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Abstract
In this paper we study the photoacoustic tomography problem for which we
seek to recover both the initial state of the pressure field and the wave speed of
the medium from knowledge of a single boundary measurement. The goal is
to propose practical assumptions to define a set of initial conditions and wave
speeds over which uniqueness for this inverse problem is guaranteed. The main
result of the paper is that given two sets of wave speeds and pressure profiles,
they cannot produce the same acoustic measurements if the relative difference
between the wave speeds is much smaller than the relative difference between
the pressure profiles. Implications for iterative joint-reconstruction algorithms
are discussed.

Keywords: multiwave imaging, thermoacoustic tomography, simultaneous
recovery, joint reconstruction

1. Introduction

Photoacoustic tomography (PAT) is an emerging imaging modality that combines two types
of physical fields. The domain to be imaged is illuminated with a short laser pulse that gets
absorbed by the medium. The absorbed energy triggers an expansive pressure wave whose
initial amplitude is proportional to the optical absorption coefficient of the tissues within the
domain. The pressure waves propagate to the domain’s boundary where they are measured
and processed to recover the initial state of the pressure field. The advantage of this multi-
wave modality is that biological tissues exhibit high contrast in optical absorption whereas the
acoustic waves carry high resolution. Thus, high contrast and high resolution can be achieved
simultaneously which offers great potential for biomedical imaging [7, 12, 46-49].
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Most of the reconstruction methods for PAT assume that the acoustic properties of the
medium are known. For a homogeneous wave speed, explicit formulas are available [15, 18,
24-26, 33]. Corrections of analytical formulas, valid for asymptotically small variations of
sound speed, were investigated in [13, 22]. For heterogeneous media, iterative methods have
been designed [1, 2, 8, 11, 19, 20, 36-38, 41]. These methods also require the precise knowl-
edge of the acoustic parameters. However, in practice the wave speed is not known exactly.
For soft biological tissues, variations of the wave speed can be as great as 10% [22]. If not
accounted for in the reconstruction methods, these variations cause blurring and misplacement
of features in the reconstructed image.

It has been noted that the photoacoustic measurements carry information not only about
the absorbed optical energy, but also about the wave speed of the medium. Based on this
observation, the main question is whether the initial state of the pressure field uy and the
wave speed ¢ can be recovered simultaneously from a single photoacoustic measurement. In
general terms, this question of uniqueness is still open. This problem, which is linear in ug
and nonlinear in c, is very challenging. However, some progress has been made. Under cer-
tain practical assumptions, if one of the two components in (i, ¢) is known, the other can be
recovered from boundary measurements. See [40] and references therein. Liu and Uhlmann
[30] gave sufficient conditions to recover both the initial pressure profile #y and sound speed
¢. More precisely, given another pair (i, ¢), then ¢ 2uy = ¢ 20y if either p= ¢ 2uy — ¢ 20
is a harmonic function or ¢ is independent of one variable in R®. Oksanen and Uhlmann stud-
ied how a modeling error in the wave speed affects the accuracy of the reconstruction of the
pressure [35]. Stefanov and Uhlmann concluded that the linearized version of this problem is
unstable in any scale of Sobolev spaces [39]. Kirsch and Scherzer [23] proposed an approach
to simultaneously identifying the optical absorbing density and speed of sound based on a
family of sectional photoacoustic illuminations and corresponding measurements. These spe-
cific illuminations must be focused on cross-sectional planes and special detectors should be
employed to neglect out-of-plane signals.

Computational studies have also been carried out. Treeby ef al proposed a method to select
a sound speed that maximizes the sharpness of the reconstructed image [43]. Matthews et al
proposed a joint reconstruction method based on an optimization framework and a low-dimen-
sional parametrization of the sound speed [32]. Matthews and Anastasio offered an approach
based on combining PAT measurements with ultrasound tomography measurements to esti-
mate the wave speed concurrently with the pressure field [31]. A numerical investigation was
also performed by Huang ef al [21]. The common conclusion from these numerical studies is
that severe ill-conditioning is observed for the optimization-based methods if no regulariza-
tion terms are incorporated.

Motivated by the physical scenario encountered in the PAT problem, we propose some
assumptions to ensure the unique recovery of the initial pressure state and wave speed. These
assumptions are stated in section 2. We show that under those conditions, for each pair (uy, ¢),
there is small region of the spaces in which they reside, from which no other pair (i, ¢) can
induce the same acoustic measurements. Unfortunately, this region is not a neighborhood of
(uo, ). However, the region does coincide with the conditions implicitly assumed in practical/
computational scenarios, namely, that the wave speed ¢ can be estimated a priori by a known
profile ¢ with much more relative accuracy than the initial state of the pressure field. This
result is stated in precise terms at the end of section 2 and the proof is provided in section 3.
Some final remarks concerning iterative reconstruction algorithms are offered in section 4.
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2. Assumptions and main result

We consider the initial boundary value problem governed by the wave equation in a domain
0 c R4, for d = 2,3, with smooth boundary 0f2. The pressure field satisfies,

it —c*Au=0 1in(0,T) x €, (1a)
Oyu+~vie=0 on(0,7) x 09, (1b)
u=uy and u=u; on{r=0}xQ, (1c)

on a sufficiently large window of time (0, T') where 0 < T < co. The impedance v > 0 mod-
els the presence of partially absorbing ultrasound sensors on the boundary 0f2 and 9, denotes
the outward normal derivative. Consider also the forward mapping given by

Ac(uo, ur) = ul o) %00 )

where u solves the system (1a)—(1c). In the PAT scenario, it is common to assume that #; = 0.
However, the mathematical analysis allows us to consider non-vanishing u;.

We also consider a possibly different media characterized by a wave speed ¢ with corre-
sponding wave field u that satisfies,

i—Ai=0 in(0,T) x €, (3a)
dyit+~ii=0 on(0,T) x 9L, (3b)
=iy and =i on{r=0}xQ. (3¢)

The wave speed ¢ induces the definition of the corresponding forward map,
Az (o, i) = it (o.r)x 00 (4)

where u solves the system (3a)—(3c¢). Notice that the boundary conditions (1) and (3b) are the
same, which is implied if the media properties on 02 are identical for both problems.

The goal of this paper is to provide reasonable conditions on the wavespeed c, the initial
state (uo, u1 ), the domain  and time 7 to guarantee that the data A.(ug,u;) determines the
triplet (c, ug, u1) uniquely. This cannot be done in general. Therefore, we restrict our attention
to a problem satisfying certain conditions that we list as follows.

Assumption 2.1. Let the wave speeds ¢ and ¢ be smooth in Q0 and the impedance ~ be
positive and smooth in 0S). Moreover, let

c<c(x) and c¢<c(x) for all x € O 5)

for some ¢ > 0. Also assume that
[ellwioe) <€ and  [|E[[wroeq) <€ (6)
for some 0 < ¢ < oo. Here W'>°(§2) is the Sobolev space defined by

W (Q) = {v € L®(Q) : |Vo| € L®(Q)}.

The next assumption is a geometric condition that ensures the observability of waves
from the boundary. This is the so-called geometric control or non-trapping condition from
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Bardos-Lebeau—Rauch [6]. See also [9, 10, 16, 17, 27, 29, 44, 45] for references on control-
lability and observability theory for hyperbolic equations.

Assumption 2.2 (Non-trapping condition). Ler Q be a simply-connected domain with
smooth boundary 9S). For the Riemannian manifold (), c=2dx?), let geodesic rays have finite-
order contact with the boundary. Assume there exists T, < co such that any geodesic ray
originating from any point in Q at t = 0, reaches 02 at a non-diffractive point before time
t="T, LetT > T,.

It will become clear that we will rely on the following restrictions on the unknown initial
state of the pressure field.

Assumption 2.3. Let ug, itg € H}(Q) and uy,it; € H°(Q). Let the following bounds hold

IV uol30cy + iy S K and || Vito| 30y + lli][70(0y < K @)
k < luoll oy + llutllz-10y  and & < ol 7o) + lla [7-1 o) )

Sfor some constants 0 < k < K < o0.

Before we state the main result, we wish to comment on the relevance of these three
assumptions. In the context of PAT, the assumption 2.1 is quite reasonable because, even if
the actual wave speed is unknown, lower and upper bounds are readily available due to the
nature of biological tissues. In other words, the types of tissue are known (muscular, granular,
stromal, cancerous or fatty tissues, and blood or cerebrospinal fluid), but not their distribution
within the domain of interest.

Assumption 2.2 is essential from the physical and mathematical point of view, since it
ensures that the energy of the unknown initial pressure reaches the boundary, in finite time,
where it can be measured. This assumption allows us to observe, in a stable manner, the initial
state of the pressure field from the boundary.

Assumption 2.3 is verifiable for photoacoustic imaging because #; = 0 and the initial pres-
sure profile is given by

up(x) = G(x)o (x)(x) ©
where G is the Griineisen coefficient, o is the optical absorption coefficient of the medium
and [ is the intensity of the probing light. The first two factors have well-known upper bounds
in biological tissues. The intensity of light is chosen at the boundary and satisfies an elliptic
equation in the diffusive regime. Therefore, it is also bounded above. This means that it is pos-
sible to find a finite constant K for bound (7). Now, energy must be absorbed by the medium
to trigger a measurable acoustic wave. Hence, as long as the Griineisen and absorption coef-
ficients and the intensity of light are bounded away from zero, then it is possible to find a non-
vanishing constant k for bound (8). The discrepancy in the norms employed in bounds (7) and
(8) is a technicality that we were not able to avoid. In brief, assumption 2.3 means that even
though the initial pressure state is unknown, its energy has known upper and lower bounds.

Under these conditions, we obtain the main result of this paper.

Theorem 2.4 (Main result). Ler assumptions 2.1 and 2.2 hold for the domain €, the wave
speeds ¢ and ¢, and the time T, < T < oco. Let assumption 2.3 hold for the initial states of the
pressure fields. There exist positive € = €({2, ¢, ¢, <, v, k, K) so that if
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e — Eiz”%yhoo(g) [|uo — ﬁOH%{O(Q) + |lur — iy ||%-1—1(Q)
€
”C_z”%/vl.oo(ﬂ) h HMOH%{U(Q) + Hul H[z_l—l(Q)

(10)

then

o — ’7‘0”12-10(9) + [lur — @ ||12-1—1(Q) C [ Ac(ug, ur) — Az(ﬁo,17!1)“21((0]);1_10(39))
ST

||“0||,%10(Q) + H”l ||§1—1 ) HAC(M(), “1)||1210((0,T)Xag)

(11)

where C = C(Q,¢,¢,¢,7). In particular, A.(ug,u) = Az(ig, i) implies that uy = iy and
u = Ijll.

In the context of PAT, where u; = u; = 0, this theorem states that given two different
pairs (c,ug) and (¢, ity ), if the relative difference between the wave speeds is much smaller
than the relative difference between the initial pressure profiles, then these two pairs of data
cannot induce the same acoustic measurements at the boundary. Condition (10) is illustrated
in figure 1.

Notice that theorem 2.4 is not a statement of uniqueness in the usual sense. The estimate
(11) is only valid under condition (10). This assumption does not include a neighborhood
of the triplet (c, ug, u; ). It only considers a small conical region as illustrated in figure 1. No
other triple (¢, @i, &1 ) in that region can produce the same boundary measurements as the triple
(¢, ug, uy).

3. Proof of the main result

We start by setting up the initial value problem for the contrast w = u — u. Notice that w
satisfies,

o —Aw=f  in(0,T) xQ, (12a)
w=m on (0,7) x 01, (12b)
w=wy and w=w on{r=0} x Q, (12¢)

where f = (E'_Z — C_z) ii, wo = up — g, wi = uy — iy, and m = AC(MO,Ml) - Ag(ﬁo, 121) In
terms of regularity, we have that u € H°((0,T); H~'()) because i is a weak solution to
the wave equation as implied by the regularity of the initial conditions in assumption 2.3
[14]. Similarly, m € H'((0,T) x 092) and ml,—o = 0 because (1o — ity) € H}(Q) as required
by assumption 2.3.

By virtue of linearity, we can decompose w as follows w = w) + w® where

W —AwD =0 in(0,7T) x Q, (13a)
wl) =0 on(0,7T) x 89, (13b)
wl) =wy and W) =w;  on{r=0}xQ, (13¢)
and
H AW =f  in(0,T) x Q, (14a)
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Figure 1. Illustration of condition (10) for the special case u; = #; = 0. For a fixed
pair (ug,c), then a different pair (i, ¢) from the pre-image of the shaded region cannot
produce the same boundary measurements. The norms are understood as in theorem
2.4. The slope of the tilted line defining the shaded region is €!/2 > 0.

w® =m  on(0,T) x 9%, (14b)

W(z) — 0 and W(2) = O on {t = O} X Q (14C)

Now we proceed to state some lemmas concerning these initial boundary value problems.
In what follows, the constant C > 0 will be a generic constant that change its value from
inequality to inequality. However, C does not depend on the profile of ¢ (only on its lower and
upper bounds) and does not depend on the solution to any of the boundary value problems.

The first lemma is a well-known result concerning boundary observability for hyperbolic
equations. See classical references [6, 9, 10, 29] or more recent related works [3, 4, 16, 17,
28, 44, 45].

Lemma 3.1 (Boundary Observability). Let w'" solve the initial boundary value prob-
lem (13a)—(13c) and assumption 2.2 hold. Then w'V satisfies the following boundary observ-
ability estimate,

T (Iwolidncay + W1 3-+(0y ) < CIOW D -1 oryxon)

for some positive constant C = C(, ¢).

The next lemmas are stability results in less-regular spaces for initial boundary value prob-
lems for the wave equation using the transposition method [28].

Lemma 3.2. Let w'? solve the initial boundary value problem (14a)—(14c). Then the fol-
lowing stability estimate holds

||5VW(2)Hi1—1((o,r)><aQ) <C (HmH)le"((O,T)xOQ) + |lf||12q°((o,r);y—l(9)))

for some constant C = C(, ¢).
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Lemma 3.3. Let u solve the initial boundary value problem (1a)—(1c) and A (ug,u;) be
given by (2). Then the following stability estimate holds

A0, 1) 2 oiryxomy < € (ol + -+

for some constant C = C(§, ¢, 7).
With the above lemmas, we are ready to prove the main result of this paper.

Proof of theorem 2.4. In order to apply lemmas 3.1 and 3.2, it only remains to estimate
the norm of . Recall that f = (¢72 — ¢™2) it. Let

so that f = g¢—2u. Now take v € H((0,T); H}(2)) with 101l 0 (0,712 (2)) < 1 and consider
that

[(f.0)] = [(& %, go)| < [(Vit, V(g0)) po((0.1):0(02))|
< |Vl ooy 0)) (10Vellmogo.ym0)) + 18V 0l mo0.rym0(02)) )
< 8llwroe () Vil o (0,710 02)) 0]l o 0.1y 2
< |

I8 llw.oo () I Vil | o o.1):m0(2))

for v is arbitrary. Using the standard energy estimate [14, 28] for the term Vu and the assumed
bound (7), we obtain

1z 0.yt 2y < CT N8I (2 (HV'}O”?{”(Q) + ||ﬁ1|\1210(9)) < KCT|g |l (o (15)
where C = C(€Q, ¢, ¢). Now, after some algebra, we obtain that

lelwnoec@) < (1 + 12l @ 1 wimay ) 1l a1 = € lwioe e
From the assumed bounds (5) and (6), we obtain a constant C = C(¢,¢) such that

¢ 2[lwree 0y < € and||e™2|| 1o () < C. Consequently, there is another constant C = C(c, )
such that,

llc™2 — Z‘72||W1v<>o(9)
lgllwioe @y < C (16)
A le2l[wrs )
Plugging (16) into (15) and using the assumed bound (10), we obtain
Iwollfoqy + Wil
1o o.ryea-1 () < €KCT © &) (17)

H”0||12L10(Q) + H"‘l||12L1—1(Q)

where C = C(Q, ¢, 7).
Now, combining lemmas 3.1 and 3.2, the estimate (17), and the decomposition w = w4
w(), we obtain
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C
IwollZogay + IW1ll5-1(0) < ?||8VW(1)”12-I*1((0,T)><BQ)
C
< T (HaVWH%I*I((O,T)XBQ) + ||5VW(2)||%171((0,r)x69))
C .
< T (H’VmH%-IO((O,T)xBQ) + Hm”%-lo((O,T)xBQ) + Hf”%lo((o,T);H*‘(Q)))
C HW()”%]O(Q) + HWIH%rI(Q)
< 2 Il oy oy + €K
T < H'((0.T);H°(9%)) H”OH?,,O(Q) + |\M1||§-1(Q)
where C = C(,¢,¢,¢,7), and §,w = —yw because w = u — &t where u and & satisfy (1b)

and (3b), respectively, on the boundary. Rearranging some terms and using lemma 3.3 and the
assumed bounds (7) and (8), we get

(k_6 ) Wollzmoy + Iwili-1@y _ € Imlli qoryimcony)
K HMOH?-IO(Q) + H”lH;Zq—I(Q) ST ||Ac(u0,M1)||§10((03T)X89)

where C = C(£2, ¢, ¢, ¢,7) does not depend on € or ¢. Therefore, for a choice € < k/ (KC), we
obtain the desired result. O

4. Final remarks

We end by offering some remarks concerning the practical significance of the theoretical
results from the previous sections. In particular, we are interested in the successful design of
iterative algorithms for the joint reconstruction of the pressure profile and wave speed. The
main concern is to ensure that iterates remain within the region of uniqueness defined by (10).

We seek to recover (u, c) and assume that u; = 0 as in the case in PAT. Let (u("), c(”)) for
n=0,1,2,... be a sequence of iterates converging to (uo, ¢). Many of the iterative algorithms
display linear convergence (such as Banach fixed-point, gradient descent, Landweber or con-
jugate gradient iterations [5, 42]), meaning that the error behaves like

aullitg — u | < Jlug — u®* V| < Byllug — u™ | (18a)

aclle = ™| < fle — ") < Belle — ™| (18b)

forn =0,1,2, ... and for some constants 0 < o, < 8, < land 0 < a < S5, < 1, in the appro-
priate norms. Using the estimates (18a) and (18b), then we arrive at

llc — c(n+l)|| can (&) (|t — u(n+1)||
el ay [[uol|

provided that (1™, ¢()) satisfies (10). Hence, the next iterate (u("+1), c"+1)) remains in the
region of uniqueness defined by (10) if

Be < au. (20)

, (19)

We can show inductively that all the iterates (u(”), c(")) forn = 1,2, 3, ... satisfy (10) provided
that (20) holds and that the initial guess (u(%), c(9)) satisfies (10).

In practical terms this means that for a given linear iterative algorithm, the iterates u for
the pressure profile must be relaxed so that they do not converge faster than the iterates ¢ for
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the wave speed. Or alternatively, the convergence for the wave speed iterates should be accel-
erated. Acceleration of linear convergence can be achieved by methods of Nesterov [34] or
Aitken [42, section 5.10]. Acceleration can also be obtained with additional constraints on the
wave speed. For instance, if the wave speed is assumed to belong to finite-dimensional para-
metric spaces, then the compactness of the projection accelerates methods such as the con-
jugate gradient or Landweber methods. In the computational setting, both uy and ¢ belong to
finite-dimensional spaces following the discretization of the domain €2 and governing differ-
ential equations. In that case, the parametrization of ¢ should belong to a space with much
lower dimension than that of the parametrization of u,. This can be achieved with a two-mesh
approach, one mesh being much coarser than the other. Another approach was employed in
[32] where each pixel value of the wave speed was assumed to belong to one of a few tissue
types with each tissue type having a uniform sound speed.
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