GEODESIC OF MINIMAL LENGTH IN THE SET OF PROBABILITY
MEASURES ON GRAPHS
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ABSTRACT. We endow the set of probability measures on a weighted graph with a Monge—
Kantorovich metric, induced by a function defined on the set of vertices. The graph is assumed
to have n vertices and so, the boundary of our probability simplex is an affine (n — 2)—
chain. Characterizing the geodesics of minimal length which may intersect the boundary,
is a challenge we overcome even when the endpoints of the geodesics don’t share the same
connected components. It is our hope that this work be a preamble to the theory of Mean
Field Games on graphs.

1. INTRODUCTION

The past two decades have witnessed an increasing number of studies on geodesics of minimal
length on the set of probability measures on manifolds and Hilbert spaces [2] [23] (cf. e.g. for
applications [1] [4] [5] [16] [17] [15] [18]). In these cases, these geodesics are characterized by
Hamilton—Jacobi equations which appear through a duality argument (cf. e.g. [2] [11] [12]
[13] [14] [23]). The story is different when Hilbert spaces or manifolds are replaced by spaces
which are not length spaces. For practical reasons (e.g. computational reasons [7] [8] [9]), one
faces the issue of dealing with geodesics of minimal length on the set of probability measures
on graphs, the probability simplexes. Therefore, one needs to go beyond understanding the
differential structure of the interior of probability simplexes, which is a rather simple task,
and push the study to the boundary. Indeed, the discrete counterpart of prior studies on
length spaces such as R¢, turns out to be awfully complicated on probability simplexes, when
the geodesics contain boundary points. The goal of this manuscript is the study of geodesics
of various metrics on the probability simplexes, without excluding the possibility that the
complement of the endpoints touch the boundary.

Let G = (V, E,w) denote an undirected graph of vertices V' = {1,--- ;n} and edges F, with
a weighted metric w = (wj;). It given by a n by n symmetric matrix with nonnegative entries
w;j such that w;; > 0 if (4, j) € E. For simplicity, assume that the graph is connected, simple,
with no self-loops or multiple edges. Let P(G) denote the probability simplex

{rer Sn=1),

the set of probability measures on V. Any symmetric function g : [0,00)? — [0,00) induces
an equivalence relation on S™*", the set of n by n skew—symmetric matrix: if p € P(G),
v,0 € S™" are equivalent if (2.2) holds. The quotient space H, is endowed with a metric
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tensor (gi;(p))ij = (9(pi, pj))ij which yields the inner product and norm in (2.3). The function
g is used to produce the underlying Hamiltonian H, : R™ x R" — R given by

1
(L.1) Hy(p,0) = > wijglpi pi) (6 — 65)°.
(i,))eE

We define the minimal action needed to connect p° € P(G) to p! € P(G) to be

1
(1.2) %Wﬁ(p‘),pl) = inf{/o Hy(p, d)dt ‘ p=VeHy(p,8), p(0) = p° p(1) = pl}-

Making appropriate assumptions on g, this infimum will be shown to coincide with that in
(2.7) and W, will be shown to be a metric on P(G). Note that for a well-chosen sequence
(¢%)r C R™ whose norm tends to oo, we may have that (Hy(p, qﬁk))k is identically null and so,
Hy(p, ) is not coercive. This makes it a harder task to use direct methods of the calculus of
variations to assert existence of a minimizer in (1.2). To circumvent this obstacle, we instead
use the equivalent formulation (2.7) and resort to identifying a dual to (2.7).

Any minimizer (p,¢) of (1.2) such that p,¢ € W12(0,1;R") and the range of p does not
intersect the boundary of P(G) satisfies the Euler-Lagrange equation

Using the notation of graph divergence (cf. Section 2), this Hamiltonian system which reads
off

) 1
(L4 p+ D wi(ds — ¢)glpip) =0, ¢+ 5 > wiidg(pi, pi) (6 — 0;) = 0.
JEN(i) JEN(3)
Here, N (i) :={j € V | (i,7) € E} denote the neighborhood of a vertex i € V' and 0;g denotes
the partial derivative of g with respect to its first variable.

Hardly enough, even if p°, p! are chosen in the interior of P(G), a minimizer (p, ¢) of (1.2)
may be such that the range of p intersects the boundary of P(G) unless (cf. [20])

(1.5) C / R
. = —_—— = XX
J 0 v g(Tv 1- T)
The condition (1.5), precisely forces W, to assume infinite values and so, it cannot be a
metric on the whole set P(G). When Cy < oo, we rather endeavor to identify the appropriate

substitute of (1.4), by characterizing minimizers of (2.7), even when p((0,1)) intersects the
boundary of P(G).

We define a Poincaré function vp : P(G) — R. It is a concave function which is strictly
positive in the interior of P(G) but may remain positive on a subset of the boundary of
P(G). When vp(p°), vp(p') > 0 we show that (p,v) minimizes (2.7) if and only if there exists
A € BV, (O, 1; R”) such that —)\i is a Borel regular measure such that

9(pi, pj) [Uz‘j —Vwij(Ai—Aj)| =0 V(i,j) € E,

. . 1
(1.6) 0= H(A® Ve = (A5 p) + 5IIVGA||§ L' ae.
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and

X9 )

)~ (5o

(1.7) 0= H0< —

,p) v a.e..

Here, A% is the absolutely continuous part of A, A9 is the singular part of A, v s any non-
negative measure such that v and £1|(071) are mutually singular and |\*"9| << v. We have
defined H as in (2.10) and set

Hy(a) = Juax a; VYa € R™.

There is a relation between Hy and the recession function of H since

lim
l—00 l

H(la,lb) ] Ho(a) if b=0

RS if b#0.
What seems surprising at a first glance is that, even when A has no singular part, the expression
in (1.6) is still not linear in \. This means the geodesics of minimal length are characterized
Hamilton—Jacobi equations in the form 0 = H (}\abs ,VgA), with a non—linear dependence in
Aebs This is in contrast with what happened in the continuum setting, where there, geodesics of
minimal length are characterized by Hamilton—Jacobi equations in the form dyu+ H,.(Vu) = 0,
hence linear in d;u. We pause here to draw the attention of the reader to [22] which proposes
a class of Hamilton-Jacobi equations which can hardly be compared with Remark 6.5 (ii).

A comparison between our work and the innovative work [20] by J. Maas, becomes at
this point unavoidable. There, the author considers an irreducible Markov kernel (Kjj;)i;
with a finite right invariant measure. Our hypothesis that (w;;)ij = (K;;m;)ij be symmetric,
is equivalent to the requirement in [20] that K be reversible. When C; = oo, [20] gave
a remarkable characterization of the pairs for which W,(p° p!) < oo. The necessary and
sufficient condition is that both p and p' must have the same g—connected components (see
Section 2 for the definition of g—connected components). As a consequence, if (p,v) is a
minimizer in (2.7) then the g—connected components of p(t) are independent of ¢t € (0,1) and
they coincide with those of pU. The search of paths of minimal actions in (2.7) reduces then
to a finite collection of searches of paths of minimal actions which are known to be entirely
contained in the interior of simplexes. In this case, the Euler—Lagrange equations are obtained
by standard arguments.

In this manuscript, we assume that C; < oo and so, our study of geodesics of minimal norms
complements that in [20]. We further assume that g is concave, 1-homogeneous, positive
in (0,00)2 and C* in this open set. These assumptions, while facilitating our study, still
encompasse a large number of metrics, useful in applications. The class of functions g we
choose are motivated by studies [7, 8, 9, 20, ?] which recently appeared in the literature.

The study in this manuscript will be more than a disappointment if the set of geodesics
starting and ending in the interior of P(G) would never intersect the boundary of P(G).
Unlike the study in [20], Proposition 3.11 supports the fact that when C; < co then the set
of such geodesics is not void. Another feature of the condition Cy < oo, is that if p: [0,1] —
P(G) \ Po(G) is a geodesic of minimal length, then the g—connected components of p(t) needs
not to be time independent (cf. Proposition 3.8) unlike the case when Cy = oo [20]. One could
combine Propositions 3.8 and 3.11 to construct more intricate geodesics which intersect the
boundary of P(G).
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The manuscript is organized as follows. In Section 2, we introduce the notation used in
the manuscript. Section 3 contains preliminary remarks. For instance there, we comment on
the sufficient condition for W, to assume only finite values. In Section 4 we show existence of
geodesics of minimal norms. Sections 5 and 6 contains ingredients we later use in Section 7 to
characterize the geodesics of minimal path through a dual formulation.

2. NOTATION

We denote the one-dimensional Lebesgue measure by £' and denote the set of skew—
symmetric n X n matrices as S™*". Let G = (V, F,w) denote an undirected graph of vertices
V ={1,--- ,n} and edges E, with a weighted metric w = (w;;) given by a n by n symmetric
matrix with nonnegative entries w;; and such that w;; > 0 if (4, j) € E. For simplicity, assume
that the graph is connected and is simple, with no self-loops or multiple edges.

Functions on a graph. It is customary to identify a function ¢ : V — R with a vector
¢ = (¢:)y C R™. We use the standard inner product on R™:

(6,0) =) ¢idi, Vo,¢cR"
i=1

Vector fields and gradient operator. A vector field m on G is a skew-symmetric matriz
on the edges set F, denoted by m:

m = (Mij)ep, With mi; = —my;.

Special elements of S™*™ are the so—called potential vector fields which are discrete gradients
of functions ¢ on V, denoted V¢ and defined as

Ve = Jwig(¢i — 5)(ij)eE-

The range and kernel of the gradient operator. We denote by R(V) the range of Vg
and by 1 € R" the vector whose entries are all equal to 1. Since G is connected, the kernel
of V¢ is the one dimensional space spanned by 1. The orthogonal in R™ of the latter space is
ker (V)1, the set of h € R" such that > I, h; = 0.

G—Divergence of vector field. The divergence operator associates to any vector field m
on G a function on V' defined by

Vg - (m) =divg(m) = ( Z Mmji)j:{

JEN()

Set of probability measures and its boundary. We identify P(G), the set of probability
measures on V, with a simplex as follows

P(G) = {p = (pi)is € 0. 1)"

n
=1

Let Pyo(G) := P(G)N(0,1)™ denote the interior of P(G). The boundary of P(G) is P(G)\Po(G).
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The set C(p°,p') of paths connections probability measures. Given p° p! € P(G),
we denote as C(p°, p!) the set of pairs (p,m) such that p: [0,1] — P(G)

pi € HY(0,1), my € LX0,1) V(i) € B, (p(0), p(1)) = (2°, o)
and
(2.1) pi + Z Vwijmj; =0, in the weak sense on (0, 1).
JEN()
Throughout this manuscript g : [0, 00) x [0,00) — R satisfies the following assumptions:

(H-i) g is continuous on [0, 00) x [0,00) and is of class C* on (0, 00) x (0, 00);
(H-ii) g(r,s) = g(s,r) for any s,r € Ry;

(H-iii) g(r,s) > 0 for any 7, s € (0, 00);

(H-iv) g(Ar,As) = Ag(r, s) for any A, s,r € (0, 00);

(H-v) g is concave.

We extend g by setting its value to be —oco outside [0,00)2, to obtain a function on R? which
we still denote g. Observe that the extension is concave and upper semicontinuous. We define

gij(p) = g(pi,pj) VpeR", VijeV.

A constant depending solely of g. Since g is continuous on the compact set [0, 1]2,

() ( r s )
€ = su ,
0tg Tys>pog r+s r+s

is a finite number.

The Hilbert spaces H,. If p € P(G), we say that v,0 € S"*" are p-equivalent if
(2.2) (vij — Vij)gi5(p) =0 V(i,j) € E,

which means v;; = ¥;; whenever g;;(p) > 0. We denote by H, the set of class of equivalence.
This is a Hilbert space when endowed with the discrete inner product and the discrete norm

- 1 - -
(2.3) (v,0)p = 5 > witigis(p), vl =/(v,0), Vo,5e S
(i.j)€E
Here the coefficient 1/2 accounts for the fact that whenever (4, j) € E then (j,¢) € E. Similarly,
if m,m € S™*" we set

. 1 ~
(myi) =5 3w, |ml® = (m,m).
(i,5)EE

The tangent spaces and the projection operator 7,. We denote as 7,P(G) the clo-
sure of the range of Vg in H,. We refer to 7,P(G) as the tangent space to P(G) at p. Given
v € H, there exists a unique m,(v) € T,P(G) that minimizes |[v — -||, over T,P(G). It is
characterized by the property

(2.4) (v—m,(v),w), =0 Vw € T,P(G).
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The divergence operator. The operator Vg : R” — H, admits an adjoint —div, : H, — R"
given by

din(v) = < Z ./wijvjigij(p)> Voe S,
JEN() =1
We call div, the divergence operator. Note the integration by parts formula:
(25) (VG¢7 U)p = _(d)a din(U)).
Let H4 be the Hamiltonian defined in (1.1). Observe that

(2.6) div, (Vo) = —VeHy(p. ).

The Monge—Kantorovich metric on G. The square of 2-Monge—Kantorovich metric which
measures the square distance between p® € P(G) and p' € P(G) is

1
(27) W)= inf { /0 (0, 0)pdt | po+ divy(v) = 0, p(0) = ", p(1) = p'}.

Here the infimum is performed over the set of pairs (p,v) such that p € H' (0,1;R"), v :
[0,1] — S™*™ is measurable.

Connected components. Let p € P(G). We say that i,j € V are g—connected if there are
integers i1,1i2,- -+ ,ix € V such that iy =4, i = j, (i;,441) € Efor [=1,--- |k — 1 and

g<pi1vpi2) e 'g(pik_upik) > 0.

The largest g—connected set containing ¢ is called the g—connected component of 7. The g—
connected components of p form a partition of a subset of V.

Poincaré functions on graphs. We define the Poincaré function yp on G as

) 1 n n
vp(p) = I%f 3 > gij(p)wii (B — B;)? ‘ > Bi=0,) 8 =1 Vp € P(G).
(i,)€E i=1 i=1
Action. Consider the lower semicontinuous convex function f : R? — [0, co] defined as
2
= ift>0
(2.8) ft,s)=3 0 if s=t=0
oo  otherwise.

Observe that if ¢ > 0 and p € R then
(2.9) 2us < f(t,s) + pu’t

unless ¢ty = s in which case equality holds.

For p € R™ and m € S™*", we define

F(p,m):% Y F(gii(p),mig).
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If p € L?(0,1;R™) and m € L?(0,1; S™") we define the action

1
A(p,m) = ;/0 F(p,m)dt.

Let H : R™ x 8" — R denote the Hamiltonian defined as

1
(2.10) H(a,b) :== sup {(a, p) + 5Hbﬂ%} Y(a,b) € R" x §"*™.
PEP(G)

In the remaining of the manuscript, unless the contrary is explicitly stated, we assume that

(2.11) < +o0.

%= |, o=

Example 2.1. Ezamples satisfying (H-i)-(H-v) and (2.11) include g(r, s) = “£2. Other ezam-
ples which appeared in [20]) are

1 log::fogs Zf r ?é S
g(r,s) = / rtstdt = 0 if r=0o0rs=0
0 r if r=s,

and

0 ifr=0o0rs=0
g(r,s) = 11 otherwise.

3. PRELIMINARIES
In this section, we use the same notation as in Section 2 and assume (2.11) hold.
Lemma 3.1. The Poincaré function vp : P(G) — R is concave.
Proof. Note ~p is obtained by taking the infimum of concave functions of p. O
Lemma 3.2. If pe P(G), A€ R", na=3"_, \; and Ai :=\i —a then

IVl = e (p) A2

Proof. Set
i
Bi = -
Z] 1 A]
Then
n 5\2
Zﬁi:zi_oand 252 #:1'
=1 S A2 > A
1= j=1"4 Jj=1"
The desired inequality follows from the definition of vp. O

Remark 3.3. Suppose p € P(G) has only one g—connected component which is the whole set
V. Then the range of V¢ is a closed subset of H, and so, it is T,P(G).
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Proof. Suppose (¢*);, C R™ is such that (Vg¢*), converges to v in H,. We are to show that

v € R(Vg). For any e € V \ {1}, there exists e1,---,¢; € V such that e; = 1, ¢; = e,

(ej,ej+1) € B and ge,e;,,(p) > 0 for any j € {1,--- ,1—1}. We have for any j € {1,---,[—1}
. k k 2

(3'1) klggo(\/ w€j6j+1( e; ¢e]-+1) - vej€j+1) Gejejt1 (P) =0.

Replacing cp]gj by cp’e“j — ¥ if necessary, we may assume without loss of generality that ¥ = 0.

Setting 7 = 1 in (3.1), we obtain that (gb’eg)k converges to —A2 . Setting ¢p, = 0, ¢, =

_v VWeres
\/% we inductively obtain

VB = M0 B, = M0 Bee08 = Ve = VPeeinbe — Vesesin
for any j € {2,---,1 — 1}. This is sufficient to verify v = Vgo. O

Lemma 3.4. Assume that p € P(G). Then p has only one g—connected component which is
the whole set V iff vp(p) > 0.

Proof. Assume that p has only one g—connected component which is the whole set V. Then
for any e € V' \ {1} there exists eq,---,¢; € V such that ey = 1, ¢; = e, (ej,ej41) € E and
Gejejpr(p) > 0 forany j € {1,---,1—1}. Suppose that yp(p) = 0, i.e. there exists § € R" such

that >0, 3 =0, > ", 82 =1and

(3.2) > gij(p)wiy (B — 8;)° = 0.
(i,9)€E

(3.2) implies that

-1
0= Z 915 (p)wij (Bi — Bj)? > dejej+1(/))wejej+1(ﬁej — Be;11)> =0

(i,j)EE Jj=1

and, thus, B¢, = B¢, = -+ = B¢,. Since e is arbitrary, we have 8 = 83 = --- = 3, = 0. This is
in contradiction with the fact that > I, 37 = 1.

Suppose that yp(p) > 0. We want to prove that p has only one g—connected component
which is the whole set V. If not, there exist i1, j1 € V such that ¢y and j; are not in the same g—
connected component. Let Vi, = {i1,i2,--- ,ix} and Vj; = {j1,2,--- ,jz} be the g-connected
components of i; and j; respectively. Set §; = 0 whenever i € V' \ (V3 U V). Otherwise, set

3 k
Biy = Biy =+ =By, = ]Mandﬁjl_ﬁh_'“_ﬁjk__m.

Then we have Y, 8; =0, 3% | 82 =1 and (3.2) holds. This is at variance with the fact that
vp(p) > 0. O

Remark 3.5. We assert the following

(i) The function F is a convex and lower semicontinuous.
(ii) Suppose m,b e S™*™ and p € P(G) are such that m;; = 0 whenever g(p;, pj) = 0. Then

F(p,m) + [[b]2 > 2(m, ),
unless mi; = g(pi, pj)bi; for all (i,j) € E, in which case equality holds.
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Proof. (i) Since g is concave, f is convex and f(-,s) is monotone non-increasing, (p,m) —
f(gi;(p), my;) is convex and so, function F is convex. One checks that (p,m) — f(gi;(p), mij)
is lower semicontinuous. Thus, F' is a convex and lower semicontinuous as a sum of convex,
lower semicontinuous functions.

(ii) is a direct consequence of (2.9). O

Lemma 3.6. let H, be as in (1.1) and let 0;9 denote derivative of g with respect to the i—th
variable for i =1, 2.
(i) If r,s > 0 then
619(7'7 3) = 829(87 T) and (Vg(r, 8)7 (T7 S)) = g(h 8)'
(ii) For any p € [0,00)" and ¢ € R™ we have
(VoHy(p. 0),0) = 2Hy(p, 9)-
(iii) For any p € (0,00)" and ¢ € R™ we have
(vag(pa ¢)7 :0) = Hg(ﬂ» ¢)

Proof. Recall that ¢ has been extended to an upper semicontinuous on R?, which we still
denote as g.

(i) Since g(r,s) = g(s,r), differentiating, we obtain the first identity in (i). Let G* denote
the Legendre transform of the convex, degree 1-homogeneous function G = —g. If o, 5 € R
then G*(a, ) = oo, unless ar + 35 < G(7, s) for all 7,5 € R, in which case G*(a, ) = 0. If
r,s > 0 then G is differentiable at (7, s) and so, setting («, 5) = VG(r, s) we have

(VG(r,s),(r,s)) = ar+ Bs = G(r,s) + G*(a, B) = G(r,s).
This completes the verification of (i).
(ii) We have
0H,
9¢i
We use this to verify that (ii) holds.
(iii) We use the first identity in (i) to infer
oH 1
Tp?(ﬂa ¢ =5 > widig(pis p)(di — 65)°.

JEN(i)

(0, 0) = D wisglpi pj) (i — b5)-

JEN()

This, together with the second identity in (i) complete the verification of (iii).

Proposition 3.7. For any p°, pt € P(G) there is a path (p,m) € C(p°, p*) such that A(p,m) <
+00. In other words, we have a feasible path in C(p°, pt).

Proof. Let Cy be as defined in (2.11). Changing variables, we infer

1 dr
Cg_\/i/o Vod+r1—r)

This new formulation of Cy allows us to attribute this Proposition to [20] even if one may
think his setting and ours seem to be a variant of each other. For completeness we lay down
the main arguments supporting our statement.
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Let Go = (Va, E2,ws) be a graph of vertices Vo = {1,2}, edges Fy = {(1,2),(2,1)}, endow
with the weight wis = w9y > 0. Let p°, p' € P(Gz). To avoid trivialities, assume p? # pi.
Without loss of generality, assume p{ < pl. Note the strictly increasing function

has an inverse function G~! which is differentiable. Set

C=Gp1) =G, mt) =G (G(p)+Ct), pa(t) =1—pi(t).
Define mo; = —mo through the identity

T— G(7

Vwizmar = —p1.
Observe that the path t — (p1(t), 1 — p1(t)) connects (pY, p9) to (pi, p3) and
dpi\2
w12m%2 = w12m%1 = (%) = ng(pl, 1—p1) € Ll(O, 1).

By definition (p,m) satisfies (2.1). Check that 2wi2F(p,m) = C?. This covers the case n = 2.

When n > 2, if p € P(G) is such that there is a feasible path in C(p", p) and a feasible path
in C(p!, p) then by concatenation, there is a feasible path in C(p°, p'). This means we may
assume without loss of generality that p! = (0,---,0,1). Let

Vi) ={i€ {1, n—1} | pi>0}.

If V[p'] = 0, then p° = p! and so, (p,m) = (p°,0) is a feasible path in C(p°, p!). Assuming
that V[p°] # (), one iteratively construct a finite sequence p°,---, ' in P(G) satisfying the
following properties:

(i) p° = p® and gl = p';
(ii) the cardinality of V['] is strictly smaller than that of V[5'~!] whenever [ < lo;
(iii) there is a feasible path in C(p'!, 3'). O

The following example will be useful in the next proposition:

rts if r,s>0
3.3 = 2 T
(3:3) 9(r,s) { —o0o0  otherwise.
We will later use the set
(3.4) Q = {(Tl,Tg) S (0, 1)2 ’ r+r3 < 1}.

Proposition 3.8. Let V = {1,2,3}, £ = {(1,2),(2,3),(1,3)} and let w denote a 3 x 3
symmetric matriz such that wio = wey = 1 and wiz = 0. Let G denote the weighted graph
(V,E,w). Let g be as in (3.3). Let p° = (0,0,1) and p' = (0, 1/2, 1/2) so that p° and p'
lie on the boundary of P(G). Observe p® has only one g-connected component which is {2,3}
and p' has only one g-connected component which is {1,2,3}. We claim that any geodesic of
minimal norm p : [0,1] — P(G), connecting p° to p* lies in the boundary of P(G). Furthermore,
the g—connected components of p(t) are not constant in t.

Proof. By Theorem 4.5 there is (p, m) that minimizes A over C(p°, p').

In order to show the range of p lies in the boundary of P(G), it suffices to show that
p1(t) = 0. To achieve that goal, it suffices to show that for any (p,m) € C(p°, p') such that
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p1 % 0, we can construct (p,m) € C(p°, p!) such that p; = 0 and A(p,m) < A(p,m). Let then
assume (p,m) € C(p°, p!) is such that p; # 0. We have

(3.5) p1+mo1 =0, p2+mizg+m32=0, p3+mo3=0.
Set

(P1,p2,p3) == (0, p1 + p2,p3), (M2, Mas) == (0,ma3),  (Ma21,m32) := (0,m32).
Note
p(0) =" p(1)=p" and p1+me =0.
We use (3.5) to infer
P2 + Mg + M3z = p1 + po + M3z = —ma1 — M1z — M3z + m3z = 0.
Similarly,
p3 + M3z = p3 +maz = 0.

Thus, we verified that (p,m) € C(p°, p') and p; = 0. Note we cannot have mi2 = 0 otherwise,
we would have p; = 0 which would imply p;(t) = p(0) = 0. Therefore

1 2 2 1 2 1 2
(3.6) 2A(p,m):/< mis n mag )dt>/ m23dt:/ o ™23 5
o \g(p1,p2)  9(p2,p3) o 9(p2,p3) o P2+ p3
We have
1 -2 1 2 1 2
(3.7) 2A(p, m) = / gy — / I BT / o M2 gy
o 9(p2,p3) o p1+p2+p3 o p2+ps

By (3.6) and (3.7), A(p,m) > A(p,m). We conclude the proof of the proposition thanks
to the observation that since p° and p' do not have the same g-connected components, the
g—connected components of p*(t) cannot be constant in ¢. O

Remark 3.9. Let G = (V, E,w) denote the weighted graph in Proposition 3.8 and let g denote
the function used there. Suppose p°, p' € P(G), (p,m) minimizes A over C(p°, p'), and the
range of p is entirely contained in the interior of P(G). Then using (3.5) we have

1 © \2 © \2 1
A(p,m) :/o (pipi)p2 + pipj_)m)dt :/o Lo((p1,p3); (p1, p3))dt =: Ao(p1, p3)

where

2 2
uy u3

Lo(q,u) := + ;
(@.u) l—gs 1-q
From p1 and ps we recover ps = 1 — (p1 + p3). We have that (p1,p3) minimizes Ay over the
set of (p1,p3) : [0,1] = Q where Q is given by (3.4).

Proposition 3.10. Let H, be as in (1.1) and H be as in (2.10). Let p°, p* € P(G) be such that
(p,m) € C(p°, pl). Assume X € H(0,1;R™) is such that H(A\,Vg)) < 0 almost everywhere.

q=(q1,93), u=(ur,us).

(i) We have
(A1), p) = (A(0), p°) < A(p,m).
(ii) Equality holds in (i) if and only if

o . . 1
mi; = g(pi, p)) (Ve ¥(i.j) € B, HQ\,VaA) = (p,A) + 5lIVeAl; =0 ae.
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(iii) If the range of p is almost everywhere contained in (0,00)™ and (p,\) satisfies almost
everywhere the Hamiltonian system

,[) = VyH (pv )‘)
(3.8) { A = V(0 ),

then equality holds in (i) and so, (p,m) minimizes A over C(p°, p') where m;; =
9(pi, pj)(VGA)ij for any (i,j) € E.

Proof. (i) We have

1 . 1 .
(A1), p") — (A(0), ") = /0 (5. N) + (p, N)dt = /0 (—iva(m), X) + (p, ) ) dt.

Integrating by parts and then using Remark 3.5 (ii) in the subsequent identity, we conclude
1
(W) = A0") = [ (TG0 + (0. )

1 .
(3.9) < /0 (500, m) + IV + (0. 4)) i

(3.10)

IN

/01 (%F(P,m) + H()\, VG)\))dt < A(p,m).

This, verifies (i).

(ii) Note that equality holds in (i) if and only if equality hold in (3.9) and (3.10). Using
Remark 3.5 (ii), we conclude the proof of (ii).

(iii) Assume (p, \) satisfies almost everywhere the Hamiltonian system (3.8). We use and
then use Lemma 3.6

. : 1 .
0= (p, A+ Voty(p, 1) = (0, )+ (0, V,Hg (0, V) = (0, X) + 5 IVGAI < H(A, V) <0.
Thus,
1 .
0=(p,A) +5IVaAl; < HQA V).
Setting my; = g(pi, pj)(VaA)sj for any (i, j) € E we use (ii) to conclude the proof of (iii). O

Proposition 3.11. Let G = (V, E,w) denote the weighted graph in Proposition 3.8 and let g
denote the function used there. Let H, be as in (1.1) and H be as in (2.10). There exist p°, p!
in interior of P(G) and there is a geodesic of minimal norm p : [0,1] — P(G), connecting p°
to p* which intersects the boundary of P(G).

Proof. The comments in Remark 3.9 led us to the following considerations which rely on the
Lagrangian Ly introduced there.

Set ¢ := (q1,¢3) and choose ¢ € (0, 0.1] such that the system of differential equations

d . .
(3.11) 7 VuLo(e,4) = VeLo(g,q) on (=9,9),

together with the initial conditions

(3.12) ¢(0) = (0, 0.5), 4(0) = (0,1)



GEODESIC OF MINIMAL LENGTH IN THE SET OF PROBABILITY MEASURES ON GRAPHS 13

has a unique solution. We have the conserved quantity

-2 -2
hop B
l—qg3 1—-q
For 0 small enough, we have
(3.13) lg1] < 0.085, 048 <q3<0.62 on [-6,0].
By (3.11)
. . 1 .2 1 _ . . 1 .2 1 _
(3.14) G = — Dl 1g5( Qz;) and gy — — 1198 di( Q12)‘
l—qs 2 (1—-q) l—qu 2 (1—gs)

We use (3.13) in (3.14) to obtain a constant C; > 0 independent of 6 € (0, 0.1) such that
(3.15) 1] + |d1] + lgs| +1Gs| < C1 on [=4,6].

Differentiating the expressions in (3.14), we obtain explicit expressions of d3q; /dt® and d3q, /dt>
in terms of q¢1,qs, 41,43, 41, g3 We use the identities in (3.15) in these expressions to obtain a
constant C' > 0 such that
(3.10) il + il + | 2l + bl + | S2 <€ on [-a
By (3.12) and (3.14), ¢1(0) = 0.25. This, together with (3.16) implies
g1 >0.25—-Ct Vt € [—0,0].
Thus, choosing d; strictly between 0 and min{4, 0.15C '} we have
G1 > 0.1 on [—d1,0d1].
Since ¢1(0) = 0 then for any t € [—d1, d1],
0.1¢2

ql(t) Z ? on [—51,(51].

This, together with (3.13) yields
(3.17) 0.05t% < q1(t) < 0.085, 0.48 < g3(t) < 0.62 and qi(t) + g3(t) < 0.705, Vt € [=51,81].
Setting

qo = 1—q1—q3 and (_72: (CILQZaQS)'
(3.17) implies

(3.18) q € 03([—51, 5], R™), (j([—51,51] \ {0}) C Po(G), G(0) € P(G) \ Po(G).
Define

t 2 . .
i 241 243
3.19 lh(t) = — —=d Io(t) = 11(t) — I3(t) :=lo(t .
(3.19) 1(t) /0(1_(13)2 s, b(t) =h(t) 0 3(t) 2()+1_q1
Observe
—2q 243
3.20 lo — 11 = I3 — 1y = .
(3.20) 2ma =g T h= T

Differentiating the expressions in (3.19) and using (3.20) we obtain

. 1 . 1 1 . 1
h=—=(h—1)? l=—(h—1) - 7= l)?, l3= (s~ l2)*.

4 4
Thus,

(3.21) [ ==V, Hy(q,1).
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We have
Do Hg (@ 1) = gla1,2) (1 — 1) = & ;r Ly~ 1) = 1%
This, combined with the first identity in (3.20) yields,
0y, Hy(q,1) = ¢1.
Analogously, computing 04, H, and 0y, Hg and using (3.20) we obtain

(3.22) i = VeHy(a,0).

(I — o).

Set
,O(S) = (j<2(518 - 51), )\(S) = 2(51l<2518 — (51), Mg = g(pi, pj)(VG)\)ij V(Z,j) el
By 3.18

(3.23) p e C3([0,1],RM), q([O, 1\ {;}) C Po(@), q(%) e P(G)\ Po(G).
By (3.22) and (3.21) we have
(3.24) p= V(;)/Hg(p, A)s A= 7v.0/H9(p7 A).

The latter identity implies

(3.25) H(\Vg)) = 0.

Combining (3.24) and (3.25), using Proposition 3.10, we obtain that (p, m) minimizes A over
C(p(0),p(1)). We learn from (3.23) that the end points of p are in the interior of P(G) while
the range of p intersects the boundary of P(G). O

4. MINIMIZER

In this section, we use the same notation as in Section 2 and assume (2.11) hold.

Lemma 4.1. For any Ey C E and (p,m) € R} x S"*"

Zpk Yo fleislo)mi) = Y mi
(i.9)€Eo

( ’])EEO

Proof. Let (p,m) € R x S™*". Observe that to prove the lemma we only need to take into
account (7, j) € Ey such that m;; # 0. In that case, we may only account for (i,j) € Ey such
that g;;(p) > 0. We then have

9ii(p) = 9(pis p) < €0(9)(pi + ;) < €olg Zpk-

The desired inequality follows since €o(g)f (gij(p), mij) di—y pr = m3;. O

Remark 4.2. Let h € ker (Vg)*, and let p¥, p! € P(G).
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(i) If qb,qg € R” are such that Vgo = Vg(;;, since G is connected we obtain a := ¢; — (;;Z 18
independent of 1 € V and so,

(¢ — ¢, h) _aZh = 0.

Hence, on R(Vg), the linear operator deﬁned by L(Vgo) := (h,d) is well defined.
Since R(Vg) is of finite dimension, L is continuous and so, it admits a unique linear
extension L, : T,P(G) — R, which is in turn continuous.

(ii) By the Riesz representation there, there exists a unique l,(h) € T,P(G) such that

Ly = (15(h))p-
By the fact that L,(V$) = (¢, h) for every ¢ € R", we have h + div, (lp(h)) =0.

Set )
Elp,v|(h) := 5”1}”2 - (v,lp(h))p Yo e §™XT.
Proposition 4.3. Let m € S™", let p € P(G) and let h € ker (Vg)=.

(i) Vg - (m) € ker (V).
(ng ( ) is the unique minimizer of E[p,-](h) over T,P(G) and over H,,.
i

)

[E

(ili) If w € T,P(G) and h = —div,(w) then w = l,(h).
() Ifh= Vg - (m) then F(p,m) > [l,(h)]2

Proof. (i) We use the fact that m;; +m; ; = 0 for any (7,j) € E and that (4,j) € Eif (j,i) € E
to obtain (i).

(ii) Let v € S™*™ be such that v # m,(v). We have ||v||, > ||m,(v)||, and by the characteri-
zation of m,(v) in (2.4), we have (v, lp(h))p = (mp(v), lp(h))p. Hence,

Elp, 1) > gllma(w) 2~ (o), (1)), = 5 lmo(o) — Lo ()2 = S oA,
If w,(v) # l,(h), we conclude that

Elp,v](h) > —%Hlp(h)\l,% = Elp, L(W)](R).
This concludes the proof of (ii).
(iii) Since
(Vao,lp(h), = (6,h) = (Vad,w), Vo R,
we have

(v,1,(h) — w)p =0 Yo € T,P(G),

which proves (iii).

(iv) Assume h = =V - (m) and set [,(h) = w. If F(p,m) = oo there is nothing to prove.
Assume that F'(p, m) < oo so that m;; = 0 whenever g;;(p) = 0. There is a unique vector field
v such that g;;(p)vi; = my; and v;; = 0 whenever g;;(p) = 0. We have

m?. 1 1 9
(41) F(pm)= > 2g--gp):§ > il =5 Y gi(e)v = lvl; = ||mp()]],-
gij(p)>0 "% 93 (p)>0 (i.4)EE



16 GANGBO, LI, AND MOU

Since
h=—Vg-(m)=—div,(v) = —div,(m,(v)),
(iii) implies 7,(v) = w. This, together with (4.1) proves (iv). O

Remark 4.4. The following remarks are needed in the manuscript.
(i) p € L?(0,1;R™) andm € L%(0,1; S™™) are such that A(p,m) < oo then f(gij(p),mij) €
LY(0,1) and for any (i,7) € E,
(4.2) £ ({te ) | gtee) =0, my(t) #0}) =
(ii) A is non-negative and lower semicontinuous on L*(0,1;R™) x L2(0,1;S™") for the

weak convergence.

Proof. We skip the proof of (i). Since F'is a nonnegative convex, lower semicontinuous function,
by standard theory of the calculus of variations (cf. e.g. [10]) we obtain (ii). O

Theorem 4.5. Assume p°, p' € P(G).
(i) There exists (v*, p*,m*) such that (v*, p*) is a minimizer in (2.7) and (p*, m*) mini-

mizes A over C(p°, pl).
(ii) Furthermore,

2
QC(;nf[’) A=Wy ( (n°, p") /Hv

* = (p*am*)

(iii) We have
F(p*,m™)(t) = F(p*,m*)(0) a.e. on (0,1).

Proof. By Proposition 3.7, there is a positive number iq and a path (p,m) € C(p°, p') such
that A(p, m) <1ip. By Lemma 4.1,

1
/O [m(t)[2dt < 2e0(g)i

Using the differential equation linking p to m we conclude that for a constant C' depending
only on ig, €(g), w and n, we have

41172, < €

Increasing the value of C' is necessary, we use the Poincaré—Wintiger inequality to obtain
2
HP”Hl(o,l) <C.

As a consequence, the intersection of C(p", p!) with any sub-level subsection of A is precompact
set of H'(0,1;R™) x L%(0,1; S™*") for the weak topology. By Remark 4.4 (i), A is weakly
lower semicontinuous and so, it achieves its minimum at some (p*, m*) € C(p°, p!).

Since fol F(p*(t),m*(t)) < oo, by Remark 4.4 (i), the set obtained as the union over (¢,j) € E
of the sets {g;;(p*) = 0} N {mj; # 0} is of null measure. Thus the functions v}; : (0,1) — R
defined as

m¥; (t) .
ey i gi(p(t) >0
i t J
(4.3) o (1) = 95 (p* (1))

0 if gij(p*(t)) =0
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are measurable and satisfies m;; = g;;(p*)v;;. Let (p,v) be an admissible path in (2.7). This
means we are assuming that (p(0), p(1)) = (p°, p'), p € HY(0,1;R™), v : [0,1] — S™*™ is Borel

measurable and
1
2
/0 Jol2dt < co.
Setting mi; = ¢ij(p)vi; we have

1
/O|m|2dt Z/ Z]gw p)dt < €o(g Z/ Zjgm p)dt = 2¢p(g /H’UH dt.

J)EE
Thus, m € L?(0,1; S"X”) and so, (p,m) € C(p°, p!). By the definition of v*
(4.4) [V (I = F(p*,m").
By the minimality property of (p*, m*), we have
(4.5) / 0¥ 12-dt = 2A4(p", m") < 2A(p,m / Jol|2dt.

This proves (i) and also (ii).

(iii) Here, we borrow ideas from [6]. Let ¢ € C1(0,1) be arbitrary and set S(t) =
We have S(0) =0, S(1) =1 and S(t) = 1+ €((t) > 1/2 for |e| << 1. Thus, S : [0,1] —
a diffeomorphism. Let 7" := S~! and set

fls)=p*(T(s), w(s) =T(s)m*(T(s)).

t+ eC(t).
[0,1] is

We have .
f4+Vea-(w)=0, f0)=p" f(1)=p"
Thus, (f,w) € C(p°, p') and so,

/OF(p*,m*)dtg/O F(f,w)ds:/ T2 (o (T), m* (T))ds.

0
We use the fact that dt = T'(s)ds and T(S(t))S(t) = 1 to conclude that

! * * ll * * _ ! —6‘ . * *
/OF(p,m)dt§/0 SF(p,m)dt—/O(l ¢+ o(e))F(p*,m*)dt.

Since € — fol(l —eC+o(e))F(p*, m*)dt admits its minimum at 0, we conclude that its derivative

there is null, i.e.,
1
| érrmye=o
0

This proves that the distributional derivative of F'(p*,m*) is null and so, F(p*,m*) is inde-
pendent of ¢. O

Remark 4.6. Let (p*,m*,v*) as in Theorem 4.5

(i) We have [[v*|2. = F(p*,m*) = Wj(p°, p") and so, |[v*||,~ € L=(0,1).
(ii) We have p* € W1*°(0,1;R"), m* € L>=(0,1; S™") and

[mi < We(e®,ph) fmaxa.
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Proof. (i) is a direct consequence of Theorem 4.5 (iii) and (4.4).

(ii) The same argument which led to the definition of v* in (4.3) can be used to conclude
that if (i,7) € E then either m;;(t) = 0 or

£\ 2
(mij) * % 2,0 1
—— () S F(p",m")(t) = Wy (0", p').
g(pé‘,p;f)( ( )0 =Wyle™p')
In any of these two cases,
* )2 * %
(mi;)” < W30, pM)a(oi p) < Wi (% ') max g,

which yields the desired inequality in (ii). This shows m* € L*°(0,1; S™*"), which together
with the identity p = —Vg - m*, shows p € L*°(0,1;R"). O

5. DUALITY IN A SMOOTH SETTING

Throughout this section we further assume that ¢ satisfies (2.11). The main purpose of
the section is to find the Euler—Lagrange equations satisfied by geodesics of minimal action
connecting p°, p! € P(G). We will express these Euler-Lagrange equations in terms of the
Hamiltonian H defined in (2.10). It is convenient to set

n

A= {pEL2(O,1;R") D pi=1, mZOW:l,"-,n}XL2(0,1;S"X”), B:=H"(0,1;R").
i=1

For [ € (0,00) we set

n
(5.1) Al = {P € L? (0, 1;R™) ‘ D pi<l pi=0Vi=1,- n} x L (0,1; ™),
i=1
and
Bl = {A & B ’ HAHHl(O,l;R") S l}

We plan to prove the duality property
(5.2) min A = sup {(A(l),pl) — ()\(O),po) ‘ H ()\, Vg)\) = 0}.
C(p%p") \eB
As we will show, this reduces to a minimax identity for

L(p,m.A) = (A1), ") = (A(0), %) + Alp,m) — / ((hop) + (m, Vo) ) dt.

Proposition 5.1. For anyl >0, e > 1 and A, € {A, A°} we have

inf sup L(p,m,A) = sup inf  L(p,m, \).
(pm)EA«  XeB, G ) AeB; (pm)EAs o )

Proof. Let (p,m) € Ay, A € By and C € R be arbitrary. To show the proposition, according to
the standard minimax theorem (cf. e.g. )[21]), it suffices to show the following properties: B;
is a convex set, compact set for the weak topology (which is obviously the case), A, is a convex
topological space (which is obviously the case for the weak topology), {\ € B; | L(p,m,A) > C'}
is a closed convex set in By and {(p,m) € A. | L(p,m,\) < C} is a closed convex set in A,.

When A(p,m) = oo then L(p,m,-) = oo and so, {\ € B;|L(p,m,\) > C} = B; is a
closed convex set. When A(p,m) < oo, L(p,m,-) is linear and so, {\ € By| L(p,m,\) > C}
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is convex. We use the fact that bounded subsets of H!(0,1) are compact in C]0,1], that
m € L? and p € L™ to conclude that L£(p,m,-) is a continuous function on B; and so,
{Ne€ B;|L(p,m,\) > C} is a closed subset of B.

By the fact that F is a convex function and A, is a convex set, {(p,m) € A, | L(p,m, ) < C}
is convex subset of A,. One part of £(-,-, \) is a linear functional and by Remark 4.4 (ii), the
other part is weakly lower semicontinuous. Thus, £(-, -, \) is itself weakly lower semicontinuous
and so, {(p,m) € A, | L(p,m,\) < C} is a closed subset of A,. This, concludes the proof of

the Proposition. O

Since L is linear with respect to A, we have
(5.3) sup L(p, m, A) = A(p, m) +1E(p, m)
By
where
1
E(p,m) = sup (A(1),p") — (X(0),°) —/ ((A,p) + (m, VG)\)) dt.
AEBy 0
Observe that

(5:4) S(p,m)z{ 0 if (p,m)eC(p"ph)

> (0 otherwise.

Remark 5.2. Letl >0, e > 1 and A, € {A, A°}. By Theorem 4.5, A achieves its minimum
over C(p°, p') at some (p*,m*). By (5.4), we obtain that £(p*,m*) = 0 and thus the infimum
of A+ 1E over A, is between 0 and A(p*, m*).

Lemma 5.3. Let e > 1 and let A, € {A, A°}. The following hold.

(i) & is convex and weakly lower semi—continuous on L%(0,1;R™) x L?(0,1; S™*™).
(i) For anyl > 0, there ezists (p*!,m*!) which minimizes A+ 1€ over A..
(iii) The set {(p*!,m*!) |1 > 0} is pre-compact in A..

Proof. (i) As a supremum of continuous linear functionals, £ is convex and weakly lower semi—
continuous.

(ii) By Remark 5.2, A 4 € is not identically oo over A,. Since £ > 0, any sub-level subset
of A+ € is a sub-level subset of A. By Lemma 4.1, the sub-level sets of A are contained
in a bounded subset of L?(0,1;R™) x L?(0,1; S™*") and so, they are pre-compact. Thus, the
sub-level subsets of A+IE are pre—compact. By Remark 4.4 A is weakly lower semi—continuous
on L?(0,1;R™) x L?(0,1; S™*™) and by (i) & is weakly lower semi-continuous on that same set.
That is all we need to prove that A + [€ achieves its minimum over the closed set A.,.

(iii) By Remark 5.2, for any [ > 0,
A(p*’l,m*’l) < .A(p*,m*).

We apply again Lemma 4.1 to conclude that {m*! | > 0} is bounded in L?. This is sufficient
to verify (iii). O

Lemma 5.4. Let e > 1 and let A, € {A®, A}. We have

inf  sup L(p,m,\) =sup inf L(p,m,\).
(pm)EA+ XeB G ) AeB (pym)€AL G )
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Proof. We use (5.3) and the first identity in (5.4) to obtain for any [ > 1,

A(p*,m*) = sup L(p*,m*,\) > inf sup L(p,m, ).
A\eB; (pm)EA+ XeB;

This, together with Proposition 5.1 implies

(5.5) A(p*,m*) > sup inf  L(p,m,\).
)\EB[ (p,m)EA*

This means
(5.6) A(p*,m*) > A(p*l, m™h) +1E(p™,m*t) > A(pt, m*™).

By Lemma 5.3 (iii), the second inequality in (5.6) yields that the set {(p*!,m*!) | 1 > 1} is
pre-compact in A, and so, its admits a point of accumulation (p>,m*). Since Lemma 5.3 (i)
ensures that £ is weakly lower semi—continuous, we may divide the expression in (5.6) by [ and
then let [ tend to oo in the subsequent inequality and use the fact that £ is nonnegative, to
obtain £(p>°, m*>) = 0. Thanks to (5.4) we obtain that

(p>,m>) € C(p°, ).
By the minimality property of (p*, m*) obtained in Theorem 4.5, we have
(5.7) A(p*,m*) < A(p™,m™).

We let [ tend to oo in (5.6) and use the lower semicontinuity property of A given in Remark
4.4 to reverse the inequality in (5.7). In conclusion,

A(p*,m") = A(p™,m™).
and
lim lS(p*’l,m*’l) =0.

l—+o00
To summarize, we have proven that

A(p>,m>) < lim A(p™, m*") +1E(p*,m*") = lim  inf sup L(p,m,A).
l—>+00 l—+o00 (P,M)EAL AeB,

We first apply the duality identity in Proposition 5.1 to interchange inf 4, supg, and supp, inf 4, .
Then we use the fact that Since B; C B to conclude that

(5.8) A(p>,m) < lim sup inf L(p,m,A) <sup inf L(p,m,N).
I—+00 AeB; (p,m)€A« AeB (p,m)EA

But as L(p>,m>,-) = A(p>°, m>) we infer

A(p™>,m™) =sup L(p>=°,m™>,\) > inf supL(p,m,\).
\eB (p,m)EA« XeB

This, together with (5.8) yields,

inf  sup L(p,m,\) <sup inf L(p,m,\).
(pm)EA+ XeB G ) AeB (pm)EAL (o )

The reverse inequality supginfs, < infy4, supp being always true, we conclude the proof of
the lemma. n

Recall A' is defined earlier in (5.1). Set
A% = {p €L?(0,RY) | pi>0Vi=1,-- n} x L% (0,1; 57 .

Lemma 5.5. Let \ € B.
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(i) For anyl >0

1 .
(pgf@c(p, m, ) = (A1), p') — (A(0), ") — z/o (H(A\, VgX)), dt.

(i)
(A1), p') — (A(O),po) if (H(/'\,VG/\))Jr <0 a.e. in (0,1)

(p,m)€A>® — 0 otherwise.

inf  L(p,m,\) = {

Proof. Expressing the inf in terms of —sup and using (2.9) we have
' 1q ) 1, 1 ,
6.9 inf, [ 3Fem) = (Ap) = n VN de= = [ (G0 + 5IT6AR)ar
Since g is 1-homogeneous
1 . 1 1 .
sup (N, p) + =||[VeA|? dt:l/ H(\Va))) dt.
[ oo (e gIvan)a=1 [ (HO.Von)

This, together with (5.9), proves (i). We let [ tend to oo to verify (ii).
Lemma 5.6. Let A € H' (0,1;R") and a € H*(0,1) and set \; = \; + . Then
H(S\, Vel = H()\, VaA) + é.

Proof. Observe that for any p € P(G) we have
(5.10) Mp)=(\p)+a and Ve = Ve

Since

= — = 1 —
HOLVad) = sup {(p) +5IVGM},
PEP(G)

we use (5.10) to conclude the proof.
Proposition 5.7. Given A € H' (0,1;R"), there is A € H' (0, 1;R") such that H(;\7 Vo),

0 and

inf L(p,m,\) = inf L(p,m,N\).
oonf (p,m, A) (nf (p,m, A)

Proof. Let .
O:={te€(0,1) | H(A\,VgA) > 0}.
If £L1(O) = 0, we are done by letting A = . Assume that £1(O) > 0. Set

t
at) = —/ Xo(s)H(A(s), VaA(s))ds.
0
Since (H-i) holds and A € H' (0,1;R™), we have
: 1
sup {()\,p) + 2’VG)\H/2)}
pEP(G)
Thus, a € H'(0,1). Set \; = \; + a. By Lemma 5.6, we obtain
HO\VeX) = HA, Ved) +a = (1 — xo)H(\, Ve < 0.

& = |[xoH (A, VeA)| <

i g 2 2
< Al + max = ||V ||© € L=(0,1).

Hence, H (5\, V)4 =0, which verifies the first claim of the proposition.
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By Lemma 5.5 and (i), we infer,

(5.11) Lt £(pm ) = (M(1).p') = (30).6°) + (1) = a(0).
p,m)E
Since
1 .
(5.12) (1) — a(0) = — / (H(.V6N) .
0 +
we use Lemma 5.5 again and combine (5.11) and (5.12) to verify (ii). O

Proposition 5.8. Suppose A € H'(0,1;R") and H()'\,Vg)\) < 0. Then there exists A €
H'(0,1;R"™) such that H (5\, VG;\) =0 and

(X(l),pl) - (5‘(0)»,00) Z ()‘(1)7[)1) - ()‘(O)apo) .
Proof. Let O := {H(\,VgA) < 0} and to avoid trivialities, assume £'(O) > 0. Set

t .
at) = —/ XoH (A, VaA)ds
0
and \; = \; +a. As done in the proof of Proposition 5.7, we have a € H'(0,1) and by Lemma
5.6,
H(\VeX) = (1 - xo)H(A, V) = 0.
Finally,

(X(l),pl) o (X(O),po) = (A(l),pl) B ()\(0)”00) - /OH()\, VG)‘)dt > ()‘<1)7p1) o ()‘(0)7p0)'
g

Corollary 5.9. We have

(5.13) sup inf  L(p,m,\) = inf sup L(p,m,\).
AeB (pm)EA> (pym)EA™> \cB

Proof. Since A' C A%,

su inf  L(p,m,A\) <sup inf L(p,m,\).
)\eg(p,m)eA‘X’ (p ) AeB (p,m)eAl (p )

Define

L= int Lo ),

Assume that {\,}, C B is a maximizing sequence such that

5.14 sup £*(A\) = lim L£*(\,).
(5.14) sup £°(3) = lim_£°(%)

By Proposition 5.7, there exists {\,}, C B such that

(5.15) LX) = £5(\)  and (H (An vaxn))+ —0.
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Combining (5.14) and (5.15) and using Lemma 5.5 we obtain

su inf L(p,m,\) = lim L*(\,
I S

= lim (/_\n(l),pl) - (S\n(o)vpo)

n—o0

< /S\lelg{()\(l),pl)—(A(O),po) \H(A,VGA)go}

= sup inf L(p,m,\).
AeB (p,m)€A>
Since A! € A, using the duality result in Lemma 5.4, we have proven that

sup inf  L(p,m,\)=sup inf L(p,m,A)= inf supL(p,m,A).
AEB (pm)€A>® (e ) AEB (pym)€A! (v ) (p,m)EA! XeB (v )

We exploit once more the fact that A' C A* to infer

sup inf  L(p,m,A) > inf sup L(p,m, ).
AEB (p,m)€A> (v ) (p,m)EA>® \eB G )

Since the reverse inequality always holds, we conclude the proof of the Corollary.

We now state the main result of this section.

Theorem 5.10. We have

(16) min o {AGpm)} = sup { (A(1),p") = (M0),") | H(A, Vo) =0}

Proof. Define
e = { 0 if (p,m) €C(p°,p")
7T oo i (pim) € A%\ C(p, ).
By (5.3) and (5.4), for any (p, m) € A>, we have

sup L(p,m, A) = A(p,m) + Ig(,0 51y (psm).

AEB
Thus,
517 3 f E , 7)\ _ . f A ’ +I ’ .
10 (91"111)1614"" ilelg (p,m, ) (pmlzl)lero{ (p,m) + oo o1 (p m)}

Since C(pY, p') € A, exploiting (5.17), we infer

23

(5.18) min  A(p,m) = inf {A(p, m)+Ie(p0 1) (P, m)} = inf sup L(p,m, ).

)
(p,m)€C(pV,pt) (pm)€A> (pym)€EA> \cB

We first use Corollary 5.9 in (5.18) to conclude that

min A(p,m)=sup inf L(p,m,N).
(p,m)eC(p0,p") (p,m) AeB (p,m)EA> G )

We reach the desired conclusion by noting that in light of Lemma 5.5 and Proposition 5.8, the

right hand—side of this last identity is nothing but the supremum in (5.16).

0
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6. INGREDIENTS FOR DUALITY IN THE NON-SMOOTH CASE

Throughout this section, we further assume g satisfies (2.11). We will make use of Hy, the
restriction of the recession function of H (cf. e.g. [3] ) to R x {0} :

Hy(a) = - p) = .
o(a) pes;pl%)G)(a,p) max a;

Lemma 6.1. Assume v is a non-negative Borel reqular measure on (0,1) such that v and
LYo,y are mutually singular. Let m € L*(0,1;5™*™), let 3 : (0,1) — R™ be a Borel map
(defined L a.e.) and let g : (0,1) — R™ be a Borel map (defined v a.e.). Then the following
assertions are equivalent

(i)

(6.1) {H(/J’,m) <0 L' ae in(0,1)

Hy(9) <0 v ae in(0,1).

(ii) For every non-negative function ¢ € C([0,1]), we have s[¢] < 0 if we set

! 1
sl == Sup{/o ((p, B)dt + (p, gv(dt)) + 5\\m||§dt)<p(t) ’ pE CG}-
p

Here, Cq is the set of Borel maps of (0,1) into P(G).
Proof. Let ¢ € C([0,1]) be non—negative. Since v and £1|(071) are mutually singular

stgl =supf [ ((p.8)+ SmlR) (o)t | p e o +sud [

Thus,

(ps gr(dt))e(t) | p e CG}-

1 1
slg] = /0 H(B,m)p(t)dt + /0 Holg)p(t)v(dt).

Using again the fact that v and [,1\(071) are mutually singular, we conclude that s[p] < 0 for
all non—negative ¢ € C([0,1]) if and only if (6.1) holds. O

Remark 6.2. Let R : [0,1] — [0,1] be a Lipschitz function and let h € L?(0,1) be a monotone
non-decreasing function. Observe that h € BV,c(0,1) and if h(0T) > —oo then h € BV(0,3/4)
and if h(17) < 4oo then h € BV(1/4,1). Recall that when h(0T) is finite, it is the trace of
h at 0 and will simply be denoted as h(0). Similarly, we denote as h(1) the trace of h at 1
when it exists. When R(0) = 0, even if h(0") = —oo, we interpret R(0)h(0) as 0. Similarly if
R(1) =0, even if h(17) = oo, in which case, we interpret R(1)h(1) as 0. We have

(6.2) h(DR() — h(0)R(0) = /0 " Rht + /0 " Rivar).

Proof. For each natural number k& we define the function ¢y, € VVO1 °(0,1) as
kt if 0<t<k™!
op(t) =141 if $<t<l—k!
k(1—t) if 1—-kt<t<1.
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: 1
Since Ry, € Wy™°(0,1) we have

L d(R : 1 . . 3 1
(6.3) oz/ (Mhdt—k}%gokh(dt)) :/ o, | Rhdt+Rh(dt) +k/thdt—k/ Rhdt.
0 dt 0 0 1-1

We use the dominated convergence theorem and then the monotone convergence theorem (since
h is a Borel regular measure) to obtain

1 1 1 1
(6.4) lim Rgpkhdt:/ Rhdt and lim Ryih(dt) :/ Rh(dt).
k=00 Jg 0 0 0

k—o0

Observe that
1 1 . 1 1 1 : 1
(/k tht—R(O)/k hdt‘ < Lin(R) /'“ I|dt, ‘/ 1tht—R(1)/ lhdt} < Llpk(R)/ |nt.
0 1-1 1-1 1

0 0 k 1

Since, when we use the above interpretation of R(0)h(0) and R(1)h(1) we have

1

% 1
lim R(0)k /0 hdt = R(0)h(0) and  lim R(1)k /1 hdt = R(1)h(1)

k—o00

k

we conclude that

1 1
(6.5) lim k:/k Rhdt = R(0)h(0) and lim k/ Rhdt = R(1)A(1).
k—oo 0 k—o0 17%
Combining (6.3-6.5) we verify (6.2). O

Definition 6.3. Let A\ € BVi.(0, 1;R™) such that the distributional derivative \ is the sum of
an absolutely continuous part X**L1 and a singular part (a Borel reqular measure) Mg Here,
Aabs . (0,1) = (—o00,0]" is a Borel function. Choose a non-negative Borel reqular measure v
such that —)\?ing << v, and v and L' are mutually singular. We say that X belongs to B if

(6.6) H (AabS,vGA) =0 £ ae in(0,1),
and

d)'\iing .
(6.7) Z:qléaén{ 5 }:0, v a.e. in (0,1).

Lemma 6.4. Let A\ € L%(0,1;R™) be such that \; is monotone non-increasing for any i €
{1,--- ,n}. Let (p,m) € C(p° p') be such that p is Lipschitz, p;(0) = 0 whenever \; &
BV(0, 0.75), and p;(1) = 0 whenever \; ¢ BV(0.25, 1). Let v be the one in Definition 6.3. If

0 H(\® Ve)) <0 L' ae in(0,1)
(6.8) H()(d)‘;;ng) <0 v ae in(0,1),
then

Here, for each i € {1,---,n}, we have interpreted X;(0)p? and as \i(1)p}

i as in Remark 6.2.

Proof. To avoid trivialities, we assume that A(p,m) < oo, in which case for £! almost every
t € (0,1), my;(t) = 0if g(ps, pj)(t) = 0. By Remark 3.5 (ii) we have

(6.9) F(p,m) +[[bl[5 > 2(m, b)
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unless m;; = g(pi, pj)bi; for all (,j) € E. We have

11 171 - Zising
- > - aos H d
/0 SF(pm)dt > /O(QF(p,m)dtJrH(A Vet + Ho( - )y>

A\

) .
1 \ abs 1 2 da=ma
/0 <2F(p,m)dt+ (A", p)dt + §||Vg)\|]pdt + ( 7 ,p)dl/

(6.10) - /01 (;F(p,m)dt + (D), p) + ;HVG}\H?,dt).
We use Remark 6.2, then the fact that (p,m) € C(p°, p!), to obtain after integrating by parts,
[ a0 == [ o 0.0 = [ Famiar (31, ) - (30), ).
This, together with (6.10) yields

Aoy 2 [ (3F(pm) = (Vormiat + JIVGAIR )t + (1. 5) = (30). ).

Thanks to (6.9), we reach the desired conclusions. O

Remark 6.5. Let (p,m) and X be as in Lemma 6.4.

(i) A necessary and sufficient condition to have A(p,m) = (A(1), p*) — (A(0), p°) is that

(6.11) (@) mij =g(pi,p))(Var),; L' aein(0,1) forall (i,j) € E.
. , 1

(6.12) (b) 0= H(\Y Vo)) = (AabS,p)+§HvGA||§ LY ae in (0,1),

d}\sing d)'\sing '
(6.13) 0:H0< 7 ):( 7 ,p) v ae. in(0,1).
(ii) For any 0 < s <t <1 we have
(M), p(1)) = min L(A©0).p) + 5 W2(o(0).p)}

’ peP() o 2(t—s) T

7. CHARACTERIZATION OF GEODESICS AND EXTENDED HAMILTON JACOBI EQUATIONS
Throughout this section, we assume (2.11) hold and characterize the minimizers of (5.16).
Lemma 7.1. Let A € H' (0,1;R") be such that

(7.1) H (A,VGA) — 0 a.e in (0,1).

(i) We have A\; <0 a.e. in (0,1) for anyi € V.
(ii) If we further assume that vp(p°), vp(p') > 0 and C' a constant such that

(A(l)vpl) - ()‘(O)vpo) >C

then there exists Co depending on C, vp(p°), vp(p"), w, n such that |V gl 20,1y < Co.
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Proof. (i) Since (7.1) holds for A a.e. on (0, 1)

(7.2) (h.) + 5IVGAI < 0 for any p € P(G).

For i € {1,---,n} fixed, we set p; = ¢;; to discover that (i) holds.
(ii) Let

(7.3) pt) = (L=1)p° +tp" € C(p° p').

Let p:= (1/n, - ,1/n) € Po(G). By Remark 4.2, there is a unique [;(p* — p°) such that
L . 11 )
p = —divs (lp(p" = %)) = —g (n n) dive (lp(p" = p%) and  U5(p' = p°) € T,P(G).

Note

(7.4) m = 9(%7 %)lﬁ(Pl — %) € L*(0,1;.8™™)

satisfies

(7.5) p + divg(m) = 0.

Using Lemma 3.1, we have

(7.6) ve(A(t) = (1= )vp(p°) + typ(p) = min{yp(p°), vp(p")} =: e

Using (7.5) we obtain

1 . . 1 .
(7)€ < (M1),p") — (\0),0°) = /0 (A 5) + (A, p)dt = /O (A, 5) — (A, dive(m))dt.

Setting A; := A\; — 1/n > j=1Aj, using Lemma 3.2, we observe that (7.2), together with (7.7)

implies
o< [ (51vei - Guamaap)ar < [ (-2 A2 - (aivotm )i
< [ (-5 - Gangom Jar

1
& [P+ [ Oudiva(min < c.
0

IN

This reads off )
0
Therefore, there exists a constant C; depending only on C, €; and fol |divg () ||?dt such that

l ~
/ IAI[2dt < C.
0

Hence, there exists Cy depending on C, vp(p°), vp(p!), w and n such that
1
/ IVe|?dt < Co.
0

Since VG:\ = Vg we conclude the proof. O

Remark 7.2. Since p°, p!' € P(G), there are i,j € {1,---,n} such that p?,p} > 0. The
following lemma draws consequence from these facts.

Lemma 7.3. Assume vp(p°),vp(p') > 0 and X is as in Lemma 7.1 and satisfies (ii) of that
lemma. Then there exists some constant Cy depending on C, vp(p°), vp(p'), w, n such that
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(i) if p? > € >0 for somei €V, 5||).\iHL1(0,1—6) < Cret forany 0 <8 < 1;
(ii) zfp >e>0 for somei eV, (5”)'\1-HL1(5’1) < Cre ! forany 0 <6 < 1;
(iil) if p?, pt > € >0 for some i €V, \|}\¢||L1(0’1) < Ciely
(iv) M z20,1) < Ch1-

Proof. Let (p(t),m(t)) be the pair defined in (7.3) and (7.4). We exploit (7.7) to obtain

1
cs[}xmw+wmﬂmﬂmmmum@.

We use Lemma 7.1 to obtain a constant C; depending on C, yp(p°), vp(p!), w, n such that

1
—/ (A, p)dt < C4.
0
From one line to another, we may increase the value of C; when necessary.

(i) By Lemma 7.1, }\j < 0foranyj € {1,---,n} and so, —}\iﬁi < —(}\,/3). Thus, ifp? >e>0
then p; > de on t € [0,1 — 4]. Hence,

1-6 1 1
/ (5€|)\Z|dt S —/ ﬁz(t)Aldt S —/ ()\,ﬁ)dt S Cl.
0 0 0

The proofs of (ii) and (iii) follow the same lines of argument as that of (i).

(iv) Observe that as p°, p! € P(G) there exist 4, € V such that np?,npjl- > 1. Adding a
constant to \; if necessary, without loss of generality we assume that \;(0) = 0. By (i), we
have

(78) \MMzAWWﬁQ

for ¢ € (0,0.75]. Since the graph G is connected and |[|[VgAl/r2 < Cpy, we obtain, for a bigger
constant we still denote as C1,
(7.9) Al 220, 0.75) < Ci1.

Therefore, the set T of ¢ € [0.25, 0.75] such that |A\| < 2C is a set of positive measure. Using
(ii), we have

t
(7.10) |)\j’d8 § 01
to

if 0.25 < tg <t < 1. In particular, taking ty € T and increasing the value of C7, (7.10) implies
(7.11) il oo (0.25,1) < Ch1-

As above, we use again the fact that the graph G is connected and ||[VgA[/12(0,1) < Co to obtain
(7.12) Al z2(0.25, 1) < Ch-

This, together with (7.9) proves (iv). O

Theorem 7.4. Let B, be as in Definition 6.3. Assume vp(p°),vp(p') > 0.
(i) We have

min{A(p, m) ‘ (p,m) € C(po,pl)} = sgp{()\(l),pl) — (M0), ) ) S B*}.

(psm)
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(ii) Then there exists \* € By such that

(A (1),0") = (V(0), ) = sup { (A1), p) = (A(0), ") | H(A, V) =0}
\eB

Proof. (i) Since B, N B is a subset of By, Lemma 6.4 and Theorem 5.10 imply

(7.13) (121171;1){./4(,0, m) ‘ (p,m) € C(po,pl)} = Sl;p {(A(l),pl) - ()\(O),po) ‘ A€ B*}.

(ii) Let {\'}; C B be the maximizing sequence of
sup {(x\(l),pl) — (A(0), ) ( H(\ V) = o} —: M.
AEB
Without loss of generality we can assume that
(7.14) M= 1< (N(1),p1) — ((0), 4°).

Lemma 7.3 ensures ||\!|| £2(0,1) < C for a constant C independent of /. Therefore, for any i € V
and any integer k > 2, there exist s;; € [0, 7] and §x € [1 — #,1] such that

Ab(sig)

max{ )\ﬁ(§zk)‘} < kC.

I

Since by Lemma 7.1, )\ﬁ <0 a.e. in (0,1) for any ¢ € V, we obtain

) )
¥ oot~

Thus, there is an increasing sequence (n;) C N and A € BV, (0, 1) such that

AL L <2Ck+ (k—2)C.

o) ] Bv(a-1)

(1) (A™); converges weakly to \* in L?(0,1), in Byloc(O, 1) and strongly in L2 (0, 1).
(ii) for any k € N, ||} ||BV(%717%) < 3Ck for any i € V.

We denote the singular part of —)\f as —/'\;‘Sing and denote the absolutely continuous part
as —A\2PsLl Let I be the set of i € {1,---,n} such that p! > 0 and let J be the set of
i € {1,---,n} such that p] > 0. By Lemma 7.3 (\['); is a bounded sequence in BV(0, 0.75)
for any i € I and is a bounded sequence in BV(0.25, 1) for any ¢ € J. By the convergence of
traces of functions of bounded variations, we may assume that

(7.15) lim A"(0) = AS(0) and  lim A™(1) = \5(1) V(i,j) € I x J.
I—4o00 ' I—>+oo 7 J

Let Cg be the set of Borel maps of (0,1) into P(G). Fix ¢ € C2(0,1) nonnegative, p € Cg
and m € L?(0,1; S™*") such that A(p,m) < co. We use Remark 3.5 (ii) to infer

1 d\™
0 = lim w(t)H <,Vg)\”l> dt
=400 J0 dt
1 ‘ 1
> lim o(t) <(>\”l,p) — —F(p,m)+ (m, Vg)\”l)> dt
l—+00 J0O 2
1 _ 1
= [ o0 (G - 5F0m + VN ) .
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Setting mg; = g(pi, pj) (VaA* ) we use Remark 3.5 (ii) again to conclude that
1 . 1 9
0= [ oto) (G0 + 5ITeXIE)
0

Since ¢ and p are arbitrary, we use Lemma 6.1 to verify that

H (AP, VgA*) <0 L' ae in (0,1)
HO(dA*SIHg) <0 v ae. in(0,1)

where v is a non-negative Borel regular measure such that —)\?ing << v, and v and L' are
mutually singular. Thanks to (7.15) and since {)\”}n C B is a maximizing sequence, we have

M = lm ((1),p") = (V(0), %) = 3 A5 (W} = SN O

jedJ i€l

In light of the convention in Remark 6.2 we infer

(7.16) M = (3 (1), p1) — (3*(0), ).
Let (p*,m*) € H' (0,1;R™) x L?(0,1; S™*") be a minimizer of (5.2). We combine (7.13) and
(7.16) to obtain
Alp*,m*) = (\'(1),p') = (X(0), p%).
This, together with Remark 6.5 (i) yields (6.6) and (6.7). O

Theorem 7.5. Assume vp(p?),vp(p') > 0, (p,m) € C(p°, p') and A(p,m) < oco. A nec-
essary and sufficient condition of (p,m) to minimize A over C(p°, p') is that there erists
A € BV (0, 1; R™) such that Vg and the distributional derivative )\, which is the sum of an
absolutely continuous part NP5LY and a singular part X8, satisfy (6.11)-(6.13)

Proof. Suppose (p, m) to minimize A over C(p°, p'). By Theorem 7.4, there is A € BV}, (0, 1; R™)

such that
(A(l)v pl) - ()‘(0)7 pO) = A(p7 m)
We use Remark 6.5 (i) to conclude that (6.11)-(6.13) hold.

Conversely, suppose there is A € BVy,.(0,1;R™) such that (6.11)-(6.13) hold. Relying on
Remark 6.5 (i), we conclude that (p,m) to minimize A over C(p°, p!). O
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