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ABSTRACT. In this manuscript, we consider special linear operators which we term partial
Laplacians on the Wasserstein space, and which we show to be partial traces of the Wasserstein
Hessian. We verify a distinctive smoothing effect of the “heat flows” they generated for a
particular class of initial conditions. To this end, we will develop a theory of Fourier analysis
and conic surfaces in metric spaces. We then identify a measure which allows for an integration
by parts for a class of Sobolev functions. To achieve this goal, we solve a recovery problem on
the set of Sobolev functions on the Wasserstein space.

1. INTRODUCTION

A fundamental result in stochastic analysis is that the Laplace operator is the infinitesimal
generator of Brownian motion. That is, for any twice continuously differentiable function
f:R? = R with bounded second derivatives,

Te(Hess £)(x) = lim S0+ V2ZWY) = )

t—0+ t

for each € R?. Here, of course, (W;,t > 0) is a standard d-dimensional Brownian motion
and Tr(Hess f) = Af is the Laplace operator. This property is also closely related to the fact
that

v(z,t) = Ef(x 4+ V2W;)
is a solution in (0, 00) x R%, of the heat equation

(1.1) O = Aw.

These results can be lifted from R? to the space of Borel probability measures on R¢ with
finite second moments. We denote this space as P3(R%) and endow it with the so—called
Wasserstein metric and the differential structure amply studied in [1].

In a greater generality, the lift from R? to P2(R?) which appears in Mean Fields Games [3]
[4], is to find V : [0, T] x R% x P2 (R%) — R such that

1
oY + » V.V -V, Vu(dy) + §|VqV|2 + Flg, p) — /Rd Tr [V2V] u(dy)u(dy’)

12) =292 [ (Y, VoVt w)] + Vo [FaVam] 0)) uld).

Here, V.,V denotes the intrinsic Wasserstein gradient (cf. Definition 2.3) introduced by

Ambrosio-Gigli-Savaré [1]. This leads to an intrinsic definition of V2V, the second order

Wasserstein gradient (cf. Definition 3.3). Equation (1.2) poses more challenges than we are

currently prepared to address. So for now we address the smoothing effects (cf. Theorem
1
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6.4) of two of the three mechanisms at work in (1.2), leaving out the mechanism induced by
the underlying Lagrangian. The latter mechanism was showed in [4] to preserve smoothness
property when appropriate monotonicity conditions are imposed on F and V(0, -).

Given U : Po(R?) — R, the intrinsic Wasserstein gradient and Hessian can be understood
through the lift of U to the Hilbert space L?(B,R?), where B C R? is an open ball of unit
volume. Indeed, define

U(X) = U(m)

whenever X € L(B,R%) is the law of m. When U is continuously differentiable in a neighbor-
hood of X, it is shown in [3] that V20U (X), the Hilbert gradient of U at X can be written
as the composition of a Borel map V,U[m] : RY — R? and X : V,U[m] o X = V,2U(X).
The map V,U[m] being uniquely determined m-—almost everywhere, was proposed in [3] as
the Wasserstein gradient of U at m. The result in [3] have been improved in the sense that
[12] requires only the sole differentiability property of U at X, to obtain the factorization
VoUlm] o X = V;2U(X). In fact, the study in [12] allows to show a much stronger result: if
¢ is the element of minimal norm of the intrinsic Wasserstein sub-differential of U at m and ¢
is the element of minimal norm of U at X then £ o X = (. Similarly, one can relate Hessy2 U,
the Hessian of U at X to HessU, the intrinsic Wasserstein Hessian of U at m without any
requirement that Hess LQU' needs to exists in a neighborhood of X. In this work it has often
been more advantageous to use VU as originally defined in [1]. This imposes the use of Hess U
rather than that of Hess;» U.

In the sequel, we consider the following stochastic process on the Wasserstein space:
t s B = (id + V2W,) wm.

Here and below, (W:)¢>0 is a standard d-dimensional Brownian motion starting at 0. The
expression Tl is the push-forward measure defined for every Borel probability measure p on
R? and Borel map T : RY — R¢ via the formula

Tyn(A) == p(T71(4)).

If U : Po(RY) — R is bounded and twice differentiable at m and Hess U[m] denotes the
Wasserstein Hessian of U at m, we define

(1.3) AU = Zd:Hess Ulm|(ei, €;).
i=1

Here, e; is the Wasserstein gradient of the i-th moment m — [pqz;m(dz). It is a constant
vector field, and {e;}¢; is the canonical basis of R?. One readily checks that {e1,--- ,eq} is
an orthonormal family in VC’gO(Rd)LQ(m) of the tangent space at m.

It is known that (cf. [4] [6]) the function

(t,m) € (0,00) x Po(RY) — V(t,m) := E(U(B;ﬂ))

satisfies
(1.4) oV = AV, V(0,)=U.

When restricted to finitely many symmetric products of R, the partial Wasserstein Laplacian
operator coincides with classical finite dimensional operators. For instance, suppose U is
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differentiable in a neighborhood of p :=1/k Z?Zl 0, for some z1,--- 1) € R? and U is twice
differentiable at p as stated in Theorem 3.2. If we define v on (R%)* by

(@) = v(@e, e 2p) = U(i éaxj)

then unless £ =1,
k k

k
B[} 30 0] = 32 o)+ i, (T #3800

=1 J#l j=1
For € > 0 we also set
(1.5) 077 [m] = (id + \/2BW) 4 (G5 +m),

where, Gf is the heat kernel for the heat equation given by

e~

exp|—— ).

Aret” det

The Wasserstein partial Laplacian is the sum of two operators, one being nonpositive with

a trivial kernel when restricted to the set of k—polynomial function. These are functions on
Po(R?) of the form

(1.6) Gi(z) =

m— Fg[m] := 1/ O (z)m(dzy) - - - m(dzxy),
k Jmay
® € O((RY*) being a symmetric function that grows at most quadratically at infinity. The
set of such ®’s is denoted as Sym[R¥] and the set of Fg’s is denoted as Sym[k](R). The
latter alluded operator, which has a smoothing effect, associates to any smooth function U :
P2(RY) — R, the function

m — Ofm] = / div, (Vo Ulm](z))m(dz).
R4
Given € > 0 and a twice continuously differentiable function U, the function

(1.7) (t,m) € (0,00) x Po(RY) — VE(t,m) := E(U(ag[m]))
solves the initial value differential equation

Ve = (Ay+eO)VE,  V(0,") =U.

Our study of the partial Laplacian operator will be mainly restricted to the set of k—
polynomials and their graded sums. Although at a first glance the sets of k—polynomials
may appear to be too small, by the Stone Weierstrass Theorem, the subalgebra they generate
is a dense subset of C'(K) for the uniform convergence (cf. Remark 2.7). Here, K is any locally
compact subset of Po(R?). As a consequence

(18) P [symlkI(®R) N (R,
k

the N—graded sums of the set of k—polynomials, generates a subalgebra which is a dense subset

of C(K).
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The nonnegative real numbers are contained in the spectrum of —A,. For any 8 > 0, it
is shown that the intersection of the kernel of A, + fId with Sym/[k](C), is represented by a
general conical surface, contained in the symmetric k-product of R?. The surface in question
is the quotient space

(1.9) {€ &) e @) 4 i@-f =8 }/Ps,
j=1

where P is the set of permutations of k letters. Note when k£ > 1 and 8 = 0, the surface
degenerates into a linear space, and so, it has infinitely many elements, which means that the
kernel of A, has infinitely elements. More serious is the fact that the surface is unbounded,
which precludes the Wasserstein Laplacian operator to have a smoothing property, unless
restricted to an appropriate set of functions. Solving the simplest case of Poisson equation on
the Wasserstein space amount to, given

a € Sym[k](C) N L2((RY)F) N LY (R)F),

solving

k
2
—4m?| > &b, &) = aléy, - )
j=1
This, obviously is not an elliptic equation as when k > 1 and 8 = 0, the surface in (1.9) does
not reduce to the null vector.

This manuscript starts a Fourier analysis on the set of probability measures of finite second
moments, the so—called the Wasserstein space. We later introduce measures on the infinite
dimensional metric space, which allow us to integrate by parts products of special functions
defined on the Wasserstein space. In this manuscript, we also address the following natural and
useful question: suppose we know that a function F : Py(R%) — R is of the form F = Fp for
a symmetric function ® : (R%)* — R. Can we reconstruct ®? We can convince ourselves that
the problem reduces to expressing ® as a sum, up to a multiplication constant, of the so—called
k—th defects of F. When we do not require any differentiability property of F, we reconstruct
® by providing a polarization isomorphism based on the inclusion—exclusion principle, without
any differentiation operations. Our arguments was inspired by works on vector spaces, which
can be traced back to [14] in a particular case, followed by generalization in [27].

For each s > 0, we define H*(P2(R%)), a space of functions on the Wasserstein space, in the
spirit of the Sobolev functions. It has the virtue that whenever U € H*(P2(R%)), then V(t,-)
given in (1.7) not only solves the previous differential equation but

V(t,-) € H(Po(RY)) VI >0.

We identify a set in H*(P2(R9)) C H*(Pa(R?)) such that choosing Uy in that set, even if U is
not three times differentiable, when s,e > 0, then A, [V (¢, -) becomes twice differentiable (cf.
Theorem 6.4). This is an improved smoothing effect in the m variable.

The functions F in H*(P2(R%)) are pointwise sums of the infinite series > 7o | 1/k!Fg, , where
®p € L2((RY)F) is a symmetric function which grows at most super linearly at oo and is such
that its inverse Fourier transform ay, satisfies (4.2). Under more stringent assumptions on @y,
so that F' € H*(P2(R?)), we prove that Fgp, is uniquely determined by a specific projection
operator 7 (cf. Remark 5.5) defined on a subset of the graded sum in (1.8) .
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A bilinear form
(3 Yo s HO(Pa(RY)) x HO(P2(RY)) — R
which involving functions, their gradients and Laplacians, is provided in Proposition 4.10.
Under appropriate conditions on F, G € H°(Py(RY)), we assert

—(AWF;G) o = < Vo Fm|(z)m(dz); VuG[m] (x)m(d:z:)>
R4 R4 HO
In some cases, this turns into a integration by parts formula involving signed Radon measures
PRE on M2 := Py(RY) x Po(RY). When F = &, G = Fy where ®, ¥ are k-symmetric functions
of class C? and supported by the ball of radius R, Theorem 7.3 shows the above to be equivalent
to
— | AwFslmi)Fy[moldPPf = [ Dy(V,Fg, V,,Gy)dPPE.
M?2 M?2
Here D5 is the bilinear function

Dy(V F, VyG)(ma, ma) == /R%WwF[ml](m);VwG[m2]((J2)>m1(dQ1)m2(d(I2)-

In the recent years, there have been many attempts to construct a “full” Laplacian on the
Wasserstein space. In [24], von Renesse and Sturm studied a canonical diffusion process on
the Wasserstein space, when the underlying space is the one-dimensional torus. Then in [25],
Sturm constructed entropic measures on Wasserstein spaces P (M), where the underlying set
M is a compact manifold of finite dimension. Unlike the case when M is a one—dimensional
set, the closability of the Dirichlet form associated to the entropic measures, remains to—date,
an outstanding open question. We end this introduction by drawing the attention of the
reader to a (far from being exhaustive) literature which studies infinite dimensional Laplacian
operators on flat spaces. The first one due to Levy [18], relies on a concept of the mean of
a function on a Hilbert space, to propose a Laplacian operator. No meaningful subset of the
domain of definition of this operator was known until a later studied by Dorfman [9]. This
author proves, when the Hessian has the form HessU (z) = r(x)I 4+ T'(z), where r is uniformly
continuous and T satisfies a so—called N—property, then U belongs to the domain of definition
of Levy’s Laplacian operator. Other definitions of Laplacian operators on a Hilbert space
appeared in the literature. For instance, [26] considers a Hilbert space D) and a nuclear space
L and defined Laplacians on subsets of L2(IL*). The previously mentioned studies raised many
new challenging questions, which are not resolved in this manuscript but we hope the current
study may shed some light on the obstacle to overcome would a full Wasserstein Laplacian be
identified. We rather took a different turn by connecting some bilinear forms and measure to
a partial trace operator which is nothing but the infinitesimal generators of stochastic paths
on the Wasserstein space. The study in the pioneering work by Cardaliaguet et. al. [4],
concerned with the so—called master equation in mean field game systems, incorporated terms
which turned out to be A, U (cf. also [6] [7] [15] [16]). These master equations are first
or second order non—local Hamilton—Jacobi equations on the Wasserstein space in which the
presence of A, U was instrumental for the well-posedness of the master equation. Games
with both individual noise and common noise in [4] correspond to the case where € > 0 and
regularity properties of initial conditions are preserved over time. Identifying conditions under
which regularity properties of an initial value can be improved remain a question which we
hope will be better understood by studying properties of various Laplacians. This is a main
motivation of our work.
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2. NOTATION AND PRELIMINARIES

2.1. Notation. In this manuscript, if (S,dist) is a metric space, the domain of U : § —
R U {+£o0} is the set dom(U) of m € S such that U[m] € R.

A function p : [0,4+00) — [0, +00) is called a modulus if p continuous, nondecreasing, sub—
additive, and p(0) = 0. It is a modulus of continuity for U : & — R if |U(sa) — U(s1)| <
p(dist(s1,s2)) for any s1,s2 € S.

We denote R? as Ml because it is more convenient to write expressions such as (IRd)2 than
(R9)2. This notation is also meant to emphasize the fact that most of our results proven in this
manuscript are valid on spaces more general than R?. Throughout this manuscript, Pa(RY)
denotes the set Borel probability measures on (R?), of finite second moments. This is a length
space when endowed with W5, the Wasserstein distance.

Given m, v € P2(RY) we denote as I'(m, v) the set of Borel measures v on (]Rd)Q, which have
m as their first marginal and v as their second marginal. We denote as I'g(m,v), the set of
~v € T'(m, v) such that

Wim) = [ o=yl (de.dy).
(R)

We denote the first (resp. second) projection of (]Rd)2 onto (R?) as 7! (resp. 72)
w(z,y) =z, (resp. 7°(z,y) =y).

2m(de) <

Let L?(m) denote the set of Borel maps ¢ : (R?) — (R?) such that ||(||2, := f(Rd) I¢(x)
oo. This is a Hilbert space with the inner product (-;-),, such that

@3l = [ (@), Gle)mid).

Let T,,,Po(R?) denote the closure of VC((R%)) in L?(m), and let us denote the orthogonal
projection of L2(m) onto T}, Po(R?) as ,,,. The union of all the sets {m} x L?(m) is denoted
as TP2(R?%) and by an abuse of language, is referred to as the tangent bundle of Py(R%).

Let Pi. denote the set of permutations of k letters. If a € C we denote its complex conjugate
as a*.

Let Sym[(Rd)k] be the set of ® € C((Rd)k) such that there exists C' > 0 such that for any
x=(x1, - ,x) € (Rd)k,

|®(x)] < (14 |z]|?) and &(x) = &(z°) for any o € Py,

In other words, ® is well-defined on the k—symmetric product of (]Rd). In this case, we call ®
is symmetric. Let Symg[(Rd)k] be the set of & € Sym[(Rd)k] N C2((Rd)k) such that V2@ is
bounded and uniformly continuous on (Rd)k and V2® has a modulus of continuity which is a

concave function. Similarly, we define Sym[C¥] and Symz[CX] when the functions are taking
complex values.

When ¢ € Sym[(Rd)k], the function Fg : Po(RY) — R set to be
1

(2.1) Falm] := ¢ /(Rd)k B(wr,- a)m(der) - - - m(day).
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is well-defined. We denote as Sym[k](R) the set of Fp such that ® € Sym[(Rd)k] and denote
as Syma[k|(R) the set of Fgp such that & € Symg[(Rd)k].

The Fourier transform of ® € Sym[(Rd)k] is the function ® € Sym[k](R) defined by

k
8O = [ exn(-2n Y (G0 0(a)da.
(R) j=1
We denote the Fourier inverse of A € LQ((Rd)k) as A.

2.2. Preliminaries. Let U : Py(R?) — [~00, o0] denote a function with values in the extended
real line. The recent work [12], shows two notions of Wasserstein subgradient which appeared
in the literature to be equivalent. For that reason, we recall once more these definitions and
state in Remark 2.2 that they are equivalent.

Definition 2.1. Let m € dom(U) and let ¢ € L*(m).

(i) We call ¢ a subgradient of U at m and write ¢ € 0.U[m] if for any v € Po(RY)

a 'yEFo(m,V)

(2.2) U] —Um] > inf /(Rd)z () - (y — 2)1(dw, dz) + o(Wa(m, v)),

(ii) We call ¢ a supergradient of U at m and write € 0°U[m] if —¢ € 0.(=U)[m].
Remark 2.2. Let m and { be as in Definition 2.1.

(i) It has recently been shown [12] that { € 0.U[m] if and only if (2.2) holds when we
replace the “inf” by “sup”.
(ii) It is well-known that in case both 0.U[m] and 0'U[m| are not empty then they coincide.

Definition 2.3. Let m € dom(U).

(i) We say that U is differentiable at m if both 0.U[m| and O'U[m| are nonempty. In this
case, we set OU[m| = 0'U[m].

(ii) If 0.U[m] is nonempty, then it is a closed convex set in the Hilbert space L?(m) and
so, it has a unique element of minimal norm. As customary done in conver analysis,
we denote this element as V,,U[m] and refer to it as the Wasserstein gradient of U.

(iii) Thanks to Remark 2.2 (ii), if O U[m] is not empty, there is no confusion referring to
its unique element of minimal norm as the Wasserstein gradient of U at m.

(iv) If V,U[m] ezists, dU[m] : L?(m) — R denotes the linear form ¢ s ¢ - (U[m]) =
(VuU[m]; (m.

Remark 2.4. Note that if $ € C((R?)), then according to Definition 2.3, the Wasserstein
gradient of Fy is V.

Remark 2.5. Assume p: [0,00) — [0,00) is a concave modulus.

i) Then p(t)/t is monotone nonincreasing and so, for any t > 0 and ¢ > 0, we have
p

p(t) < ple) +t/ep(e).
(ii) If m,v € Po(R%) and v € To(m,v) then

/(Rd)2 lz —ylp(|z — yl)y(dz, dy) < p(WQ% (m, v)) Wa(m, v) <W2 (m,v) + 1)

[NIES
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Proof. (i) Mollifying p if necessary, it is not a loss of generality to assume that p is of class
Ct. We have t2(p(t)/t)" = p'(t)t — p(t). But R(t) := —p(t) is convex and so, for ¢t > 0 we have
R(0) — R(t) > R'(t)(0 — t). This is equivalent to t*(p(t)/t)’ < 0 which proves the first part of
the remark. If s € [0, €] and ¢ € [, 00) then

pls) < p(e) < p(e) + ~ple) and so,
This proves (i).
(ii) Let v € T'g(m,v). By (i) for any € > 0,

(m, v)

w3
2= ylo (2 — yl)v(da, dy) < p(e)( + [ e =y, dy)).
(RY)? ¢ (RY)*

We apply Cauchy—Schwarz inequality to obtain

€

[ o= ol = ) < Wt ) (P 1),

We conclude the proof by setting e := W, /Q(m, V). O

Remark 2.6. Let m € P2(R?), ¢ € VCX(M). Fort € [0,1] we set

ri(x,y) =1 —t)x+ty, E(x,y) / }VC ri(x,y)) — C(a:)’zdt Vr,y € (]Rd).
Define

(r)= sup  sup / (1 + |2))E(z,y)y(dv,dy), 1> 0.
Wa (m,v)<r vel(m,v) J (Rd)?

Then we have lim, o+ €:(r) = 0.

Since (R?) is not a compact set, the space Po(R?) is not a locally compact space (cf. e.g.
[1]). Suppose ¢ : (R?) — [0, 00] is a lower semicontinuous monotone nondecreasing function

6:(RY) = [0,00], lim 2&) _

2|00 |2]?

Consider the locally compact set

(2.3) Pys((RY) := {m € Po(RY) ) o(z)m(dz) < oo}.

(R%)
Remark 2.7. The subalgebra generated by {Fo | ® € C.((RY))}, separates points in Py((R?))
and vanishes nowhere. Hence, by the Stone Weierstrass Theorem, it is a dense subset of
C(Py((R%))) for the uniform convergence.

3. TRACES OF SECOND ORDER DERIVATIVE: THE PARTIAL LAPLACIAN OPERATORS

Let U : Po(R%) — [—00, 00] denote a function with values in the extended real line.
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3.1. The Wasserstein Laplacian operator. Consistent with Levi-Civita connection in [17],
we have the following definition.

Definition 3.1. Suppose U is differentiable in a neighborhood of m € dom(U) and for any
¢ € CX((RY), (RY)), v+ ¢ - (U[v]) is differentiable at m.

(i) We define Hess U[m] : VC°((RY)) x VC((RY)) — R if the following exists:
Fess Um] (1, G2) = G+ (G- (UI) ) = (V) - (UTm))

for any (1, ¢ € VO ((RY)). Here, V¢, (o = Via(i.

(i) If there is a constant C' such that |HessU[m](¢1, )| < C|Ci||lm [|C2llm for all (1,¢ €
VCX((RY)) then Hess[m] has a unique extension onto Ty, Pa(R?) x TpPa(RY) which
we denote as HessU|[m]. In that case, we say that U has a Hessian at m.

Given two nonnegative functions p, € : [0,00) — R (depending on m) such that lim,_,q+ €(t) =
0 and p is a concave modulus, in what follows, we denote Y : [0,00) x [0,00) — R as follows:

Y(s,t) := (t + s) <p(t) + e<s)).

Theorem 3.2. Suppose U is differentiable in a neighborhood of m € dom(U), and the map
x — V,Uv](x) admits an extension which is continuous for v in a neighborhood of m. Assume
further that there exists a constant Cy, such that

(3.1) VU p](@)] < Cn(1 + |2])

for any x € (R?) and any v in the neighborhood of m. Suppose p, e : [0,00) — R are nonnegative
function (depending on m) such that lim;_,q+ €(t) = 0 and p is a concave modulus. Suppose

there are Borel bounded matriz valued functions Alm] : (RY) — R¥™? and Ay (Rd)2 — Rxd
satisfying the following properties: for any v € Pa(R?) we have

sup [VuUPI0) = VuUlml(a) = Pyl )| < T (Wat )i le = o).
yelo(m,v

Here, for € 'P((Rd)z) and z,y € (RY), we have set
(32) Byfml(e) =A@y~ )+ [ A, a)(6 -~ a)y(do, ).
(R)

Then, U has a Hessian at m and

HessU[m](Cl,Cz)Z/ <f~1[m]($)€1(f€),C2($)>m(d9«“)+/ (Amm (2, a)C1(a), G2(x))m(dx)m(da)

(R) (R4)?
for C1,¢2 € Ty Pa(RY).
Proof. Fix (1,( € VCX((R?). We are to show that the map v — A(v) := dU[V](() is
differentiable at m and then show that ¢; - (dU[v]((2)) exists.

Let v € Po(R?), v € Tg(m,v) and set A, := V,U[v]. Since (5 is of compact support,
its first and second derivatives are bounded, and so, we may choose bounded vector fields
v,w € C’((Rd)z, (R9)) such that for any z,y € (R?) we have

33)  Gy) =G@) + V@) (y—2) + |y —zv(z,y), ) — ) =y —zlw(z,y).
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Note we in fact have the identity
1
(3.4) y—afowy) = [ (Va1 =00 +1) - Vo) -

By assumption, for each v € P((Rd)Q), there exists I(y,v,y) € (R?) such that |I(y,v,y)] < 1
and

We have then by definition of the map A that

AW) = A = [ (4(0):Gl0) — (An@). (@) (. dy)
(R4)
- /(Rd)z ({40 (1) — An(@), C2(0)) + (A @), C(0) — Gale)))7(dr, dy).
This, combined with (3.3) yields

A A = [ (4(0) A (@), o) + by sl o)1 (de, )

[ @), VGa(a)y — o) + Iy — ol )2 (e, dy)
(RY)

(3.6) —I+1II

Re=fin— [ V@A), )l dy)|

We use first (3.4) and second (3.1) to conclude that

1
R< /(Rd)glAm(mM/o (VG ((1 = t)a + ty) — Va(x)|ly — x|dty(da, dy)

2 ! 2
< W2(m7y)\//(Rd)2’Am(l‘)| /0 ‘VCQ(’H(CC,Q)) _VC2($)| dt’Y(d%dy)

! 2
(3.7) < CpWa(m, V)\//(Rd)Q(l + |x])2/0 ‘VCQ (rt(a:,y)) — V@(az)‘ dty(dz, dy)

Using the notation of Remark 2.6, the previous inequality reads off

(3.8) R < CpyWa(m,v)/ec, (Wa(m,v)), 31_i>%1+ \/ € (s) =0.

3.5)

By (

1= /( o (A -

/(Rd)2 <fl[m] (2)(y — =) + /(Rd)2 Apm(z,a)(b — a)y(da,db), |y — x|w(z, y)>7(dx, dy)
(3.9) ( r(

[ o 100X (Watim,o). o o), G0t d) = 11141V v
R

D)+ [ Ann )~ @ ), o) )y )

+
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We have by Cauchy—Schwarz inequality that
(3.10) V] < callo /(W T(Walm, ), 2 — yl)1(de, dy).
By Jensen’s inequality
(3.11) /(R o7 = VP ) e dy) < Wam e (Wa(m. )

Since p is concave, we may apply first Jensen’s inequality and second use the fact that it is
monotone nondecreasing to obtain

(3.12)

/( pa? p(lz—y[)Wa(m,v)y(dx, dy) < Wz(m,l/)p< /(w |1:—y|’y(dx,dy)> < Wa(m, v)p(Wa(m,v)).

We combine (3.10)-(3.12) and use Remark 2.5 to infer

(3.13) V] < Gl Walom. ) (2e0alm. 1)) (Walom. ) )+ (Wi (.0 (Wi (o, )41) )
Checking also that

||f~1[m](l‘)(1/—96)+/(Rd)2 A (2, a)(b—a)y(da, db)|ly < (| A[m]|l oo (m)+ | Amm | 22 (mem) ) Wa(m, v)
we conclude

(3.14) 1IV] < (1A 2 (my + | Amml| 22 (mem) ) W2 (m, v).

We combine (3.6) (3.8) (3.9) (3.13) and (3.14) and make the substitution (a,b) <> (z,y) to
obtain

A(v) = A(m) = / (A[m]" (2)C2(x) + V3 (2) A (@), (y — 2))7(dz, dy)

(R4)?
[ A 2)62(0) )y b )+ oWt v)

Thus, A is differentiable at m and

Vowhm](z) = Am]7 (2)Ga(2) + VT (2 / AT, (a,2)Co(a)m(da)
Consequently,
G ) = [ (A @), G@)mldo) + [ (Al 0)0(2), Gla)m(dam(da)
(R4) (R4)

319+ [ (An) VG @)md).

Making the substitution a <> = (3.15) and using definition 3.1, we yield the following:
(3.16)

Hess Ul (¢1,) = [ (Alm)(2)61(2), @) m(do)+ | (Al a)a(a), Cola)m(de)m(da).
(R4) (R9)

Obviously, there is a constant C such that |Hess U[m](¢1, (2)| < C||¢1llm ||¢llm. Thus Hess U[m)]

is well-defined and (3.16) remains valid for (1, (s € T Pa(RY). O



12 Y.T. CHOW AND W. GANGBO

Definition 3.3. Under the assumptions of Theorem 3.2, we say that U is twice differentiable
at m € dom(U). If Apm satisfies (3.2), so does (Amm) which is the matriz whose rows
are the orthogonal projections onto Ty, P2(R?) of the rows of Apm. Note that although A,
may not be unique, Ty, (Amm) 1s uniquely determined. In the sequel, we tacitly assume that

A = Tm (Amm)

(i) We define the Wasserstein Laplacian operator A, such that AU : Po(RY) — R, is
given by

d
(AwU)[m] =) Hess Ulm](e;, e;),
=1

where e; is the Wasserstein gradient of the i—th moment m fRd x;m(dz).
(ii) Given € > 0, we call Ny e such that Ny, U : Po(RY) — R, the e-perturbation of Ay,
such that

d
(D U)[m] = Z(HessU[m](ei,ei) te / <[l[m](:r)ei(:c),ei(x)>m(d:n))

i=1 (RY)

(iii) We define the second order Wasserstein gradient of U at m to be mp, (Amm) and we
denote it as V2U[m).

(iv) Suppose further that U is twice differentiable in a neighborhood of m. If (z,v) —
AlV](z) and (z,y,v) — m, (Av)(z,y) are continuous, we say that U is twice continu-
ously differentiable on that neighborhood.

Proposition 3.4. Let U be as in Theorem 3.2, which in particular means that we have fized
m € Po(RY) such that U is differentiable in a neighborhood of m € dom(U) and U is twice
differentiable at m. Let T > 0 and suppose o € AC5(0,T, Po(R?)) is a path which has a velocity
of minimal norm v € C*((0,T) x (R)) which is bounded and has bounded first order time and
space derivatives. If s € (0,T) and m = o then

d2

@U(at)) T Hess Ulos|(vs,Vs) 4+ (Orvs + Vvevy; Vi, Ulog))e.
=s

Proof. We skip the proof of this proposition since it is similar to that of Theorem 3.2. The

only new ingredient to use here is the following additional remark: if v, € T'g(oy, 0¢15) and

atn?: (]Rd)2 — (R%) denote the standard projections then

2 1

. 1 T T s . dy\2
flg%(W " )#'yh = (id, v¢) 4oy in  Pa((R%)7).

O

Remark 3.5. Suppose the assumptions in Theorem 3.2 holds, i.e. U is twice differentiable at
m € dom(U). Then

(1) A = VyU[m] is differentiable on (R?) and its gradient (w.r.t. the x variable) is

Alm], whose rows belong to T Pa(RY).
(ii) We have

AyUlm] = /(Rd) divy (Vo Ulm](2))m(dz) + /

oy Tr <V121,U[m] (z, a)) m(dz)m(da)
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and

(D l)[m] = (1+ ) /

(R) T (VEU (. @) Jm(dz)m(da)

divy (VU[m|(z))m(dz) + /(Rd)

(iii) Note that the expressions in (ii a) continue to make sense if we merely assume that

divy (A (2)) € LN (RY),m) and Tr(ViU[m](-,))eLl((Rd)Q,mQ@m).

3.2. Particular case: Hessians of functions belonging to Sym/[k|(R). Let ® € Syms [(Rd)k].
Set Ay, = Vi, ® when k = 1 and for z; € (RY) set

Am(xl):/(R o T, mmdas) ) k22

If 21,29 € (RY) we set

0 it k=1,
VQ (I)(:L‘l,{L‘Q) if k‘ = 2,

Amm(xlny) = e

(k—1) f(Rd)k72 V2 ®(x)m(dr3)---m(dry) if k>3

T2T1

For v € PQ((Rd)Q) we set

Pimles ) = Vo An() o o)+ [ A1, 22) (0~ e2)y(des,due),
R

Then we have the following lemma for special functions of the form Fgp and referee the reader
to [8] for related calculations.

Lemma 3.6. For any m € Pa(R%), the following hold.

(i) The function Fg is differentiable in the sense of Wasserstein at any m € Po(R?) and
VuFs [m] = A, €T, P> (Rd)

(ii) Further assume that V2® has a modulus of continuity p : [0,00) — [0,00) which is
concave. If v € Pa(RY), then there exists p,ea : [0,00) — R are nonnegative function
(depending on m and ®) such that lim,_,g+ p(t) = lim;_,o+ €2(t) = 0 and p is a concave
modulus and

SUEP | Au(y1) — Am(z1) — Pym, V]($17y1)‘ <z —ylp(lzr — y1]) + Wa(m, v)ex(Wa(m,v)) .
yElo(m,v

Proof. Note that since V2® is bounded there exists a constant C' > 0 such that
(317)  [®(2)| < CA+[z[), [VO(z)|<COA+z]), |[V®(z)|<C V ze (R

The second inequality in (3.17) ensures that for any m € Py(R%), V,,® € L (m®* 1) and so,
A,, is well-defined. Furthermore, ® is bounded. Similarly, the second and third inequalities
in (3.17) ensure that V,, A,, and A,,,, are well-defined and bounded.

(i) The proof of (i) is easier when k = 1. We assume in the sequel that £ > 2. Using the
fact that ® is symmetric, for any i € {2,--- ,k} if o is the permutation such that o(1) = 4,
o(i) =1 and o(j) = j for any j & {1,i} we have

(3.18) Vo, (z) = Vo, &(2”).
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Applying Taylor expansion, thanks to the third inequality in (3.17) there exists a uniformly

continuous function f : (]Rd)k X (Rd)k — R bounded by C such that
a 1
(3.19) O(y) = () + Y Vo, ®(2) - (i — ) + 5l @)l — yl?.
i=1

Let m,v € Po(R?) and let v € I'g(m, v). By changing variables

/ Vo, ®(x)-(yi—x3)y(dxy, dyr )y (de, dy;) = Vo, ®(x7)-(y1—21)y(ds, dy;)y(dxy, dyr).
(R)? x (R (R)?

Using (3.18) we conclude that
(3:20) / (inq)(x) “(Yi — ) = Vg, (2) - (11 — $1)>V(d$1, dy1)7(dz;, dy;) = 0.
(B4)? x (RY)?

We have

Faly] ~ Falm] = | /( e B0~ 2 )

This, together with (3.19) and (3.20) implies

(3.21)
1
Fplv] — Fp[m] =/ Am(wl)-(yl—fvl)v(dasl,dyl)Jr/ f(z,y) |z —y*v**(dz, dy)
(RY)2 2 J(mray x (Re)*
and so,

Ck
Fale) — Fal) = [ Ane) - =it )| < GWEn,0)
R
This proves that A, € 0Fg[m]. Note that A,, is the gradient of
x1 = Dy(x1) := / O(xy1, -+, xp)m(dze) - - - m(dxy)
(Rd)k—l

which is a bounded function with bounded first derivatives. Thus, A,, € T;,P2(R?). For any
¢ € T,,Po(R?) we have m,,(C — A,,) = 0, which means that m,,(¢) = Tn(An) = An. In
particular ||C||m > [[Tm(O)]lm = || Aml|m, which proves that A,, is the element of minimal norm
in 0Fg[m).

(ii) Since the proof of (ii) is easier in the case k = 2 compared to the case when k > 3, we
assume in the sequel that k > 3.

Let ¢ € {3, -+ ,k} and let o be the permutation such that o(2) =4, (i) = 2 and o(j) = j
for any j & {2,i}. Given z = (zy,- -+ ,xp) € (Rd)lc using the fact that ® is symmetric, we have

(3.22) (Vo ®)(@) = (V3,0,®) (@) = (V3,,,®)(27) = (V3,,, ®)(27).

k
For any y = (y1,- -+ ,yk) € (RY)",

(323) (Ve ®)(y) - (Vo @)(x / V2, @)+ tly — o))y — i)
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Let m,v € Po(R%) and let v € Tg(m,v). The change of variables which exchanges xs with x;
is used to obtain

/ . ((Vizl‘l’)(l‘)(yz’ — i) = (V3,2,2) (@) (y2 — $2)>7(d$2, dy2)y(dzi, dy;) =0
(RY)"x (R)
Combining the latter with (3.22) we infer
(3.24) / , 2((V§ix1¢)(%‘)(yi — i) = (Vi @) (@) (32 —$2))7(d$27dy2)7(d$¢,dyi) =0
(R4)"x (R?)
Set
(.9) / V2 B 1y — 2)) — (V0, ®)(a) ) (51— )

By (3.23)

Ay (y1)—Am(71) :/( e iy 1/ V2 0 @) (@+t(y—2)) (yi—;)dty(dae, dys) - - v (dwy, dyy)
This, together with (3.24) yields

Ay(y1) — Am(z1) = Vo, A(21) (Y1 — 21) +/( o A (21, 2) (y2 — 22)7(dx2, dys)
R

1
(3.25) " /(Rd)“ - | elader(de. ) (o).
X

Let p : [0,00) — [0,00) be a concave function, modulus of continuity of V2®. Then there exists
a constant C}, depending only on k and d such that

k
lex(2,y)| < Cr > pllzi = yil) i — wil-
i=1
Thus, if we use the notation &' = (z9,--- ,x1), we have

dty®* = (azt dy') < C, / i — vil)|zi — yily(dzi, dy;

Lo | et g kz pllzs — yiDles — yiby (d )
= Ckp(’$1 — y1\)|$1 -y

(3.26) +C’k2/ p(la — b])|a — bly(da, db).

Thanks to Remark 2.5 we conclude

1
/(Rd)k—l (Rd)k_l /0 |et(a:,y)|dt’y®(k71) (dilv dgl) < Ckp(|551 - y1|)|1"1 - y1|
X

1 1
(3.27) + (k = 1)Crp(W (m, v)) Wa(m, v) (W; (m, v) + 1))
This, together with (3.25) and (3.27) proves (ii), after setting setting p(t) = Ckp(t) and ez (t) =
(k — 1)Cip(t) (t% + 1). 0

Remark 3.7. Using the notation in Lemma 3.6, we obtain the following.
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(i) First
Var (Am(21)) = Vilxl@(l‘l, e xp)m(dza) - - - m(dxy)
(Re)"

is a symmetric matriz such that each row is an element of Tp, P2(R?).
(ii) Second, the rows of Ay are in Ty, Pa(RY).

With the above, we obtain the following. Although the expression of A, Fp coincide with
that in Section 5.3 in [4], we are putting here for the sake of completeness.

Corollary 3.8. Further assume that V*® has a modulus of continuity p : [0,00) — [0, 00)
which is concave. Then,

(i) Fg is twice differentiable at any m € Po(RY), V,U[m] = Ay, and V2 Fglm] = Apm.
(il) We have Ay Fo = Fog,.
(iii) Similarly, if € > 0 then A\, €F¢’ = Fo,. Here

<1+e ZAxJ¢+§;axn o) >
j#n

Proof. Thanks to Lemma 3.6, we apply Theorem 3.2 to obtain that U is twice differentiable.
Remark 3.5 gives an explicit expression of A, Fg[m] and that of A, Fg[m]. We use the
symmetric properties of the second derivatives of ® to obtain

/(Rd)k Ny, Pm(dzy) - - -m(dxy) = /]Rd) ZA Dm(dxy)---m(dxy)

and
L 020
——m(dzy) - dzxy,) / dxy)---m(dx
o St mtte0 = gty [ 325tttz
to conclude the proof of the Corollary. 0

3.3. Convergence theorem for the Wasserstein Hessian. In this subsection p € Po(RY),
C, > 0 and O, an open ball centered at u € Py(R?). Suppose Gy : Po(R?) — R is a sequence
of continuous functions converging uniformly to G : P2(R%) — R and Gy is twice differentiable
(cf. Definition 3.3) on O. Suppose

VuGylm] € C(RY);RY),  V(V,Gr)[m]) € C(R); R, V2 Gylm]) € C((RY) ;R )
for any m € O and |V,,Gn[m](z)| < Cu(1 + |2|) for any (N,z,m) € N x (R%) x O. Suppose
(z,m) = V(VuGn)[m](z) is continuous bounded on (R?) x O and (z,y,m) — V2,Gn[m|(z,y)
is continuous and bounded on (Rd)2 x O independently on N. Suppose

(3.28) sup
v€Tlp(m,v)

Gl = Gylm) = | VuGalml(2): (s = 2)1(do. da)| < ColWFm,),

for any m,v € O, and

(3.29) sup | VuGn[V](y) — VuGy[m](z) — Py [m](z, y)‘ < C(jz = yI* + Wi (m,v))

v€To(m,v)
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2
Here, for v € P((R%)") and z,y € (RY), we have set

By ml(e.) = V(VuGm)Iml@(y =)+ |, VeCnlml(z.a)(b - apy(da, ),
Theorem 3.9. Suppose (3.28) and (3.29) hold and

(a) (VwGn)y converges uniformly on (R%) x O to (z,m) — Ap(x),

(b) (V(VwGn))y converges uniformly on (R?) x O to (z,m) — Alm](z)

(c) (V?UGN)N converges uniformly on (]Rd)2 x O to (z,y,m) — Amm(z,y).

Then

(i) G is differentiable on O and A = V,,G. )
(ii) G is twice continuously differentiable on O, A=V (VyG) and Apmm = VEG[m).

Proof. Note that (z,m) — A, (x), Alm](z) and (z,y,m) — Apmm(z,y) are continuous and the
latter two functions are bounded as limits of bounded functions. Let m,v € O.

(i) For any v € I'g(m, v) we have
[ (FuGnlml(@) = 4n(@) - (v~ 2)1(dodn)| < [ VGl = 4], Walm,v)
(R4) L=
and so, letting N tend to oo in (3.28), we obtain
’G[V] — G[m] — /(Rd)2 Ap(z) - (y — x)vy(dz, dx)’ < CpaWi(m,v).

Since v € T'g(m, v) is arbitrary, we conclude A,, € dG[m|. Observe that since |V,,G[m|(z)| <
Cp(1 + |2|) for any (z,m) € (R%) x O, and as V,Gn[m] € T,,P2(R%), we conclude that
A € T Pa(RY) and so, A, = V,G[m).

(ii) Since (V(VwGN))N converges uniformly to A, we have A = V(VwG). Observe if
v € To(m,v) and 1,y € (RY) then

‘/(Rd)g((vq%;GN[m]_Amm)($1,$2)(y2_1’2))7(d$2,dy2)‘ < vaGN[m]_AmmHLoowz(m’l/)'

As above, we conclude that

VuGll(y) = VuGlml(@) = Py [m](w,9)| < Cun(loe = yl? + WE(m,v))
where

Py )z, y) = Alm](@)(y — ) + /( o A 0)( = ) ).
Since Y€ [o(m,v) is arbitrary, we apply Theorem 3.2 to obtain that G is twice differentiable
at m, Ajm] = V(V,G)[m] and Ay, = V2G[m]. The identity m, (VZGn[m]) = V2Gn[m]
implies Apm = T (Amm). We conclude the proof of (ii) by setting p(t) = Cp,t and ex(t) =
Cnt. O
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4. FOURIER TRANSFORM AND EXPANSIONS

4.1. Polynomial eigenfunctions of the Laplacian operator; Harmonic functions. Let
®f € Symy[C¥] be defined by
k
k

of () == % > exp(=27i Y (o)), VE= (G &) € RY

o€P;, j=1
The function CD’E is obtain as the symmetrization of x — exp(—2m’ Z§:1<§j, x]))

Set
k 2
(4.1) A2(€) = 47r2( Zgj‘ and (€)== /(Rd) exp(—2m(¢;, 2))m(dz).
j=1
Note m is the Fourier transform of m.

Lemma 4.1. The following hold for any m € Po(R?) :

(i) We have ka[m] =k! H§:1 m(&;).
(ii) We have AwFf[m] = —)\i(f)Ff[m]
(iii) We have Aw,EFf[m] = —(/\i(f’) + 472¢ > ‘gj‘2>F§k[m].

Proof. We skip the proof of this lemma as it can be readily obtained.
Remark 4.2. The followings hold.

(i) If \e(&) = O then ng belongs to the kernel of /. We say that ng is a harmonic
function.

(ii) (non smooth harmonic functions) Let f € Symy[(RY)] be an even function and set
®(z,y) = f(z—y). Note that divy(V,P) = Tr(Vy,®). Using Corollary 3.8, we conclude
that Ay Fa[m] =0 and so, U is a harmonic function. Starting with f ¢ C3((R%)), we
obtain that ® ¢ C3((R%)) and so, Fp is a harmonic function which is not reqular up to
the third order. However, if € >0, Ay Fo # 0 and Ay, has a smoothing effect.

(iii) A direct consequence of (ii) is that [y, is not a smoothing operator (except on H* (Pa(RY)):
cf. Theorem 6.3).

4.2. H°—-spaces and spaces of Fourier transforms. Throughout this subsection, s > 0 is
a real number.

Definition 4.3. Let Ay be the function defined in (4.1).

(i) We call A the set of sequences of functions (ax)32, such that ay (Rd)k — C is a Borel
function that is symmetric in the sense that ax(§) = ar(&7) for any € € (Rd)lc and any
o € Py. In other words, ay is defined on (Rd)k/Pk, the k-symmetric product of (R%).

(ii) We call (a)32, € A the Fourier transform of F : Po(RY) — R, if there exist @y €
Sym[k](R) N LQ((Rd)k) is such that the series

o0

3 By()m(dar) - - m(day)

1 k! k (Rd)*
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converges to F' and a, = ®y,.

Definition 4.4. We have the following definition.

(i) We call A® the set of sequences A := (ak) C A such that

k=1
(4.2) A% = Zm/ lax(€)12 (1 + A2(€))"dE < oo.

(ii) If B = (bk)kzl € A®, then the following is a well-defined sesquilinear form (cf. Lemma
1.5):

(4; B) s -_Zk‘/ (€) (1 + AR(8)) de
Lemma 4.5. The sesquilinear form (-;-)gs : A® x A® — C is well defined.

Proof. Let A, B € A® be as in Definition 4.4. Then for any A > 0 we have

£)|2 2 2 2 s
(4.3) ) NE(©)) | < / lax{ A2[b 1+ A2(6))"de.
k! /Rd O+ 8= 3m R\ A2 + X0 (&)17 ) (1 + Ai(€)) " dg
Therefore, the series produced by the left hand side of (4.3) converges absolutely, which con-
cludes the proof. O

Lemma 4.6. Suppose A := (ak)zozl and B = (bk)iozl belong to A°. Then
[(A; B) s | < [|Allms - ||Bllms,  |[A+ Bllas < [|Allzs + ||Bl| s

Proof. Assume without loss of generality that ||B||go # 0. By (4.3)

HAHHs

2[(A; B)us| < + N[ Bl|s.

1 _1
We use A := ||A]|}.||B]|2 to obtain the first desired identity. The second desired inequality
is a consequence of the identity

1A+ BllGs = [|AllZs + 1Bl + (4; B)ns + (G; F)as

Lemma 4.7. Let ¢ € Sym[(]Rd)k] N L2((]Rd)k) and let (ak)zozl, (bk);il € A be such that
— 1
> 1 L (O + @) e < o

(i) Since the Fourier transform is an isometry of L2((Rd)k; C) onto LQ((Rd)k; C), we obtain
a:=o¢ LQ((Rd)k;(C). One checks that a is symmetric and so, if we further assume
that ® € LY(RH") then a € Sym[k](C) N L¥((RY)"; ).

(ii) Observe for any k > 1, ax,by € LQ((Rd) ;C). Let @k, Uy, € Sym[k](C) N L2((Rd)k;(C)
be such that aj, = dy, and by = V. For any N > 1,

Zk,/ E)bi(€)de = Zk,/ (z)dz.
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(iv) Further assume for any integer k > 1, aj € Ll((Rd)k; C). Then for any N > 1

N 1 i N 1
> o @l = Wor: /(Rd)k Dy()m(dey) - m(day)

The series converge uniformly on Pa(R?) if there exist constant C,6 > independent of
m and k such that

Ck!
(1.4 o lon(@leE < 7

Proof. (i) is straightforward to check. (ii) is a consequence of Plancherel’s theorem and the
fact that the Fourier transform is an isometry of LQ((Rd)k; C).

(iii) Since ®j = ay, when a;, € Ll((Rd)k; C), we may use Fubini’s theorem to obtain

/(Rd)k O (z)m(dzy) - - - m(dzy) = /(]Rd)k m(dxy) - - - m(dxy) /(]Rd)k ar(&1, -+ L&) exp( 271’22 &, xj) >

k
— /(Rd)k ag(&r, -, &) dE /(Rd)k exp(2m; &, xj) > (dzy) - - - m(dxy)

(15) = [ ke G Rlmlde

By the fact that |Fk[m]| < k=1, we have

Yoc
‘Zk'/Rd OF dﬁ‘ k'k/ e = kz_:W

This concludes the proof. ]
Definition 4.8. We have the following definition.
(i) We call H*(Pa(R%)) the set of F : Po(RY) — [—00,00] for which there exist (ag)$e, C A°

such that
=1
S [ @ rEmdg
=1 J(RY)

converges to F[m] for any m € Po(R?).

(ii) We define H*(P2(RY)) the set of F : Po(R?) — [—o0, oc] for which there exist (ay)32, C A?,
5, C > 0 such that (4.4) holds for all k natural number and

- l a k m
(4.6) ;k! /(Rd)k K () FE [m]d¢

converges to Fm] for any m € Py(R?). Thanks to Remark 5.2, the following definition is
meaningful.

From definition, we have

H(P2(RY)) € H*(P2(R?)) N C(P2(RY))
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and the second inclusion results from the fact that the convergence of the series converges
uniformly on m € Pa(R?%) (cf. Lemma 4.7 (iv)).

4.3. Integrations by parts; Hessians in terms of Fourier transforms. Throughout this
subsection 5,6 > 0, € > 0 and (ak)oo € A°. When needed we shall make various assumptions

such as =

) Ck!
(4.7) '/ng)k\ak<s>\.y§1\ds, J(Rd)krak<s>y.\slr d < o

Ck!
(48) Jo @l ol <
or

CE! CE!

(4.9) /(Rd)k |ar(€)] - €12 de < 2ite’ /(Rd)k lar(€)] - |&1]? - €2lde < PR g
When (4.4) is in force then the series
(4.10) Z x /Rd [m]d¢,  m € Py(RY)

converges uniformly (cf. Lemma 4.7 (iv)).

Corollary 4.9. Assume (4.4), (4.7) and (4.8) hold.

(i) Then Uy is continuously differentiable on P2(R?), and using the notation (€, z) in place
of Z§:1<£j,l‘j>, we have

@11)  VuUslm j{:“2ﬂ“ G =272 1y (dg) - - m(dag ) dE

(i) If we further assume (4.9) holds, then Uy is twice continuously differentiable on Py(R?).

We have
(412) V(Tuliolnlie) =3 T [ o060 e T ) i
and
(4.13)
© 9 _ .
V2 Uolm](z1,22)) = ; Zhrlifl) /(Rd)k_Qx(Rd)k ap(€) & @ E2e7 28D m(dass) - - - m(day,)dE.

(iii) Under the same assumptions as in (ii),
k
DN Uo[m Z o /Rd ) D, (FE[m])dE.
Proof. (i) Let m € Py(R%) and set

N o N o
=2 % E=2 5

d
k= (R

/ O (z)m(dezy) - - - m(dxy),

,_.
?’r\H
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where ®;, = dy. Observe

Vi, @r(z) = —27m'/

(R4)*

k
ar(€)r exp(—2mi > (&, 3,) ) de,
j=1

Thus, by Lemma (3.6) and the linearity of the Wasserstein gradient,

V GN[ :—27T7,ng

where

1 .
e =g [ aw(©a ep(-2mi D65 )t -l

If v € Po(R%) and v € I'g(m,v), the first order expansion of ¢t — e~2™ yields the first order
Taylor expansion of Fg, around m, given by

Fo, )~ Fay o]~ [

(Rd)QWwF@k [m](z1);y1 — $1>’Y(d131,dy1)‘ < ClKJW3(m,v).

Here

'y [ 6l

7,l=1
Since aj, is symmetric,

a1y 3 o toletan@las =k [ jePla@ide k-1 [ llelan©las

7,l=1

We combine (4.4), (4.7) and (4.8) and use that k£ —1 < k to obtain k'*°C[k] < 47%k! C. Thus,
by the above first order Taylor expansion of Fg, around m we obtain

(415)  |Gal] - Galm] - /( o (VoG lml(an)ion —o1)y(das,dy)| < ColWE(m,v)
R
where
i Lo
k.
k=
But (21, m) — gb[m](x1) are continuous functlons such that
1
sbiml(en)| < 5 [ law(©glde;
k! (Rd)k

Thanks to (4.4) and (4.7) we obtain that the series (—2i SN gplm)(x1)) y is a Cauchy
sequence for the uniform convergence and so, it converges uniformly to a continuous function
given by the function at the right hand side of (4.11), which we denote as A. We let N tend
to oo in (4.15) to conclude A = V,,Up and conclude the proof of (i).

For any n € {1,--- ,k} we have

(4.16) Ve Or(z) = —472 /
(R

k
ar(€)61 @ & exp(~2ni Y (,w,) ) de,
j=1
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Hence by Remark 3.7

(4.17) V(VuwGn[m](z ——47r229k
where

g,i[m](:vl) = /(Rd)klx(Rd)k ar(€)& @ & exp( 2mz &, ;) ) (dxo) - - - m(dxy)dE

1 1 a 2
btmiten| < g5 [ lewt@)l 6P

Thanks to (4.4) and (4.7) again, we obtain that the series (—47? SN gh[m] (1)) y is a Cauchy
sequence for the uniform convergence and so, it converges uniformly to the continuous function
A at the right hand side of (4.12). We will soon see that it is legitimate to denote this limit

s (VwUo[m](z1)).
By Lemma 3.6 and the linearity of V2,

(4.18) V2 Gn[m](z1,32)) = —4n° ng (x1,2)
where
k-1 i
gilml(w1,22) = = /(Rd)kzx(Rd)k a(§) &1 ® & eXp<—27TiZ;<€j,$j>)m(dx3) - m(dag)dé.
‘]:

The first order expansion of t — e~2™ yields the first order Taylor expansion of Ay, := VuwFs,
around (z1,m) given by

Apv)(y1) = Ag[m](z1) —4n°klgg[m] (21) (y1—a1) —4n k! /(Rd)g gelm]* (z1, 22)(y2—w2)(dwa, dya)+ By

Here, the remainder B, is such that

| Bi| < 4x? Z / - ar( NG 1y — zilly; — x5y (dza, dy2) - - - y(dwy, dyy)dE.
Jil=1

Using the fact that aj is symmetric, we argue as in (4.14) to express the upper bound on Bj
in terms of integrals involving just the variables (&1, &2,£3). We obtain

Bl < 4o~ [ el g
(R?)
car b= ) WRm ) ([ Ja@llalelds+(-2) [ lal@lalililde)
(R?) (R7)

4870 = Dlor = [ Walm.) [ an(©)ll6 Il
(R4)
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We use that 2|&||€3] < |€2]? + |€3]? and use again the fact that aj is symmetric and argue as
in (4.14) to eliminate the variables &3 from the previous integral. We obtain

B <t —nP( [ l@llaldc -0 [ jalalel)

ar(e = D) [ Ja(©)ll6laldg
(R4)

We exploit the first order Taylor expansion of V,,Fg, around (z1,m), use (4.17) and (4.18) to
conclude that by linearity that

VuwGn V(1) — VuGn[m](z1) = V(VWGn[m](z1)) (y1 — 21)
(4.19) + [ ViGNl a) (e - a1 (doa, dye) + Ry
(R9)

where the remainder Ry satisfies

k

ol < 4% (2 | e@lara+ 0 [ ja©laPieie)
1 k! (Rd)k k! (Rd)k

N
o~ (k= Dk o 2
+4w; W ) /(Rd)krak@w@\ Ealde

We combine (4.4), (4.7), (4.8) and (4.9) to obtain that a universal constant C' such that
‘RN| < ém =
k=1

C
JEEE

If necessary, we replace C, by max{Ci,,Cy,}. We use (4.19) to obtain

(420) | VuGln) = VuCnlml (@) = B ml(@1,51)| < G (Jer = + W3 (m,v))

Here,

PN [m](z1,11) := Ve, (VwGn[m](21)) (11 — 1) + Rey? Vo, GnIml(z1,22)(y2 — x2)7y(dxa, dys),
We have

k—1
atimites,en)| < S [ lawt@) eaPac

Once again, thanks to (4.4) and (4.7) we obtain that the series (—47? ch\;l g2 lm](z1, xg))N isa
Cauchy sequence for the uniform convergence and so, it converges uniformly to the continuous

function A at the right hand side of (4.13). We let N tend to oo in (4.20) to conclude that
(421)  |[Vulalvln) — Vulolml(@1) = Pyml(@s, )| < Con(Jo1 = o1l + WE(m, )

Here,

Pyl ) o= Al =)+ [ A ) e (e d),

We use Theorem 3.9 to obtain that
Alm](z1) = V(VoUo[m](21))  Alm](a1,22) = V3,U[m](a1, 22))
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and conclude the proof of (ii).

(iii) By Corollary 3.8 and the above uniform convergences, we have

— 1
Ay Up(m ZAm( k, /Rd)k ak@)Fgf[m]df) = ;k, /(Rd)k 0 (§) Do e (FE [m]) dé.

This concludes the proof. O

In the next proposition, we assume that we are given (by)?°, C A° be such that (4.4), (4.7),
(4.8) , (4.9). We assume that

Ck!
(122) st )N € < 7
and
3 1 a Z)\t o0
(123 S 51 gy I OPA 1t < o

Assume (b;)2, C A° is such that the analogous of (4.4), (4.7), (4.8) , (4.9). Define

F .= Zk‘/ [m]de, G‘:Zl!/(Rd)k b (§) FE[m]dé.

Proposition 4.10. Assume s = 0, and (ax)32, and (by)32, (4.4), (4.7), (4.8) , (4.9), and
(ar)72 further satisfies (4.13) hold. If (4.22) and (4.23) hold then

(i) The following functions belong to the d—cartesian product of H°(Po(R%)) by itself:
m — VuwF[m](z1)m(dzy), VuwG[m](x1)m(dzy)
(R7) (R%)

(i) We have Ny F € HO(Pa(RY)).
(iii) We have the integration by parts formula:

—(AWF; G o = < Vo F[m](z)m(dx); VuG[m] (w)m(da:)>
(RY) (RY) HO

(iv) In particular,
2
—<AwF, F>H0 =

/ Vo F[m](z)m(dz)
(R)

HO

Proof. Corollary 4.9 ensures that F' is twice continuously differentiable, G is continuously
differentiable. Setting

K k
)= &ar,  gr(§) =D &br,
j=1 j=1

we use Lemma 4.1 and Corollary 4.9 to obtain the explicit expressions

(4.24) Vo Flm] (z1)m(d1) = 27” / (mlde,
(R9) (RA)*
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(4.25) VoG] (z1)m(day) = _27” / m]de
(&) Ryt
and
= — 3 a 2 kim
(1.26) Buklmlie) = =3 o O RE

Combining (4.4) and (4.22) we have

2Ck!
4. 2 -
am [ @S [ el [ o < 7

Since (ag)fe, C A°

S fe(€ \ak
(4.28) ;/@Wa d§ /Rd) Z £)d¢ < oo

We combine (4.27) and (4.28) to conclude the the proof of (i) for F. Similarly, we conclude
the proof of (i) for G.

(ii) is obtained as a consequence of (4.22) and (4.23).
(iii) Since A, F € HO(P2(R)), G we use their expressions to obtain that have

(4.29) (DuF; Gl Z - /Rd (€)X (€)de
We use the expressions in (4.24) and (4.25) to conclude thet
>, 472 2
(VuF VuGm =Y 1 [ an@)(bute d
. d
k=1 (R)
This, together with (4.29) concludes the proof of (iii). O

5. RECOVERY OF k~POLYNOMIAL OF H*(Py(R?)) FUNCTIONS

The studies in this section are preliminary useful to express the scalar product on H°(Py(M))
in terms of a measures on P2(M), which we later define in in Section 7 . In this section, we
study two types of problems. The first one consists to know if we can write any symmetric

function ®;, € C’((Rd)k) in terms of Fg,. The second question is related to the following
property about Fourier transforms. Given (ay);2, € A® such that a;, € Ll((Rd) ), define

N

1
Fy:m—>) — &) FFim)deg.
v ;k’/w)’“ak() b

for any natural number N. For k € {1,---, N} we are able to recover f(Rd)k ak(ﬁ)Ff[m]df

from F. For instance, the recovering allows to conclude that if Fy = 0 then a = 0 for any
k € {1,---,N}. In this section, we endeavour to prove a more general statement by allowing
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N = oo, at the expense of imposing additional growth conditions on the |lag|/;:1. Further
assume there exist C, ¢ > such that (4.4) holds and

— 1
D L o OFE
k=1

converges uniformly on P2 (R%) on P2(RY) (cf. Lemma 4.7) to a function we denote as F' . Set
k

(5.1) By := Gk € Sym[(RY"] 0 L2((RD)")
Note, @y, is continuous and by Riemann—Lebesgue lemma (cf. e.g. [23] Exercise 22 pp. 94)
(5.2) lim ®x(z) =0.

|| =00

5.1. The inverse of the restriction ® — F3 to polynomial. A natural question we address
in the subsection is the reconstruction of ® from F = Fg. For example, assume k = 2 and
F = F535. We have

(5.3) F(ba,) = /( o O(x1,22)0q, (dx1)dg, (dxe) = P(a1,ar).
R
Similarly,
day + 0q 1
(5.4) F(%) = 1 (@(al, al) + <I>(a2, CLQ) + 2@(@1, CLQ))
We combine (5.3) and (5.4) to obtain the polarization identity
day + 0q 1 1
(5.5) ®(a1,a2) = 2F<%) = 5F (00) = 5F(0un)-

Observe that if Fhg = 0, (5.5) implies ® = 0 and so, & — Fg is an injective map of C((Rd)2/P2).
In general, we could determine ® applying the idea of coming from the construction of polar
forms, either by a construction using differentiation or the inclusion—exclusion principle. To
avoid differentiating, we chose here to use the inclusion—exclusion principle.

Given two positive integers 1 < r < k we defined the index set of multi-indexes
CF = {(i1, - ,ir) | i1, iy € {1, -k}, i1 <ig < --- < iy}

Now, given & = (x1, 2, -+ ,x)) € (Rd)k7 and for a given multi-index (iy,--- .i,) = I € CF, we

define m;, as follows:
1 T
My, = " deij'
j=1

Given a continuous function F : Po(R?) — R, we define

1 k
OLF)ar, ) = 3y S (0 3 Flm) ).
r=1

IeCk

Theorem 5.1. The map kOy, is the inverse map of ® — Fg. In other words, we have

k
(21, 2p) = ;,Z((—l)k_rrk > Fk@(mxz)) = Ox(Fra) (21, s 2k)
Tr=1

IeCk
for any x1,--- , x5, € (RY). In other words, Oy(Fg) = ®/k.
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Proof. Note first that for any F' = Fj¢ such that ® € C’((]Rd)k/Pk), Oy (F) is continuous and

symmetric in the sense that it is defined on the quotient space (Rd)]C /Py Let Mc((R%)) denote
the set of signed Radon measures of compact support on (R?). This is a vector space which
contains the set of Radon probability measures on (R?). We define o : M¥((R?)) — R by

Oé(ml,...,mk) = /( d)k (D(ﬂ?l,frg,...,J,'k)ml(d{l}l)mQ(d.TQ)...mk(dﬂ?k),
R

for mq, -+ ,my € M.((RY)). This is a k-multilinear form and so
m — a(m) := a(m,...,m).

is a k~homogeneous functional on M.((R%)). We apply the polarization identity coming from
the inclusion—exclusion principle, which goes back to [19] [20] [21] (cf. [22] for a recent and
simple proof, and [14] [27] for a formulation in terms of n-th defects of F). We obtain

k
(5.6) (i, ) = %Z(—l)’“’" S a (Z m) .
tr=1

IeCk iel
Setting m; = ,,, using the definition of o and the fact that « is k—multilinear, we have

O O
D(21, 22,y T) = A(Ogy, -+, 0p,) = rka(Tl, e ’Tk)

This, together with (5.6) yields

(I)(Il;‘l,l‘g,..., k ]{' Z Z (m:pj)

IeCk

Since Fjre and & coincide on the set of Radon probability measure, we conclude the proof of
the theorem. ]

5.2. One dimensional analytical extension. For any A € (0,1), m € P2(R%) and y € (Rd)k,
we have

Fp, [Am +(1—)\)5y]
k
1

6D = E NN [ Bl gy I i)

- (RY) k\lf-’

—I[ times

Now since
(5.8) [Prllre < [Jag|lp < oo

we may apply the dominated convergence theorem and use (5.2) to obtain that all the terms
n (5.7), except corresponding to k = [, tend to 0 as |y| — oco. Thus,

(5.9) lim Fgp, (Am+ (1 —\)§,) = N Fg, [m].

ly|—o0
Remark 5.2. Suppose (ax)72, € A® satisfies (4.4) so that (5.1) holds and @), € Co((Rd) ).
(i) For any (A\,m) € (0,1) x Py(R%)

1
(5.10) lim F (Am+ (1 — Z— =: F[\, m].
k=1

ly|—o0 k!
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(ii) Hence, A\ — F[\,m| admits a extension denoted the same way, which is continuously
differentiable at 0. For anyl > 1,

or

(5.11) o

(A, m]

= F.:pl [m] .
A=0

Proof. (i) By (5.7) and (5.8) we obtain for any integers 1 < M < N,

N i Ny k-1 el l e
Z H‘F@k[)\m—{_(l_)\)&y]_)\ Fcbk[m]‘ < Tk “(k_l)!)\(l—)\) “aw]| .
k=M k=M 1=0

3l
- k! k
k=M

This, together with (4.4) implies

1 = C
k:ZM | o [xm + (1= X)8,] = A Fa, m]| < k:ZM T

Thus by (5.9),

limsup|F (Am + (1 — X)dy) — ]:[)\,m]‘ < Z L
ly|—o0 k=M

We let M tend to oo to obtain (i).

(ii) Observe the domain of convergence of the analytic function (3_7°, 2/k**?) in the com-
plex plane C is the unit disk. Since by (4.4)
1 C

Fo, | < —
k! 73?(1115)‘ nl < v

we conclude F[-,m| extends to an analytic function on the unit disk. Therefore, it is differen-
tiable at 0 and one checks that (ii) holds. O

5.3. Projections of a subset of @@, Sym[k](R) onto Sym[k](C).

Definition 5.3. For any natural number k, thanks to Remark 5.2, we may define the following
operator Ty : H*(Pa(R%)) — Syml[k](R) as follow:
B oF

e (F)[m] := W[A,m] - Vm € Py(RY).

Then the following Corollary is a direct consequence of Remark 5.2.

Corollary 5.4. Suppose (ap);>, € A° satisfies (4.4) so that (5.1) holds and ®y, := @), €

C’o((Rd)k). Let F € H*(Po(RY)) be the continuous function obtained as the uniform limit of
the series

> 1 & B <1 d
kz_l k! /(Rd)k ak(§) F¢'[m]d€ = kZ_l EF%[m] vm € Py(RY).
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(i) We have

1 o0
m(F) = 7 Fa, and F = > m(F

(ii) In particular 7 o mp(F') = 7 (F).
(iii) By (i) and Theorem 5.1 we obtain

Oy = k k! Op(m(F)).

(iv) Using (iii) and the Fourier transform inverse formula we have
ar(§) = k k! Op(m (F))(=£)-

Because of (i) and (ii) in Corollary 5.4 we refer 7 in Definition 5.3 as projection operator.

Remark 5.5. (Sufficient conditions for uniqueness of Fourier coefficients) Suppose (ar)3e, €
A® satisfies (4.4) and let ' : Po(RY) — C be defined by

Z / [m]dé  Vm € Py(RY).
k! ) (way
If F =0 then for any natural number k, we have a =0

Proof. The remark is obtained as a direct consequence of Corollary 5.4. 0

Definition 5.6. Let s > 0 and let A\ be the function defined in (4.1).

(1) Let (ar)e, (bp), € A° be such that (4.4). Let F,G : Po(RY) — C be defined by

Zk' /Rd [m]d¢ and Gm Zm /Rd [m]dé  Vm € Py(RY).

By Remark 5.5, (ar)72, (bp)72, are uniquely determined. We define

Z 1 o @O (12} 0))

and
1FN7s = (F3 F) ps
(i) Let (V)2 , Wi, € A% forn =1,---,d and let V}, € LQ((Rd)k;Cd) (resp. Wy, €

LQ((]Rd)k;Cd)) be the vector field whose components (V;)e_,, (resp. (Wi)e_, satisfy
(4.4). Let

Z,j/ FEmlde,  Wim Zk, (€ P e
k=1

We define

d
(ViW)gs = Z<V";W">H87 V1% = (V; V) s

n=1
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Definition 5.7. (Conditional continuity of O o 7y) Let s > 0 and let N > 1 be an integer.
Suppose there exists (ag)r € A° such that a, =0 for any k > N,

(5.12) ar € LY(RY*/P;C) and @y, := ), € Sym[(RY"] Wk e {1,---, N}
We say that F € H3(P2(R?)) provided that

(5.13)

pz

k=1

Remark 5.8. Let N > 1 be an integer. Suppose (ay)i € A® is such that 5.12 holds. If there
exists an integer N such that ax, = 0 for any k > N then there are constants C,é6 > 0 such
that (4.4). In other words, Hir(P2(R?)) C H*(P2(R%)).

Lemma 5.9. Let s > 0 be a real number and N be a natural number. There exists a constant
Cn such that for any natural number k < N and any F € H3(P2(R?)) we have

[0k © T (F) | o mayy < Cn sup [F[m]].
(R)*) ul

In other words, if we endow H3(P2(R?)) with the supremum norm then Oomy, : Hiy(P2(RY)) —
C((Rd)k/Pk) is continuous.

Proof. Let (ay)r € A° be such that (5.12) holds and aj = 0 for any k > N. Suppose F satisfies
(5.13) where @y, := a;. Note
kOk e} Wk(F) = (I)k

and so, we need to estimate the norms of the ®; in terms of the norm of F. Set

N KN —k)!
Un(oy, - han) = oy — Z Py (1)

Observe that ¥y € C((Rd)N/PN) and F' = Fy . By Theorem 5.1 ¥y = NOy(F') and so,
N+2

(5.14) W] < S sup | Flm].

Recall that as a; € L', (5.2) holds:
lim @(.731,“' ,xk):O

[(21, @k) |00

and 0, lim,, |00 Un (71, -+, ZN) exists. We conclude that
. _ Dy(m)
I}EIIOO\IIN(l.l’ 7:1;N)*T

This, together with (5.14) implies

1 N+2
(5.15) @1l cqray) < sup [F'[m]|.
NI
. m
Observe )
. =1 ®i(zy) N 2(N - 2)!
gl Wy (e an) = S o N1 elrnan)

Hence,
N 2/(N —2)! 2
9 Q!TH(I)ZHC((HW)Q) < ||\IIN”C((RCI)N) + ﬁ”q’l”c((ﬂ%d))
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We combine (5.14) and (5.15) to conclude that

N 2/(N —2)! NN+2 L o NN+2
We repeat the same procedure (N — 2) times to conclude the proof of the Lemma. [l

6. A STOCHASTIC PROCESS ON THE WASSERSTEIN SPACE AND ITS SMOOTHING EFFECTS.

One of the main focus of our work is the smoothing effects of Aw,gi under mild additional

assumptions on Uy € H*(Pa(R?)) we will witness a smoothing effect on U(t,-).

6.1. Heat equation. Assume Up : Po(RY) — R is twice continuously differentiable (cf. Def-
inition 3.3). We assume for any m € P2(R?), V(V,Up[m]) : (RY) — R4 and VZUp[m] :
(RY) x (R?) — R¥? are uniformly bounded and have a concave modulus of continuity inde-
pendent of m. We fix €, 8 > 0 and define

U(t,m) == E(Uo (agﬁ[m])) V(t,m) € (0,00) x Pa(RY).

where O';’ﬁ [m] is defined as in (1.5). The arguments starting three lines after (81) in [4] lead
to the following statements:

(i) U is continuously differentiable on (0,00) x Po(R%) and for any ¢t > 0, U(t, ) is twice
continuously differentiable on Py (RY).
(ii) U satisfies the heat equation

OU = By U on (0,00) x Po(RY),  U(0,-) = Uh.

The reader should not be misled by the fact that in the statement of Theorem 4.3 [4], the

authors refer to a smooth Hamiltonian H : (]Rd)2 — R such that V,,H(x,p) > 0, whereas
H = 0 in the current manuscript (see statements starting three lines after (81) [4]). Statements
similar to the above ones have also been made in [15] [16].

However when the initial condition Up is less regular that Uy € H*(P2(R?)) (see Definition
4.8), in Theorems 6.3 and 6.4, we reach conclusions much stronger than those in [4] [15] [16].

Recall that G§ denote the heat kernel for the heat equation, given in (1.6). If 5> 0and e > 0

recall that Jf"B is defined in (1.5). In Lemma 4.1 we obtained a family {FF, | ¢ € (Rd)k}g‘;l
of eigenfunctions of A, . with eigenvalues

k n
2
(6.1) — 28 =1 (| g +e 16,
j=1 j=1
What is obvious is that
(6.2) VE(tm) = exp (=803 < (§)t) FE
satisfies the heat equation

k k k k
OVE = AL VE VRO, = FE

In fact, more is true in the space H*(P2(R%)) for a given s > 0.
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Remark 6.1. For s > 0, the set H*(P2(R?)) is dense in a Hilbert space H® which we identify
with a closed subspace of A®. For e > 0 and § > 0, BA,, < 1s closable in H® and the closure

of BA,, < generates a strongly continuous (in fact, contractwe} semigroup on H®, i.e. there
erists a umque mild solution to the Cauchy problem in H,

oV = BAw%V, V(0,-) € H®.
We next list facts which allow to support the above statement:

(i) First, the domain of BAw,g s dense in the separable Hilbert space H®. Then the identity
<6Aw7%F; G)pgs = (F; 5Aw,§G>HS for F,G in the domain shows that ,BAU,?% is a symmetric

operator in H®. Therefore the operator admits a closed maximal symmetric extension, which
we still denote as 5Aw,§

(ii) Nezt, we check —<5Aw7§F; F)gs >0 for all F in the domain of the extended operator.
Now one may check, by definition and closeness, that the range of I — 5/, < is H®. By Minty’s
Theorem, —BA,, 5 is mazimal monotone. Therefore, together with (i), BA 5 1s self-adjoint.

(iii) Therefore we have, for all A > 0, A — BA,, £ s a bijection from the domain to H?,
and that its inverse is bounded and satisfies ||(A — BA 7%) 1||L(Hs) < AL We may now apply
Theorems I1.3.5 and I1.3.8 in [10] (see also [2]) on H® to conclude that the closure of ,BAU,,%
1s indeed an infinitesimal generator of a strongly continuous semigroup in H.

From now on, we focus on the space H*(Ps(R?)) instead of H*. In fact, under appropriate
convergence conditions, the superposition

(6.3) V(t,m):= Zk' /Rd §) exp( ﬁ)\z’g(g)t)Fék[m]df

will be shown to converges in C(P2(R%)) norm, and hence the solution to the heat equation
exists in C(Po(RY)). Tt must satisfy V (t,m) = E(Uo [afﬁ[m]]) Hence,

(6.4) OV =Dy, <V, Z o /Rd [m]d¢ = U.

In order to study properties of AM%V, we later write it as the superposition of functions. We
leave it as an exercise to the reader to check that

E (Fg [a§]> - exp(—m;% (§)t) FEm].
As a consequence, one obtains the following lemma.

Lemma 6.2. We have ng = ng where ng is given in (6.2) and ng(t,m) = E(Fg [afﬁ[m]D

In the remainder of this section, s, >0, € > 0 and (ak)oo € A%. Assume (4.4) holds and

k=1
let Uy be as in (4.10). For t > 0, set

= Z 1' /Rd tg)Fﬁ[ m]d§

k=1
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where for ¢ > 0 and € > 0,
(6.5) (1, €) 1= an(€) exp (BN < ().

and )\z’ﬁ(ﬁ ) is given by (6.1). We will at some point need a stronger assumption than (4.4):
Ck!
(6.6) o 1O =

We now hope to study the smoothing effect of the heat equation. To illustrate this effect,
we provide the following two theorems which give, under mild assumptions, twice continuous
differentiability when ¢ = 0 (c.f. Theorem 6.3); and that the smoothness is further improved
(i.e. ﬁA;%V(t, -) is twice continuously differentiable) when € > 0 (c.f. Theorems 6.3) and

6.4), when the initial condition Uy only sits in a space of lower regularity H*(P2(R?)).

Theorem 6.3 (superposition). Assume Uy € H*(P2(RY)) for some s > 0 and (4.4) holds.
Then the followings hold:

(i) For any l,t > 0, the series V (t,-) € H'(P2(R?%)) and converges uniformly.

(ii) We have V(t,m) = E(Uo of[m )

(iii) If e =0, (4.4), (4.7), (4.8) and (4.9) hold, then fort >0, V(t,-) is twice continuously
differentiable and

(6.7) Bl <V (t,m) Zk‘/ 1 (t, ©) BN, < FE[m]dE.

Furthermore, V' satisfies the heat equation (6.4).
(iv) If e > 0 and (6.6) holds then V(t,-) is twice continuously differentiable, (6.7) holds,
and V' satisfies the heat equation (6.4)

Proof. (i) We need to prove (i) only for [ > s. Fix [ > s and let n > [ be integer and set
(n)! + (at)™

€= o+ an
We have
1 l
l 1+ A2 (6 1+ A7 o(6)
(P (14 X20(6))” < law(©)P? LBO) g uf’owt)z
(mi g(s)t) (1 + “7.>
(1) .
and so
2
65) et O (14 220(6)) ' < 1)
Thus
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Similarly,
2 Z
k=N+1

k=N+1 k=N+1
These prove (i).

(ii) By Lemma 6.2, given an integer N > 1 we have

(Zkl F¢ [ofm > Zkl (t, &) F¢ [m].

and so,

(6.9) </Rd Zk' O FE[ofim dg) Zk, /R k(t, E) FE[m]dg.
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By (i), the expression on the right hand side of (6.9) converges uniformy to V(¢,m). Since

FE <1

N
1
‘ /Rd &) FE[oflm df‘ ;k, /(Rd)k | (§)|d€.

We apply the Lebesgue dominated convergence theorem to obtain

1 1
B( /Rd) s i Jac) - ZE( / (O FE ot )
k=
In conclusion, we have proven that letting N tend to oo in (6.9) yields
E(Uo(of[m])) = V(t,m).
Under the sole assumptions in (4.4), (4.7),
BA < (6)
k’zﬁ ‘ak(§)| < |ak(§)|
€xXp (B)‘k,ﬁ (£)t>

183 < (©)lan ()| exp(=BAF 4 (€)t) Fml | <

Thus,

00 = C
; %‘ /W BAL < (©)ar(§) exp(—=BXF £ () ) Fmlde| <Y =5

This proves the uniform convergence of the following series:

(6.10) Z 1 o P ©(©) exp( ¥ 00 FEma

Since ng [m] is an eigenfunction of BAwg and —BA7 . (€) is the associate eigenvalue, (6.10)
7 76

reads off

(6.11) Z;,/Rd k(t,€)BD g FE[m]dE.

k=1
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(iii) Suppose € =0, (4.4), (4.7), (4.8) and (4.9) hold. The identity |bg| < |ag| yields

Ch! 20!
o) [ meor G [ meollal+ P < 55
Clk!
(613) o 10O il el <
and
Clk! Ch!
(6.14) /(Rd)k b (6)] - €1 Pde < pAETE /(Rd)k ()] - |1 - [€2lde < P

Thanks to Corollary 4.9, (6.12) , (6.13) and (6.14) yield

Zk./Rd k(. €)BA s FE[mldE = BA, ,B<Zk,/ t{Fg[]d§>.

This, together with (6.11) completes the proof of (iii).
(iv) Suppose € > 0 and (6.6) holds. We have

(6.15) <1+ (4796&;@\2) H eth ’) >|bk ()] < lan(©).
j=1

This, together with (6.6), yields

3Ck!
610 min(Larey [ el lal+al)aE < [ oo < s

Similarly, using the fact that 2|&;]|€| < [&1]% + |€2]? we obtain
87T26t/ i (2, )] - [1] - [§2]d€ < 47T26t/ [bi(t, ) (161 + |€]*)dg
(R)" (R%)*

and so,

Ck!
(617) swie [ O] el -l < [ la©ldE < gy

We exploit the crude estimate

(6.18) 1P 1&] + 6] <
But

(6.19) min{1,47r2et,87r462t2}(1+\§1!4+\§2]2) <1+(47r etZ]f’j ) (47r etZ]fj ) )

Thanks to (6.6) and (6.15), we combine (6.18) and (6.19) to obtain a constant e(t) (0,00)
depending only on € and ¢t > 0 such that

N W

<1 + &t + ’§2|2>

é(t) k!
(6.20) /(Rd)k bk (, E)] - €1 - [€1[?[é2d€ < E(kti’>)+6‘

Thanks to (6.16), (6.17) and (6.20), we may apply Corollary 4.9 to obtain that V' (¢,-) is twice
continuously differentiable and the identity in (6.7) holds. This, together with (6.11), proves
(iv). O
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The next theorem considers initial conditions belonging to H?* (PQ(Rd)) with their Fourier
coefficients satisfying (6.6). For some parameters, we show the heat equation drastically im-
proved the regularity properties of the value function at time ¢ > 0.

Theorem 6.4 (smoothing effects). Suppose €,s > 0, and let (ak)zozl € A® be such that for any

kE>1,a€ LQ((Rd)k; C) and (6.6) holds. Let Uy and V(t,-) be the uniformly convergent series
T

in Theorem 6.3. Then for any t > 0, (BAw%) V(t,-) is twice continuously differentiable for

all r € N.

Proof. The statement is clear for » = 0 from Theorem 6.3. We start with » = 1. Recall that
by, is given by (6.5). Set

(€8N (€

exp(ﬁ)\i%(f)t)

ck(t€) = =BAL £ (Obr(t,€) = —

By Theorem 6.3
= 1
By, <V (tm) = Zk/ e (t, ) FE[m]de.
k=1
We have

(6.21) ex(t,6)] < %)

t 9

and setting |¢|% = Z§:1 €| we obtain

()] - AL £ (€) I¢]* ()] - BAE < (©)I¢]*

4
. = <
ek (t, §)] - €] BAZ (o)t B (Ot = BAZ . (o)t
exp( 5 ) . exp( 5 ) eXp( ; ) * €Xp (27726t‘§|2>
Thus,
ak(§
(6.22) lex(t, €)1 - [€]* < ’714t(3e)2|

We use the crude estimate

L+ [&] + & + ][] + &Pl + &2 < 6(1+ [€]h).

to conclude that
| a0 (1 a1+ 6P + il + 6Pl + lal)ds <6 [ fen(t. 10+ el e
(R) (R)

This, together with (6.22) and (6.21) implies there is a constant €(t) € (0,00) depending only
on € and ¢ > 0 such that

k!
©29) [ Ol IR el iRl i) <

Thanks to Corollary 4.9, (6.23) implies ﬁAwéV(t, -) is twice differentiable.
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To arrive at the statement with » > 1, one only need to inductively follow the same argument
as above: apply Corollary 4.9 together with noticing 2[&1||&| < |€1]? + |€2|? and

a1 (832 4 (©)" I¢l" a(©)1- (832, (©)) Iel*

< 5 T
exp(ﬁ)\%,g(éf)t) (1 + 2 (W) ) ‘exp<2ﬂ26t|§’2)

7. MEASURES CONCENTRATED ON LOCALLY COMPACT SUBSET OF Pa(R%) x Py(R%).

As amply explained in the last paragraph of the introduction, there has been some efforts
to construct Laplacians on either Hilbert spaces [18] [26] or other metric spaces such as the
Wasserstein space [13] [24] [25]. These Laplacians are expected to have associated measures
consistent with Dirichlet forms on the space of functions, and for instance allow for integrations
by parts. The goal of the section is to initiate a study which we hope will shade some light on
the search of the appropriate measures corresponding to the partial Laplacians.

The set M? := Pa(R%) x Po(R?) is a metric space when endowed with the metric W defined
by
W2(m, Th) = Wg(ml, Thl) + W;(mg, ’I?N”Lg)
for m = (my,ma), m = (1m1,m2) € Pa(RY) x Po(RY). If R > 0 we denote as Bg the ball in
(R9) centered at the origin and of radius R. Note the infinite dimensional ball in M2, of radius
R > 0, centered at d ) is

{(ml,mg)ew\/ 2 (my + ms)(dz) < R).
(Ra)

Let Sk denote the set of m € Pa(R?) such that the support of m is contained in Bg and let
Xr : P2(R?) — {0,1} be the function which assumes the value 1 on Sg and the value 0 on the
complement of Sg.

Fix a natural number k, If r,p < k are natural numbers and let T € C¥ and J € C’Z’f. The
map * — (my,,ms,) is a (r~! + p~!)-Lipschitz map of (RY) onto P2(R?) x Py(R%). Thus, it
maps compact sets into compact sets and bounded sets into bounded set.

Let PL/R denote the push forward of the Lebesgue measure on B% by the map = —
(Mg, myg,). If H : M? — [0,00) is continuous then

H(mq, mg)IP’I’J’R(dml, dmg) = H(mg,,mg,)dz - - - dzg,.
M2 Bk

We define the signed Borel regular measure
k‘2 k k
Pk,R — W ZZ(_l)r+prkpk Z Z PI,J,R.
Vor=1p=1 IeCk JeCk
Proposition 7.1. Let r,p < k be integers and let I € Cf, J e C’;j be multi—indezxes.

(i) The measure PL'F are of finite total mass and are supported by Sg.
(ii) The signed measure is P&E of finite total variations and is supported by Sg.
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Proof. Since (i) implies (ii), it suffices to show (i). Setting H = 1 on M? we have
(7.1) PLAE(M?) = £F(BE) < 0.

Observe that if x € Bﬁ then mg,,m,, € Sg and so, xr(my,)xr(Ms,) = 1. Thus,

/M2 Xr(m1)xr(m2)PH R (dmy, dms) = /k XE(Ma,)XR(Ma, )dxy - - day, = LX(BE).

BR

This, together with (7.1) proves (i). O

Proposition 7.2. If &,V € LQ((Rd)k/Pk) are supported by Br then

<Fq>;F\p> = F¢[m1]F\p[mg]Pk’R(dm1,dmg)
Ho M2

Proof. By Lemma 4.7, since ® and ¥ are supported by Br we have

(Fa: Fo) o = % D) U(x)dr

By Theorem 5.1 we obtain

(Fo; Fo) /B k Z kST Fa(ma,)) i((—l)’“—%’f " Fulma,))ds

R r=1 IeCk s=1 JeCk
k
Z T+Srksk Z Z / Fy(mq)Fg(ms2) I"](dml,dmg).
s=1 IeCk jeCk
This concludes the proof. ]

Theorem 7.3. If R >0 and Let ®, ¥ € C3((R)*/Py) then
— Ay Fo[mi]Fy[mg]dPHF = Do(VFy, VyGy)dPPE
M?2 M?2

where

Dy(Vy F, VyG)(ma, ma) = /(Rd)QWwF[ml](m);VwG[mz](Q2)>m1(dq1)m2(dQ2)-

Proof. Let m € Si. Set

k k
:Zv$3®: [f17"'7fd]T7 g::Zva\I’:[glv'”ﬂgd]T
j=1 j=1

The material presented in Subsection 3.2 allows to obtain

(7.2) Voo Folm](1)m(dz1) = % / flar agmlden) - m(day) =
(Ra) (k)
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Similarly,
. Fpi[m]
(7.3) VwFy[m|(z1)m(dzy) = — / lg(azl, <oy xp)m(dey) - m(day) = :
d k dyk
(R4) (R4) Fa[m]
g
By Proposition 7.2
d
< VuwFs(m,z)m(dz); VwF\p(m,x)m(dm)> = Z(anF n) Fo
(RY) (R9) HO
= Z/ an m1 [mg}Pk’R(dml,dmg).
In other words,
(7.4)
VuFo(m,z)m(dx); Vo Fg(m,z)m(dz) = Dy(VF, VuG)(m1, mo)PEE(dmy, dmsy)
(R) (R4) 0 M2
By Corollary 3.8 (ii), Ay Fe = Fo where
k d
Oz, ,x Z FEARIcs
jl=1n=1

This, together with Proposition 7.2 implies

<AwF<I>;F\II>H0 = <F@;F\p>Ho = / F@[mﬂF\p[mg]Pk’R(dml,dmg).

MZ
Hence,
(7.5) <Aqu>; F\p>Ho = , Achp [ml]qu [mg]IP’k’R(dml, dmg)
M
Thanks to Proposition 4.10, (7.4) and (7.5) yield the desired result. O
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