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ABSTRACT. This manuscript extends the relaxation theory from nonlinear elasticity to electro-
magnetism and to actions defined on paths of differential forms. The introduction of a gauge,
allows for a reformulation of the notion of quasiconvexity in [3], from the static to the dynamic
case. These gauges drastically simplify our analysis. Any nonnegative coercive Borel cost func-
tion admits a quasiconvex envelope for which a representation formula is provided. The action
induced by the envelope, not only have the same infimum as the original action, but has the
virtue to admit minimizers. This completes our relaxation theory program.

1. INTRODUCTION

The notion of quasiconvexity, the very essence of the theory of direct methods of the calculus
of variations developed by Morrey [21], has played an important role in nonlinear elasticity
theory [2] and is central in pde’s [14] and the calculus of variations [10] [21]. It is the right
notion to guarantee existence of minimizers for actions on Sobolev spaces. The main goal of this
manuscript is to show that a class of actions appearing in the study of dynamical differential
forms, can be recast into a class of functionals to which Morrey direct methods of the calculus of
variations [21] is applicable. The introduction of gauge differential forms, allows to convert pairs
of dynamical differential forms on R™ into static exact forms on R"*!. While the former paths of
form are subjected to tangential conditions on a n—dimensional space, the latter static form is
shown to be subjected to a Dirichlet type boundary condition on the (n + 1) —dimensional space.
As a consequence, relying on prior studies, we initiate and drastically simplify the extension of
a relaxation theory to our context.

Let k € {1,---,n} and let A* (R™) denote the set of k—covectors of R™. This manuscript
studies actions defined on paths of differential forms on an open bounded smooth contractible
set  C R™. Any smooth flow map ® : C*° ([0, 1] x ﬁ) such that ® (¢,-) is a diffeomorphism
of Q onto Q and any exact k—form fy € C* (ﬁ; AP (R”)) yields a path

(L.1) t= f(t) =2 )y fo

of exact k—forms on €. The path is driven by the velocity v, which, in “Eulerian coordinates”,
is uniquely determined by the identity

0P (t,))=v(t,-)o®(¢,-).
In “Eulerian coordinates”, the transport equation in (1.1) reads off
(1.2) of+Lyf=0,

where L is the Lie derivative acting on the set of vector fields. Let d, denote the exterior
derivative on the set of differential forms on €2 and ¢, denote the adjoint (or co-differential)
of dg. Since f(t,-) is a closed form, we use Cartan formula to infer the existence of a path
t+— g (t,) of (k— 1) —forms such that

(1.3) Evf = de-
1
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When k& = 2 and n = 2m is even, for given exact forms fy, f1 € C* (ﬁ, A? (]R2m)) the prototype
action we are interested in is

1
et = [ SR
(0,1)x2

It represents the total kinetic energy of a physical system over the whole period of time. We
may interpret v as the velocity of a system of particles whose density is given by the volume
form o = f™. By (1.3) the continuity equation holds, namely

0o+ Vg - (QV) =0.

The variational problem of interest is then

(14) (lfn\f) {5 (fvv) : atf +£Vf = 07 f(Ov ) = an f(lv ) = fl} :

Here (f,v) satisfy some tangential boundary conditions, which will later be specified.

One cannot hope to turn the problem in (1.4) into a convex minimization problem unless
m = 1. Our strategy is to introduce a gauge which turns (1.4) into a polyconvex minimization
problem, so that in the new formulation, the action £ is lower semicontinuous (cf. Subsection
3.6).

For general k£ and n, we start with a non negative Borel cost function
¢: AF(R™) x AF1(R") — [0, 4+00]

which is locally bounded on its effective domain. The action induced by the cost ¢ is
(15) Afo) = [ elfg)dds
(0,1)x

We sometimes impose a coercivity condition on ¢ : there are s > 1, by > 0, and a; € R such that
(1.6) c(Ap) 2 b |\ p)° + a1

for every (X, p) € A¥ (R™) x A*=1(R™). While the purpose of prior studies [11] [12] [13] was to
characterize the paths minimizing the action in (1.5) when c¢ is convex, in the current manuscript,
we refrain from imposing such a convexity condition. We rather seek the most general conditions,
which would ensure that our actions are lower semicontinuous, for a topology which allow for a
theory for existence of minimizers. The use of a gauge turns out to be instrumental in linking
the right notion of quasiconvexity on ¢ to the classical one, thereby inferring that A is lower
semicontinuous (for a topology to be specified).

In order to better convey the approach we develop in the current manuscript, we start by
first highlighting the parallel between some of what we do and the well-known use of gauge in
electromagnetism.

Model example step 1: turn A(f,g) into [ C (Vu)dtdz, the setting of Morrey [21].
Suppose for a moment that (k,n) = (2,3). Let us consider paths of vector fields
E,B:(0,1) x Q — R3

such that E represents an electric field and B represents a magnetic field. Gauss law for mag-
netism and the Maxwell-Faraday induction equations are

(1.7) V,-B=0 and B+V,x E=0.
The velocity of the system v and the electromagnetic field satisfy the relation

(1.8) E=vxB.
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The path of vector fields F is used to obtain a path of 1—differential form g on €2 while the path
of vector fields B yields a path of 2—differential form f on 2. These differential forms are

f = Bida? A da® + Byda® A dat 4+ Bsda! Ada? and g = Eydat 4+ Eodx? + Esda®.
We use the pair of dynamic path ¢t — (f (t,-),g(¢,-)), defined on €2 a 3d—space, to introduce a
new static 2—form h on (0,1) x €2, a higher dimensional set. It is defined as

h = Byda? A dz® + Byda® A da' + Bsda' A da® — dt A (Erda' + Eyda® + Fsda®) .
The equations in (1.7) are respectively equivalent to
(1.9) def =0 and Oif +dyg=0,
while (1.8) means
g=— (vldxl + voda? + ngm?’) af,

where 1 denotes the interior product on the set of differential forms. Since €2 is a contractible
set, by the first system of equations in (1.9), t — f(¢,-) is a path of exact forms. The second
system of equations there is equivalent to (1.2)-(1.3). Let d denote the exterior derivative on the

set of forms on (0,1) x Q and let § denote the adjoint of d. One verifies that (1.9) is equivalent
to

(1.10) dh = 0.

Hence, there exists a 1—form on (0,1) x €, which we denote as
w=—pdt+ Ardz + Agda® + Agda®,

such that dw = h. This latter identity reads off

(1.11) B=V,xA and FE=-V,p—0A.

In the physics literature, A is the so-called magnetic vector potential, ¢ is the so-called electric
scalar potential and the pair (¢, A) is referred to as a gauge. The action

Agange (B, E) = / Comge (B (1,2 E (1, 2)) di da
(0,1)xQ

in terms of the gauge u = (¢, A) can be written, for a cost function C, as

A, (u) = / C (Vu) dt dz = / Cmge (Vi % A, ~Vuip — 9,A) dt da.
(0,1)xQ (0,1)x
The functional A, is in a form where Morrey’s theory [21], linking quasiconvexity to lower
semicontinuity, is applicable. However, there is still a missing piece of information due to the
fact that in spite of (1.6), there is no choice of C' : R*** — (—0c0, +00] and no choice of b; > 0
and a; € R such that
CWU)=b+al|Uf.

In conclusion neither the sublevel sets of { A < z} nor those of {Agauge < 2} are expected to be
pre-compact for the weak W1*—topology.

Model example step 2: remedies to make {Agage < z} pre-compact.

Note that for any real valued function (gauge function) ¢ on (0, 1) x €2, we have d (w + dy)) =
dw. This shows that w is far from being uniquely determined by the identity dw = h. Equivalently,
in terms of the electromagnetic fields, the latter identity amounts to assert that

B=V,x(A+V,Y) and E=-V,(p—0)— 0 (A+V,1,)

and so

Agauge (A + vx¢7 2 aﬂ/J) = Agauge (Aa ()0) .
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The action Agauge then describes physical systems with redundant degrees of freedom, which
we turn into our advantage by using the potential i) as a mere mathematical device which can
help gain stronger compactness properties. More precisely, we adjust 1 so that 6 (w + ) = 0,
where we recall that § is the adjoint of the operator d. This amount to assuming, without loss
of generality, that we may choose (4, ¢) to satisfy

(1.12) dp+V-A=0.

The choice of gauge in (1.12) is the so-called Lorenz gauge. A task fulfilled in the current
manuscript has been to show that in addition to the requirement (1.12), we may choose (A, ¢)
with appropriate boundary conditions such that Gaffney inequality holds. Let us first recall the
classical Gaffney inequality and then write it in our context. The classical inequality states that
there exists a constant C' = C (€2, k) > 0 such that

2 2 2 2
196li32 < € (Jldwlfs + w2 + w3 )

for every w € VVTl,’2 (Q; Ak) UVVJ{;2 (Q; Ak) (the T, respectively the N, stands for v Aw = 0 on 012,
respectively, v Jw = 0 on 0f2). Here Gaffney inequality takes the following form: there exists a
constant a > 0 such that under the above appropriate boundary conditions on (A4, ¢), we have

a(llellrs + [Allwrs) < 10:p + Ve - Allps + [[Va X Allzs + [ Vap — 0 All7. -
Thus, if we further use (1.12) then
(1.13) a(llellyrs + 1Alws) < Ve X AllLs + [IVap — 0 AllLs -
This, together with (1.6) shows that for any z € R, the sublevel set
{(A,¢) | Agauge (4, ¢) < z and (1.12) holds}

is precompact for the weak W topology.

Back to the general setting.

In the remainder of the introduction, we assume that fy, f1 € L* (Q;Ak (R”)) are closed
forms and since ) is contractible there exist Fp, F; € Wh* (Q; AF-L (R")) such that dFy = fy
and dF} = f1. Set

w(t,z) = (1—1t)Fy(z) +tFi(z).

In the sequel for technical reasons we need to smooth the cylinder (0,1) x Q C R"*! and we will
therefore consider a bounded open smooth contractible set O C R™"*! (however in Subsections
2.4 and 3.5, we show how to deal, under some more stringent hypotheses, with the case of the
cylinder). Let P? (@) be as in Definition 2.1. Our first goal is to completely characterize the class
of cost functions for which A is lower semicontinuous for an appropriate topology on P* (w). To
achieve this goal, we propose a concept of quasiconvexity in Definition 3.1. We then identify an
operator () : it associates to ¢, the largest quasiconvex function smaller than ¢, which we denote
as @ [c] . We refer to @ [c] as the quasiconvex envelope of c.

Our definition of quasiconvexity is an appropriate variant of the classical one, which Morrey
introduced decades ago in the calculus of variations (cf. e.g. [10]); for an intimately related
definition see also [3]. When k = 1 or k = n quasiconvexity reduces to ordinary convexity, but,
in general and particularly in the case k = 2, quasiconvexity is strictly weaker than convexity
(see Theorem 3.8). Note that if & = 1 or k = n, then Q [¢] = ¢** the convex envelope of ¢; in
general (and particularly when k£ = 2) @ [¢] > ¢**, but it usually happens that @ [¢] > ¢**.

Under (1.6), Corollary 3.11 establishes existence of minimizers of

(QP) inf{/OQ[C] (f (t,z),g(t z))dtde : (f,g)eps(@)}-
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We show that the infimum in (QP) coincides with the infimum of

P) inf{/oc(f(t,m),g(t,:z:))dtd,x : (f,g)ePS(w)}

(cf. Theorem 4.5), while no extra conditions are imposed on ¢ (A, u) beyond the fact that it
grows as |[(A\, u)|® for large values of |(\, u)|*. The infima in (P) and (QP) being the same, is
the basis of our assertion that (QP) is a relaxation of (P).

Let us mention that when k& = n, so that f is a volume form, and ¢ is convex, problem (P) falls
into the category of the so—called mass transportation problem and has received considerable
attention (cf. e.g. [1] [5] [15] [17] [18] [19] [20]). However, while the issues addressed in these
works are rather comparable to those addressed in [11] [12] [13] they do not fall into the scope
of our current study. Indeed the present approach allows to extend the above analysis into two
directions. First we can deal with quasiconvex and polyconvex functions (cf. Subsection 3.6).
We also develop the relaxation setting in order to handle non-quasiconvex integrands.

Finally we should mention related works of Sil [23] and Silhavy [24] for variational problems
involving several closed differential forms. Furthermore the problem is also related to the works
on A—quasiconvexity, see [9] and [16].

2. STATEMENT OF THE VARIATIONAL PROBLEM

In the present section O C R™*! is a bounded open contractible set with smooth boundary
and v denotes the outward unit normal to dO. The variables in O are denoted (¢,z) € R x R™.
Throughout the manuscript we let 1 < k < n be an integer and s € (1,00). As customary done
Al (R™) is the null set when either [ is negative or [ is strictly larger than n.

2.1. Notations, assumptions and main variational problem.
Definition 2.1. Let o € Wh* (O; AF-1 (R”H)) . We say that (f,g) € P* (W) if
felLs (0; AF (R”)) and g€ L (o; AF—1 (R"))
and, setting h = f —da® A g € L* (O; AF (R™)),
dh=0in O and vAh=vAdw on 0.
Remark 2.2. (i) Note that dh = d,f + dx® A (8 f + drg) and thus dh = 0 means that
def =0€ A*H(R")  and Oif +dpg =0 AR (R™).

(ii) The above conditions on h have to be understood in the weak sense, namely

/O<h; dp) = /80 (vANda; @) Yeelt (5; AL (R"+1)> :

(iii) If O is a general connected bounded open smooth set, not necessarily contractible, we have
to add the hypothesis

/ (hix) = / (vA@;x) VX EHr (O;Ak (R"+1)>
O 00
where Hr is the set of harmonic forms with vanishing tangential component (see [6], for details).

But all over the article we will be dealing only with contractible sets, not to burden further the
statements of the theorems.
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Problem 2.3 (Main problem). Let ¢ : AF (R") x AF~1(R™) — (—o00,00] be Borel measurable
and locally bounded on its effective domain. The main problem is then

) wi{ [ c(r0): 0P @}

We are interested on conditions on the cost function ¢ which ensure that (P) has a minimizer.
More importantly, we are interested in the relaxation problem, denoted (QP), associated to
(P).

2.2. Projection of differential forms. Decomposition of exterior forms via projection
operators. Let {e1,---,e,} be the standard orthonormal basis of R™ and let {eg,é1, - ,é,}
be the standard orthonormal basis of R™*! such that the last n entries of &y are null while the
first one equal 1. For 1 < i < n, we denote the dual vector to e; in A (R™) as dz' and identify
it with the dual vectors to ¢; in Al (R"H) . We write

zo=teR and dz°=dt.
Given ¢ € A (R”+1) , 0< 1 <n,
E= ) Gpqda™ A Adat
0<ip <<y <n
we define the projections (£7,¢0) € AT(R™) x A1 (R") as
F=m (@)= D  Ggda Ao Ada?

1<ip <-<i<n
C=m@= D ipigda™ A Ada?
1<iz<--<i;<n
so that
(2.1) € =6 +da® A€,
When [ = 0, we set 7, (§) = € and 7 (§) = 0. When [ > 1 we write
gflzl = 5@'1"'% and 5’?27,] = 502'2"'il‘

The map 7, X (—mg) is a bijection of A! (R"™!) onto A’(R") x A'"!(R™) and so, ¢ can be
expressed as a function defined on the former set. We define

Cgauge ° Al (]R”'H) — (—o00, +0]
as

(2.2) Cgauge (&) =c(me (&), —m0(§))-

From the above definitions, it is straightforward to obtain the following lemma.
Lemma 2.4. Let 1 <1,m <n be integers, £ € A' (R"*1) and n € A™ (R"1) . Then
T (EAN) =T (§) Ame(n)  and mo (EAN) = (=1) 70 (§) Ao (n) + 70 (§) A ()
Let 7 > 2 be an integer, £ € AL (R”+1) and let
€ =EAAE

r times

(so that &" =0 if l is odd or if -1 >n+1). Then (inductively)

r—1 . 3
7 (€)= [m2 () and wo(gr):{ r[m(g)}o Ao (€) Z;Z o



QUASICONVEXITY AND RELAXATION IN OPTIMAL TRANSPORTATION OF CLOSED FORMS 7

In particular if | is even and v -1 =n+ 1, then 7, (") = 0 (but, in general, my (§") #0).

Decomposition of differential forms. If w € W* (O; AF (R"+1)) , then direct computa-
tions reveal that

(2.3)  dw = dpF 4 da® A (O F — dG) € AF*1 and 6w = (8,G + 0,F) — dz® A 6,G € AFL
or equivalently

(2.4) 7y (dw) = dy (72 (W) and 7 (dw) = Oy (7, (w)) — dy (70 (W))

(2.5) 7z (dw) = 0 (mo (w)) + 0z (72 (w))  and  mp (dw) = —d5 (70 (w)) -

2.3. The gauge formulation. Intimately related to the previous problem is a new one which
uses a kind of gauge.

Problem 2.5 (Gauge formulation). Let O, cgauge and W as above. The gauge problem is then

defined as
(Pgauge) igf { /O Cgange (AW) : W € Pgage (CD)}
s ~ ~ 1,s . — n
where Péyuge (@) = @ + Wy (O; AR (R™F1))

Remark 2.6. In the case k =1 (i.e. w is a function), we have
Cgauge (AW) = Cgauge (VW) = ¢ (15 (Vw) , —mg (Vw)) = ¢ (Vaw, —0ww) .
The following proposition shows the equivalence between (P) and (Pgauge) -
Proposition 2.7. Under the above hypotheses
inf (P) = inf (Pgauge) -
More precisely, if w € Pgyyge (W), then
(f,9) = (72 (dw) , —mo (dw)) € P* (@)
Conversely, given (f,g) € P* (W), there exists w € Pgyyge (W) such that
(f,9) = (mz (dw) , =m0 (dw)) -

Proof Step 1. Let w € P .. (@), write the decomposition w = 7, (w) + dz® A 7 (W) =

gauge
F +dz% A G and then set
f=my(dw), g=—mo(dw) and h=f—dz"Ag.

It follows from (2.4) that

f=d,F el (0; A (R”)) and g = —OF +d,G € L° (0; AR—1 (R”)) .
Observe that

dh = dgf + dz® A (Opf + dyg) = 0.
Since dw = h in O and w = w on 90, we have
vANdw=vAh ondO
and thus (f,g) € P*(w).
Step 2. Conversely, let (f,g) € P®(w) and recall that
h=f—da®nge L7 (0:AF (RYY)).

Since
dh=0inO and vAh=vAdwon 00,
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we can find (cf. Theorem 5.4) w € W* (O; A*~1 (R"1)) such that

dw=h in O

w=w ond0.
Thus, w € Pgayge (W) .
2.4. The case of the cylinder. In the above Proposition 2.7, the smoothness of the domain
O C R"*! was essential. We now show how, by reinforcing a little the hypotheses, we can handle
the case of the cylinder O = (0,1) x Q C R*!. Let Q C R” be an open bounded smooth convex

set. We assume, without loss of generality, that 0 € 2 and so, there is a 1—homogeneous convex
function oq : R™ — [0, 00) smooth except at the origin such that

Q={oq <1} and 00 ={pq=1}.
For § € (0,1/2), we set
Qs ={oa<1-6} and 0Qs={oa=1-46}.

We let O = (0,1) x Q, v and v, denote, respectively, the outward unit normal to 9O and 9f.
We also let ¢ : A¥ (R") x A¥~! (R") — R be Borel measurable and locally bounded. We further
assume that there are aj,as € R and by, by > 0 such that

(26)  ar+bl ) <cOop) Saatbalp, V() € AF(R) x AL (RT).
Definition 2.8. Let fo, fi € L* (Q; A* (R™)) and § € (0,1/2) be such that

(2.7) supp (fo) Usupp (f1) C 25
and dy fo = dg f1 = 0 in Q. This last condition, coupled with (2.7), means that

l}mw%iéﬁmw—a Vo e C1 (A1),

Remark 2.9. In view of the above properties of fo and f1 , we can find F; € W* (Qg, AFL (R”)) ,
1=0,1, such that

dF; = fi in Qs

F;=0 ondQ;s.
Setting

Fi(z) ifze Qs
Fl‘ =
(=) { 0 ifzeQ\Q
and defining
w(t,z)=01—-1t)Fo(z)+tF(z), VY(tz)e€O,
we have @ € W (O, A*1 (R"™)) and
(2.8) w=0, dv=0 on [0,1] x(Q\Qs)
Definition 2.10. Let fy, f1 be as in Definition 2.8 and let
fer ((o, 1);L° (Q; AF (R”))) and g€ L° ((o, 1);L° <Q; AR (R"))) .

satisfy the following properties.

(i) Ouf +dpg=01in O, vy Ag =0 on OQ for every t € [0,1], f(0,:) = fo and f (1, ) = fi1,
meaning that

[ (o) = e @M do = [ (f30i0) + (gsdue)) deds, i€ CH(TAF).
Q O
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(i) def =0in Qand vy ANf =vg A fo=ve A f1 =0 on 0Q for every t € [0,1], meaning that
[ sso0r= [ toor= [ (roe), voect (@mak) vien.)
Q Q Q

Remark 2.11. If (f,g) are as in Definition 2.10, then t — [, (f (t,);¢)dx is continuous on

[0, 1] for any ¢ € C} (Q; Ak) . Consequently, we may modify f on a set of null measure and tacitly
assume that f (t,-) is well-defined for every t € [0,1]. With this in mind (ii) of Definition 2.10
1s well defined

Notation 2.12. (i) Let P* (fo, f1) be the set of (f, g) satisfying all the assumptions in Definition
2.10. In the remaining part of the article, except Subsection 3.5, this set is denoted P*® (@) .

(ii) We set cgauge (&) = ¢ (14 (§) , —m0 (§)) and, for & as in Remark 2.9,
Phage (@) =&+ W (03 %71 (R7))

gauge
We now extend Proposition 2.7 to the case of the cylinder O = (0,1) x €.

Theorem 2.13. Let
P) inf{ [ et (.9 P <fo,f1>}
O

and
(Pyange)  inf { / Canuge (0) dt i : 0 € Py (@ (~)} |
Then, under the above hypotheses, ¢
inf (P) = inf (Pgauge) -
Proof Because there is an imbedding of Pg, e (W) into P* (fo, f1), we have that

inf (P) < inf (Pgauge)

and so, it remains to prove the reverse inequality. It suffices to show that for every ¢y > 0 we
have

inf (Pgauge) < inf (P) + €.
This will be proved in six steps. Fix ¢y > 0 and choose (f,g) € P* (fo, f1) such that

(2.9) / c(f,g)dtdr < eg+inf (P).
O
Step 1. We define for [ € (1 —46,1),
fo(z) ifo<s<1-1
flt,z) = f(t;;l:ll,x) ifl—-l<s<l
fi(x) ifl<s<l1

and
0 ifo<s<1-1
g (t,z) = ﬁg(t;ll:f,x) ifl—-l<s<l
0 ifl<s<l.

By (2.7) and the definition of g', we have
(2.10) ff=0, ¢=0 on ([0,1-1U[,1])x (2\ Q)
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Note that

/Oc<fl,gl)dtdx:(1—l)/( c(f0,0) + c(f1,0) d:c+/1 l/ dtda:

and thus
/ c (fl,gl> dt dx
(0]

(2.11) —(1—l)/Q(C(fo,O)+c(f1,0))da:+(2l—1)/01/Qc<f,211_19) dt dz.

We invoke (2.6) and (2.9) to obtain |(f,g)|* € L' (O). Observe that if I € (1 —6,1), then (2.6)

implies

7 s 2N ag + by (JA]° + |pl*) _ a2 +ba (|A° + [ul”)
< < <
C(A’ 21—1) < a2+ b <|A * (21—1)S> = 20— 1)° = 1-20°

for every (\, ) € AF (R") x A¥=1(R"). We may therefore apply the dominated convergence
theorem to conclude that

! 1
li — g ) dtds = dt dz.
leln/o /Qc<f’21—1g> z /OC(f,g) x

This, together with (2.11) implies

lim c(fl,gl) dtdazz/ c(f,g)dtdz.
@] O

l—1—
Combining the above identity and (2.9), we find that there exists [ such that

(2.12) /()c(fl,gl) dtdx < €y +inf (P).

Step 2. We claim that (f',g') € P*(fo, f1). Observe first that (i) of Definition 2.10 is satisfied,
it therefore remains to prove (i). We hence need to compute

I::/O<fl;8tgo>dtd:c and I1 ::/O<gl;5<p>dtdx.
We have

1_/1 ldt/ (o Brp) d:):—l—/l ldt/< <t+l_1 > 8t<p>dx+/ dt/ (f1: 000) d

and then

1
=/<f0;90(1—law)—w(ovw»dﬁ(?l—l)/ dt/<f(t737)§8t%0((21—1)t+1—l,x)>dx
& 0 Q
/<f1( )ip (L) — () de.

Set
b(te) = (2 - 1)t +1-12)
and observe that

I=A<fo;w<o,m>—w<o,x>>dx

(2.13)
n /O (f (b, 2) ; Outp (£, 2)) it dx + / i (@)1 0 (L) — 9 (L 2))de
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=gt Lo o (St o) o

Since

we deduce that

1
(2.14) 11:14 dél;@(um)uﬂw(@l—])t+1——L$»dx::/m@(mm)uﬁw(tm»dm

O
Since (f,g) € P* (fo, f1), (2.13) and (2.14) imply

I+H=/Q<f1 <x>;w<1,x>>d:c—/<fo< )10 (0,2))d.

This verifies the claim (f', ') € P* (fo, f1)-
Step 3. For every € € (0,0), we define a new convex set O, as
Oc={(t,ae (t)z) : t € (0,1),2 € O}
where we choose a, € C* (R, (1/2,1]) such that a.(0) = a(1) =1 — € and
al.>0 in (0,¢)
{ al <0 in (1—¢1)
ac=1 in [e,1 —¢.
We denote by v, the outward unit normal to dO.. Note that
O\ O, = {(t,m) te(l—el),x€ Q\Ql,ae(t)}
(2.15)
U{(t,z):te€(0,€),5€Q\Q_o 1}

and so, for € € (0,0) we get

(2.16) O\ O:C((0,6)U(1—=0,1)) x (2\Qs).
Observe that 0O, consists of five parts

(2.17) 0, = S} U S U 83 U Stop |y Ghottom
where

Si=le,1— €] x 09,
S? .= {(t,x) [te(1—¢l)xc O _act) }> S3 .= {(t,x) |t € (0,¢),z € O _a )}
and
StoP .= {0} x Q, Ghottom . _ 11 % Q. .
Step 4. Set
W= f'—da®ng.
Assume 0 < e < 1—1< 4 (in particular, 1 —§ <[ < 1). We want to prove that
dht =0 in O,
ve Nbb=v. Ad@ on 90, .
Indeed by Step 2, (f',9') € P*(fo, f1) and hence
dht =0 in O
vARht=vAdow ondO.
Let ® € C! (R™T1; AF (R"F1)) . By (2.19) we have

(2.20) /O<hl;6<b>dtdaz:/ao (v A di3; ®) .

(2.18)

(2.19)

11
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By (2.10) and (2.16), we have h! = 0 on O \ O, . We therefore find

(2.21) /O<hl;5<1>> dtdzz/oe <hl;5<1>> dt da.

Similarly, by (2.8) and (2.16), we have dw =0 on O \ O,. We then get that

e2) [ wrame) = [ wname) - [ (@0 ndzme)- [ (aurase).
80 0.nd0 {1}xQ {0}x

Since do =0 on S} € 90 and dw =0 on S? U S2, we obtain

(2.23) / (v A dos; @) +/ (Ve A d2s; @) +/ (Ve A di5: @) = 0.
s1 52 53

and

(224) V|S€1 = Ve‘Sﬁl .

We combine (2.22), (2.23) and (2.24) to conclude that

/ (v A ds; ) :/ (Ve A di; )
00 00
This, together with (2.20) and (2.21), implies (2.18), i.e.

/ <hl;5(1)> dtdx:/ (Ve N dw; @) .
B 90«

Step 5. Since O, is a smooth set, it follows from Step 4, that there exists w! € @ +
I/Vol’2 (O(E,Ak_1 (R"‘H)) such that dw! = ht = f! —daz® A ¢! in O, .

Step 6. We finally prove that

inf (Pgauge) < €0 +inf (P).
Set
W (t,z) inO

2.2 t,x) = ’ <
(2:25) w(t @) { &(t,r) mO\O,.

We have w € @ + VVOL2 (O, AF=1 (R"1)) . Since h' =0 on O\ O, and d&> = 0 on O \ O, we
obtain

3l
(2.26) { do=~h' inO

w=w ond0

and thus

inf (Pyauge) < / Cgauge (dw) dt dx = / c (fl,gl> dtdx.
O (@)

The last inequality is due to the fact that by (2.26), w is an admissible element in the minimiza-
tion problem of (Pgauge). Invoking (2.12) we obtain

inf (Pgauge) < inf (P) + €0 .

This concludes the proof of the theorem. m
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3. QUASICONVEXITY AND EXISTENCE OF MINIMIZERS

3.1. Polyconvexity, quasiconvexity and rank one convexity. We start with a new appro-
priate definition of quasiconvexity. It is inspired by the classical notion introduced by Morrey
(cf. [10] and [21]) and connects with the one for differential forms (cf. [3] and [4]), through an
explicit transformation.

Definition 3.1. Let ¢ : AF (R") x A¥1(R") — RU {+o0}.
(i) The function c is called rank one convex if the function g : R — RU {400}, defined as
g(s)=cA+sana,p+sba+yAal)
is convex for every
A\ ) € AF(R™) x AFL(R™), a e A¥1(R"), vy € AF2(R"), a c A'(R"), beR.
If g is affine, we call c rank one affine.

(ii) Assume that c is Borel measurable and locally bounded (in particular, ¢ never takes the
value +00). Then c is called quasiconvex if

(3.1) / c(A+dzp, b — Orp + dyp) dt dz > ¢ (A, 1) meas O
(@)

for every bounded open set O C R and for every
(M ) € AR (R™) x AFL(R™), € W (O;A’H (R”)) e W (O;AH (R”)) .

If we further have equality in (3.1), we call ¢ quasiaffine.
(iii) The function c is called polyconvex if there exists a convex function

AR (R x-ox ALETE (R - RU {400}
such that, for every (A, ) € AF (R?) x AF=1(R"),
cA\p)=T (5,52,--- ,f[nTHD , where £ = \+da® A p e AR (R"'H) .
If we further assume that I" is affine, we call ¢ polyaffine.

Remark 3.2. (i) For k = 1 the above definitions (they will turn out to be equivalent to ordinary
convexity, cf. Theorem 3.8) read as follows.

- The function c is rank one convex if
s—g(s)=c(A+sa,u+sb)
is convex for every \,a € A (R™) and pu,b € R.
- The function c is quasiconvex if, for every (A, u) € AL (R") x R and ¢ € I/Vol’C>O (0),
/ c¢(A+ Vap, u— Oyp)dtdz > ¢ (A, u) meas O.
O

(ii) It is easily proved that a quasiconvex (or rank one convex or polyconvez) function is
necessarily locally Lipschitz continuous (see Theorem 2.31 in [10]).

(iii) When k = 2, by abuse of notations, we may write the quasiconvezity condition as
/ c(A+ (Vo) — Vo, i — dp + Vo) dt dz > ¢ (A, p) meas O
O

for every (\, 1) € A2(R™) x A* (R™), ¢ € W, (O;R™) and 1 € W, (0).
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(iv) Depending on the value of k, e.g. k = 2, we prove in Theorem 3.8 (iii) that the notion of
quasiconvexity is strictly weaker than the usual notion of convexity.

(v) It will turn out (cf. Theorem 3.8 (ii)) that the notion of polyconvexity and the usual
notion of convexity are equivalent when k is odd. This comes from the simple observation that
if € = X +dx® A p and k is odd then £ = 0 for every integer s > 2.

(vi) When k is even, the definition of polyconvexity can be reformulated as follows. The
function ¢ is called polyconvex if there exists a convexr function

T AR (RY) x - x ALEIE(R?) x AFL(R™) x - x AT =L (R R U {400}
such that, for every (A, ) € AF (R?) x AF=1(R"),
C(A,,LL) =T ()\’A27"' 7>‘[%]7M7)\/\M7 7)\[n_;§+1] /\'u> ’

It is interesting to relate these definitions to those introduced in [3], which apply to cgauge :
A* (R™1) — RU {+o0} where
Cgauge (5) =c (7790 (5) y —T0 (5)) .

Proposition 3.3. The function c is respectively rank one convex, quasiconvexr or polyconvex if
and only if the associated function cgauge 5 Tespectively

- ext. one convex, meaning that g : R — RU {+o0} defined by
g (3) = Cgauge (f +saA 5)
is convex for every £ € AF (R"1) | o € AF=1 (R™1) and B € AL (R™H1);

- ext. quasiconver, meaning that c is Borel measurable and locally bounded and for every
bounded open set O C R"T1, & € AF (R™!) and w € I/Vol’OO (O; AR (R 1))

/ Cgauge (5 + dUJ) Z Cgauge (5) meas O,
O
- ext. polyconvex, meaning that there exists a convex function
T AF (R™F1) 5 AZF (R™D) x-oox AL TF (RPHY) S R U {400}
such that o
Cgange (§) =T (5752, E 7£[T]> . for every € € AF (R™1).

Proof We only prove the statement concerning rank one convexity, the others being established
in the same manner. Let { € A (R"*!), o € A¥1(R"), B € A' (R") and s € R. According to
Lemma 2.4 we have

E+soAB=[ry(§) +sm(0) Ay (B)]
+da® A [0 (€) + 5 (~1)F " mp (0) Ao (8) + 570 (0) A s (B)]
Setting
A=y (€), p=-70(§), a=my(0), a=my(B), v=—m0(0), b=(-1)"m (B) €R

we have
E+sonB=N+sara)+d® A(—p—sba+yAd]).
Therefore
5 Cgauge (E+ 50 A P)
is convex if and only if
s—cA+saNha,p+sbat+yAal)

is convex. =
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3.2. Identification of A¥ (R") with RY and comparison with Morrey’s notions.

follow here [3] [4]. By abuse of notations, we identify A* (R™) with R(k)
Definition 3.4. Let 1 < k < n. We define the projection map

T R(kfl)xn — AF(R")
in the following way. When k =1
7:R" - AY(R"), w(E)= = da’.

n

When 2 < k <n, to a matrix = € R(k—l)xn, written as

—=1-(k—1) =1 (k—1)

Ch - =
—=(n—k+2)--n —=(n—k+2)--n
=H N

the upper indices being ordered alphabetically, we associate
n

k
T (E.) — Z Z (_1)]+1 E’l'll"'ljfllj+1"'lk dxil A A dxlk — Z E’L A dml

]

1<ip<--<ip<n j=1 i=1
where
B = E ST g A A e = E = dg!
= = g, = = .
1<t < <ip—1<n Ie1 |

Remark 3.5. (i) When k =0, we let 1 =id : R — A% (R") ~ R.
(i) When k = 2, we find that w: R™*" — A% (R") is defined as

n
(@)=Y Zindd = Y (5§.—Eg>dxmdxj
=1

1<i<j<n
where
=1 =1
—1 —n
== : = (E1, » Zn)
=n ... =n
—1 —n

so that when restricted to the set of skew symmetric matrices, namely
Ry" = {EeR™":E' = —E}
we have o ‘
m(E) =2 Y Eida’rdal.
1<i<j<n
. _ ( " )><n .
(iii) For k = n, we write for any E € R\n—-1 =R"™™ and any 1 <i,57<n

=] _ =l-(G-D(+)-n

K3 K3

so that
—1-(n—1) —1--(n—1) =n =n
:1 “ e :n Hl Hn
=2-n =2-n =1 o=l
=1 =, =1 =
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n

The projection map 7 : R<n*1) = R — A" (R") is therefore defined as

@) =S (=1)" 7= | da Ao A dan,
j=1

(iv) Note that 7 is onto. Indeed if € € A¥ (R™), then choose, for evample, = € ]R(k—l) " as
=l _ % §ir ifi gl
‘ 0 ifi€l.

The sign being chosen in order to have il € T, . For example when k = 2 one way of constructing
a preimage is to choose = € RIX"™ with

One easily gets the following result.

Lemma 3.6. (i) If a € A*~1(R") ~ R(kﬁl) and B € AL (R™) ~ R™, then
T(a®p)=aAnp.
(i) Ifw e C* (Q; Akil) , then, by abuse of notations,
7 (Vw) = dw.

It is interesting to point out the relationship between the notions introduced in the present
article and the classical notions of the calculus of variations (which apply below to Cgauge © )
namely rank one convexity, quasiconvexity and polyconvexity (see [10]). Combining the results
in [4], Definition 3.1 and Proposition 3.3 we obtain the following theorem (which is a tautology
when k = 1).

Theorem 3.7. Let 2 < k < n,

c: AFR™) x AMI(R") - R, cgange : A (R™™) =R and 7 R x0r+D) g (R™1)
as above. Then the following equivalences hold
¢ rank one conver < Cgauge €TL. ONE CONVET <> Cgauge © T TaANK ONE cONVET
C quasSiconver < Cgauge €TL. qUASICONVET < Cgauge © T (UASICONVET
¢ polyconver < Cgauge €xt. polyconver < Cgauge © T polyconvex

C CONVET <> Cgauge COMVET <> Cgauge O© T CONVEL.
3.3. Main properties. Thanks to [3], we use Proposition 3.3 to derive the following theorem.
Theorem 3.8. Suppose ¢ : A (R™)x AF~1 (R") — R (in particular c assumes only finite values).
(i) In general
¢ convex = ¢ polyconvex = ¢ quasiconver = c rank one convex.
(i) Ifk=1,k=mn ork=n—1is odd, then
¢ conver < c polyconver < c quasiconvex < c rank one conver.
Moreover, if k is odd or 2k > n+ 1, then

c convex < c¢ polyconvexz.
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(iii) If either k=2 andn >3 or3<k<n—2 ork=n—12>4 is even, then

¢ polyconvez C quasiconvex

=
<;A
while if 2 <k <n—2 (and thusn > k+2 > 4), then

. =
C quasiconver c rank one convex

Remark 3.9. When k = 2, Theorem 3.8 yields the following.

If n =2, then
c conver < ¢ polyconvexr <& c quasiconver <& ¢ rank one conver.
If n =3, then
= l = _
¢ convex ¢ polyconvex ¢ quasiconvex
# 4~
If n > 4, then

¢ conver “ ¢ polyconvex & ¢ quasiconver & ¢ rank one conver.

We also rely on [3] and Proposition 3.3 to completely characterize the quasiaffine functions.
Lemma 3.10. Let 1 < k < n and c : A¥ (R") x A¥=1 (R") — R. The following statements are
then equivalent.

(i) ¢ is polyaffine.

(ii) ¢ is quasiaffine.

(iii) ¢ is rank one affine.

(iv) If k is odd or 2k > n + 1, then c is affine, i.e. there exist cg € R, ¢; € AF (R™) and dy
€ AF=1(R™) such that, for every (A, p) € AF (R™) x A¥=1(R"),

c(A\ ) =co+ (c1; A) + (do; 1)
while if k is even and 2k < n+ 1, there exist cg € R, dg € A¥~1 (R"™), ¢, € A¥" (R") for 1 <r <
(2], ds € ARs+E=D(R) for1 < s < [”;k“] such that, for every (A, ) € AF (R™)x AF=1 (R")

[n7k+l]

c(A p) _CO+Z ey A7) + (doy Z (ds; N° A\ ) .

3.4. Existence of minimizers. We now turn to the existence theorem for (P) and (Psauge)
defined in Problems 2.3 and 2.5. We assume that O C R"*! is a bounded open contractible set
with smooth boundary, @ € W (O; AF=1 (R"1)) | ¢ : A¥ (R™) x A*~! (R") — R is quasiconvex
and there exist as, by > 0 such that

e )l S az+ba [\ p)I", V(A p) € AP (R™) x AFH(R™).
Corollary 3.11. Under the above hypotheses and if

P) inf{/oc(f,g)dtdx  (f,g) € P* (a)}

(Pgauge) inf { /O Cgange (dw) dt d : w € Pgoge (@ (~)} ,

then
inf (P) = inf (Pgauge) -
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If, in addition to the above hypotheses, there exist a1 € R, by > 0 such that
a1 +br|(Ap)lF <e(p), V(A p) € A (R™) x AFH(RY)
then (P) and (Pgauge) attain their minimum.
Proof The fact that inf (P) = inf (Pgauge) ; as well as the fact that (P) attains its minimum if
and only if (Pgayge) attains its minimum, follow at once from Proposition 2.7. We refer to [3]

for the existence of minimizers in (Pgauge) , Where Theorem 5.2 is used (to remedy the lack of
compactness mentioned in the introduction). m

3.5. Existence of minimizers for the cylinder. We adopt the same hypotheses (in particu-
lar, (fo, f1) are as in Definition 2.8 with s = 2) and notations as in Subsection 2.4. In particular
0=(0,1) xQ,

) it { [ e(r.g)dudo: (7.9 € P (o)

and

(Pgauge) inf { /O Cgauge (dw) dtdx : w € Pgauge ((I))} .

Theorem 3.12. Let ¢ : A¥ (R") x A¥~1 (R") — R be quasiconvex and satisfy for some ay ,as € R
and bl, by >0
(32)  a+ bR <cOp) Sar bl mE, ¥ p) € AF(RY) x AV (R?).
Then

inf (P) = inf (Psauge) -
Moreover (P) and (Pgauge) attain their minimum.
Proof The statement that inf (P) = inf (Pgauge) has already been proved in Theorem 2.13.

Step 1. The proof of Theorem 2.13 reveals the following facts when s = 2. There is a monotone
sequence (&), C (0,1) decreasing to 0 such that by Step 2 of the proof of the theorem and by
(2.25), there are

(f™ g™ € P*(fo, 1)
such that

m _m : 1
(3.3) /Oc(f ") dde < inf (P) -

If we further set A := f™ — da% A g™, then using Step 4 of the proof of Theorem 2.13 we have
dh™ =0 in O,
{ Ve,, N\hA™ = v, ANdw on 00

This, thanks to Theorem 7.2 [6], provides us with

& e W2 (0, A (R"))

€m>

€m

such that
do™ = fm —dz® A g™ in O,
(3.4) 5™ =0 in O,
Ve,, N\W" =1, ANw on 00, .
Step 2. The first inequality in (3.2), together with (3.3), implies

m m 1 /71
5) 177 0y + 1™ a0y < 5 22 + 0 (P) — 1[0
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Passing to a subsequence, if necessary, we may conclude that (f™,g¢"),, converges weakly in
L?(0) to some (f,g) which must satisfy

(3.6) (f.9) € P*(fo, 1) -

Thanks to (3.4), we use Theorem 8 in [7] (recall that O, is smooth and convex) to infer that
. ~112 ~112 ~112
(3.7) |Ve™ — VWHL2(O€m) < Hfm —da" A g™ — deLz(Oem) + H&JJHL?(OW) .

We combine (3.5) and (3.7) to obtain a constant C, > 0 independent of m such that

(3.8) VO™ 20, ) < Cx-
For 6 > 0 and €, € (0,9) (note that then Os C O, ), we define for (¢,x) € Oy,
1
wy' (t,x):=w" — —— | @™ (s,y)dsdy.
1051 Jo,

Invoking the Poincaré Wirtinger inequality, we obtain a constant Cs which depends only on {25
(but independent of m) such that

(3.9) 195" (12005 < Cs IV@5 | 12(04) = Cs IVE™ | 120,y < CxCs -
By (3.4), we have
(3.10) dof = f™ —dz® A g™ on Os.

From (3.9), we find that there exists ws € W2 (05; AF-1 (R"*l)) such that, up to a subsequence,
(@51, = @ in W2 (O5; AR (R™1)) . By (3.10), we get

(3.11) dos=f—di®ANg on Os.

Since by (3.2) ¢ — a3 > 0, replacing ¢ by ¢ — aq, if necessary, we may assume without loss of
generality that ¢ > 0. We use first this fact and then (3.10) to obtain

liminf/ c(fm,gm)dtdathminf/ c(f™g™m) dtda::liminf/ Cgauge (dwg") dt dx.
o Os Os

m—00 m—00 m—00

This, together with the quasiconvexity of ¢, the fact that ('), — @5 in w2 (05; AF-1 (R"H))
and (3.11), implies

liminf/c(fm,gm)dtd:cZ/
@)

m—00 05

Cgauge (d@g)dtdac—/ c(f,g)dtde.
Os

We let 6 tend to 1 and use the monotone convergence theorem to obtain

m—0o0

liminf/c(fm,gm)dtdﬂsZ/c(f,g)dtdﬂc.
O O

We combine this with (3.3) to infer that

/ c(f,g)dtdz =inf (P).
o

This concludes the proof of the theorem. m
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3.6. An important example for applications. As mentioned in the introduction, the actions
which motivate the study of this manuscript, include those which may be interpreted as kinetic
energy functionals of physical systems of particles. In the sequel, we assume k = 2 and n = 2m
is even and s > 1.

Given a path of symplectic forms f € C* ([0,1]; C5° (Q,A* (R™))) (i.e. dpf =0 and f™ # 0)
and a vector field v € C§° ([0, 1] x €;R™) such that

Of+Lvf=0

define the generalized kinetic energy functional
1
Es (fvv)_/ i‘V‘Sth,
(0,1)x2

where o = f™. Note that o satisfies the continuity equation
Qo+ Vy-(ov)=0.
Setting v =Y "1, v; da’,
(3.12) g=vaf, fo=/f(0,), fA=[f(1")

we have that (f,g) € P*(fo, f1). The first identity in (3.12) yields (since f™ # 0) v = g f~*
and so,

vt =g
Therefore, the generalized kinetic energy functional is

1 .
e = [ Slosr e
(0,1)xQ

As announced in the introduction, we show in the next proposition that, written in terms of
(f,9), & has a polyconvex integrand (we do not speak of quasiconvexity, because the function
below can take the value +00).

Proposition 3.13. (i) For any A € A?2 (R") and p € A* (R™), then
N p=m (paA) o (A7)
In particular if *xA™ # 0 and setting \™1 = 2 (*)\mfl) , then

KA

pod=0 << pgoil=p
(ii) For any e > 0, the cost cc : A2 (R") x A} (R™) — R U {+oo} defined as
AT (RA™) i« A > €
e (A = |MJ
ce (A ) { +00 otherwise
1$ polyconvez.
Proof (i) Appealing to Proposition 2.16 in [6], we can write
(XM = =[x (uoX™)] = = [* [m (paX) A )\mflﬂ =m (o) (*Amfl)}

which establishes (i).

(ii) Step 1. Let e : A (R") x R — R U {400} be defined as

B
Ve (z,y) = { oty >e

+o0o otherwise

(if s = 1, replace |z|° /y*~! by |z|). Note that 7. is convex .
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Step 2. According to (i), we can write
s )\mfl A S
(xA™)°™
We observe that if we set e = da' A --- A dz™, then s\ = (e; A™) and thus
ce (A p) =m®ye A" H A, (e A))

The function c. is therefore expressed as a convex function . whose arguments are quasiaffine
functions (namely A™~! A p and (e; A™)) according to Lemma 3.10 and hence ¢, is, by definition,
polyconvex. m

oA o) = | (S

KA

4. QUASICONVEX ENVELOPE AND THE RELAXATION THEOREM

4.1. The quasiconvex envelope. As in the classical case [8], we define an operator ¢ — @ []
which associates to any cost function, a quasiconvex cost function which is its envelope.

Definition 4.1. The quasiconvex envelope of ¢ : A¥ (R™) x A¥~1 (R") — R is the largest quasi-
convex function Q [c] : AF (R™) x A¥=1(R") — R which lies below c, i.e.

Q[c] =sup{g: g < c and g quasiconver} .
Remark 4.2. (i) For cgauge : A¥ (R"™1) — R as in Problem 2.5 (see also Proposition 3.3), we
define its quasiconvex envelope as
Q [cgauge] = sup{g : g < Cgauge and g is ext. quasiconvex} .
(i) If we set
n+1
Cgauge = Cgauge O T : R(kil) X(nt) — R,
(cf. Theorem 3.7), then Q [Cgauge] is the quasiconvex envelope in the classical sense.

The next theorem provides a representation formula for @ [¢] in terms of c.

Theorem 4.3. Let c,h : A¥ (R") x A*¥~1 (R") — R be Borel measurable and locally bounded with
h quasiconvez below ¢ (i.e. h < c¢). Let cgange s Q [Cgauge) s Crauge and Q [Cgauge] be as in Remark
4.2. Then

Q [C] = Q [Cgauge] and Q [Cgauge] = Q [Cgauge] oT.
Moreover, for every (A, u) € AF (R™) x AF~1(R"),

1
] (A, pu) = inf /c A+ dyp, pu— Orp + dy dtdx}
QU= ot e O o+ e

YeW, > (O;AF2(R™))

where O C R 4s a bounded open set. In particular, the infimum in the formula is independent
of the choice of O and can be taken, for example, as (0, 1)”+1.

Proof The identity Q [c] = Q [cgauge) has to be understood as
Q [cgauge) (§) = Q[d] (mz (€) , =m0 (§)), V€ € AP (Rn+1)

and it follows at once from the definition of cgayge and Theorem 3.7. Next, let
n+1
= e REDDXOH g ¢~ (z) e A (R™H1)

and set
1

meas O

c(&) = inf{ / Cgange (€ + dw) dt dx - w € Wy'™° (O; AR (R”“))} .
O
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If we denote C = ¢ o m, then
c(§)=com(E)=C(E).
It follows by the classical result (see [8] and [10]) that, with the notations of Remark 4.2,

Q [Conuge] (5) = inf{ !

meas O
(and also that the formula is independent of the set O). We therefore deduce that @ [Cgauge] =

C = ¢om. Thus C is quasiconvex and, by Theorem 3.7, ¢ is ext. quasiconvex. We have hence
obtained that ¢ < @ [cgauge) - Using again Theorem 3.7, we infer that @ [cgauge] 07 is quasiconvex.
Summarizing these results we have shown that

Q [Cgauge] om < Q [Cgauge] = 6 =com
and thus @ [cgauge] < ¢. We have therefore proved that

n+1
/ Cgauge (E + V(I)) dtdz : ® € Wol,oo <O’R(/§—1)> }
O

Q [Cgauge] =c¢ and Q [Cgauge] = Q [Cgauge] om=com

and the theorem is established. m

Remark 4.4. In view of Theorem 3.8 (i), when k = 1 (and hence ¥ = 0) or k = n, then
Q [c] = ¢**. In general Q [c] > c**, but it usually happens (particularly when k = 2) that Q [c] >

c**.

4.2. The relaxation theorem. We assume below that O C R"! is a bounded open con-
tractible set with smooth boundary, @ € Wh* (O; AF=1 (R"F1)) | h,c: A (R?) x AF1(R") —» R
with h quasiconvex and there exist as, by > 0 such that

(A p) <cp) <az+ba|(A P, V(A p) € AF(R") x A (R).

Theorem 4.5 (Relaxation theorem). Let Q [c] be the quasiconvex envelope of ¢ and

(P) inf{/oc(f,g)dtda: . (f,g) € P* (a)}

QP) inf{ /O QI (f.g)dtdz: (f,g) € P* @)}-

Then
inf (P) =inf (QP).
Moreover if there exist a; € R, by > 0 such that
(4.1) a1+ b ) S c(hm), V() € AF (R x AV (RY),

then (QP) attains its minimum and, for every (f,g) € P* (@), there exists a sequence { (fV, g") }?Vozl C
Ps (W) such that, as N — oo,

(fN,gN) — (f,9) weakly in L* (O; AF (R™) x AFL (R”))

/ c(fN,gN) dt dx — / Qlc] (f,g)dtdx.

O O

Remark 4.6. Combining the above Theorem 4.5 with Corollary 3.11, we also have
inf (P) = inf (QP) = inf (Pyauge) = inf ((QP)gauge)

where
(Pgauge) inf { /O Cgauge (dw) dt d : w € Pgyyge ((I:)}
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((QP) e inf{ /O Q [cgange] (dw) dtde : w € Pl (a)}.

Proof (Theorem 4.5). We set Cgauge = Cgauge © 7. Recall that we identified AR—1 (R”H) with
n+1
R<k—1). Therefore depending on the context, we either write

n+1
weEw+ Wol’s (O;/\k_1 (R"H)) or wew+ T/Vol’S (O;R(k1)> )
Step 1. Appealing to Theorem 4.3 and Lemma 3.6 (ii), we infer the new formulations

n+1
(Pgauge) inf {/O Cgauge (VOJ) TwEW+ WOLS <O’ R(k—l)) }

((Qp)gauge) inf {/o Q [Cange] (Vw) : w € &+ Wy <O; R(TD) } )

By the classical relaxation theorem (cf. e.g. [8] or Theorem 9.1 in [10]),

inf (Paange) = i0f ((QP)guuge)
which establishes the fact that inf (P) = inf (QP).

Step 2. It remains to address the properties of minimizing sequences under the extra assump-
tion (4.1). Let (f,g) € P*(w). Invoking Proposition 2.7, we find w € w + WOLS <O;R(z+i)>
such that

(f,9) = (e (dw) , =70 (dw)) .

The classical duality theory (cf. e.g. Theorem 9.1 in [10]) gives that for every w € @ + Wol ”
there exists w¥ € & + VVOI’S such that

dw™ = dwin L* (O;A’“ (R”“)) and / Cange (VW) — / Q [Crange] (Vo).
o o

Setting (fN, gN) = (7T:c (dwN) , —T0 (dwN)) , we have indeed established the theorem. m

5. APPENDIX

5.1. Some basic notations. We refer to [6] (see also [12]) for the notations concerning differ-
ential forms and we recall below the main ones. In the sequel we denote partial differentiation,

for f = f(t,x) = f(t,x1,- - ,2p), by

_of _of
&ij = afL’j and 8tf = ot .

Notation 5.1. (i) A k—form w € AF (R") is written as

w= E wil...ikda:“ A Ada'E.
1<i1 < <ip<n

By abuse of notations, very often, we do not distinguish between a k—form w € A* (R™) and a
n

vector w € ]R(k) whose components are the w;,...;, ordered alphabetically.
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(ii) The exterior product v A w € A¥1(R™) of v € AL (R?) and w € A* (R™) is defined as

n
vVAw= g g Vj Wiy, | d? Ndz"™ Ao A dax'*
1<ij<-<ip<n |j=1
k+1
1 ; ;
= g E (—1)’Y Vz}, wi1~~-i7,1i7+1~~ik+1 d.’IJZ1 VANCERWAN d.’L’Zk‘H .

1§i1<--~<ik+1§n 7:1

(iii) The interior product v w € AF1(R") of v € A' (R") and w € A* (R™) is defined as

n
_ iy 1AL, lg—1
Viw = g E Vi Wiiyeig_y | AT Ao Adx'™ 1.

1<ii<<ip_1<n | j=1
(iv) The scalar product of w, A € A¥ (R") is defined as
1
(w; )\> = Z (wil,..ik )‘11%) = E Z (wil...ik )‘lllk)
1<ii<-<ip<n T 1<y, i <n
the associated norm being
1

2 2 2

W= Y (W)’ = o Yo (ien)?

1<ip<-<ip<n T 1<iy, i <n

When k =1 the interior and the scalar product coincide.

(v) The Hodge * operator associates to w € A¥ (R"), xw € A"F (R"™) wia the operation
WAX= (xw; NV dzt Ao Ada™,  for every A € AR (R™).
The interior product of v € A* (R") and w € A¥ (R™) can be then written as
vow=(=1)"*V s (wA (xw)).

(vi) The exterior derivative dw € A*+1(R") of w € A¥ (R") is defined as

n
dw = Z Z O ; Wiy iy ded Adx™ A - A da
1<t << <n | j=1
k+1
1 ) )
= Z Z (—1)7 87:7,'—7wil"’i’y—li’y+1"’ik+1 dz" N - AdxterL,

1<i) < <1 <n | v=1
When k =1 we can identify dw with curl w.
Since in our context the variables x € R™ and t € R do not play the same role we write for

f=rftx)= Z fiyindz™ A -+ A dzte € AR (R™)

1<i1 < <ip<n

g [fl=0f = Z Ot fiyix dz™ A - Adzt € AF (R™)

ot , 4
1<ip <-<ip<n
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and the operator d is understood only with respect to the variable x, and when there can be some
ambiguity we write d,, instead of d, i.e.

n
dof = ) dafiyeigda A Ada = >N Oy fiyey dad Adat A A dat
1<ig<-<ip<n 1<iy<-<ip<n j=1
k+1
— Z Z(_l)v—la Fiveio i o Az A A et e AFFL(RD)
- T J UL =105 41" V41 .
1§i1<-~~<ik+1§n ’y:l
vii e interior derivative (or co-differential) ow € A*~ of we 15 defined as
ii) The interior derivati d tial) & AF—1 (R AF (R™ d d
n
dw = Z O Wiy igg_y | dT™ Ao Adx™ =1,
1<i1 < <tp—1<n 7j=1

When k = 1 we can identify dw with divw. As above, if f = f (t,z) € AF (R™), we write

0af = Z 8wjsz‘1...ik_1 dr't A - A dxte-1,
1

1<iy<—<ig_1<n \j=

5.2. Systems of the type (d,0) and Poincaré lemma. The first theorem is classical (see,
for example, Theorem 7.2 in [6] or Schwarz [22]).

Theorem 5.2. Let 1 < k <n be an integer, 1 < s < oo and 2 C R"™ be a bounded open smooth
contractible set with exterior unit normal v. Then the following statements are equivalent.

(i) felL® (Q;Ak) ,g€L? (Q;A”“_Q) and Fy € Whs (Q;Ak_l) satisfy

/(f;&p)—/ (VA Fo;8p0) =0, Vo € C° (A if1<k<n-1
Q o0

/Qf:/891//\FQ ifk=n

/Q<g;d90> =0, Vo e C5° (Q;A’f—?’) .

(ii) There exists F € Whs(Q; AF~1) such that
{ dF =f and 0F =g inQ
vAF=vAF on 0NQ.
Remark 5.3. (i) If 1 < k <n —1, then the conditions in (i) just mean, in the weak sense,
[df =0 and 6g =0in Q] and [v A f =v AdFy on 09 .
(ii) If k = 1, then the terms 0 F and g are not present, while if k = 2, then 6g = 0 automatically.

The preceding theorem leads to the Poincaré lemma (cf., for example, Theorem 8.16 in [6]).

Theorem 5.4. Let 1 < k <n be an integer, 1 < s < oo and Q C R"™ be a bounded open smooth
contractible set with exterior unit normal v. Then the following statements are equivalent.

(i) felL® (Q;Ak) and Fy € W* (Q;Ak_l) satisfy

/(f;&p)—/ (VA Fo;8p) =0, Vo € C® (G AF) if1<k<n-1
Q o0

/sz/mmFo if k= n.
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(ii) There exists F € Wh3(Q; AF=1) such that

dF =f inQ
F=Fy, onof.
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