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Abstract

In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with at-
tenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by
the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially depen-
dent parameters. Under the assumption of being able to measure data on the whole boundary, we prove
uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable
sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series recon-
struction formula.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that for biological tissues the attenuation of acoustic waves is frequency-
dependent. One way to model this attenuation is to use fractional time derivatives and conse-
quently the representation of the propagation of ultrasound waves by integro-differential equa-
tions. Examples of this modeling are frequency power-law attenuation or fractional Szabo models
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(see for instance [1-7]) where the traveling wave may be assumed to satisfy an equation of the
form

Yy 20%u — Au+ ¥ u = F(t,x), forsome ae(0,1), k=1,2,

and where the fractional derivative term can be written as a convolution in time ﬁ(x)B,k""“

fi oo Palt =, x)8f+1u(s, x)ds. Assuming, as in thermoacoustics, that the wave field vanishes
for negative times, and provided that the kernel is bounded and regular enough, we can perform
integration by parts and write the previous integral as a convolution of u with a different kernel,
plus time-derivatives of u up to order two. In the case k = 2, the sound speed is perturbed result-
ing in a different speed ¢ 2 = y ~2 4+ BW,(0), which requires conditions on g and ¥, in order
to get an effective wave speed ¢ > 0. We point out there is a recent definition for derivatives of
fractional order which employs such continuous and bounded kernels [8].

In the present article, we study the inverse problem of finding the initial source f in an atten-
uating medium, provided boundary data u|[o, 7]x s and where the acoustic wave u is assumed to
satisfies the system

u =

{ OPu—cAu+adu+bu+ [ Dt —s5,0)u(s, x)ds =8()f(x), €RxR" 0

u(t,x)=0, t <O.

We suppose a, b, c € C*(R"), ® € CZ(R"“), a,b>0, cal > ¢ > co > 0, and for a fixed open
bounded set Q C R” with smooth boundary, we suppose a =b =c — 1 = ® =0 in R"\Q. We
shall use the following notation throughout the paper:

t
Py ::33—02A+a8;+b+q)*', Q*M=f¢(l—S,X)M(S,X)dS-
0

Then Py = 8,2 — ¢ A outside the domain of interest Q. The Cauchy problem associated with (1)
is

Pou =0, (t,x) € (0,00) x R",
uli=0 = f, 2
Oiul;—0 = —af,

since any solution of (2) extended by zero to (—oo, 0) x R” is a solution of (1). Indeed, given a
smooth solution u of (2) we consider H (t)u(x,t) where H(t) is the Heaviside function. Then,
we can pull out the Heaviside function from the convolution since it integrates on the interval
(0, 1), thus we get

Po(Hu) = ué’ + 2(3;u)8 + aud + (Pou) H

with the last term vanishing since Pepu = 0. For an arbitrary test function ¢ € CSO(R"“) we
have the following,
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(Po(Hu),p) = / [ — @) — u(d¢) +2(0,1)¢ + aud)|,_odx

Rn

=—/uaz¢lr:odx

Rn

=(f8.9),

which is the same as problem (1).
The thermoacoustic tomography problem in a medium with convolution-type attenuation can
be modeled by the following initial value problem (IVP):

Pou(t,x)=0, (t,x)e (0, T)xR"
ul=0 = f, (3)

Oiuli=0 = —af,

where we aim to recover the initial source f from boundary measurements u| o, 7)x 95, assuming
the waves propagate freely in the space, that is, we suppose the boundary of €2 does not interact
with the outgoing waves. This last assumption has been considered for instance in [9—11].

The problem of thermoacoustic tomography has been broadly studied by many authors. Sev-
eral reconstruction methods have been proposed for homogeneous media [12—19], and also for
heterogeneous media [6,9,20-29]. See also the reviews [30-32] for additional references. The
theoretical analysis of the so-called time reversal method has gained considerable attention in
the past few years, mainly due to the work of Stefanov and Uhlmann in [23,9]. In its initial for-
mulation, the time reversal technique gives an approximate solution that converges to the exact
one as the observation time increases. The problem of recovering the initial source for optimally
short measurement time was solved in [23] for variable sound speed employing techniques from
microlocal analysis.

Recently, the focus of the mathematical analysis has been placed on extensions in the follow-
ing two areas. First, there is the problem of accounting for attenuating media. Homan in [10] gave
a first extension of Stefanov and Uhlmann’s work in this direction by considering the damped
wave equation with sufficiently small damping coefficients for the time reversal method to work.
In the complete data case, those results were extended to more general damping coefficients in
[11]. In [33] the authors addressed the TAT problem with thermoelastic attenuation. Second, re-
cent publications have addressed the TAT problem in enclosed domains to model the interaction
of acoustic waves with reflectors and sensors. The advantages of working with this setting is
that it naturally allows to consider partial data and the inverse problem is closely related with
boundary control theory. See for instance [26-29].

This article falls in the first group. As far as the authors know, the TAT inverse problem with at-
tenuation of integral type and variable sound speed has not been fully considered in the literature
from an analytical point of view. From a heuristic point of view, some advances have been made.
For the case of constant wave speed and constant coefficient of attenuation, Modgil et al. [34] de-
signed a method based on relating the unattenuated wave field to the attenuated wave field via an
integral operator and its subsequent inversion using a singular value decomposition. Treeby et al.
[4,35] proposed a reconstruction based on time reversal and the k-space computational method.
Attenuation compensation was achieved by separating the absorbing and dispersion terms in the
wave equation, and reversing the sign of the absorbing coefficient during the time reversal. This
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method was modified in [6] where the coefficient of attenuation was allowed to vary within the
region of interest, but the exponent of the power-law attenuation was still assumed to be constant.
However, in some practical settings such as in the presence of bone and soft—tissue, the domain
exhibits regions of varying power-law exponents. An appropriate method needs to be devised to
avoid blurring and distortions in the reconstruction. Our work is a step in that direction, where
the coefficients a, b, ¢ and the kernel ® in (1) are allowed to vary, which effectively accounts for
power-law attenuation of spatially varying exponent.

Considering attenuation terms of integral type brings some difficulties to the analysis on the
propagation of waves. In particular, the equation is no longer reversible and local in time and
consequently it is not possible to use techniques such as Tataru’s unique continuation to get
uniqueness, at least not in a direct way. Moreover, the microlocal properties of this type of
integro-differential operators are not well understood. Nevertheless, it is possible to exploit the
fact that an integral term of the sort considered here only presents a compact perturbation of
the differential operator. This article can be view as a first attempt to understand the TAT prob-
lem in media with memory/attenuation coefficients that vary in space. A subsequent step would
be to tackle viscoelastic models, and singular kernels as in the standard definition of fractional
derivatives.

The paper is structured as follows. In the next section we set the framework under which our
analysis is based, such as the well-posedness of the direct problem, the energy space of initial
conditions and the hypothesis on the attenuation parameters, namely the damping coefficient
and the attenuation kernel. In Section 3 we prove two uniqueness results. The first one is a
sharp result on uniqueness for the thermoacoustic inverse problem assuming the distance function
from the boundary allows us to foliate the interior of the domain by strictly convex surfaces. In
particular we require 92 to be strictly convex. The second main theorem of this section, which
does not require convexity of the boundary, assumes that the sound speed satisfies a frequently
used condition related with the convexity of the euclidean spheres in the metric induced by the
sound speed. The stability question is addressed in Section 4 and we devote Section 5 to show
the existence of a Neumann series reconstruction formula.

2. Preliminaries
2.1. Direct problem

Let U C R" be an open bounded set with smooth boundary, ug € H(} (U), uy € L*(U) and
F e L*([0,T]; L*(U)). We say u is a generalized solution of

P¢u:Fin [O, T] X U, u|[0’T]><3U=0, u(O):uo, u,(O):ul, (4)
ifu e L2([0, T1; Hy (U)), u; € L*([0, T1; L*(U)), usr € L*([0, T1; H~'(U)) and
(c_zu,t, ¢)+ B(u, ) = (c_zf, @) Yo eCy°U)andforae. re(0,7T] (®)]

where (-, -) and (-, -) stand for the duality product of H~! and Hol, and the L? inner product
respectively, and B(-, -) is the bilinear form given by

B(u,¢)=(Vu,Vo) + (ac_zu,, ©)+ (bc_zu, )+ (c_2<I> *U, Q).
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The well-posedness follows from Theorems 2.1 and 2.2 in [36]. We refer to the appendix for
a complete proof. In our case, by finite speed of propagation we can take U to be a large ball
containing €2 to ensure we have null Dirichlet conditions.

2.2. Energy space and positive-definite kernels

Given a domain U C R” and a scalar function u(z, x), we define the local energy of u = [u, u,]
at time ¢ as

Eu(u(®) =/<|vxu|2+b|u|2+c—2|ut|2>dx.
U

In order to give problem (3) a physical sense we need to assume some conditions on the attenu-
ation terms since such system must satisfies that its energy decreases over time. The previous is

achieved for instance if a(x) > 0 and the kernel ® is positive-definite, this is fOT (@ *y)ydt =0
for all y € C([0, T']). We then assume the following:

Condition 1.
a(x)>0 and (—1)j8,j<1>(t,x) >0,Vt>0,xeR", j=0,1,2. (6)

The previous condition guarantees the positive-definiteness of the kernel as shown in [37] and
[38]. Moreover, if we define

o]

U(t, x):= —/@(s,x)ds, @)

t

it turns out that —W is also a positive-definite kernel since it satisfies the same condition as ®.

Remark 1. An example of a kernel satisfying Condition 1 is ®(¢, x) = g(x)e™ %, for some
positive function g € C(R") and « > 0. In the recent article [8], the authors introduce a new
definition for fractional derivatives whose kernel is of the form e~*'. As a consequence, the
analysis carried out in this paper might be applied to fractional models of wave propagation
following this new definition of fractional derivatives.

Under Condition 1 we define the extended energy functional at time t > 0, analogously as in
[11], to be

Ey(u,t)=Eyu(r)) +2 / ac u;)Pdxdt +2 f 2 (P *kup) updxde,  (8)
[0,7]xU [0,7]xU

where the last two terms take into account the portion of the energy that is lost due to the attenua-
tion process. If we set U = R”, or by finite propagation speed we take U equal to any sufficiently
large ball, in the interval [0, T'] the former energy functional Ey is non-increasing since we get
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d
S Ev (u(t)) = -2 / ac | u;Pdxdt —2 / 2 (P *up) updxdt <0,
[0,T]1xU [0,7]1xU

and integrating in time we deduce that the extended functional is conserved.

We adopt the same functional framework as in previous articles related to thermoacoustic
tomography. The energy space H(U) of initial conditions is defined to be the completion of
C3°(U) x C3°(U) under the energy norm

11340, = / (Ve fil? + 21 f2P)dx,
U
with f = [ f1, f2]. We also let Hp(U) denote the completion of C8°(U ) under the norm

L W0 =/|vxf|2dx.
U

Notice that H(U) = Hp(U) & L>(U; c~%dx) with the latter space denoting the L? functions
under the weight ¢ ~2dx.

Denoting by 2 the region of interest and ¥ = [0, T'] x 92, we introduce the measurement
operator Ag : H(Q) 3 f— u|x € H'(X), where u satisfies (3).

3. Uniqueness

The first main result of this section, Theorem 1, is a uniqueness theorem for the full data case
under a particular foliation condition. We work in this part with the more general hyperbolic
operator (14) associated to a Riemannian metric g. We then, assuming g = c2dx2, provide a
condition for the sound speed that guaranteed the existence of a particular foliation suitable for
uniqueness. This is our second main result, Theorem 2.

Foliation conditions were introduced in [40] in the context of an inverse source problem for
hyperbolic equations. In the field of travel time tomography in seismology, where one aims to
recover the inner structure of the Earth by measuring travel times of seismic waves, at the begin-
ning of the 20th century, Herglotz, and Weichert and Zoeppritz considered a special assumption
on the isotropic wave speed that turned out to be a particular instance of Stefanov and Uhlmann’s
foliation condition (see [39, §6] and reference therein). These type of assumptions seem to be
the natural conditions under which one could expect to propagate information from the exterior
towards the interior of the domain. In particular, it has been applied before in the thermoacoustic
setting to prove uniqueness for the inverse problem of recovering a sound speed when the initial
source is known [40, §3].

Theorem 1 is a direct consequence of [41, Theorem 1], a boundary unique continuation result
for hyperbolic equations with a memory term, where, for the sake of simplicity, the authors
restricted their analysis to the Euclidean case. Nevertheless, in our work we need the full strength
of such unique continuation so we have included a brief proof in the case of waves traveling in
a general Riemannian setting. In few words, the idea introduced in [41] works as follows. For a
solution with null Cauchy data at the boundary, it can be shown by compactness that it vanishes
near the boundary and for small times, and then extend its zero set up to the characteristic time but
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still in a neighborhood of the boundary. The proof is then complete by noticing that assuming
the levels sets of the distance to the boundary function are strictly convex, one can repeat the
same process in a layer stripping fashion. The utilization of this strategy then makes necessary
to consider full boundary data and the convexity assumption on the distance to the boundary
function, which indeed gives us the internal foliation of the domain. This is the main reason of
our hypotheses in Theorem 1. We point out that a similar method was also applied in [40] to
obtain uniqueness for partial data and more general foliations. It was of fundamental importance
in such proof the possibility of using a partial boundary unique continuation result independent
of the foliation (see Proposition 2.1 in that article).

On the other hand, Theorem 2 addresses the isotropic case where we were able to remove the
strong convexity requirement on the boundary by imposing a convexity condition on the sound
speed, although losing optimality on the time needed to obtain uniqueness.

Theorem 1. Let Q2 be a bounded open subset of R" with 92 smooth and strictly convex for a
Riemannian metric g. Let T > 0 be such that x" = dist(x, 92) is a smooth function in Q2 with
non-zero differential for 0 < x" < T and its level surfaces {x" = s}, for 0 < s < T, are strictly
convex for the metric g aswell. If f € Hp(R2) is such that Aof =0 withf = (f, —af), then f =0
in {x € Q:dist(x, Q) < T}. In particular, if T > To(2) := sup, cq dist(x, 0R2), then f =0.

Remark 2. Under the above hypothesis, this result presents an improvement in the condition
imposed on T for uniqueness in the damped wave equation (T > 2Ty (£2) in [10, Theorem 3.1]).

Let Q =(0,T) x  and x" = dist(x, 3R2) the signed distance function defined in a neigh-
borhood of the boundary and such that € and 92 are characterized respectively by x” > 0 and
x" = 0. We define the following weight function

ox,t)=(R—x") —at? —r?, 9)

which is invariantly defined for any local coordinates (x!, ..., x" 1) in 9. Here & = a(2, g)>0
is sufficiently small and R, r > 0 will be chosen large and close to each other. For € > 0 we also
consider the sets

Q) ={t,x) e Q:0(x,1)>¢€}, (10)
Qe)={xeQ: (R—x")?>>r>+¢). (11)

By taking r close to R, the set Q(0) is a small neighborhood of {0} x 9S2 inside Q.
We recall that in boundary normal coordinates, a Riemannian metric g takes the form

o p(x', xM)dxdx? 4 (dx?)?, (12)

for a, B <n — 1. We denote g = (g4p(x)). Moreover, the strictly convexity of the level surfaces
{x™ = s} translates into

lagozﬁ

M@ v) = <_2 ax"

) v*of > KS|U|§~,, Yv e T{x" =5},
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with «; > 0 the smallest eigenvalue (principal curvature) of the second fundamental form IT in
{x" = s}, where Ry =« I can be think as the largest curvature radius of {x"" = s}. The analogous
condition for convectors follows from the natural isomorphism &; = g;; (x)v/ and reads

19g*f

NneE.6) = (5 W) bubp > K5|E VE € THx" =5). (13)

In what follows we consider the more general integro-differential operator

Pott =ty — (8" (x)du) + (A(x), u') + b(x)u + ® *u, (14)

where u’ = (uy, u;), g is a Riemannian metric, and the vector-function A, the scalar-function b
and the kernel ® are continuous functions.

Remark 3. The next two lemmas also hold if the coefficients A and b are analytic functions in 7.
Lemma 1. Let Q and T be as in Theorem 1. Let f € L2(Q) andu € H2(Q) be a solution of

Pou=0 in(0,T) x €,
uli—0=0 1inQ, (15)
3tu|t:0:f in Q.

Ifu=0,u=00n0Q(0)N IR, then
u=0in Q(0), and in particular f =0 in Q2(0).

Proof. Given a point y = (y’, 0) € 9%, let’s consider local coordinates (U, (x', ..., x" 1)) in the
boundary near y’. For € > 0 we define the sets

0,(€)={(t,x) € Q:9x,1)>¢€ x' €U}, (16)
Q) ={xeQ:(R—x")?>r’+¢ x' €U} (17)

In what follows we take r = R — §, for some § > 0 small enough, therefore x” € [0, §) in the
set Q(0).

Let’s first consider an arbitrary function u € C°°(§y (0)) such that u = d,u =0 on Ey (UK
0%, and let #(t, x) = x (x")u(t, x), with x € C(‘)’o(U). The idea is to obtain a well known local
Carleman estimate for & and later use it, along with a partition of unity, to get an analogous
estimate in Q(0).

Let’s denote P = u; — 0 (8" (x)d;u), the principal part of Pe. By analyzing the conjugate
operator Py = e"?Pe "% it is possible to deduce (after long computations) a pointwise estimate
for v = e"%u of the form:

CIPovl? = t(ju > + [va») + 2 of* + divy (Y) + 8, Z

I (18)
+47(R - 8)* <§8ngklvkv1) —2tylv.l}



1992 S. Acosta, B. Palacios / J. Differential Equations 264 (2018) 1984-2010

for some constant y > 0 depending on the parameter « which is chosen small enough, and
with (Y, Z) a vector-valued function depending on lower order derivatives of v and vanishing in
00y (0)\{p = 0}. In fact, the previous follows by decomposing P; v as the sum of two operators,

Prv=vy —3;(g780) + 200, & =g — |gx?
and
P_v=2t({gx, Va)g — rvr) + TV, W=12;(gY8¢) — u,
and bounding from below the inequality
Pevl? = [Psvl® 4+ 2(P1o) (P-v).

Here we apply the convexity condition on the level surfaces {x" = s} in (13). By choosing then
R large enough and § small, we arrive to the estimate

PP + (o + ol}) < C(e™|Pitl* — divy(Y) — 8, Z).

Because v = "%, we can bound from below the left hand side of the previous inequality by
similar terms but involving now the function u (and the exponential weight function). Integration
over Q(0) and the Gauss—Ostrogradskii formula give us that

T / X (T2 |t + |ii, |* + it ) dxdt

0,(0)
(19)

<C / e2w|Pﬁ|2dxdt +C / ((Xlu’, u'y + (Xo,u'yu+ X3|M|2)dS,
0,(0) Ty (0)
where dS denotes the surface measure on I'y (0) = Q,(0) N {¢ = 0}, and the matrix-function
Xi(x,t), the vector-function X,(x,t), and the scalar-function X3(x,t) are some continuous

functions depending on ¢ and Q,(0). Using the continuity of the coefficients in the lower or-
der terms (l.o.t) of Py and noticing that

|Pi|? < 2|Poit|?> + 2|(Lo.t of Po)it|?,

we can choose 1 larger if necessary and absorb the second summand in the right hand side above
with the left hand side of (19). Then

T / (T[] + |ii, |* + it |3)daxdt

0,0
(20)

<C / ™| Poil|*dxdt + C / (X1’ u') + (Xo, u'yu + X3|u|*)dS.
0y(0) I'y(0)



S. Acosta, B. Palacios / J. Differential Equations 264 (2018) 1984-2010 1993

The analogous inequality in the larger set Q(0) is obtained by considering a partition of unity
and using the compactness of d$2. More precisely, let now u € C*(Q(0)) and let {U;}; be a finite
covering of the boundary such that on each U; we can define boundary local coordinates, and
let {x;}; be a finite smooth partition of unity subordinate to {U;};. We also consider a collection
of points y; € U;. Then, denoting u; = xil/zu, and the measure do = dtdVol(x) on Q, from the
previous estimates we get

o [ Pl + ) do

0(0)
=t / &% xi (271l + ug > + ux | ) dxdr
L 0,0
=t} / T (i P+ )i + |y [3)dxds
0,0
+Ct / > \u|*do
0(0)

<C /ezw|73q>u|2d0+ / (X' u'y + (X2, u')u + X3lu|*)dS
) o)

+Z / > |[Po, xilu>dxdt + © / 2 ulPdo |,
Lo 0(0)

where notice [Py, x;] are differential operators of order 1. We absorb the interior integrals with
lower order derivatives of u using the left hand side and get

o [ Pl + s )do

)

¢ @1
<C / e2’¢’|79¢u|2do+cf((xlu’,u’>+(xz,u’)u+x3|u|2)ds.

0(0) r'0)

It follows from a density argument that the previous estimate also holds for functions in H>(Q)
with null Cauchy data in 9 Q(0) N 0<2.

Let u be as in the hypothesis of the lemma. Then, u satisfies an inequality of the form (21),
without the interior integral in the right hand side. Noticing that the boundary integral does not
depends on 7, we let T goes to infinity and conclude that u =0 in Q(0). O

The aim of the second lemma is to extend the time for which u is zero. Based again on
Carleman estimates we will be able to succeed until we hit the characteristic surface associated
to the principal part of P, this is the surface {(¢, x) : T — ¢t = dist(x, 92)}.
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Lemma 2. Let Q2 and T be as in Theorem 1. If u € HZ(Q) is a solution of (15) such that u =
oyu=00n (0,T) x 082, then

u=0 in {(t,x)e Q: :dist(x,0R) <€, 0<t < T — dist(x, 92)}
forsome 0 <e <T.

Proof. From Lemma 1, # = 0 in some neighborhood {(¢,x) € O : (R — M2 > ar? + r2} for
appropriate constants «, R, r. It is clear that for sufficiently small €1, €2 > 0, the previous set
contains [0, €1] x {x € Q : dist(x, 0R2) < €>}.

In a neighborhood of 92 we define

Y(t,x) = (2 —x")(T —t —x"), (22)
and for y > 0 we consider the sets
0% ={(t.x) € QY (t.x) >y, x" <ea},

which exhaust Q€2 = {(t,x) € Q | x" <€, 0 <t < T —x"},thisis Q€ = Uy>0 Qf,z. Moreover,
there exists yp > 0 such that

#0372 Cl0, 6] x {x e Q:x" <€)

We denote by B(fy, xo; r) the ball centered at (fy, xo) and radius r for the euclidean metric.
Given the following

Claim. Suppose that for (ty, x0) € Q?, u vanishes below the level surface {{ (x,t) = ¥ (to, x0)}
near (ty, xo), this is in Qf;(to’x()) N B(ty, xo; 1) for some r > 0. Then, u = 0 in a neighborhood of
(x0, 10).

the proof of the lemma is complete by the next argument. Let’s assume that suppu N Q<2 # .
We can find 0 < y* < yp such that

suppu N Q3 =¥, Yy > y* and suppuN{(t,x) € Q2 : ¢ (t,x) =y"} #0.

The application of the claim on every contact point (t*, x*) € suppu N {(¢,x) € Q2 : Y (t,x) =
y*}, contradicts the choice of y*. Consequently, we deduce that u = 0 on every Qf,z, y >0, and
therefore u = 0 in Q€.

It only remains to show the previous claim. Here is where Carleman estimates play a fun-
damental role, and as before we will consider a particular choice of weight function which
needs to fulfill a pseudo-convex condition with respect to P = 37 — 9,;(g"/d, - ), in the set
{(0,¢) e T(to,xo)Q}' Moreover, we will take it to be linear and non-increasing in time. Provided
the above, it is possible to apply a pseudo-differential Carleman estimate introduced in [42] and
conclude that u vanishes near (tg, xg).

Let’s consider local coordinates in 9$2 near some y € 92 such that in those coordinates y =
(x(, 0). For some § > 0 to be appropriately chosen, we define the following weight function
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1
@1, x) =Y (t,%) = (10, x0) = 58lx — xol?

where here | - | stands for the euclidean norm and v as in (22). Denoting the principal symbol of
P by p(t,x;0,&) = —60% + |£|2, where |§'|12g = g (x)§;&; is the norm on covectors induced by
g, the pseudo-convexity condition requires to show that ¢ satisfies

(1) Re{p, {p. ¢}}(t0, x0; 0, ) > 0 for all £ # 0 such that p (7o, x0; 0,§) =0,
2) %{ﬁtp, Dy} (t0, x0;0,&; ) > 0forall § #0, T > 0 such that py(t, x0; 0, &, 7) =0.

Here py (10, x0;0,&; 1) = p(t,x; 0 +ite,, § +itey) and {-, -} is the Poisson bracket

{fh}_iaf oh  af ah  f oh  df oh
T La9g 9x;  ox; 08, | 00 ot 01 96

j=1
Recall that we are working in boundary normal coordinates hence the metric g takes the form
(12). The first condition is trivially fulfilled since the principal symbol p is elliptic in the set
{6 = 0}. Let’s use the following notation: the variable appearing in the subindex means we are
differentiating with respect to such variable, for instance ¢, = d,/¢ and @;» = 9,9, ¢. To verify
the second condition we notice first that ¢,/ (g, x0) = ¥y (fo, x0) = 0, @xn (to, X0) = Yy (tg, X0) =
—a and ¢ (9, x0) = V¢ (to, x0) = —B where @ > 8 > 0. In fact,

a=(e—xp)+ (T —19p—x5), and B=e —xg.
Also, denoting §;; the Kronecker delta,
Dt = 0, Prxi = Sin, Dyixi = 28in3jn -4 3ijo

Secondly, it is easy to check that py(fo, x0;0,&, 1) = 0 is equivalent to &, = 0 and |& |§ =
12(012 — ,82). Then, after some tedious computations, in the set of points (7p, xo; 0, &; ) such
that p, = 0, we get
1 _ 1
E{Pw» pgo} = ;{Reprps Impgo}
2,2 1 ~i] let
=8717(a” —aff) +4a <§8ng1)§i§j — M,

with M =47%a% + 4 (gfks}) (3'%&/) such that, for some C > 0,

M <47t%(@® + C(a® — BY)).

Let’s recall the positive-definiteness of the second fundamental form in (13), and denote « =
minge[0,¢,] Ks. By choosing § > 0 small enough we obtain that

L hy p) 2 87%(a ) (14 5@+ ) ~ 4576 +Cla> ) >0,
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therefore ¢ satisfies the second condition of pseudo-convexity. It follows from [43, Theorem 3]
that there exists n, C, d > 0 such that any function v supported inside B(fg, xo; 1) (we of course
choose 0 < n < r), for which the RHS of the next inequality is finite, satisfies the pseudo-
differential Carleman estimate

e Ee )}, < C (||Ee“/’Pv||2 e T Pyl + e*d“||e“/’u||fl’,)) .23
for the weighted norms

2 2(m—|a|—j o2
WG =Y " DDl vl s guiry, T>0 I-1:=1"l00,
loe|+j<m

. . € 2
and the pseudo-differential operator E := et P

convolution operator

. This operator can also be considered as the

T \1/2 _tli—s?
Ev(x,t):(ﬂ> e "2 wv(x,s)ds.

We would like to apply the above Carleman estimate to u and eventually deduce that # van-
ishes near (fp, xo). With that in mind we need first to localize it near (fy, xg). As in [41], in
(W' (0, x0))* = {(6, &) : (¥ (10, X0). (6, §))eg = 0} we see that 6] < C1|€[,, hence

(=) (0.8). 0.6))g = 81512 = 2l (6. £) 2.

Therefore, by choosing /1 < 0 small enough in magnitude, the set {¢(¢,x) > [1} N {¥(t,x) <
¥ (to, x0)} is contained in a sufficiently small vicinity of (#9, xg). We then localize u by multi-
plying it with a function of the form y (¢(z, x)) with x € C*°(R) a nondecreasing function such
that

_]0 fors <1y,
X(S)_{l fors > Iy,

where /] <[y < 0 are small enough in magnitude, then

supp[u(t, x) x (¢(t, x))] C B(to, x0; n).

In what follows we write y meaning the composition x o ¢. Consequently, v = xu satisfies the
inequality (23). We include the integral term in the estimates by noticing that

P(xu) = xPu+I[P, xlu=xPou — x®*xu+ Piu,

where P is a differential operator of order 1 with coefficients supported in {(¢, x)|@(#, x) < I»}.
Consequently

T Ee™ (xw)lty.) < c(nEeWPl ) > + | Ee™ x (@ #u)|*
(24)
+ T PO + eI e (R, ).
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The idea in what remains of the proof is to estimate || Ee*?(xu)||2,r) by a term of the form e,
with [ < 0, and use [42, Proposition 4.1] to conclude that yu =0 in {(¢, x)|¢(t, x) > [}. Such
estimate is obtained in exactly the same way as in the proof of Lemma 6 in [41], where everything
reduces to estimate the term with the convolution since the other terms in the right hand side of
the last inequality are easily bounded. For the arguments needed to conclude the claim we refer

the reader to [41]. O

Proof of Theorem 1. Let u be a solution of Pyu = 0 with initial conditions [ f, —af] and such
that Ag f = 0. Due to our assumption on the coefficients of Pg, u solves (312 — Au=01in
0,T) x (R" \ﬁ) with null initial and Dirichlet boundary data. Then, for any xo € R” \5, u
vanishes in (0, T') x V for some small neighborhood V of x( such that V N Q = @. The previous
is a consequence of a sharp domain of dependence for the wave operator in the exterior problem
(see [12, Proposition 2]). Then u =0 in (0, T) x (R" \ ) which implies null Neumann data,
g_ﬂ((),T)xBQ =0.
Let’s set

t oo

ﬁ(t,x):/u(s,x)ds and \Il(t,x):—/cb(s,x)ds. (25)

0 t
Note that u;(t, x) = u(t, x) and 9; ¥ = ®. Moreover

t 1

8,(/\I/(t—s,x)ﬁs(s,x)ds) =‘lf(0,x)12,(t,x)+/<l>(t—s,x)ﬁs(s,x)ds,
0 0

which, since u(0, x) = 0 and integration by parts, implies

t T t

/(/Cb(r—s,x)u(s,x)ds):fcb(t—s,x)ﬁ(s,x)ds. (26)

0o 0 0

We integrate equation (3) on the interval (0, ) for any ¢ > 0. It follows from the previous com-
putations that u solves a system of the form (15) with vanishing Cauchy data. In addition, notice
that u;; = u; € LZ(Q), so using equation (15) we get R INTR= LZ(Q), which by elliptic regularity
implies it € H*(Q). We can now apply Lemma 2 on & and conclude that # = 0 in a set of the
form {(t,x) € Q : x" <€ 0 <t < T — x"}. This implies we have reduced the problem to the
smaller domain [0, 7 — €] x {x € Q:x" > €}. If e =T we are done, otherwise we can apply
again Lemma 2 in the new domain. Iterating this process we conclude the result. O

There is a common condition appearing in the literature of Carleman estimates and inverse
problems related to the wave equation with variable sound speed. It assumes the existence of
some xg € R” for which

(x —xp) - Orc(x) <c(x) VxeR™ 27

In geometric terms, (27) says that the spheres with center at x¢ are strictly convex for the metric
¢ 2dx? [40, §3]. Such collection of spheres can then be used to foliate the domain 2 and, as you
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{dist(z,Zpo) =T —t}——>

{lz —zo| = Ro — coT'}

(b) ERQ

Fig. 1. (a) Foliation of €2 by Euclidean spheres {Zs}; centered at xg. (b) Sub-characteristic unique continuation under
condition (27).

will see in the next corollary (see also Fig. 1), it allows us to prove unique continuation and con-
sequently uniqueness for the inverse problem without the assumption of €2 and the level surfaces
of the distance function, dist(-, d€2), being strictly convex. The price we pay by removing the
convexity requirement on €2 is the lost of sharpness in the bound of 7' that guarantee uniqueness.

Let 2 C R" be an open and bounded subset with €2 smooth, and 7 > 0. We assume the
sound speed c(x) satisfies condition (27) and assume the constant co > 0 is a lower bound for
the sound speed. Let’s denote

Rq = max{|x — xg| : x € 9092},
r>0

min{|x —xo| : x €9}, if xp € R"\Q
rQ = r>0

0, otherwise,
and Do = Rg —rg.
Theorem 2. Assume 2, T and c are as above, and as in the TAT problem, we assume Py =
82 — A outside Q. If u € H*(Q) is a solution of (15) such that u = d,u =0 on (0, T) x %,
then

u=0 in {(t,x)€Q:0<t<T —cy (Ra— |x —xo)}.

As a consequence, in the thermoacoustic problem, if f € Hp(K2) is such that Aof = 0, with
f=[f, —af], then

f=0 in {xeQ:|x —x9|>Rq—coT},
and in particulay, f =0 when T > CalDQ.

Remark 4. From [44, Proposition 7.1], the uniqueness time defined in Theorem 1 satisfies Ty <
—1
CO DQ.

Proof. Let’s extend u to be zero outside 2 in the interval [0, 7']. Due to the null Cauchy data,
finite speed of propagation and the well-posedness of the exterior problem, u solves (15) in the
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whole space. Notice that in particular, u = d,u = 0 on the Euclidean sphere {x € R” : |x — x| =
R}, forall £ € [0, T']. 9, stands for a generic exterior normal derivative.

We denote =, = {x € R? : |x — xg| = r} the sphere of center xo and radius r, and we set
ro = max{0, coT — Dg}. By hypothesis, 2, with r € [rg, Rq] are strictly convex surfaces for the
metric ¢~ 2dx? that foliate Q (see Fig. 1(a)). For a given r € [rg, Rg], let’s assume that

u=3u=0 on [0,T—cy (Ra—r)]xE,.

Since X, is strictly convex we can apply Lemma 2 with 2 replaced by B(xg, r), the Euclidean
ball of center xg and radius r, and deduce that u =0 in

{(t,x) €(0,T) x B(xg,r) :dist(x, Z,) <€, t <T — Co_l(RQ —r) —dist(x, Z,)},
for some € > 0. Recalling that cq is a lower bound for ¢, we have that
dist(x, £,) < ¢ ' (r — |x — xol)  ¥x € B(xo, 1),
therefore we can find 1 € (0, r) such that u vanishes in the smaller set
{t,x):ri<|x—xo|l<r,0<t<T —Co_l(RQ —|x —xo])}.

Moreover, u has null Cauchy data on X, forallz € (0,7 — Cal(RQ —r1)) (see Fig. 1(b)).

If we denote by s the infimum of the radius r > r¢ for which u has vanishing Cauchy data in
0, T —¢y ! (Rq —r)) x X, by the first paragraph and the previous argument we know s < Rq
(since T > 0). Moreover, if s > rg, it must also satisfies the same property, this is, u = d,u =0
in Xy forall t € (0, T — ¢, Y(Rq —9)). Consequently, we can still apply the arguments in the
paragraph above which leads us to conclude s = rg.

Letnow f € Hp ,(€2) be as in the hypothesis, and u solution of (3). Analogously to the proof
of Theorem 1, the function u defined in (25) satisfies a system of the form (15) with null Cauchy
data. The result then follows directly from the previous. O

4. Stability

The stability with complete data follows directly from the analogous results for the damped
and undamped case. Due to the microlocal nature of this property, the minimum time needed
to recover f in a stable way is usually larger than the uniqueness time. Indeed, it’s necessary
to capture information coming from every singularity of the initial source. In a non-trapping
domain, such lower bound is related to the value

T1 () =supflylg: ¥ C Q geodesic for the metric g = c2dx?y,
being %Tl when there is no damping coefficient and exactly 77 for the damped case. Notice
that 71 > 2Ty and in the case c satisfies (27), T1/2 < (Rq — ro)/(aco) with (see [44, Proposi-
tion 7.1])

o =min(l —c~(x —xq) - dcc) > 0. (28)

xe
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Theorem 3. Let Q be strictly convex for the metric g = c¢~>dx?. Assume that Q@ and T are as in
Theorem 1 (or as in Theorem 2). In addition, assume T1(2) < T < oo if a # 0 and %T] (RQ) <

T < oo otherwise (resp. 2a_lcalDQ <T < o0 and Ol_lCO_lDQ < T < 00). Then there exists
C > 0 such that

I lHp @) < CllA fll 1 0,7)x00)-

Proof. The idea is to compare the observation operator A ¢ with its analogous for the undamped
and damped case, Ag and A, respectively. These last two operators are known to be stable maps
(see [9] and [10] respectively) and furthermore, from the results of the previous section, we know
A ¢ is injective. The proof then reduces to show that the respective error operators are compact.
We only show this for the case a = 0, the proof when there is a damping coefficient is obtained
analogously.

From [9] follows there is a constant C > 0 such that

I fllzp < CllAofllgt = CllAe fllgt + Cll (Ao — Ao) fll g1

Let’s denote R = A¢p — Ao and u the attenuated wave related with Ag. Then, R maps f €
Hp(2) to the boundary data w|( o, 7yxaq of the system

@ —c*A+bw=—D*u, (t,x)e0,T)xR"
wli=0 =0, (29)
wt|r=0 = 0.

By finite propagation speed we can work in a larger domain Q' such that w = u = 0 on
its boundary and outside ©’. Due to the higher regularity theorem in [45, §7.2.3 Theo-
rem 5], since F(r,x) = —[® * u](t, x) satisfies F, F; € L%((0, T); L%(Q2")), we obtain that
we CW0,T); HZ(Q/)) and w; € C((0,T); H' (")), and consequently the trace of w in 92
belongs to H3/2((0, T) x 0€2), with the latter space compactly embedded in HY(0,T) x Q).

The stability inequality is obtained by recalling the injectivity of A from Theorem 1 (re-
spectively Theorem 2) and applying the classical result [46, Proposition V.3.1]. O

5. Reconstruction

We aim to construct a Neumann series that allow us to recover f in (3) from boundary mea-
surements as it has been done in [23,9,26-28] for the unattenuated case, and in [10,11] for the
damped wave equation. However, due to the convolution term we need to modified the equation
satisfied by the time reversed wave. Considering the same equation in the backward direction
would imply the knowledge of the future. The strategy then is to solve a time reversal problem
in such a way that the initial energy of the error function is bounded by the total energy (kinetic,
potential and energy lost by attenuation) of the forward wave, inside the domain and at time 7,
analogously as the argument presented in [11]. Such total energy in the whole space has the at-
tribute of being conserved in time, fact that allows us to reduce the proof to an estimate involving
the norm of the initial source and the energy of the forward wave outside €2 (see Proposition 1).
The estimate says that at time 7" a significant portion of the energy lies outside the domain. It
was first used in [9] and subsequently applied in [11].
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Let’s introduce the following convolution-type operator

T
[®*v](s, x) =/CI>(t — s, x)v(t, x)dt, 30)

N

which is the adjoint operator of ® s (-) under the L? inner product in (0, T'), this is, for any
L2-functions u, v,

(q) *Uu, v>L2(O,T) = <M, ¢;v>L2(O,T)' (31)

Indeed, denoting by y; the indicator function in the interval / C R,
T
f [ ul (v (t)dt = / / X (D10, 11X (10,1 PE — sHu(s)v(t)dsdt
0

=//X(S)[0,T]X(t)[s,r]q>(t—S)M(S)v(t)dsdt
T

= f [<D>T<v](s)u(s)ds.

0

Following the same approach than the latest results in reconstruction for TAT in the enclosure
case as well as in the attenuated case for the damped wave equation, the idea is to consider the
right back projection system that will make the error operator to be a contraction. In the same
way as in the proof of uniqueness, instead of working with u we set

t

ﬁ(t,x):/u(s,x)ds,

0

and W(¢, x) as in (7).
Then, they satisfy

82it — c?Aii +adiii + pi+ W =0 in(0,T) x R,
dlj—o=0 inR" (32)
Quli=0o=f inR"

with p(x) = b(x) — ¥(x,0) > 0. Notice we do not use (26) to obtain an equation as in (15) and
we keep a derivative inside the convolution. If Ay : L>(Q2; ¢ 2dx) — H'((0, T) x 92) denotes
the observation operator for this problem, this is Ay f = 1], 7)x8%, by well-posedness of the
direct problem we have the following relation,

t
1_\wf=/[A<1>f](t)dt, Vf e Hp(LQ).
0
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For the data 4 = Ay f, we consider the solution v of the system

(02 —c2A—ad, +p—Vkd)v = 0in(0,7T) x €,
t
vlt:T = ¢)7
Uz|t=T = Q, (33)
vlomyxee = h,

with ¢ the harmonic extension of A(T, ) in . Notice that problem (33) is well-posed. This is
due to the convolution term that involves values of v in the interval (¢, T), thus by doing the
change of variables t — T —t we get an IBVP of the form (32) which is uniquely solvable. We
define the Time Reversal operator by

A HY ([0, T x Q) > LA(2; ¢ 2dx),  Ah=1,(0,"),
and denote by K the error operator defined as follows,
K 1 L?(Q; ¢ 2dx) — L*(S: ¢ 2dx), Kf =w;(0,"),

with w = u — v, the error function that solves problem (34).
In what follows we suppose the domain €2 is non-trapping (i.e. Tp(€2) < 00). The main result
of this section is the next

Theorem 4. Let Q be strictly convex for the metric g = ¢~ >dx>. Assume that Q and T are as in
Theorem 1 (or as in Theorem 2). In addition, assume T1(2) < T < oo if a # 0 and %T] (RQ) <
T < oo otherwise (resp. 2a‘1c51DQ <T < o0 and Ol_lC'O_IDQ < T < o0, with a as in (28)).
Then ANy =1d— K with |K || z(12(q:c-24x)) < 1, and for any initial condition of (3) of the form
f=(f, —af) with f € Hp(K2), the thermoacoustic inverse problem has a reconstruction formula
given by

o0
f=>_K"Ah, h=Ayf.

m=0

Proof. Notice the error function w = i — v satisfies the equation

@ —c2A+pw = —ail; —av, — Vi — Wi, v in (0, T) x 2,
! =T
W= = IfT -, (34)
Wrli=r = Uy,
wlo,myxr = 0,

with a7 = a(T, ) and 8,u” = 8,i(T, -). Moreover, we can write
Kf=f—Ah=w;(0), with h=Ayf.

We want to estimate the norm of K f, hence we need to compute the energy of w. Multiplying
(34) by 2c’2w, and integrating over (0, T) x © we obtain
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Eq(w,0)=Eq(w,T)+2 / acfzﬁ,w[dxdt +2 [ acfzv,w[dxdt
[0,T]x [0,T]xQ

+2 / ciZ(W*Btﬁ)wtdxdt—i—Z / 072(\D>T<8tv)w,dxdt
[0,T]x [0,T1x

=Eqw, T)+2 / ac_2|ﬁ,|2dxdt -2 / ac_2|vt|2dxdt
[0,T]x [0,T]1x$2

+2 / (U % 3, d,iudxdt — 2 / 2 (WEd,v)d,vdxdt
[0, T]x [0, T]xQ2

-2 / ¢T3 (W * B,0) dyvdxdt + 2 / ¢ 72 (WEd,v)d,idxdt.
[0, T]xQ [0, T]x

Neglecting the integration in the spatial variable in the last two terms for a moment, we can use
the identity (31) which makes them cancel each other out. Furthermore, it follows from the same
identity and Condition (6) on the kernels (which guarantees positive-definiteness) that

¢ 2(W50,v)d, vdxdt = f ¢ 2(W % 9,v)d,vdxdt > 0.
[0, T]xQ [0, T]xQ2
In consequence we get

Eq(w,0) < Eq(w,T)+2 / ac” i, *dxdt

[0, T]x2
(35)

+2 / (W % 8, d,iudxdt.
[0,T]1x

The choice of the time reversal system (34) helps to minimize the total energy in the dynamic
satisfied by the error function w in a similar way as the functions ¢ helps to minimize the energy
of w at time 7. Indeed, by integration by parts we have that

@ — ¢, P up) =— /(ﬁT — ¢)Apdx + /(ﬁT — $)d,¢pdS =0,
Q 0Q

therefore
Eq(T) = lla" = ¢l + 13 172y = Ea@(T) = 917, - (36)

From the above relations (35) and (36), we deduce

K F117 2 que-2ax) < Ea(w, 0) < Ea, T), 37)
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where recall the term in the right hand side is the extended energy functional associated to (3)
and defined in (8). By conservation of the extended energy in R”,

£, T) = Ean (@, T) — Eqe (@, T) = || 1125, -2gy) — Eac(@. T). (38)

The conclusion of the theorem follows from the next proposition which is known to hold when
there is no integral term.

Proposition 1. There is C > 0 so that for all f € L*>(; ¢~2dx) and it solutions of (32),

117 20sc—2q0) < C Eae (@, T).

An inequality of this form was first proved in [9, Proposition 5.1] (see (5.15) in the same arti-
cle) for the case of the unattenuated wave equation, and later extended to the damped case in [11,
Proposition 2] requiring a larger lower bound for the measurement time though. Such estimate is
obtained by microlocalizing near the singularities and studying how their energy is transmitted
across the boundary provided they hit the boundary in a transversal way. By considering strictly
convex domains we can be sure that all singularities meet that requirement. When there is no
damping coefficient the analysis of the singularities can be decoupled to those following the
positive sound speed and negative sound speed. The time needed then for the estimate to hold
equals the time needed to get at least one signal from each singularity of the initial condition, this
is T > %T1 (€2). In contrast, the appearance of a damping term makes no longer possible such
microlocal decoupling, and therefore it makes necessary to wait until both signals, issued from
every singularity of the initial condition, reach the boundary, or in other words 7" > T7(£2).

Let’s prove the above proposition. Denote by U (x, t) the solution of the damped wave equa-
tion

(0f +ad; — A+ b)U(t,x) =0, (1,x)€(0,T) xR
Uli=0=0, (39)
Utli=0 = f.

Denoting f = [0, f] € H(£2), from the paragraph above follows there is C > 0 so that
£ 172 0ue-2ax) = I3y < CEqe(U, T).
Furthermore, defining W = U — it we obtain
£ 17 20uc-2ar) < € (Eae (@, T) + Eqe(W, T))
and letting u(z) = [u(¢), us(¢)], W(t) =[W(t), W,(1)], the previous inequality implies
1 F 2@ c-2ax) < CIUD) | g1 @ayer2 ey + C||W(T)||H1(Qr)®L2(Qc),

where the error function W satisfies the IVP
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Fig. 2. Unique continuation from points in {x € R”\S_Z s diste (x, 92) > T/2} implies null Cauchy dataon (7/2, T) x 0€2.

(f +ad, —FA+b)W =Wxda, (1,x)€(0,T)xR"
Wli=o =0, (40)
Wili=0 =0.

We claim the bounded map L?(Q; ¢ ~2dx) > f +— a(T) € H'(Q°) ® L?(Q°) is injective. In fact,
it can be decomposed as the composition of two injective bounded maps, the first one being the
observation operator Ay, which is injective since (32) is equivalent (following the computation
in (26)) to a system of the form (15) where the method used to prove Theorem 1 (resp. Theorem 2)
can be applied, and our choice of T > %Tl > To (resp. T > a’lcal Rq > %Tl). The second map
is the exterior IBVP map that takes Dirichlet boundary data he H(lo)([O, T] x 0Q2) to v(T) €

HY(Q°) ® L%(Q°), where ¥ solves:

(37 — 2A)i(t, x) =0, (t,x)€(0,T) xR\ Q
1_1|z=0=0,

8zl_}|t=0 = O, _

V[0, 7]x00 = h.

(41)

To see the injectivity of the latter map, consider he H(lo) ([0, T] x 92) such that v(T) = v,(T) =
0, with v solution of (41). By domain of dependence and reversibility in time of the exterior
problem, we have that v vanishes in {(¢, x) € (0, 00) X R™\Q : dist, (x, 32) > ¢} and also in
{(t,x) € (0, 00) x R"\Q : dist, (x, dQ) > |T — t|}. Therefore

5=0 in {(t,x) € (0,3T/2) x R\ : dist. (x, 9Q) > T/2).

Applying Tataru’s unique continuation theorem on any p € {dist.(x, 92) > T /2}, we deduce
that

v=0 in (R"™\Q)N{(, x) e 0,00) xR":|x — p|+ |t —3T /4] <3T/4},
which implies that & vanishes for 7 € (T/2, T) (see Fig. 2). We can now apply the same argument

replacing 7' by 7//2 and get that h is null in the interval (7/4, T/2). Iterating this process we
finally conclude that Az =0 forall r € (0, T').
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Our second claim is that the map
L* (2 ¢7%dx) > f > W(T) € H(Q°) ® L*(Q°)
is compact. It is in fact a composition of the bounded maps
L*(Q;¢7%dx) 3 f i, € L*((0, T); LX(R™), i, > W(T) € HX(Q) ® H' (Q°)
and the compact embedding
H*(Q) @ H'(Q) — H'(Q) ® L*(Q°).
The continuity of the second map for those Sobolev spaces is due to [45, §7.2.3 Theorem 5] since

denoting F := W x iy, then F, F; € L2((0, T); L*()). It follows from [46, Proposition V.3.1]
that for a different constant

I f 12 e2ax) < CI(D) | g1 (@eyoL2(00)-
The proposition is then proved by recalling the finite speed of propagation and applying Poincar-
e’s inequality on a large ball minus Q. O

We conclude the proof of Theorem 4 by joining (37), (38) and Proposition I, hence for some
C>1,

1K S 172 e 2ar) < 117220y — B @, T)

<12 que2ax) = € I 13a g2,

<A =CNf 2 que2dny O
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Appendix

Well-posedness of the direct problem

For the existence of solutions we follows the proof of [36, Theorem 2.1]. Let’s assume without
lost of generality that ug = 0. For a fixed #p € (0, 7] let

& = ®)|v() € C*((0, 10]; Hy (U)), v(0) =0},

with two inner product given by



S. Acosta, B. Palacios / J. Differential Equations 264 (2018) 1984-2010 2007

fo

(v, w); == / [ (0), we (1)) + (Vo(@), Vw(t)}di
0
and
(v, w)2 1= (v, w)1 + (v, (0), w, (0)),
and respective norms | - |[{ and || - |[2. Let F;, be the completion of &, under the norm || - ||;.

It can be proved, for instance by Stone—Weierstrass, that u € Fy, is a generalized solution in the
interval [0, 7o] if and only if

B, v) = D(f, v) + to(c 2ur, v, (0) 2y, Y € & (42)

where

o
Blu,v) = / (1 = 10)] (€ 2ur 1), vig (1) = (Vu(), Vo) = (€ Zauy (1), 1 (1))
0
t
—(c2bu(t), v (1)) — /(c*%p(t — Du. (1), u,(t))dt]dt
0
0]
+ @0, v,
0

fo
D(f,v) = —/(t — 10)(c 2 f (1), vi(1))dt,
0

where (42) is obtained by using the test function (t — #p)v, () with v € &, in (5). Notice that
applying integration by parts we get that the bilinear form 13 satisfies that for all v € &, (recall
v(0) =0),

0]
B, v) =% / [(a*zv,(t), (1) + (Vo(r), Vo)) + (¢ 2bv (o), v(t))] dt
0
19
- / (= 10)] (2avi (0, v (1) = (€O, v(1))
0

t

_ /(c*%(t — $)u(s), v(t))ds]dt

0

+ %(c—zv, (0). v (0)).
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Therefore, recalling that 0 < cop < ¢ < ¢y 1, we bound from bellow and choosing 79 > 0 small
enough and using Poincare’s inequality we get

1
B(v, v) = min{l, I3 = Cro([llalics + 1D O [l + 10l Pllso) 0117 = 8[IVII3,

for some § > 0.
On the other hand,

ID(f, )| < tocg 2l fll 211wl

-2 1/2 —2
lto(c2ur, v O] < 102 cg 2 ur 2 vl

Then, similarly as in [47, Chap. III, Theorem 1.1], we get the existence of weak solutions on the
interval [0, 7p]. Iterating this argument for the intervals [#g, 279], [279, 370] etc, we conclude the
existence on [0, T]. The uniqueness follows the same ideas as in [36, Theorem 2.2].
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