 1 by [20, Theorem
B].

In the case of (iii), observe by [20, Theorem B] that St◦ does not contain 1G. Suppose
now that St◦ does not contain any real-valued irreducible constituent. Then we can write

St
◦ =

n
∑

i=1

ai(ψi + ψ̄i), ai ∈ Z>0

for some n ≥ 1 and non-real-valued ψi ∈ IBrp(G). As g is real and St(g) = ±1, we have
n

∑

i=1

aiψi(g) = St(g)/2 = ±1/2,

a contradiction. �

We will now prove Theorem C for simple groups.

Theorem 4.5. Let p be any odd prime, and let S be a finite non-abelian simple group of
order divisible by p. Then the principal p-block of S contains a non-trivial, real-valued,
irreducible Brauer character ϕ.

Proof. (A) First we consider the case S = An with n ≥ max(p, 5). If p|n then one can
take ϕ to be afforded by the heart of the natural permutation module of S (of dimension
n−2). Suppose p|(n−1); in particular n ≥ 6. Consider the irreducible p-Brauer character
ψ of Sn labeled by the partition (n− 2, 2), with p-core (1). Thus ψ belongs to B0(Sn). It
is not hard to check that ψ is irreducible over An (see eg. the proof of [18, Lemma 6.1]),
and so we can take ϕ := ψAn

.
Assume now that p - n(n − 1). In this case, the p-core, say (r) with 2 ≤ r ≤ p − 1, of

the partition (n) is not self-associate. It follows that any irreducible Brauer character ψ
in B0(Sn) restricts irreducibly to An. Now choose ψ labeled by the partition (n − r, r),
with p-core (r) and so belonging to B0(Sn), and take ϕ := ψAn

.

(B) Assume S = 2F4(2)
′ or S is one of 26 sporadic simple groups. In many cases, the

Brauer character tables of S are all known and one can easily check the statement using
[13]. In the cases where the Brauer character table of S is still undetermined, Thomas
Breuer has checked the statement using [13] and Lemma 4.2(ii).

(C) Let S be a finite simple group of Lie type in characteristic p. It is well known,
see [23], that the only irreducible p-Brauer character of S that does not belong to B0(S)
is St◦, where St denotes the Steinberg character. Furthermore, unless S is PSLε

n(q) with
n ≥ 3, Eε

6(q), or PΩ
ε
4m+2(q) with m ≥ 2 for some ε = ±, all semisimple elements in S are

real, see [38, Proposition 3.1], in which case one can take ϕ to be any irreducible Brauer
character of S different from 1S and St

◦.
Suppose S is any of the aforementioned three exceptions. Then we can view S as

GF/Z(GF ) for a suitable simple, simply connected algebraic group G in characteristic p
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and a (generalized) Frobenius endomorphism F : G → G. Then we can choose ψ to be
afforded by the restriction to GF of the rational, restricted, irreducible module L($) of
G, with $ chosen as follows. If S = PSLε

n(q), then G is of type SLn, and $ = $1 +$n−1

(see [34, p. 794]). If S = PΩε
4m+2(q), then G is of type D2m+1, and $ = $2m (then ϕ

has degree (2m + 1)(4m + 1), see [34, p. 795]). If S = Eε
6(q), then G is of type E6, and

$ = $2 (then ϕ has degree 78 if p 6= 3 and 77 if p = 3, see [34, p. 795]). In all these cases,
one can check that ψ is indeed trivial at Z(GF ) (see [34, pp. 794, 795]) and real-valued,
and so we can ϕ to be ψ viewed as a Brauer character of S.

(D) From now on we may assume that S is a simple group of Lie type in characteristic
r 6= p. Here we consider the case where S is a classical group. First assume that S =
PSLε

n(q) with ε = ± and p| gcd(n, q − ε). Then, if ε = +, one can take ϕ to be afforded
by the heart of the permutation module of S acting on the set of 1-spaces of Fn

q (so
that ϕ(1) = (qn − q)/(q − 1) − 1). Assume now that ε = −. As shown, for instance
in p. (ii) of the proof of [10, Theorem 7.2], the unipotent (Weil) character χ of degree
(qn + q(−1)n)/(q + 1) belongs to B0(S), is rational-valued; furthermore, its reduction
modulo p is ϕ + e · 1S with e = 0 or 1 and ϕ ∈ IBrp(S). Certainly, ϕ has the desired
properties.

In all other cases, we can view S = G/Z(G), where G = GF and G is a simple, simply
connected algebraic group in characteristic p and F : G → G a Frobenius endomorphism.
The assumptions on S, p now ensure that p is a good prime not dividing |Z(G)F | = |Z(G)|
(where Z(G)F is the largest quotient of Z(G) on which F acts trivially). Hence, by [14,
Theorem A], B0(G) has a basic set X◦, where X consists of (certain) unipotent characters
of G. As p - |Z(G)|, the same is true for B0(S). Furthermore, as mentioned in the proof
of [36, Theorem 5.4], all unipotent characters of G are rational-valued. It follows that
all irreducible Brauer characters in B0(S) are rational-valued. It is well known (see also
Theorem 2.1) that B0(S) contains a non-trivial irreducible complex character. Hence
some ϕ ∈ B0(S) must be non-trivial.

(E) Now we consider the case S is an exceptional group of Lie type in characteristic
r 6= p. By Theorem 4.1, we may assume that Sylow p-subgroups of S are non-cyclic.
In particular, we are done if S = 2B2(q) or 2G2(q). Next suppose that S = G2(q) and
p|(q2− 1). Then, according to [21, Anhang C], we can take ϕ of degree q3 if p = 3|(q− 1),
q3 − 1 if p = 3|(q + 1), and q(q2 − 1)2/3 if p > 3. Similarly, if S = 2F4(q) with q > 2, then
by [19] we can take ϕ = χ◦

4− e · 1G, with e ∈ {0, 1} and χ4(1) = q(q2− q+1)(q4− q2+1).
If S = 3D4(q), then all unipotent characters are rational-valued, and so we can argue as
in (D), using [14, Theorem A].

(F) From now on we may assume that S is of type F4, E6,
2E6, E7, or E8, and let

l := |IBrp(S) ∩ B0(S)|. Then we view S = G/Z(G), where G := GF for some simple,
simply connected algebraic group G and a Frobenius endomorphism F : G → G. According
to the main result of [4], the union Ep(G, (1)) of all rational Lusztig series E(G, (t)), where
t runs over all p-elements in the dual group G∗, is a union of p-blocks that contains B0(G).
We also let d denote the order of q modulo p.

Here we consider the case p is a good prime for G. Then, p - |Z(G)|, and so B0(G) =
B0(S) and the set E(G, (1)) of unipotent characters of G is a basic set for Ep(G, (1)) by
[14, Theorem A]. Note that E(G, (1)) is stable under complex conjugation. Hence, by
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Lemma 4.3, B0(S) has a basic set X◦, where X is a certain subset of unipotent characters
of G that is stable under complex conjugation.

By Theorem 4.1 we may assume that d ∈ {1, 2, 3, 4, 6}, together with additional possi-
bilities d ∈ {5, 8, 10, 12} if S = E8(q). Then, as listed in [28, Table 2] and [3, Table 3],
either 2|l, or l ≥ 21 and G ∈ {F4(q), E6(q)sc,

2E6(q)sc}, or l ≥ 45 and G = E8(q). We are
done in the first case by Lemma 4.2(i). In the cases of E6(q)sc and

2E6(q)sc, note that the
number of non-real-valued unipotent characters of G is at most 2, since there are only
one pair of unipotent characters of the same degree [5, §13.9], so we are done by Lemma
4.2(iii). Similarly, if G = E8(q), then the number of non-real-valued unipotent characters
of G is at most 22, since there are 9 pairs and one 4-tuple of unipotent characters of equal
degrees [5, §13.9], so we are done by Lemma 4.2(iv). Suppose that G = F4(q). Then
the number of non-real-valued unipotent characters of L is at most 20, since there are 10
pairs of unipotent characters of equal degrees [5, §13.9]. As d ∈ {1, 2, 3, 4, 6}, note that
at least 4 of these characters have p-defect 0 and so cannot be contained in X. Thus
the number of non-real-valued characters in X is at most 16, and we are again done by
Lemma 4.2(iv).

(G) Finally, we handle the case where p is a bad prime for G.
(i) Let Φm(q) denote the mth cyclotomic polynomial in q. By [29, Lemma 2.3], we can

find a regular semisimple p′-element g ∈ F4(q) ≤ G of order dividing Φ12(q) if G is of type
F4 or E6. Similarly, we can find a regular semisimple p′-element g ∈ G, of order dividing
Φ14(q) if G is of type E7 and dividing Φ24(q) if G is of type E8. In all cases, g is real by
[38, Proposition 3.1]. Furthermore, the Steinberg character St is rational, and |St(g)| is
the r-part of the order of the maximal torus CG(g), whence St(g) = ±1.
Since p = 3 or 5, we have that d ∈ {1, 2, 4}. Then [3, Table 1] implies that d is

regular for G (in the sense of Springer), that is, there is an F -stable Sylow d-torus Td of
G such that T := CG(Td) is a maximal torus of G. In particular, ζ := 1T F has central
p-defect, in the sense of [11]. Also, the pair (T F , ζ) is now d-cuspidal. Furthermore, the
Lusztig reduction ∗RG

T sends 1G to ζ, see [7, Corollary 12.7], whence 1G is an irreducible
constituent of RG

T (ζ) by the adjointness of Lusztig functors. Moreover, if DG and DT

denote the Alvis-Curtis duality functors for GF and T F , cf. [7, Chapter 8], then

∗RG
T (St) =

∗RG
T ◦DG(1G) = ±DT ◦ ∗RG

T (1G) = ±DT (ζ) = ±ζ.

Thus both 1G and St belong to the set X1 of irreducible constituents of RG
T (ζ), which is

clearly stable under complex conjugation. It now follows from [11, Theorem A] that all
characters in X1 belong to B0(G). In particular, applying Lemma 4.4, we are done in the
case 2|q, or if 2 - q but p - (q + 1).
(ii) We may now assume that 2 - q and d = 2. Assume in addition that G 6= F4. Let

φ = φ6,1, respectively φ
′
2,4, φ7,1, φ8,1 be the (unique unipotent) character of smallest degree

> 1 of G, see [5, §13.9]. The uniqueness of φ implies that φ is rational-valued. Observe
that φ does not belong to the d-Harish Chandra series labeled by (LF , ζ) where L is not
a torus, see [3, Table 2]. It follows that φ belongs to the d-Harish Chandra series labeled
by (LF , ζ) with L being a torus, and so ζ = 1LF has central defect. As in (i), this in turn
implies that φ belongs to B0(G), and to B0(S) when viewed as a character of S. Let ϕ
denote a nontrivial irreducible constituent of φ◦. By the main result of [22], any nontrivial
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ψ ∈ IBrp(G) has degree ≥ φ(1) − 4 ≥ 5; in particular, ϕ(1) ≥ φ(1) − 4. It follows that
φ◦ = ϕ+ e · 1G with 0 ≤ e ≤ 4, whence ϕ is rational-valued.
(iii) Finally, we consider the case S = G = F4(q), 2 - q, and p = 3|(q+1). In particular,

r is a good prime for G. Let N1 := |E(G, (1))|, and let N2 denote the number of irreducible
Brauer characters in Ep(G, (1)). The results of [16, §6], see also [8, §4.1] and the proof
of [28, Proposition 6.10], imply that N1 = 37, that the unipotent characters in E(G, (1))
form a spanning set for Ep(G, (1)), and furthermore N2 = 35. By Lemma 4.3, there is a
subset X ⊆ E(G, (1)) stable under complex conjugation such that X◦ is a spanning set
for B0(G). As X1 ⊆ E(G, (1)), we see that X2 := X ∪X1 is also a spanning set of B0(G)
that is stable under complex conjugation.

Note that the dimension of the C-space of linear dependence relations between χ◦,
χ ∈ E(G, (1)), is N1−N2 = 2. Clearly, the dimension of the C-space of linear dependence
relations between χ◦, χ ∈ X2, is ≤ 2, whence

l(B0(G)) ≥ |X2| − (N1 −N2) ≥ |X1| − 2.

The size of X1 (which is the conjugacy class number of the corresponding relative Weyl
group), is known to be 25, see eg. [28, Table 2]. Thus l(B0(G))) ≥ 23. On the other hand,
inspecting [5, §13.9] as in (F), we see that the total number of non-real-valued characters
in X2 is ≤ 18, since at least one pair of unipotent characters of F4(q) of equal degree has
p-defect zero and so does not belong to X2. So we are done by Lemma 4.2(iv). �

Proof of Theorem C. It follows immediately from Theorem 2.4 and Theorem 4.5. �

Remark 4.6. Meinolf Geck has pointed out to us that the results of [16, §6] can now
be proved to hold for all p, q, r, see [15, Proposition 7.12]. Given this, the argument in
(G)(iii) of the proof of Theorem 4.5 can also be applied to other exceptional groups of
adjoint type.
Finally, we recall that the finite groups with exactly two real-valued irreducible Brauer

characters were studied in [31].
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[27] F. Lübeck, Smallest degrees of representations of exceptional groups of Lie type, Comm. Algebra

29 (2001), 2147–2169.
[28] G. Malle, G. R. Robinson, On the number of simple modules in a block of a finite group, J.

Algebra 475 (2017), 423–438.
[29] A. Moreto, P. H. Tiep, Prime divisors of character degrees, J. Group Theory 11 (2008), 341–356.
[30] G. Navarro, Characters and Blocks of Finite Groups, Cambridge University Press, 1998.
[31] G. Navarro, L. Sanus, P. H. Tiep, Groups with two real Brauer characters, J. Algebra 307

(2007), 891–898.
[32] G. Navarro, P. H. Tiep, Rational Brauer characters, Math. Ann. 335 (2006), 675–686.
[33] G. Navarro, P. H. Tiep, Rational irreducible characters and rational conjugacy classes in finite

groups, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2443–2465.
[34] G. Navarro, P. H. Tiep, On p-Brauer characters of p′-degree and self-normalizing Sylow p-

subgroups, J. Group Theory 13 (2010), 785–797.
[35] G. Navarro, P. H. Tiep, Brauer’s height zero conjecture for the 2-blocks of maximal defect, J.

Reine Angew. Math. 669 (2012), 225–247.
[36] G. Navarro, P. H. Tiep, C. Vallejo, Local blocks with one simple module, (submitted).
[37] P. H. Tiep, A. E. Zalesskii, Minimal characters of finite classical groups, Comm. Algebra 24

(1996), 2093–2167.
[38] P. H. Tiep, A. E. Zalesskii, Real conjugacy classes in algebraic groups and finite groups of Lie

type, J. Group Theory 8 (2005), 291–315.



ON REAL AND RATIONAL CHARACTERS IN BLOCKS 15

Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València,
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