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Abstract

In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with at-
tenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by 

the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially depen-
dent parameters. Under the assumption of being able to measure data on the whole boundary, we prove 
uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable 
sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series recon-
struction formula.
 2017 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that for biological tissues the attenuation of acoustic waves is frequency-
dependent. One way to model this attenuation is to use fractional time derivatives and conse-
quently the representation of the propagation of ultrasound waves by integro-differential equa-
tions. Examples of this modeling are frequency power-law attenuation or fractional Szabo models 
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(see for instance [1–7]) where the traveling wave may be assumed to satisfy an equation of the 

form

γ −2∂2
t u − �u + β∂k+α

t u = F(t, x), for some α ∈ (0,1), k = 1,2,

and where the fractional derivative term can be written as a convolution in time β(x)∂k+α
t u =

∫ t

−∞ �α(t − s, x)∂k+1
s u(s, x)ds. Assuming, as in thermoacoustics, that the wave field vanishes 

for negative times, and provided that the kernel is bounded and regular enough, we can perform 

integration by parts and write the previous integral as a convolution of u with a different kernel, 
plus time-derivatives of u up to order two. In the case k = 2, the sound speed is perturbed result-
ing in a different speed c−2 = γ −2 + β�α(0), which requires conditions on β and �α in order 
to get an effective wave speed c > 0. We point out there is a recent definition for derivatives of 
fractional order which employs such continuous and bounded kernels [8].

In the present article, we study the inverse problem of finding the initial source f in an atten-
uating medium, provided boundary data u|[0,T ]×∂� and where the acoustic wave u is assumed to 

satisfies the system

{

∂2
t u − c2�u + a∂tu + bu +

∫ t

−∞ 	(t − s, x)u(s, x)ds = δ′(t)f (x), ∈R×R
n

u(t, x) = 0, t < 0.
(1)

We suppose a, b, c ∈ C∞(Rn), 	 ∈ C2(Rn+1), a, b ≥ 0, c−1
0 ≥ c ≥ c0 > 0, and for a fixed open 

bounded set � ⊂ R
n with smooth boundary, we suppose a = b = c − 1 = 	 = 0 in Rn\�̄. We 

shall use the following notation throughout the paper:

P	 := ∂2
t − c2� + a∂t + b + 	 ∗ ·, 	 ∗ u =

t
∫

0

	(t − s, x)u(s, x)ds.

Then P	 = ∂2
t − c2� outside the domain of interest �. The Cauchy problem associated with (1)

is

⎧

⎨

⎩

P	u = 0, (t, x) ∈ (0,∞) ×R
n,

u|t=0 = f,

∂tu|t=0 = −af,

(2)

since any solution of (2) extended by zero to (−∞, 0) ×R
n is a solution of (1). Indeed, given a 

smooth solution u of (2) we consider H(t)u(x, t) where H(t) is the Heaviside function. Then, 
we can pull out the Heaviside function from the convolution since it integrates on the interval 
(0, t), thus we get

P	(Hu) = uδ′ + 2(∂tu)δ + auδ + (P	u)H

with the last term vanishing since P	u = 0. For an arbitrary test function φ ∈ C∞
c (Rn+1) we 

have the following,
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〈P	(Hu),φ〉 =

∫

Rn

[

− (∂tu)φ − u(∂tφ) + 2(∂tu)φ + auφ
]∣

∣

t=0dx

= −

∫

Rn

u∂tφ|t=0dx

= 〈f δ′, φ〉,

which is the same as problem (1).
The thermoacoustic tomography problem in a medium with convolution-type attenuation can 

be modeled by the following initial value problem (IVP):

⎧

⎨

⎩

P	u(t, x) = 0, (t, x) ∈ (0, T ) ×R
n

u|t=0 = f,

∂tu|t=0 = −af,

(3)

where we aim to recover the initial source f from boundary measurements u|(0,T )×∂�, assuming 

the waves propagate freely in the space, that is, we suppose the boundary of � does not interact 
with the outgoing waves. This last assumption has been considered for instance in [9–11].

The problem of thermoacoustic tomography has been broadly studied by many authors. Sev-
eral reconstruction methods have been proposed for homogeneous media [12–19], and also for 
heterogeneous media [6,9,20–29]. See also the reviews [30–32] for additional references. The 

theoretical analysis of the so-called time reversal method has gained considerable attention in 

the past few years, mainly due to the work of Stefanov and Uhlmann in [23,9]. In its initial for-
mulation, the time reversal technique gives an approximate solution that converges to the exact 
one as the observation time increases. The problem of recovering the initial source for optimally 

short measurement time was solved in [23] for variable sound speed employing techniques from 

microlocal analysis.
Recently, the focus of the mathematical analysis has been placed on extensions in the follow-

ing two areas. First, there is the problem of accounting for attenuating media. Homan in [10] gave 

a first extension of Stefanov and Uhlmann’s work in this direction by considering the damped 

wave equation with sufficiently small damping coefficients for the time reversal method to work. 
In the complete data case, those results were extended to more general damping coefficients in 

[11]. In [33] the authors addressed the TAT problem with thermoelastic attenuation. Second, re-
cent publications have addressed the TAT problem in enclosed domains to model the interaction 

of acoustic waves with reflectors and sensors. The advantages of working with this setting is 
that it naturally allows to consider partial data and the inverse problem is closely related with 

boundary control theory. See for instance [26–29].
This article falls in the first group. As far as the authors know, the TAT inverse problem with at-

tenuation of integral type and variable sound speed has not been fully considered in the literature 

from an analytical point of view. From a heuristic point of view, some advances have been made. 
For the case of constant wave speed and constant coefficient of attenuation, Modgil et al. [34] de-
signed a method based on relating the unattenuated wave field to the attenuated wave field via an 

integral operator and its subsequent inversion using a singular value decomposition. Treeby et al. 
[4,35] proposed a reconstruction based on time reversal and the k-space computational method. 
Attenuation compensation was achieved by separating the absorbing and dispersion terms in the 

wave equation, and reversing the sign of the absorbing coefficient during the time reversal. This 
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method was modified in [6] where the coefficient of attenuation was allowed to vary within the 

region of interest, but the exponent of the power-law attenuation was still assumed to be constant. 
However, in some practical settings such as in the presence of bone and soft–tissue, the domain 

exhibits regions of varying power-law exponents. An appropriate method needs to be devised to 

avoid blurring and distortions in the reconstruction. Our work is a step in that direction, where 

the coefficients a, b, c and the kernel 	 in (1) are allowed to vary, which effectively accounts for 
power-law attenuation of spatially varying exponent.

Considering attenuation terms of integral type brings some difficulties to the analysis on the 

propagation of waves. In particular, the equation is no longer reversible and local in time and 

consequently it is not possible to use techniques such as Tataru’s unique continuation to get 
uniqueness, at least not in a direct way. Moreover, the microlocal properties of this type of 
integro-differential operators are not well understood. Nevertheless, it is possible to exploit the 

fact that an integral term of the sort considered here only presents a compact perturbation of 
the differential operator. This article can be view as a first attempt to understand the TAT prob-
lem in media with memory/attenuation coefficients that vary in space. A subsequent step would 

be to tackle viscoelastic models, and singular kernels as in the standard definition of fractional 
derivatives.

The paper is structured as follows. In the next section we set the framework under which our 
analysis is based, such as the well-posedness of the direct problem, the energy space of initial 
conditions and the hypothesis on the attenuation parameters, namely the damping coefficient 
and the attenuation kernel. In Section 3 we prove two uniqueness results. The first one is a 

sharp result on uniqueness for the thermoacoustic inverse problem assuming the distance function 

from the boundary allows us to foliate the interior of the domain by strictly convex surfaces. In 

particular we require ∂� to be strictly convex. The second main theorem of this section, which 

does not require convexity of the boundary, assumes that the sound speed satisfies a frequently 

used condition related with the convexity of the euclidean spheres in the metric induced by the 

sound speed. The stability question is addressed in Section 4 and we devote Section 5 to show 

the existence of a Neumann series reconstruction formula.

2. Preliminaries

2.1. Direct problem

Let U ⊂ R
n be an open bounded set with smooth boundary, u0 ∈ H 1

0 (U), u1 ∈ L2(U) and 

F ∈ L2([0, T ]; L2(U)). We say u is a generalized solution of

Pφu = F in [0, T ] × U, u|[0,T ]×∂U = 0, u(0) = u0, ut (0) = u1, (4)

if u ∈ L2([0, T ]; H 1
0 (U)), ut ∈ L2([0, T ]; L2(U)), ut t ∈ L2([0, T ]; H−1(U)) and

〈c−2ut t , ϕ〉 + B(u,ϕ) = (c−2f,ϕ) ∀ϕ ∈ C∞
0 (U) and for a.e. t ∈ [0, T ] (5)

where 〈·, ·〉 and (·, ·) stand for the duality product of H−1 and H 1
0 , and the L2 inner product 

respectively, and B(·, ·) is the bilinear form given by

B(u,ϕ) = (∇u,∇ϕ) + (ac−2ut , ϕ) + (bc−2u,ϕ) + (c−2	 ∗ u,ϕ).
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The well-posedness follows from Theorems 2.1 and 2.2 in [36]. We refer to the appendix for 
a complete proof. In our case, by finite speed of propagation we can take U to be a large ball 
containing � to ensure we have null Dirichlet conditions.

2.2. Energy space and positive-definite kernels

Given a domain U ⊆R
n and a scalar function u(t, x), we define the local energy of u = [u, ut ]

at time t as

EU (u(t)) =

∫

U

(|∇xu|2 + b|u|2 + c−2|ut |
2)dx.

In order to give problem (3) a physical sense we need to assume some conditions on the attenu-
ation terms since such system must satisfies that its energy decreases over time. The previous is 
achieved for instance if a(x) ≥ 0 and the kernel 	 is positive-definite, this is 

∫ T

0 (	 ∗ y)ydt ≥ 0
for all y ∈ C([0, T ]). We then assume the following:

Condition 1.

a(x) ≥ 0 and (−1)j∂
j
t 	(t, x) ≥ 0, ∀t ≥ 0, x ∈ R

n, j = 0,1,2. (6)

The previous condition guarantees the positive-definiteness of the kernel as shown in [37] and 

[38]. Moreover, if we define

�(t, x) := −

∞
∫

t

	(s, x)ds, (7)

it turns out that −� is also a positive-definite kernel since it satisfies the same condition as 	.

Remark 1. An example of a kernel satisfying Condition 1 is 	(t, x) = q(x)e−αt , for some 

positive function q ∈ C(Rn) and α > 0. In the recent article [8], the authors introduce a new 

definition for fractional derivatives whose kernel is of the form e−αt . As a consequence, the 

analysis carried out in this paper might be applied to fractional models of wave propagation 

following this new definition of fractional derivatives.

Under Condition 1 we define the extended energy functional at time τ > 0, analogously as in 

[11], to be

EU (u, τ ) = EU (u(τ )) + 2
∫

[0,τ ]×U

ac−2|ut |
2dxdt + 2

∫

[0,τ ]×U

c−2 (	 ∗ ut )utdxdt, (8)

where the last two terms take into account the portion of the energy that is lost due to the attenua-
tion process. If we set U =R

n, or by finite propagation speed we take U equal to any sufficiently 

large ball, in the interval [0, T ] the former energy functional EU is non-increasing since we get
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d

dt
EU (u(t)) = −2

∫

[0,τ ]×U

ac−2|ut |
2dxdt − 2

∫

[0,τ ]×U

c−2 (	 ∗ ut ) utdxdt ≤ 0,

and integrating in time we deduce that the extended functional is conserved.
We adopt the same functional framework as in previous articles related to thermoacoustic 

tomography. The energy space H(U) of initial conditions is defined to be the completion of 
C∞

0 (U) × C∞
0 (U) under the energy norm

‖f‖2
H(U) =

∫

U

(|∇xf1|
2 + c−2|f2|

2)dx,

with f = [f1, f2]. We also let HD(U) denote the completion of C∞
0 (U) under the norm

‖f ‖2
HD(U) =

∫

U

|∇xf |2dx.

Notice that H(U) = HD(U) ⊕ L2(U ; c−2dx) with the latter space denoting the L2 functions 
under the weight c−2dx.

Denoting by � the region of interest and � = [0, T ] × ∂�, we introduce the measurement 
operator �	 :H(�) ∋ f �→ u|� ∈ H 1(�), where u satisfies (3).

3. Uniqueness

The first main result of this section, Theorem 1, is a uniqueness theorem for the full data case 

under a particular foliation condition. We work in this part with the more general hyperbolic 

operator (14) associated to a Riemannian metric g. We then, assuming g = c−2dx2, provide a 

condition for the sound speed that guaranteed the existence of a particular foliation suitable for 
uniqueness. This is our second main result, Theorem 2.

Foliation conditions were introduced in [40] in the context of an inverse source problem for 
hyperbolic equations. In the field of travel time tomography in seismology, where one aims to 

recover the inner structure of the Earth by measuring travel times of seismic waves, at the begin-
ning of the 20th century, Herglotz, and Weichert and Zoeppritz considered a special assumption 

on the isotropic wave speed that turned out to be a particular instance of Stefanov and Uhlmann’s 
foliation condition (see [39, §6] and reference therein). These type of assumptions seem to be 

the natural conditions under which one could expect to propagate information from the exterior 
towards the interior of the domain. In particular, it has been applied before in the thermoacoustic 

setting to prove uniqueness for the inverse problem of recovering a sound speed when the initial 
source is known [40, §3].

Theorem 1 is a direct consequence of [41, Theorem 1], a boundary unique continuation result 
for hyperbolic equations with a memory term, where, for the sake of simplicity, the authors 
restricted their analysis to the Euclidean case. Nevertheless, in our work we need the full strength 

of such unique continuation so we have included a brief proof in the case of waves traveling in 

a general Riemannian setting. In few words, the idea introduced in [41] works as follows. For a 

solution with null Cauchy data at the boundary, it can be shown by compactness that it vanishes 
near the boundary and for small times, and then extend its zero set up to the characteristic time but 
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still in a neighborhood of the boundary. The proof is then complete by noticing that assuming 

the levels sets of the distance to the boundary function are strictly convex, one can repeat the 

same process in a layer stripping fashion. The utilization of this strategy then makes necessary 

to consider full boundary data and the convexity assumption on the distance to the boundary 

function, which indeed gives us the internal foliation of the domain. This is the main reason of 
our hypotheses in Theorem 1. We point out that a similar method was also applied in [40] to 

obtain uniqueness for partial data and more general foliations. It was of fundamental importance 

in such proof the possibility of using a partial boundary unique continuation result independent 
of the foliation (see Proposition 2.1 in that article).

On the other hand, Theorem 2 addresses the isotropic case where we were able to remove the 

strong convexity requirement on the boundary by imposing a convexity condition on the sound 

speed, although losing optimality on the time needed to obtain uniqueness.

Theorem 1. Let � be a bounded open subset of Rn with ∂� smooth and strictly convex for a 

Riemannian metric g. Let T > 0 be such that xn = dist(x, ∂�) is a smooth function in � with 

non-zero differential for 0 ≤ xn ≤ T and its level surfaces {xn = s}, for 0 ≤ s ≤ T , are strictly 

convex for the metric g as well. If f ∈ HD(�) is such that �	f = 0 with f = (f, −af ), then f = 0
in {x ∈ � : dist(x, �) < T }. In particular, if T ≥ T0(�) := supx∈� dist(x, ∂�), then f ≡ 0.

Remark 2. Under the above hypothesis, this result presents an improvement in the condition 

imposed on T for uniqueness in the damped wave equation (T > 2T0(�) in [10, Theorem 3.1]).

Let Q = (0, T ) × � and xn = dist(x, ∂�) the signed distance function defined in a neigh-
borhood of the boundary and such that � and ∂� are characterized respectively by xn > 0 and 

xn = 0. We define the following weight function

ϕ(x, t) = (R − xn) − αt2 − r2, (9)

which is invariantly defined for any local coordinates (x1, ..., xn−1) in ∂�. Here α = α(�, g) > 0
is sufficiently small and R, r > 0 will be chosen large and close to each other. For ǫ ≥ 0 we also 

consider the sets

Q(ǫ) = {(t, x) ∈ Q : ϕ(x, t) > ǫ}, (10)

�(ǫ) = {x ∈ � : (R − xn)2 > r2 + ǫ}. (11)

By taking r close to R, the set Q(0) is a small neighborhood of {0} × ∂� inside Q.
We recall that in boundary normal coordinates, a Riemannian metric g takes the form

g̃α,β(x′, xn)dxαdxβ + (dx2)2, (12)

for α, β ≤ n − 1. We denote g̃ = (g̃αβ(x)). Moreover, the strictly convexity of the level surfaces 
{xn = s} translates into

�(v,v) =

(

−
1

2

∂g̃αβ

∂xn

)

vαvβ ≥ κs |v|2g̃, ∀v ∈ T {xn = s},
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with κs > 0 the smallest eigenvalue (principal curvature) of the second fundamental form � in 

{xn = s}, where Rs = κ−1
s can be think as the largest curvature radius of {xn = s}. The analogous 

condition for convectors follows from the natural isomorphism ξi = gij (x)vj and reads

�(ξ, ξ) =

(

1

2

∂g̃αβ

∂xn

)

ξαξβ ≥ κs |ξ |2g̃, ∀ξ ∈ T ∗{xn = s}. (13)

In what follows we consider the more general integro-differential operator

P	u = ut t − ∂j (g
ij (x)∂iu) + 〈A(x),u′〉 + b(x)u + 	 ∗ u, (14)

where u′ = (ux, ut ), g is a Riemannian metric, and the vector-function A, the scalar-function b

and the kernel 	 are continuous functions.

Remark 3. The next two lemmas also hold if the coefficients A and b are analytic functions in t .

Lemma 1. Let � and T be as in Theorem 1. Let f ∈ L2(�) and u ∈ H 2(Q) be a solution of

⎧

⎨

⎩

P	u = 0 in (0, T ) × �,

u|t=0 = 0 in �,

∂tu|t=0 = f in �.

(15)

If u = ∂νu = 0 on ∂Q(0) ∩ ∂�, then

u = 0 in Q(0), and in particular f = 0 in �(0).

Proof. Given a point y = (y′, 0) ∈ ∂�, let’s consider local coordinates (U, (x1, ..., xn−1)) in the 

boundary near y′. For ǫ ≥ 0 we define the sets

Qy(ǫ) = {(t, x) ∈ Q : ϕ(x, t) > ǫ, x′ ∈ U}, (16)

�y(ǫ) = {x ∈ � : (R − xn)2 > r2 + ǫ, x′ ∈ U}. (17)

In what follows we take r = R − δ, for some δ > 0 small enough, therefore xn ∈ [0, δ) in the 

set Q(0).
Let’s first consider an arbitrary function u ∈ C∞(Qy(0)) such that u = ∂νu = 0 on Qy(0) ∩

∂�, and let ũ(t, x) = χ(x′)u(t, x), with χ ∈ C∞
0 (U). The idea is to obtain a well known local 

Carleman estimate for ũ and later use it, along with a partition of unity, to get an analogous 
estimate in Q(0).

Let’s denote P = ut t − ∂j (g
ij (x)∂iu), the principal part of P	. By analyzing the conjugate 

operator Pτ = eτϕPe−τϕ , it is possible to deduce (after long computations) a pointwise estimate 

for v = eτϕ ũ of the form:

C|Pτv|2 ≥ τ(|vt |
2 + |vn|

2) + τ 3|v|2 + divx(Y ) + ∂tZ

+ 4τ(R − δ)2
(

1

2
∂ng̃

klvkvl

)

− 2τγ |vx |
2
g̃

(18)
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for some constant γ > 0 depending on the parameter α which is chosen small enough, and 

with (Y, Z) a vector-valued function depending on lower order derivatives of v and vanishing in 

∂Qy(0)\{ϕ = 0}. In fact, the previous follows by decomposing Pτv as the sum of two operators,

P+v = vt t − ∂j (g
ij∂iv) + τ 2	v, 	 = ϕ2

t − |ϕx |
2
g

and

P−v = 2τ
(

〈ϕx, vx〉g − ϕtvt

)

+ τ�v, � = ∂j (g
ij∂iϕ) − ϕt t ,

and bounding from below the inequality

|Pτv|2 ≥ |P+v|2 + 2(P+v)(P−v).

Here we apply the convexity condition on the level surfaces {xn = s} in (13). By choosing then 

R large enough and δ small, we arrive to the estimate

τ 3|v|2 + τ(|vt |
2 + |vx |

2
g) ≤ C

(

eτϕ |P ũ|2 − divx(Y ) − ∂tZ
)

.

Because v = eτϕ ũ, we can bound from below the left hand side of the previous inequality by 

similar terms but involving now the function u (and the exponential weight function). Integration 

over Qy(0) and the Gauss–Ostrogradskiı̆ formula give us that

τ

∫

Qy(0)

e2τϕ
(

τ 2|ũ|2 + |ũt |
2 + |ũx |

2
g

)

dxdt

≤ C

∫

Qy(0)

e2τϕ |P ũ|2dxdt + C

∫

Ŵy (0)

(

〈X1u
′, u′〉 + 〈X2, u

′〉u + X3|u|2
)

dS,

(19)

where dS denotes the surface measure on Ŵy(0) = Qy(0) ∩ {ϕ = 0}, and the matrix-function 

X1(x, t), the vector-function X2(x, t), and the scalar-function X3(x, t) are some continuous 
functions depending on ϕ and Qy(0). Using the continuity of the coefficients in the lower or-
der terms (l.o.t) of P	 and noticing that

|P ũ|2 ≤ 2|P	ũ|2 + 2|(l.o.t of P	)ũ|2,

we can choose τ0 larger if necessary and absorb the second summand in the right hand side above 

with the left hand side of (19). Then

τ

∫

Qy(0)

e2τϕ
(

τ 2|ũ|2 + |ũt |
2 + |ũx |

2
g

)

dxdt

≤ C

∫

Qy (0)

e2τϕ |P	ũ|2dxdt + C

∫

Ŵy (0)

(

〈X1u
′, u′〉 + 〈X2, u

′〉u + X3|u|2
)

dS.

(20)
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The analogous inequality in the larger set Q(0) is obtained by considering a partition of unity 

and using the compactness of ∂�. More precisely, let now u ∈ C∞(Q(0)) and let {Ui}i be a finite 

covering of the boundary such that on each Ui we can define boundary local coordinates, and 

let {χi}i be a finite smooth partition of unity subordinate to {Ui}i . We also consider a collection 

of points yi ∈ Ui . Then, denoting ui = χ
1/2
i u, and the measure dσ = dtdVol(x) on Q, from the 

previous estimates we get

τ

∫

Q(0)

e2τϕ
(

τ 2|u|2 + |ut |
2 + |ux |

2
g

)

dσ

= τ
∑

i

∫

Qyi
(0)

e2τϕχi

(

τ 2|u|2 + |ut |
2 + |ux |

2
g

)

dxdt

≤ τ
∑

i

∫

Qyi
(0)

e2τϕ
(

τ 2|ui |
2 + |(ui)t |

2 + |(ui)x |
2
g

)

dxdt

+ Cτ

∫

Q(0)

e2τϕ |u|2dσ

≤ C

⎛

⎜

⎝

∫

Q(0)

e2τϕ |P	u|2dσ +

∫

Ŵ(0)

(

〈X1u
′, u′〉 + 〈X2, u

′〉u + X3|u|2
)

dS

+
∑

i

∫

Q(0)

e2τϕ |[P	, χi]u|2dxdt + τ

∫

Q(0)

e2τϕ |u|2dσ

⎞

⎟

⎠
,

where notice [P	, χi] are differential operators of order 1. We absorb the interior integrals with 

lower order derivatives of u using the left hand side and get

τ

∫

Q(0)

e2τϕ
(

τ 2|u|2 + |ut |
2 + |ux |

2
g

)

dσ

≤ C

∫

Q(0)

e2τϕ |P	u|2dσ + C

∫

Ŵ(0)

(

〈X1u
′, u′〉 + 〈X2, u

′〉u + X3|u|2
)

dS.

(21)

It follows from a density argument that the previous estimate also holds for functions in H 2(Q)

with null Cauchy data in ∂Q(0) ∩ ∂�.
Let u be as in the hypothesis of the lemma. Then, u satisfies an inequality of the form (21), 

without the interior integral in the right hand side. Noticing that the boundary integral does not 
depends on τ , we let τ goes to infinity and conclude that u = 0 in Q(0). ✷

The aim of the second lemma is to extend the time for which u is zero. Based again on 

Carleman estimates we will be able to succeed until we hit the characteristic surface associated 

to the principal part of P	, this is the surface {(t, x) : T − t = dist(x, ∂�)}.
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Lemma 2. Let � and T be as in Theorem 1. If u ∈ H 2(Q) is a solution of (15) such that u =

∂νu = 0 on (0, T ) × ∂�, then

u = 0 in {(t, x) ∈ Q : dist(x, ∂�) < ǫ, 0 < t < T − dist(x, ∂�)}

for some 0 < ǫ ≤ T .

Proof. From Lemma 1, u = 0 in some neighborhood {(t, x) ∈ Q : (R − xn)2 > αt2 + r2} for 
appropriate constants α, R, r . It is clear that for sufficiently small ǫ1, ǫ2 > 0, the previous set 
contains [0, ǫ1] × {x ∈ � : dist(x, ∂�) < ǫ2}.

In a neighborhood of ∂� we define

ψ(t, x) := (ǫ2 − xn)(T − t − xn), (22)

and for γ > 0 we consider the sets

Qǫ2
γ := {(t, x) ∈ Q | ψ(t, x) > γ, xn < ǫ2},

which exhaust Qǫ2 = {(t, x) ∈ Q | xn < ǫ2, 0 < t < T −xn}, this is Qǫ2 =
⋃

γ>0 Q
ǫ2
γ . Moreover, 

there exists γ0 > 0 such that

∅ �= Qǫ2
γ0

⊂ [0, ǫ1] × {x ∈ � : xn < ǫ2}.

We denote by B(t0, x0; r) the ball centered at (t0, x0) and radius r for the euclidean metric. 
Given the following

Claim. Suppose that for (t0, x0) ∈ Qǫ2 , u vanishes below the level surface {ψ(x, t) = ψ(t0, x0)}

near (t0, x0), this is in Q
ǫ2
ψ(t0,x0)

∩ B(t0, x0; r) for some r > 0. Then, u = 0 in a neighborhood of 

(x0, t0).

the proof of the lemma is complete by the next argument. Let’s assume that suppu ∩ Qǫ2 �= ∅. 
We can find 0 < γ ∗ ≤ γ0 such that

suppu ∩ Qǫ2
γ = ∅, ∀γ > γ ∗ and suppu ∩ {(t, x) ∈ Qǫ2 : ψ(t, x) = γ ∗} �= ∅.

The application of the claim on every contact point (t∗, x∗) ∈ suppu ∩ {(t, x) ∈ Qǫ2 : ψ(t, x) =

γ ∗}, contradicts the choice of γ ∗. Consequently, we deduce that u = 0 on every Q
ǫ2
γ , γ > 0, and 

therefore u = 0 in Qǫ2 .
It only remains to show the previous claim. Here is where Carleman estimates play a fun-

damental role, and as before we will consider a particular choice of weight function which 

needs to fulfill a pseudo-convex condition with respect to P = ∂2
t − ∂xj

(

gij∂xi ·
)

, in the set 
{(0, ξ) ∈ T ∗

(t0,x0)
�}. Moreover, we will take it to be linear and non-increasing in time. Provided 

the above, it is possible to apply a pseudo-differential Carleman estimate introduced in [42] and 

conclude that u vanishes near (t0, x0).
Let’s consider local coordinates in ∂� near some y ∈ ∂� such that in those coordinates y =

(x′
0, 0). For some δ > 0 to be appropriately chosen, we define the following weight function
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ϕ(t, x) = ψ(t, x) − ψ(t0, x0) −
1

2
δ|x − x0|

2

where here | · | stands for the euclidean norm and ψ as in (22). Denoting the principal symbol of 
P by p(t, x; θ, ξ) = −θ2 + |ξ |2g , where |ξ |2g = gij (x)ξiξj is the norm on covectors induced by 

g, the pseudo-convexity condition requires to show that ϕ satisfies

(1) Re{p̄, {p, ϕ}}(t0, x0; 0, ξ) > 0 for all ξ �= 0 such that p(t0, x0; 0, ξ) = 0,
(2) 1

iτ
{p̄ϕ, pϕ}(t0, x0; 0, ξ ; τ) > 0 for all ξ �= 0, τ > 0 such that pϕ(t0, x0; 0, ξ, τ) = 0.

Here pϕ(t0, x0; 0, ξ ; τ) = p(t, x; θ + iτϕt , ξ + iτϕx) and {·, ·} is the Poisson bracket

{f,h} =

n
∑

j=1

∂f

∂ξj

∂h

∂xj

−
∂f

∂xj

∂h

∂ξj

+
∂f

∂θ

∂h

∂t
−

∂f

∂t

∂h

∂θ
.

Recall that we are working in boundary normal coordinates hence the metric g takes the form 

(12). The first condition is trivially fulfilled since the principal symbol p is elliptic in the set 
{θ = 0}. Let’s use the following notation: the variable appearing in the subindex means we are 

differentiating with respect to such variable, for instance ϕx′ = ∂x′ϕ and ϕtxn = ∂t∂xnϕ. To verify 

the second condition we notice first that ϕx′(t0, x0) = ψx′(t0, x0) = 0, ϕxn(t0, x0) = ψxn(t0, x0) =

−α and ϕt (t0, x0) = ψt (t0, x0) = −β where α > β > 0. In fact,

α = (ǫ2 − xn
0 ) + (T − t0 − xn

0 ), and β = ǫ2 − xn
0 .

Also, denoting δij the Kronecker delta,

ϕt t = 0, ϕtxi = δin, ϕxixj = 2δinδjn − δ · δij .

Secondly, it is easy to check that pϕ(t0, x0; 0, ξ, τ) = 0 is equivalent to ξn = 0 and |ξ ′|2
g̃

=

τ 2(α2 − β2). Then, after some tedious computations, in the set of points (t0, x0; 0, ξ ; τ) such 

that pϕ = 0, we get

1

iτ
{p̄ϕ,pϕ} =

1

τ
{Repϕ, Impϕ}

= 8τ 2(α2 − αβ) + 4α

(

1

2
∂ng̃

ij

)

ξ ′
i ξ

′
j − δM,

with M = 4τ 2α2 + 4 

(

g̃jkξ ′
j

)

(

g̃ikξ ′
i

)

such that, for some C > 0,

M ≤ 4τ 2(α2 + C(α2 − β2)).

Let’s recall the positive-definiteness of the second fundamental form in (13), and denote κ =

mins∈[0,ǫ2] κs . By choosing δ > 0 small enough we obtain that

1

iτ
{p̄ϕ,pϕ} ≥ 8τ 2α(α − β)

(

1 +
κ

2
(α + β)

)

− 4δτ 2(α2 + C(α2 − β2)) > 0,
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therefore ϕ satisfies the second condition of pseudo-convexity. It follows from [43, Theorem 3]
that there exists η, C, d > 0 such that any function v supported inside B(t0, x0; η) (we of course 

choose 0 < η < r), for which the RHS of the next inequality is finite, satisfies the pseudo-
differential Carleman estimate

τ−1‖Eeτϕv‖2
(2,τ ) ≤ C

(

‖EeτϕPv‖2 + e−dǫτ‖eτϕPv‖2 + e−dǫτ‖eτϕv‖2
(1,τ )

)

, (23)

for the weighted norms

‖v‖2
(m,τ) :=

∑

|α|+j≤m

τ 2(m−|α|−j)‖DαD
j
t v‖2

L2(Rn+1)
, τ > 0; ‖ · ‖ := ‖ · ‖(0,τ ),

and the pseudo-differential operator E := e
ǫ

2τ
|Dt |

2
. This operator can also be considered as the 

convolution operator

Ev(x, t) =
( τ

2πǫ

)1/2
∫

e−
τ |t−s|2

2ǫ v(x, s)ds.

We would like to apply the above Carleman estimate to u and eventually deduce that u van-
ishes near (t0, x0). With that in mind we need first to localize it near (t0, x0). As in [41], in 

(ψ ′(t0, x0))
⊥ = {(θ, ξ) : 〈ψ ′(t0, x0), (θ, ξ)〉e⊗g = 0} we see that |θ | ≤ C1|ξ |g , hence

〈(ψ − ϕ)′′(θ, ξ), (θ, ξ)〉g = δ|ξ |2g ≥ c2|(θ, ξ)|2e⊗g.

Therefore, by choosing l1 < 0 small enough in magnitude, the set {ϕ(t, x) > l1} ∩ {ψ(t, x) <

ψ(t0, x0)} is contained in a sufficiently small vicinity of (t0, x0). We then localize u by multi-
plying it with a function of the form χ(ϕ(t, x)) with χ ∈ C∞(R) a nondecreasing function such 

that

χ(s) =

{

0 for s < l1,

1 for s > l2,

where l1 < l2 < 0 are small enough in magnitude, then

supp
[

u(t, x)χ(ϕ(t, x))
]

⊂ B(t0, x0;η).

In what follows we write χ meaning the composition χ ◦ ϕ. Consequently, v = χu satisfies the 

inequality (23). We include the integral term in the estimates by noticing that

P(χu) = χPu + [P, χ]u = χP	u − χ	 ∗ u +P1u,

where P1 is a differential operator of order 1 with coefficients supported in {(t, x)|ϕ(t, x) < l2}. 
Consequently

τ−1‖Eeτϕ(χu)‖2
(2,τ ) ≤ c

(

‖Eeτϕ
P1(χu)‖2 + ‖Eeτϕχ(	 ∗ u)‖2

+ e−dǫτ‖eτϕ
P(χu)‖2 + e−dǫτ‖eτϕ(χu)‖2

(1,τ )

)

.

(24)
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The idea in what remains of the proof is to estimate ‖Eeτϕ(χu)‖(2,τ ) by a term of the form elτ , 
with l < 0, and use [42, Proposition 4.1] to conclude that χu = 0 in {(t, x)|ϕ(t, x) > l}. Such 

estimate is obtained in exactly the same way as in the proof of Lemma 6 in [41], where everything 

reduces to estimate the term with the convolution since the other terms in the right hand side of 
the last inequality are easily bounded. For the arguments needed to conclude the claim we refer 
the reader to [41]. ✷

Proof of Theorem 1. Let u be a solution of P	u = 0 with initial conditions [f, −af ] and such 

that �	f = 0. Due to our assumption on the coefficients of P	, u solves (∂2
t − �)u = 0 in 

(0, T ) × (Rn \ �) with null initial and Dirichlet boundary data. Then, for any x0 ∈ R
n \ �, u

vanishes in (0, T ) × V for some small neighborhood V of x0 such that V ∩ � = ∅. The previous 
is a consequence of a sharp domain of dependence for the wave operator in the exterior problem 

(see [12, Proposition 2]). Then u = 0 in (0, T ) × (Rn \ �) which implies null Neumann data, 
∂u
∂ν

∣

∣

(0,T )×∂�
= 0.

Let’s set

ū(t, x) =

t
∫

0

u(s, x)ds and �(t, x) = −

∞
∫

t

	(s, x)ds. (25)

Note that ūt (t, x) = u(t, x) and ∂t� = 	. Moreover

∂t

(

t
∫

0

�(t − s, x)ūs(s, x)ds
)

= �(0, x)ūt (t, x) +

t
∫

0

	(t − s, x)ūs(s, x)ds,

which, since ū(0, x) = 0 and integration by parts, implies

t
∫

0

(

τ
∫

0

	(τ − s, x)u(s, x)ds
)

=

t
∫

0

	(t − s, x)ū(s, x)ds. (26)

We integrate equation (3) on the interval (0, t) for any t > 0. It follows from the previous com-
putations that ū solves a system of the form (15) with vanishing Cauchy data. In addition, notice 

that ūt t = ut ∈ L2(Q), so using equation (15) we get c2�ū ∈ L2(Q), which by elliptic regularity 

implies ū ∈ H 2(Q). We can now apply Lemma 2 on ū and conclude that u = 0 in a set of the 

form {(t, x) ∈ Q : xn < ǫ 0 < t < T − xn}. This implies we have reduced the problem to the 

smaller domain [0, T − ǫ] × {x ∈ � : xn > ǫ}. If ǫ = T we are done, otherwise we can apply 

again Lemma 2 in the new domain. Iterating this process we conclude the result. ✷

There is a common condition appearing in the literature of Carleman estimates and inverse 

problems related to the wave equation with variable sound speed. It assumes the existence of 
some x0 ∈ R

n for which

(x − x0) · ∂xc(x) < c(x) ∀x ∈R
n. (27)

In geometric terms, (27) says that the spheres with center at x0 are strictly convex for the metric 

c−2dx2 [40, §3]. Such collection of spheres can then be used to foliate the domain � and, as you 
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Fig. 1. (a) Foliation of � by Euclidean spheres {�s }s centered at x0 . (b) Sub-characteristic unique continuation under 
condition (27).

will see in the next corollary (see also Fig. 1), it allows us to prove unique continuation and con-
sequently uniqueness for the inverse problem without the assumption of � and the level surfaces 
of the distance function, dist(·, ∂�), being strictly convex. The price we pay by removing the 

convexity requirement on � is the lost of sharpness in the bound of T that guarantee uniqueness.
Let � ⊂ R

n be an open and bounded subset with ∂� smooth, and T > 0. We assume the 

sound speed c(x) satisfies condition (27) and assume the constant c0 > 0 is a lower bound for 
the sound speed. Let’s denote

R� = max
r>0

{|x − x0| : x ∈ ∂�},

r� =

{

min
r>0

{|x − x0| : x ∈ ∂�}, if x0 ∈ R
n\�̄

0, otherwise,

and D� = R� − r�.

Theorem 2. Assume �, T and c are as above, and as in the TAT problem, we assume P	 =

∂2
t − � outside �. If u ∈ H 2(Q) is a solution of (15) such that u = ∂νu = 0 on (0, T ) × ∂�, 

then

u = 0 in {(t, x) ∈ Q : 0 < t < T − c−1
0 (R� − |x − x0|)}.

As a consequence, in the thermoacoustic problem, if f ∈ HD(�) is such that �	f = 0, with 

f = [f, −af ], then

f = 0 in {x ∈ � : |x − x0| > R� − c0T },

and in particular, f ≡ 0 when T ≥ c−1
0 D�.

Remark 4. From [44, Proposition 7.1], the uniqueness time defined in Theorem 1 satisfies T0 <

c−1
0 D�.

Proof. Let’s extend u to be zero outside � in the interval [0, T ]. Due to the null Cauchy data, 
finite speed of propagation and the well-posedness of the exterior problem, u solves (15) in the 
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whole space. Notice that in particular, u = ∂νu = 0 on the Euclidean sphere {x ∈R
b : |x − x0| =

R�}, for all t ∈ [0, T ]. ∂ν stands for a generic exterior normal derivative.
We denote �r = {x ∈ R

b : |x − x0| = r} the sphere of center x0 and radius r , and we set 
r0 = max{0, c0T − D�}. By hypothesis, �r with r ∈ [r0, R�] are strictly convex surfaces for the 

metric c−2dx2 that foliate � (see Fig. 1(a)). For a given r ∈ [r0, R�], let’s assume that

u = ∂νu = 0 on [0, T − c−1
0 (R� − r)] × �r .

Since �r is strictly convex we can apply Lemma 2 with � replaced by B(x0, r), the Euclidean 

ball of center x0 and radius r , and deduce that u = 0 in

{(t, x) ∈ (0, T ) × B(x0, r) : dist(x,�r) < ǫ, t < T − c−1
0 (R� − r) − dist(x,�r )},

for some ǫ > 0. Recalling that c0 is a lower bound for c, we have that

dist(x,�r) < c−1
0 (r − |x − x0|) ∀x ∈ B(x0, r),

therefore we can find r1 ∈ (0, r) such that u vanishes in the smaller set

{(t, x) : r1 < |x − x0| < r, 0 < t < T − c−1
0 (R� − |x − x0|)}.

Moreover, u has null Cauchy data on �r1 for all t ∈ (0, T − c−1
0 (R� − r1)) (see Fig. 1(b)).

If we denote by s the infimum of the radius r ≥ r0 for which u has vanishing Cauchy data in 

(0, T − c−1
0 (R� − r)) × �r , by the first paragraph and the previous argument we know s < R�

(since T > 0). Moreover, if s > r0, it must also satisfies the same property, this is, u = ∂νu = 0
in �s for all t ∈ (0, T − c−1

0 (R� − s)). Consequently, we can still apply the arguments in the 

paragraph above which leads us to conclude s = r0.
Let now f ∈HD,a(�) be as in the hypothesis, and u solution of (3). Analogously to the proof 

of Theorem 1, the function ū defined in (25) satisfies a system of the form (15) with null Cauchy 

data. The result then follows directly from the previous. ✷

4. Stability

The stability with complete data follows directly from the analogous results for the damped 

and undamped case. Due to the microlocal nature of this property, the minimum time needed 

to recover f in a stable way is usually larger than the uniqueness time. Indeed, it’s necessary 

to capture information coming from every singularity of the initial source. In a non-trapping 

domain, such lower bound is related to the value

T1(�) = sup{|γ |g : γ ⊂ �̄ geodesic for the metric g = c−2dx2},

being 
1
2T1 when there is no damping coefficient and exactly T1 for the damped case. Notice 

that T1 > 2T0 and in the case c satisfies (27), T1/2 ≤ (R� − r�)/(αc0) with (see [44, Proposi-
tion 7.1])

α = min
x∈�̄

(1 − c−1(x − x0) · ∂xc) > 0. (28)



2000 S. Acosta, B. Palacios / J. Differential Equations 264 (2018) 1984–2010

Theorem 3. Let � be strictly convex for the metric g = c−2dx2. Assume that � and T are as in 

Theorem 1 (or as in Theorem 2). In addition, assume T1(�) < T < ∞ if a �= 0 and 
1
2T1(�) <

T < ∞ otherwise (resp. 2α−1c−1
0 D� < T < ∞ and α−1c−1

0 D� < T < ∞). Then there exists 

C > 0 such that

‖f ‖HD(�) ≤ C‖�	f ‖H 1((0,T )×∂�).

Proof. The idea is to compare the observation operator �	 with its analogous for the undamped 

and damped case, �0 and �a respectively. These last two operators are known to be stable maps 
(see [9] and [10] respectively) and furthermore, from the results of the previous section, we know 

�	 is injective. The proof then reduces to show that the respective error operators are compact. 
We only show this for the case a ≡ 0, the proof when there is a damping coefficient is obtained 

analogously.
From [9] follows there is a constant C > 0 such that

‖f ‖HD
≤ C‖�0f ‖H 1 ≤ C‖�	f ‖H 1 + C‖(�	 − �0)f ‖H 1 .

Let’s denote R = �	 − �0 and u the attenuated wave related with �	. Then, R maps f ∈

HD(�) to the boundary data w|(0,T )×∂� of the system

⎧

⎨

⎩

(∂2
t − c2� + b)w = −	 ∗ u, (t, x) ∈ (0, T ) ×R

n

w|t=0 = 0,

wt |t=0 = 0.

(29)

By finite propagation speed we can work in a larger domain �′ such that w = u = 0 on 

its boundary and outside �′. Due to the higher regularity theorem in [45, §7.2.3 Theo-
rem 5], since F(t, x) = −[	 ∗ u](t, x) satisfies F, Ft ∈ L2((0, T ); L2(�′)), we obtain that 
w ∈ C((0, T ); H 2(�′)) and wt ∈ C((0, T ); H 1(�′)), and consequently the trace of w in ∂�

belongs to H 3/2((0, T ) × ∂�), with the latter space compactly embedded in H 1((0, T ) × ∂�).
The stability inequality is obtained by recalling the injectivity of �	 from Theorem 1 (re-

spectively Theorem 2) and applying the classical result [46, Proposition V.3.1]. ✷

5. Reconstruction

We aim to construct a Neumann series that allow us to recover f in (3) from boundary mea-
surements as it has been done in [23,9,26–28] for the unattenuated case, and in [10,11] for the 

damped wave equation. However, due to the convolution term we need to modified the equation 

satisfied by the time reversed wave. Considering the same equation in the backward direction 

would imply the knowledge of the future. The strategy then is to solve a time reversal problem 

in such a way that the initial energy of the error function is bounded by the total energy (kinetic, 
potential and energy lost by attenuation) of the forward wave, inside the domain and at time T , 
analogously as the argument presented in [11]. Such total energy in the whole space has the at-
tribute of being conserved in time, fact that allows us to reduce the proof to an estimate involving 

the norm of the initial source and the energy of the forward wave outside � (see Proposition 1). 
The estimate says that at time T a significant portion of the energy lies outside the domain. It 
was first used in [9] and subsequently applied in [11].
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Let’s introduce the following convolution-type operator

[	∗̃v](s, x) =

T
∫

s

	(t − s, x)v(t, x)dt, (30)

which is the adjoint operator of 	 ∗ (·) under the L2 inner product in (0, T ), this is, for any 

L2-functions u, v,

〈	 ∗ u,v〉L2(0,T ) = 〈u,	∗̃v〉L2(0,T ). (31)

Indeed, denoting by χI the indicator function in the interval I ⊂R,

T
∫

0

[	 ∗ u] (t)v(t)dt =

∫ ∫

χ(t)[0,T ]χ(s)[0,t]	(t − s)u(s)v(t)dsdt

=

∫ ∫

χ(s)[0,T ]χ(t)[s,T ]	(t − s)u(s)v(t)dsdt

=

T
∫

0

[

	∗̃v](s)u(s)ds.

Following the same approach than the latest results in reconstruction for TAT in the enclosure 

case as well as in the attenuated case for the damped wave equation, the idea is to consider the 

right back projection system that will make the error operator to be a contraction. In the same 

way as in the proof of uniqueness, instead of working with u we set

ū(t, x) =

t
∫

0

u(s, x)ds,

and �(t, x) as in (7).
Then, they satisfy

⎧

⎨

⎩

∂2
t ū − c2�ū + a∂t ū + pū + � ∗ ∂t ū = 0 in (0, T ) ×R

n,

ū|t=0 = 0 in R
n

∂t ū|t=0 = f in R
n

(32)

with p(x) = b(x) − �(x, 0) ≥ 0. Notice we do not use (26) to obtain an equation as in (15) and 

we keep a derivative inside the convolution. If �̄� : L2(�; c−2dx) → H 1((0, T ) × ∂�) denotes 
the observation operator for this problem, this is �̄�f = ū|(0,T )×∂�, by well-posedness of the 

direct problem we have the following relation,

�̄�f =

t
∫

0

[�	f ](t)dt, ∀f ∈ HD(�).
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For the data h̄ = �̄�f , we consider the solution v of the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(∂2
t − c2� − a∂t + p − �∗̃∂t )v = 0 in (0, T ) × �,

v|t=T = φ,

vt |t=T = 0,

v|(0,T )×∂� = h̄,

(33)

with φ the harmonic extension of h̄(T , ·) in �. Notice that problem (33) is well-posed. This is 
due to the convolution term that involves values of v in the interval (t, T ), thus by doing the 

change of variables t → T − t we get an IBVP of the form (32) which is uniquely solvable. We 

define the Time Reversal operator by

A : H 1
(0)([0, T ] × ∂�) → L2(�; c−2dx), Ah̄ = vt (0, ·),

and denote by K the error operator defined as follows,

K : L2(�; c−2dx) → L2(�; c−2dx), Kf = wt (0, ·),

with w = ū − v, the error function that solves problem (34).
In what follows we suppose the domain � is non-trapping (i.e. T0(�) < ∞). The main result 

of this section is the next

Theorem 4. Let � be strictly convex for the metric g = c−2dx2. Assume that � and T are as in 

Theorem 1 (or as in Theorem 2). In addition, assume T1(�) < T < ∞ if a �= 0 and 
1
2T1(�) <

T < ∞ otherwise (resp. 2α−1c−1
0 D� < T < ∞ and α−1c−1

0 D� < T < ∞, with α as in (28)). 
Then A�̄� = Id −K with ‖K‖L(L2(�;c−2dx)) < 1, and for any initial condition of (3) of the form 

f = (f, −af ) with f ∈ HD(�), the thermoacoustic inverse problem has a reconstruction formula 

given by

f =

∞
∑

m=0

KmAh̄, h̄ = �̄�f.

Proof. Notice the error function w = ū − v satisfies the equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(∂2
t − c−2� + p)w = −aūt − avt − � ∗ ∂t ū − �∗̃∂tv in (0, T ) × �,

w|t=T = ūT − φ,

wt |t=T = ūT
t ,

w|(0,T )×Ŵ = 0,

(34)

with ūT = ū(T , ·) and ∂t ū
T = ∂t ū(T , ·). Moreover, we can write

Kf = f − Ah̄ = wt (0), with h̄ = �̄�f.

We want to estimate the norm of Kf , hence we need to compute the energy of w. Multiplying 

(34) by 2c−2wt and integrating over (0, T ) × � we obtain
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E�(w,0) = E�(w,T ) + 2
∫

[0,T ]×�

ac−2ūtwtdxdt + 2
∫

[0,T ]×�

ac−2vtwtdxdt

+ 2
∫

[0,T ]×�

c−2(� ∗ ∂t ū)wtdxdt + 2
∫

[0,T ]×�

c−2(�∗̃∂tv
)

wtdxdt

= E�(w,T ) + 2
∫

[0,T ]×�

ac−2|ūt |
2dxdt − 2

∫

[0,T ]×�

ac−2|vt |
2dxdt

+ 2
∫

[0,T ]×�

c−2(� ∗ ∂t ū)∂t ūdxdt − 2
∫

[0,T ]×�

c−2(�∗̃∂tv)∂tvdxdt

− 2
∫

[0,T ]×�

c−2 (� ∗ ∂t ū) ∂tvdxdt + 2
∫

[0,T ]×�

c−2(�∗̃∂tv
)

∂t ūdxdt.

Neglecting the integration in the spatial variable in the last two terms for a moment, we can use 

the identity (31) which makes them cancel each other out. Furthermore, it follows from the same 

identity and Condition (6) on the kernels (which guarantees positive-definiteness) that

∫

[0,T ]×�

c−2(�∗̃∂tv)∂tvdxdt =

∫

[0,T ]×�

c−2(� ∗ ∂tv)∂tvdxdt ≥ 0.

In consequence we get

E�(w,0) ≤ E�(w,T ) + 2
∫

[0,T ]×�

ac−2|ūt |
2dxdt

+ 2
∫

[0,T ]×�

c−2(� ∗ ∂t ū)∂t ūdxdt.

(35)

The choice of the time reversal system (34) helps to minimize the total energy in the dynamic 

satisfied by the error function w in a similar way as the functions φ helps to minimize the energy 

of w at time T . Indeed, by integration by parts we have that

(ūT − φ,φ)HD(�) = −

∫

�

(ūT − φ)�φdx +

∫

∂�

(ūT − φ)∂νφdS = 0,

therefore

E�(w(T )) = ‖ūT − φ‖2
HD(�) + ‖ūT

t ‖2
L2(�)

= E�(ū(T )) − ‖φ‖2
HD(�). (36)

From the above relations (35) and (36), we deduce

‖Kf ‖2
L2(�;c−2dx)

≤ E�(w,0) ≤ E�(ū, T ), (37)
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where recall the term in the right hand side is the extended energy functional associated to (3)
and defined in (8). By conservation of the extended energy in Rn,

E�(ū, T ) = ERn(ū, T ) − E�c(ū, T ) = ‖f ‖2
L2(c−2dx)

− E�c(ū, T ). (38)

The conclusion of the theorem follows from the next proposition which is known to hold when 

there is no integral term.

Proposition 1. There is C > 0 so that for all f ∈ L2(�; c−2dx) and ū solutions of (32),

‖f ‖2
L2(�;c−2dx)

≤ CE�c (ū, T ).

An inequality of this form was first proved in [9, Proposition 5.1] (see (5.15) in the same arti-
cle) for the case of the unattenuated wave equation, and later extended to the damped case in [11, 
Proposition 2] requiring a larger lower bound for the measurement time though. Such estimate is 
obtained by microlocalizing near the singularities and studying how their energy is transmitted 

across the boundary provided they hit the boundary in a transversal way. By considering strictly 

convex domains we can be sure that all singularities meet that requirement. When there is no 

damping coefficient the analysis of the singularities can be decoupled to those following the 

positive sound speed and negative sound speed. The time needed then for the estimate to hold 

equals the time needed to get at least one signal from each singularity of the initial condition, this 
is T > 1

2T1(�). In contrast, the appearance of a damping term makes no longer possible such 

microlocal decoupling, and therefore it makes necessary to wait until both signals, issued from 

every singularity of the initial condition, reach the boundary, or in other words T > T1(�).
Let’s prove the above proposition. Denote by Ū(x, t) the solution of the damped wave equa-

tion

⎧

⎨

⎩

(∂2
t + a∂t − c2� + b)Ū(t, x) = 0, (t, x) ∈ (0, T ) ×R

n

Ū |t=0 = 0,

Ūt |t=0 = f.

(39)

Denoting f = [0, f ] ∈ H(�), from the paragraph above follows there is C > 0 so that

‖f ‖2
L2(�;c−2dx)

= ‖f‖2
H(�) ≤ CE�c(U,T ).

Furthermore, defining W̄ = Ū − ū we obtain

‖f ‖2
L2(�;c−2dx)

≤ C
(

E�c(ū, T ) + E�c(W̄ , T )
)

and letting ū(t) = [ū(t), ūt (t)], W̄(t) = [W̄ (t), W̄t (t)], the previous inequality implies

‖f ‖L2(�;c−2dx) ≤ C‖ū(T )‖H 1(�c)⊗L2(�c) + C‖W̄(T )‖H 1(�c)⊗L2(�c),

where the error function W̄ satisfies the IVP
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Fig. 2. Unique continuation from points in {x ∈R
n\�̄ : diste(x, ∂�) > T/2} implies null Cauchy data on (T /2, T ) ×∂�.

⎧

⎨

⎩

(∂2
t + a∂t − c2� + b)W̄ = � ∗ ∂t ū, (t, x) ∈ (0, T ) ×R

n

W̄ |t=0 = 0,

W̄t |t=0 = 0.

(40)

We claim the bounded map L2(�; c−2dx) ∋ f �→ ū(T ) ∈ H 1(�c) ⊗L2(�c) is injective. In fact, 
it can be decomposed as the composition of two injective bounded maps, the first one being the 

observation operator �̄�, which is injective since (32) is equivalent (following the computation 

in (26)) to a system of the form (15) where the method used to prove Theorem 1 (resp. Theorem 2) 
can be applied, and our choice of T > 1

2T1 ≥ T0 (resp. T > α−1c−1
0 R� ≥ 1

2T1). The second map 

is the exterior IBVP map that takes Dirichlet boundary data h̄ ∈ H 1
(0)([0, T ] × ∂�) to v̄(T ) ∈

H 1(�c) ⊗ L2(�c), where v̄ solves:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(∂2
t − c2�)v̄(t, x) = 0, (t, x) ∈ (0, T ) ×R

n \ �

v̄|t=0 = 0,

∂t v̄|t=0 = 0,

v̄|[0,T ]×∂� = h̄.

(41)

To see the injectivity of the latter map, consider h̄ ∈ H 1
(0)([0, T ] × ∂�) such that v̄(T ) = v̄t (T ) =

0, with v̄ solution of (41). By domain of dependence and reversibility in time of the exterior 
problem, we have that v̄ vanishes in {(t, x) ∈ (0, ∞) × R

n\�̄ : diste(x, ∂�) > t} and also in 

{(t, x) ∈ (0, ∞) ×R
n\�̄ : diste(x, ∂�) > |T − t |}. Therefore

v̄ = 0 in {(t, x) ∈ (0,3T/2) ×R
n\�̄ : diste(x, ∂�) > T/2}.

Applying Tataru’s unique continuation theorem on any p ∈ {diste(x, ∂�) > T/2}, we deduce 

that

v̄ = 0 in (Rn\�̄) ∩ {(t, x) ∈ (0,∞) ×R
n : |x − p| + |t − 3T/4| < 3T/4},

which implies that h̄ vanishes for t ∈ (T /2, T ) (see Fig. 2). We can now apply the same argument 
replacing T by T/2 and get that h̄ is null in the interval (T /4, T/2). Iterating this process we 

finally conclude that h̄ = 0 for all t ∈ (0, T ).
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Our second claim is that the map

L2(�; c−2dx) ∋ f �→ W̄(T ) ∈ H 1(�c) ⊗ L2(�c)

is compact. It is in fact a composition of the bounded maps

L2(�; c−2dx) ∋ f �→ ūt ∈ L2((0, T );L2(Rn)), ūt �→ W̄(T ) ∈ H 2(�c) ⊗ H 1(�c)

and the compact embedding

H 2(�c) ⊗ H 1(�c) →֒ H 1(�c) ⊗ L2(�c).

The continuity of the second map for those Sobolev spaces is due to [45, §7.2.3 Theorem 5] since 

denoting F := � ∗ ūt , then F, Ft ∈ L2((0, T ); L2(�c)). It follows from [46, Proposition V.3.1]
that for a different constant

‖f ‖L2(�;c−2dx) ≤ C‖ū(T )‖H 1(�c)⊗L2(�c).

The proposition is then proved by recalling the finite speed of propagation and applying Poincar-
e’s inequality on a large ball minus �. ✷

We conclude the proof of Theorem 4 by joining (37), (38) and Proposition 1, hence for some 

C > 1,

‖Kf ‖2
L2(�;c−2dx)

≤ ‖f ‖2
L2(�;c−2dx)

− E�c (u,T )

≤ ‖f ‖2
L2(�;c−2dx)

− C−2‖f ‖2
L2(�;c−2dx)

≤ (1 − C−2)‖f ‖2
L2(�;c−2dx)

. ✷
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Appendix

Well-posedness of the direct problem

For the existence of solutions we follows the proof of [36, Theorem 2.1]. Let’s assume without 
lost of generality that u0 = 0. For a fixed t0 ∈ (0, T ] let

Et0 = {v(t)|v(t) ∈ C∞([0, t0];H
1
0 (U)), v(0) = 0},

with two inner product given by
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(v,w)1 :=

t0
∫

0

{

(vt (t),wt (t))〉 + (∇v(t),∇w(t))
}

dt

and

(v,w)2 := (v,w)1 + t0(vt (0),wt (0)),

and respective norms ‖ · ‖1 and ‖ · ‖2. Let Ft0 be the completion of Et0 under the norm ‖ · ‖1. 
It can be proved, for instance by Stone–Weierstrass, that u ∈ Ft0 is a generalized solution in the 

interval [0, t0] if and only if

B(u, v) =D(f, v) + t0(c
−2u1, vt (0))L2(U), ∀v ∈ Et0 , (42)

where

B(u, v) =

t0
∫

0

(t − t0)
[

(c−2ut (t), vt t (t)) − (∇u(t),∇v(t)) − (c−2aut (t), vt (t))

−(c−2bu(t), vt (t)) −

t
∫

0

(c−2	(t − τ)uτ (τ ), ut (t))dτ
]

dt

+

t0
∫

0

(c−2ut (t), vt (t))dt,

D(f, v) = −

t0
∫

0

(t − t0)(c
−2f (t), vt (t))dt,

where (42) is obtained by using the test function (t − t0)vt (t) with v ∈ Et0 , in (5). Notice that 
applying integration by parts we get that the bilinear form B satisfies that for all v ∈ Et0 (recall 
v(0) = 0),

B(v, v) =
1

2

t0
∫

0

[

(c−2vt (t), vt (t)) + (∇v(t),∇v(t)) + (c−2bv(t), v(t))
]

dt

−

t0
∫

0

(t − t0)
[

(c−2avt (t), vt (t)) − (c−2	(0)v(t), v(t))

−

t
∫

0

(c−2	(t − s)v(s), v(t))ds
]

dt

+
t0

2
(c−2vt (0), vt (0)).
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Therefore, recalling that 0 < c0 ≤ c ≤ c−1
0 , we bound from bellow and choosing t0 > 0 small 

enough and using Poincare’s inequality we get

B(v, v) ≥
1

2
min{1, c2

0}‖v‖2
2 − Ct0

(

[‖a‖∞ + ‖	(0)‖∞ + t0‖	‖∞

)

‖v‖2
1 ≥ δ‖v‖2

2,

for some δ > 0.
On the other hand,

|D(f, v)| ≤ t0c
−2
0 ‖f ‖L2‖v‖2

|t0(c
−2u1, vt (0))| ≤ t

1/2
0 c−2

0 ‖u1‖L2‖v‖2

Then, similarly as in [47, Chap. III, Theorem 1.1], we get the existence of weak solutions on the 

interval [0, t0]. Iterating this argument for the intervals [t0, 2t0], [2t0, 3t0] etc, we conclude the 

existence on [0, T ]. The uniqueness follows the same ideas as in [36, Theorem 2.2].
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[38] L. Šeliga, M. Slodička, An inverse source problem for a damped wave equation with memory, J. Inverse 

Ill-Posed Probl. 24 (2) (2016) 111–122, http://dx.doi.org/10.1515/jiip-2014-0026, http://dx.doi.org.offcampus.
lib.washington.edu/10.1515/jiip-2014-0026.

[39] P. Stefanov, G. Uhlmann, A. Vasy, Boundary rigidity with partial data, J. Amer. Math. Soc. 29 (2) (2016) 299–332, 
http://dx.doi.org/10.1090/jams/846, http://dx.doi.org.offcampus.lib.washington.edu/10.1090/jams/846.

[40] P. Stefanov, G. Uhlmann, Recovery of a source term or a speed with one measurement and applications, Trans. 
Amer. Math. Soc. 365 (11) (2013) 5737–5758, http://dx.doi.org/10.1090/S0002-9947-2013-05703-0.

[41] A.L. Bukhgeim, G.V. Dyatlov, G. Uhlmann, Unique continuation for hyperbolic equations with memory, 
J. Inverse Ill-Posed Probl. 15 (6) (2007) 587–598, http://dx.doi.org/10.1515/jiip.2007.032, http://dx.doi.org.
offcampus.lib.washington.edu/10.1515/jiip.2007.032.

[42] D. Tataru, Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem, 
Comm. Partial Differential Equations 20 (5–6) (1995) 855–884, http://dx.doi.org/10.1080/03605309508821117, 
http://dx.doi.org.offcampus.lib.washington.edu/10.1080/03605309508821117.



2010 S. Acosta, B. Palacios / J. Differential Equations 264 (2018) 1984–2010

[43] D. Tataru, Unique continuation for operators with partially analytic coefficients, J. Math. Pures Appl. 
(9) 78 (5) (1999) 505–521, http://dx.doi.org/10.1016/S0021-7824(99)00016-1, http://dx.doi.org.offcampus.lib.
washington.edu/10.1016/S0021-7824(99)00016-1.

[44] P. Stefanov, G. Uhlmann, Multi-wave methods via ultrasound, Inverse Problems and Applications, Inside Out II, 
MSRI Publications 60 (2012) 271–323.

[45] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19.
[46] M. Taylor, Pseudodifferential operators, Princeton mathematical series; vol. 34, Princeton University Press, Prince-

ton, N.J.
[47] J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Grundlehren Math. Wiss., Bd. 111, 

Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961.


