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ARTICLE INFO ABSTRACT

Arbitrary high order numerical methods for time-harmonic acoustic scattering problems
originally defined on unbounded domains are constructed. This is done by coupling
recently developed high order local absorbing boundary conditions (ABCs) with finite
difference methods for the Helmholtz equation. These ABCs are based on exact repre-
sentations of the outgoing waves by means of farfield expansions. The finite difference
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the Helmholtz equation and the ABCs, with the appropriate number of terms, to any
desired order. As a result, high order numerical methods with an overall order of
convergence equal to the order of the DC schemes are obtained. A detailed construction
of these DC finite difference schemes is presented. Additionally, a rigorous proof of the

Deferred-correction methods consistency of the DC schemes with the Helmholtz equation and the ABCs in polar

coordinates is also given. The results of several numerical experiments corroborate the
high order convergence of the novel method.
© 2020 Published by Elsevier B.V.

1. Introduction

The propagation and scattering of acoustic waves in the presence of impenetrable obstacles, in an unbounded medium,
is an important problem for which significant efforts have been dedicated. However, there are still aspects of this problem
that have not yet been satisfactorily solved. One of them is the construction of easily implementable, reliable and stable
high order numerical methods for the accurate approximation of its solution. This is the subject of this work. The
construction of high order numerical methods is motivated by the need to obtain highly precise numerical solutions
at relatively low computational costs.

A classical strong formulation, when a time-harmonic incident wave, ujy, is scattered from an obstacle with a boundary
I' embedded in an unbounded acoustic region £2, consists of finding u € C?(£2) N C(£2) such that

Au+kPu=f in £2, (1)

U = —Uinc or OnlU = —dnllinc, onl, (2)
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lim r®Y2) (3.u — iku) = 0, (3)
r—-o0
where A denotes the Laplace operator, 9, is the normal derivative and i is the imaginary unit. Both the wavenumber k
and the source term f may vary in space. On I", we will study both boundary conditions at the scatterer, either the first
equation in (2) corresponding to the sound-soft Dirichlet condition, or, the second equation in (2) corresponding to the
sound-hard Neumann condition. Eq. (3) is known as the Sommerfeld radiation condition, where r = |x| and § = 2 or 3
for two or three dimensions, respectively. This condition renders u as an outgoing wave.

It is well-known [1-4] that the accuracy of the numerical methods for the Helmholtz equation (1) based on finite
differences or finite elements deteriorates rapidly when the wave number k increases. This phenomenon is known as
pollution error. A common practice, to avoid this error for a given numerical method, consists of increasing the number
of points per wavelength PPW = A/h, where A is the wavelength and h represents the grid step size. However, this
approach becomes computational very costly as k increases. An alternative to alleviate the computational cost is to employ
high order schemes since they require less points per wavelength to achieve same accuracy level as their low order
counterparts. This is the approach that we follow in this work by constructing an arbitrary high order finite difference
method for a bounded version of the acoustic scattering problem (1)-(3).

Among the most popular alternatives to finite difference are finite element (FEM) and boundary element methods
(BEM). These methods have their own advantages and shortcomings when approximating the solutions of a boundary
value problem (BVP). An important FEM advantage is their ability to deal with domains of arbitrary shape. However, high
order convergence usually requires high number of degrees of freedom which normally leads to elevated computational
cost. The BEM have the advantage that the Sommerfeld radiation condition is already built into the numerical method,
so there is no need to introduce an artificial boundary and define an ABC on it. In contrast, the BEM major shortcoming
is that they are limited to homogeneous media. In this study, we opt for finite difference methods because they are easy
of use and their implementation is rather simple and flexible enough to be applied to heterogeneous media.

In the context of finite difference methods, there has been a lot of interest in high order numerical methods in
recent years. In fact, for interior problems modeled by the Helmholtz equation, several fourth and sixth order numerical
methods have appeared in the last 25 years. For instance, Singer and Turkel [5,6] developed compact fourth and sixth
order methods in two dimensions for constant wavenumber using cartesian coordinates. Sutmann [7] devised a compact
sixth order method for Dirichlet boundary value problems (BVPs) and Nabavi et al. [8] for Neumann BVPs. All of these
compact numerical methods were obtained from the so called equation-based [5] procedure By applying it, they obtained
their compact fourth and sixth order 9-point finite difference formulas to approximate the two-dimensional Helmholtz
equation in cartesian coordinates. It resembles the strategy followed by Collatz and Leveque in [9,10], respectively, to
obtain the well-known compact 9-point finite difference formula for the two-dimensional Poisson equation in cartesian
coordinates. More recently, Zhang et al. [11] derived a sixth order finite difference scheme for the Helmholtz equation
with inhomogeneous Robin boundary conditions in two dimensions.

Other authors [12,13] constructed equation-based compact 9-point fourth and sixth order schemes in cartesian
coordinates for interior problems modeled by the two-dimensional Helmholtz equation with variable wavenumber and/or
variable coefficients. Later, Turkel et al. [ 14] also developed a method for the three-dimensional Helmholtz equation with
variable wavenumber. Compact fourth order finite difference methods have also been devised for the two-dimensional
Helmholtz equation with high wavenumbers. For instance in [15], Wu suppressed the numerical dispersion by using nine
points to formulate a compact fourth-order approximation for the term of zero order. Also, Fu in [16] introduced an
alternative compact fourth order method for high frequency, which is independent of the wavenumber. They were able
to obtain approximations for wavenumbers as high as k = 500 and 800, respectively.

In recent years, Medvisnky et al. [17-20] extended the method of difference potentials, introduced by Ryaben’kii for
standard centered finite difference schemes [21,22], to compact finite difference schemes. This procedure involves several
steps inspired in the theory of Calderon’s operator for partial differential equations. It consists of reducing the Helmholtz
equation from its domain £2 to an equivalent equation defined only on its boundary I" and numerically solve this simpler
equation. As part of this process, the Helmholtz equation is approximated by a compact fourth or sixth order scheme.
A detailed account of this procedure can be found in [17,20,23]. At the final stage of the computation, they calculate
a grid function &, from which a discrete Calderon’s potential or difference potentials is obtained. They show that this
difference potential approximates its continuous counterpart with the same order of accuracy of a compact scheme used
to approximate the Helmholtz equation [20]. As a consequence, the approximation of the scattered field u" also converges
to u with this same order of accuracy.

Among the advantages of the method of difference potentials is its ability to handle smooth curvilinear boundaries
and variable wavenumbers. The grid function &, is represented in terms of a basis for the space of smooth functions on
I', which is evaluated at the grid points. Therefore, the linear system arising from the discretization has as unknowns the
expansion coefficients with respect to the chosen basis, instead of the node values of &,. A possible disadvantage is that
the boundary conditions should be represented by a volumetric spectral solver for the same basis to complete the linear
system. This certainly leads to a more dense linear system than those obtained from direct application of finite difference
or finite element techniques. However, a QR decomposition technique may work well in this case.

The above methodology was applied first to interior problems modeled by the two-dimensional Helmholtz equation
with variable wavenumber [17,23] employing compact fourth and sixth order equation-based schemes. For smooth
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solutions, the expected fourth and sixth order convergence were achieved. Later, the same authors extended the method
of difference potentials to exterior problems. In fact in [18,19], two-dimensional transmission and scattering problems
were solved for simple-shaped obstacles and smooth regions, respectively. In both cases, a fourth order discrete ABC,
first introduced in [24] and defined in the Fourier space, was employed. It was combined with the method of difference
potentials consisting of a compact fourth order accurate finite difference scheme. The fourth order convergence of the
numerical solution to the exact solution was verified in several experiments. However, the discrete nature of this ABC
limits its use to more general problems and makes its extension to higher orders difficult.

Recently, an arbitrary high order three-dimensional ABC in spectral form was devised for exterior problems modeled by
the Helmholtz equation in [20]. This was elegantly coupled with a sixth order interior scheme obtained from the method
of difference potentials. It was applied only to radiating source problems (monopole and dipole), but scattering problems
were not attempted. For these problems, the sixth order convergence was experimentally corroborated. Although this
novel ABC can be implemented at arbitrary high orders, direct coupling with more popular finite element or finite
difference methods is not possible given its current spectral formulation.

As described in the previous paragraphs, there have been numerous attempts to construct high order finite difference
schemes for the Helmholtz equation. Similarly, the derivation of high order local ABC for time-harmonic acoustic scattering
problems has been intensively pursued by many researchers, since the pioneer work of Bayliss-Gunzburger-Turkel
(BGT) [25]. For example, Zarmi and Turkel [26] developed an annihilating technique that can be applied to rather
general series representation of the solution in the exterior of the computational domain. As a result, they were able
to obtain high order local ABC without derivative terms greater than order two for exterior problems in the plane.
Also, Rabinovich et al. [27] adapted the auxiliary variable formulation of local high order ABC for the wave equation
of Hagstrom-Warburton (H-W) [28] to time-harmonic problems in a waveguide and a quarter plane modeled by the
Helmbholtz equation. More recently, Hagstrom and Kim [29] adapted an improved version of H-W called complete radiation
boundary conditions to waveguides problems in the frequency domain. They solved radiation problems inside semi-infinite
waveguides with sources in their finite west boundaries. In principle, the adapted H-W absorbing boundary condition can
be implemented for time-harmonic exterior problems in the entire plane. However, exterior problems are not included
in [27,29]. The application of H-W type ABC for the exterior problems use rectangular artificial boundaries to enclose the
scatterers. As a consequence, special treatment at corners formed by the intersection of two flat segments is required.
In [27,30], the authors acknowledge that these corner conditions are quite involved and even difficult to devise. In another
recent publication Duhamel [31] constructs a high order ABC at the discrete level for a radiation problem from a circular
obstacle. The results compare favorably with second order ABCs such as BGT and Feng'’s. However, a convergence analysis
is not included to establish more clearly the advantages of this technique. In all these works [26,27,29,31], their high
order ABCs are coupled with low order discretization schemes for the interior domain based on bilinear finite elements.
As a consequence, overall low order numerical methods (at most second order) are obtained. For other contributions on
high order ABC, the reader is referred to the review article [32] and also to the introduction in [33].

An efficient alternative to high order local ABC is provided by a technique called perfectly matched layer (PML). This
consists of surrounding the artificial boundary with a layer of elements where the Helmholtz equation is modified. The
PML was first introduced by Berenger for electromagnetic waves in the highly cited paper [34]. An adaptation to the
Helmholtz equation was devised by Becache et al. in [35]. Good choices of the layer’s size and the parameters of the
absorbing layers lead to excellent absorption of waves. However, PML tends to be very sensitive to the choice of the
computational parameters. Also, it is hard to establish a clear notion of convergence. For the interested reader, a good
comparison of the two approaches, high order local ABC and PML, is given in [27].

As far as the authors know, overall high order finite difference methods for exterior time-harmonic acoustic scattering
has only been constructed up to fourth order [18,19,24]. In the present study, we develop arbitrary high order finite
difference schemes for the Helmholtz equation based on a deferred-correction (DC) methodology (see [10] Section 3.5).
Among the pioneer applications of deferred-corrections to differential equations are the works by Pereyra [36,37]. Our
construction proceed by coupling arbitrary high order DC finite difference schemes for the Helmholtz equation with
high order DC finite difference schemes corresponding to arbitrary high order ABCs based on farfield expansions, which
were developed by Villamizar et al. in [33]. As a result of combining these high order techniques (domain’s interior and
boundary), we obtain an overall arbitrary high order method for acoustic scattering. Preliminary results were presented
in [38]. Of course, the arbitrary high order property of this method is limited by the computer arithmetic and the computer
resources available. The construction and performance analysis of this overall and arbitrary high order finite difference
method for acoustic scattering problems is discussed in detail in the following sections.

2. The two-dimensional scattering BVP with Karp’s farfield expansion absorbing boundary condition (KFE-BVP)

The exterior problem (1)-(3) needs to be reformulated as an equivalent BVP on a bounded domain before a numerical
scheme, based on volume discretization methods, can be applied. In Villamizar et al. [33], such problem transformation
was carried out by introducing a circular (2D) or spherical (3D) artificial boundary S that enclose all the scatterers,
regarding of their particular shapes, and then by defining high order local ABCs on these artificial boundaries. Their
definition is based on the following series representations of the exact solution u outside the region bounded by the
artificial boundary S.
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a. Karp’s farfield expansion in two dimensions [Karp1961]:
( Gi(0)
E —_— E —, >R, 4
e =0 (kr 1=0 (krY = @

b. Wilcox’s farfield expansion in three dimensions [Wilcox1956]:

elkr &

F(6, ¢)
u(r, 6, ¢) = o l; r>R (5)

(kr)!

In the series (4), r and 6 are polar coordinates. The functions Hy and H; are Hankel functions of first kind of order 0 and
1, respectively. The coefficients F(6) and G;(8) (I > 1) can be determined from Fy(0) and Gy(6) by the recursion formulas

21G(0) = (I — 1)*F_1(0) + d3F_1(6), forl=1,2,... (6)
2IF(0) = —PGi_1(0) — d2G1_1(6), forl=1,2,.... (7)

In the series (5), r, 8, and ¢ are spherical coordinates and Ag is the Laplace-Beltrami operator in the angular coordinates
6 and ¢. Also, the coefficients F; (I > 1) can be determined by the recursion formula,

2ilF(0, ¢) = I(1 = 1)F1(0, ¢) + AsFia1(0,9), =1 (8)

The artificial boundary S divides the domain into a bounded computational region 2~ enclosed by the obstacle
boundary I" and the artificial boundary S, and the exterior unbounded region 2% = £2\£2~. Once this decomposition of
the domain is done, the original unbounded problem in £2 is reformulated as a bounded problem in £2~ by matching the
solution u inside £2~ with the semi-analytical representation of the solution u in 2% given by the series representations
(4)-(5). These series are uniformly and absolutely convergent for r > R. They can be differentiated term by term with
respect to r, 6, and ¢ any number of times and the resulting series all converge absolutely and uniformly. The angular
functions F; and G; become additional unknowns of the new bounded BVP. They depend on the geometry of the scatterers
and the physical properties of the medium inside the computational region £2~.

In this work, we specialize in the two-dimensional case with f = 0 for simplicity, but its extension to non-
homogeneous and three-dimensional scattering problems follows a very similar procedure. In [33], a detailed formulation
of a truncated version of an equivalent bounded BVP to (1)-(3) for the scattered field u and the angular functions F; and
G; in £2~ was introduced as

Au+ku=0, in 27, 9)
U = —Ujpc, or 0ruU = —0;Uinc, in I, (10)
L-1 L-1
F
u(R, 6) = Ho(kR) Fi(®) + Hy(kR) @, (11)
(kR) kR)!
=0 =0
< F(6) < Gi(6)
3 u(R, 0) = 9, <Ho(kr) ; T + H1(kr)§ kr)l> e (12)
L-1 L—-1
F G
d7u(R, 0) = 87 | Hokr) > " Fit®) + Hy(kr) Gl , (13)
=0 (kr)[ 1=0 ( r)l r=R
2IG(0) = (I — 1)*F_1(0) + d3Fi_1(60), forl=1,2,...L -1 (14)
2IF(0) = —PG_1(0) — d2G1_1(6), fori=1,2,...L — 1. (15)

where A represents the Laplacian operator and R is the radius of the circular artificial boundary S. The Eqgs. (11)-(13) for
the truncated Karp’s expansion, with F; and G; (I = 0. .. L—1) unknown angular functions, supplemented by the recurrence
formulas (6)-(7) constitute the novel Karp’s farfield expansion ABC (KFE) constructed in [33]. A careful consideration on
the number of unknowns of the BVP at the artificial boundary r = R reveals the need of having as many equations as
(11)-(15) defining the ABC. In fact, the number of unknowns at the artificial boundary are u(R, 8), Fo(6), Go(0), Fi(8), and
G(0)(I=1...L—1).They are 3+2(L—1) in total which is the same number of independent equations given by (11)-(15).

It was shown in [33], that the numerical solution of (9)-(15) exhibits second order convergence to the exact solution,
by using second order finite difference methods to approximate the Helmholtz equation in £2~ as well as the various
equations for the absorbing boundary condition at the artificial boundary. This result was obtained by employing relatively
few terms (usually, from three to eight terms) in the Karp’s expansion. Our main purpose in this article is to further exploit
the high order accuracy of the KFE, by coupling high order discretizations of it to interior high order finite difference
approximations for Helmholtz equation, which leads to overall high order numerical methods for acoustic scattering. In
the following sections, these novel high order numerical methods for (9)-(15) are derived.
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3. Derivation of high order DC methods for the KFE-BVP

In the next subsections, a detailed formulation of the fourth order DC numerical scheme is given for the Helmholtz
equation in the domain £2~ bounded externally by the artificial boundary S of circular shape with radius R. Similarly, we
also develop a fourth order DC scheme for the approximation of the high order KFE imposed on the artificial boundary.
This is followed by a formulation of these numerical schemes (interior and artificial boundary) of arbitrary order p.

3.1. Fourth order DC scheme for the Helmholtz equation in polar coordinates

First we consider that the domain £2~ can be covered by a polar grid with constant radial and angular steps Ar and
A6, respectively. The number of grid points in the radial and angular directions is N, m > 1, respectively. For a given
grid point (r;, 6;), the discrete value of the scattered field is denoted by u;; = u(r;, 6;). Notice that the pairs (r;, 6;) and
(ri, OBm+1) represent the same physical point due to periodicity in the angular direction, thus u;; = uj m+1 for i < N. Thus,
the grid supports N x m wavefield evaluations.

We start with the standard centered second order finite difference method for the Helmholtz equation in polar
coordinates given by

2202 = Uy =205+ ULy 1UR, - U2y 1 U,
ST Ar? ri 2AT r? AQ?

—2U%4 + U3
ML kU = 0. (16)

The symbol UUZ is used to describe a discrete solution of (16). The subindex 5 of H§ is used to acknowledge that this finite
difference formula consists of a 5-point stencil. The super-index 2 states that Hng = 0 is a consistent second order finite
difference approximation of the Helmholtz equation (9). Also, we consider a discrete function Uif which is a second order
approximation to the exact solution u of the Helmholtz equation (9) subject to the boundary conditions (10)-(15), i.e.,

Ui = u(r, 6) + Ar*u(ri, 6)) + A0*w(ri, 6)) = u(ri, 6)) + (1, 6)), (17)
where v, and w and z are sufficiently smooth bounded functions on the closure of 2~ and h = max{Ar, A8}. The

computation of UUZ. is fully described in [33].
Applying 7—[% to u and evaluating it at (r;, 6;) leads to

Uiprj = 2Uij+ Uiy | Tliprg =ty 1 Uigen — 2U55 4 Ui

Hiu; =
ST Ar? Ti 2 Ar r2 AB?

+ Kuy

5 Ar? 2 AH? 4 4
= (Areu +k u)ij + T <(u4r)ij + - (u3r)ij> + 1272 (Ug9)j + O(Ar™) + 0(A0%). (18)

i i
We seek to obtain a fourth order finite difference scheme for the Helmholtz equation by subtracting the second order
leading terms of the truncation error in the right hand side of (18) from the second order standard scheme (16). This is
followed by substitution of the partial derivatives of u, present in these leading terms, by second order finite difference
operators of these partial derivatives of u. They act on the previously computed discrete solution U; of the standard

second order scheme (16) which approximates u to second order. This is the fundamental idea in the formulation of the
DC method proposed in this work for the Helmholtz equation. More precisely, the construction of the fourth order DC
technique for the Helmholtz equation (9) subject to the boundary conditions (10)-(15) consists of two steps:

Step 1: Obtaining a second order approximation U; to the solution u, of the original BVP (1)-(3).
Approximate the Helmholtz equation (9) by the standard centered second order 5-point stencil scheme Hg Ul-z- =0,
defined in (16). Also, use appropriate one-sided second order schemes to approximate all the other boundary
differential operators contained in the boundary conditions (10)-(15). Then, by solving the linear system that
ultimately results, from the discretization of all the equations of the KFE-BVP, obtain a second order numerical
approximation U? to the exact solution u, of the original BVP. This computation is done in the article [33] where
the KFE condition was first introduced.

Step 2: Formulation of the new fourth order finite difference DC numerical scheme for the Helmholtz equation in terms of the
U} obtained in step 1.
The second step consists of approximating the continuous derivatives uy,, us;, and ugy in (18) using standard
centered second order finite differences acting on Ui? as follows,

1

(Uar)j ~ D3, U = o [U?,; —4U2,; +6U% —4U?,  + UZ, ] . (19)
1 1 1

(u3r); ~ D3,Uf = =3 [—ZU,?” + UL, — UL+ 2Ui2+2,j:| , (20)
1

(Uag)y ~ D3pUZ = ot (U, — 4U%_, +6U7 — 4U%, + U7, ] - (21)
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We use the notation D, to designate the pth order centered finite difference discrete operator of the gth derivative
with respect to r. Analogously, DZQ designates the pth order centered finite difference operator of the gth order
derivative with respect to 6. Then by substituting (19)-(21) into (18), we arrive to the new fourth order finite
difference DC numerical scheme for the Helmholtz equation given by

Uhyj — 208 + UL 1 Ui, —u? 1 Ut — 208 + U7

’H4U-‘} = i+1,j i—1,j ij—1 + kZU-‘!
3Ty Ar? i 2AT r? A62 y
Ar? (0 25 A0% 5
1 1
2 14 2114 2 114, 12574
= Derij + EDrUij + ’ZDZHUU + k U,-j
1
Arr (s 2 A6 5
— 77 \PalUi+ ;iDarUﬁ - FﬁszUu =0. (22)

Notice that the new finite difference scheme (22) for the unknown discrete function U; consists of the same 5-point
stencil of the standard centered second order scheme. The difference is that (22) has an additional known term given by

Arr 0 2 5 A0% 5
T2 (D4rU1j+ED3rUy +712r;D49UU’
1

which is calculated from the second order numerical solution U; of u already computed in the first step.

Remark 1. At the artificial boundary r = R, we use appropriate second order one-sided finite differences acting on U,%,j
to approximate the various derivatives present in the leading terms of the truncation error in (18). They are defined in
the following section.

In what follows, we state and prove our claim that the finite difference scheme (22) is a fourth order approximation
of the Helmholtz equation.

Theorem 1. The new DC numerical scheme (22), or equivalently,

AB?

Ar? 2
4714 2774 2 112 2 112 2 12
H U = H5U; — T <D4rU,~j + EDgrU,u) - ?’?Dwuﬁ =0 (23)

is a consistent finite difference approximation of the Helmholtz equation in polar coordinates
2 1 1 2
A + kU =ty + —uyp + 2U99+](Ll=0,
r r

of order O(Ar*) + O(A6*) + O(Ar?A6?) on 27, if the continuous function u has derivatives of order 4 in its two variables
r and 6 on £27; and if the discrete function UUZ. is a second order approximation of u, i.e., there exists v(r,9), and w(r, 6)
sufficiently smooth and bounded functions on the closure of 2~ such that

Ui = u(ri, 6)) + Ar’u(r, 6) + A0*w(ri, 6)) = uy + Ar’v; + A wy;. (24)

Before proving this theorem, we will proof the following lemma.

Lemma 1. For U,.jz and u(r, 0) satisfying the hypotheses of Theorem 1, it holds that the standard second order centered finite
difference operators:

a. D3, as defined in (19), acting on Ug is consistent with the derivative ug4, of order O(Ar?) + 0(A8?).

b. D3, as defined in (20), acting on Ug is consistent with the derivative us, of order O(Ar?) + ©(A6?)

c. D, as defined in (21), acting on Ui is consistent with the derivative usy of order O(A0?) + O(Ar?)
Proof. To prove (a), we apply Dj, to U} replaced by (24). This leads to

D3, U} = D} uj + Ar’Dj v + A6° D, wy

= (uar)j + O(Ar?) + Ar(va )j + O(Ar®) + A6%(wy, ) + O(A6? Ar?)
Therefore,

D3, U} = (usr)j + O(Ar?) + 0(A6?)

and part (a) of the lemma is proved. The proofs of parts (b) and (c) are completely analogous. O
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Proof of Theorem 1. First, we rewrite Hg‘U&‘ as

HiUj = (D%,U&‘ - Di, Uj) + - (Df Ui — 5 D§,U§>
1 26>
+ 5 | D3 Uy — =5-Di,Uj | + KU;
rl ( 20 12 40U, i

Next, we apply Ha to u satisfying (24). This is followed by expressing each of the discrete derivatives of u in terms of
their corresponding continuous derivatives plus their leading order truncation errors, which leads to

Ar? Ar
ngij = ((urr)ij + — (u4r)ij + O(AT ) - fDirU;>

1 Ar2 a Ar?
+ ; (ur)l] (u3r)u + (’)(AT ) - TDWU!}
i

2

! A9?
+ ) ((uee)lj + EvE (Ug9)j + 0(A6*) — —DM ) + kzuu
i

Reordering the righthand side terms yields
ey = Gy + L)y + el + Ry~ 50 (DRUF — ()
i
- Asr (D3, U7 — (u3)y) — Ale; (D2,U2 — (uan)y) + O(Ar*) + 0(A6%).
Then, by applying the statements of Lemma 1 to the above expression, we get
Haty = (Argll + K*u); + O(Ar*) + 0(46%) + O(Ar? 46%),
which finishes the proof. 0O

Therefore, the new numerical scheme (22) approximates the Helmholtz equation to fourth order, while maintaining a
5-point stencil on the unknown discrete function Uij.‘. We show in Section 6 that there are important savings in the required

storage and computational time compared to the 9-point standard centered fourth order finite difference approximation
of the Helmholtz equation. This is one of the virtues of the DC technique developed in this work.

3.2. Fourth order DC approximation at the artificial boundary

At the absorbing boundary, the radial derivatives of the scattered field u, present in (12) and (13), are approximated
using standard centered second order finite differences. Then, to increase their accuracy to fourth order via DC, we
subtract from these standard finite differences their leading order truncation error terms. Imitating the previous procedure
employed for the Helmholtz equation at the interior points, these leading order terms are approximated using a previously
calculated second order numerical solution Ui]? of the exact solution u of the BVP (9)-(15). As a result, we obtain the
following discrete non-homogeneous equations at the artificial boundary r = R:

Uni1y— Un-vy — < G} AT
J —1J J J
e Ho(kr) Z — + Halkr) Z — s ——(DD3,U2; (25)
=0 I=0 r=ry
Upyqj — 205+ Uy < F G} Ar?
T = o Hotkn) Y+ Hkn) Y = —5 (DG UR;. (26)
r = = r=ry=R

The forcing terms in (25) and (26) are defined from one-sided second order finite difference approximations (Dl)gruﬁ
and (DI)4r of (usr)yj and (ugr)y;, respectively. More precisely,

11 3

(D3, UR ;= s |:2UI%J—3,]‘ —3Ug_,;+6U5_,; —5U3; + 2U1%J+1,j] (27)
1

(DI, Uy = Ar4[ Uy_4; +6Uy_5; — 14U5_,; + 16U5_,; — Uy ; + 2Ug 4] - (28)

Notice that the Egs. (25)-(26) involve values of the discrete approximations, U4 and U2 at the ghost points (ry1, 6;). The
unknowns U? also appear in the fourth order approximation of the Helmholtz equation (22) evaluated ati = N for

N-+1,j
j = 1...m. We eliminate it by solving for U,‘j in (25) and substituting it into (26), and into (22) evaluated at i = N.

+1,j
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A similar procedure is employed to eliminate the ghost values U,%
solution of the second order scheme of the KFE-BVP (9)-(15).

Analogously, we construct deferred-correction fourth order recursion formulas by keeping the second order terms of
the truncation errors obtained by approximating the angular derivatives in (14)-(15) using second order centered finite
differences. In fact,

1) during the first step, i.e., as part of the numerical

Fl g = 2R+ FL AQ
210G — (1 - 172FE ; — —F A02J L 5 —— D3ty (29)
G, . —2G 4+ Gt 02
20F} + PGHy j + —1 A’g;f Ll o 5 DGy (30)

where F?, ; and G} , ;, obtained in the first step, are second order approximations of Fi_; ; and G;_1; which are part of
the exact solution of the original scattering BVP. Also, the discrete differential operator D 4o 1s defined by Eq. (21) of the

DI'EVIOUS section.

Remark 2. The proofs that the finite difference formulas (25)-(26) and (29)-(30) approximate their continuous counter-
parts to fourth order are very similar to the proof of Theorem 1. Therefore, they are omitted. The key assumption for these
proof is that the discrete functions UZJ-, Fiu and G,qu, which are obtained in step 1, are second order approximations
of u(R, 0), F_1(0), and G,_1(0), respectively.

Summarizing, the set of algebraic equations (22), (25)-(26), (29)-(30), the discrete versions of the continuity of the
scattered field (11) and the boundary condition at the obstacle (10) form the fourth order Karp DC system of linear
equations to be solved. We denote this system as KDC4. Details on the structure and solution of this linear system are
given in Section 5.

3.3. General high order DC schemes for the Helmholtz equation in polar coordinates

The derivation of the fourth order DC scheme for the BVP (9)-(15) modeled by the Helmholtz equatlon in Sections 3.1-
3.2, can be extended to obtain a scheme of arbitrary high order. To start this derivation, we assume that U, ]p Yisa (p—2)th
order discrete approximation of the solution u of the Helmholtz equation (9) subject to the boundary conditions (10)-
(15). The details on the computation of this discrete approximation will be discussed later. Then, we apply the standard
centered second order finite difference approximation 7—[% of the Helmholtz operator to the solution u and retain up to
the (p — 2) leading order terms of the truncation errors of each Helmholtz derivative. As a result, we obtain

Uip1j — 2U +Ui—gj 1 ui+1j - Ui 14 1 Ujjp1 — 2Uj + Ujj—q

Hylj = —— h? St TR 2 Kuj =
1

1 2
- (?rl( 3r)U+Z!( 4r)ij + ar 2 (ug9); )hz

1 2 4
— (Fn( 5,—)1] + 5( 6;—)1] 6‘ 2 )h ......

1 2 p—2 p
- W(u(p—l)r)u Iy ( Upr )ij + p' (Upé))ij hP== 4 O(hP), (31)
T

where p = 4,6, ..., and h = max{Ar, A6}.

We continue the construction of the pth order DC approximation to the Helmholtz equation by imitating the one
used to obtain the 4th order DC approximation (22). In fact, we proceed by subtracting all the error terms up to the
(p—2)th order from the middle member of Eq. (31). This is followed by substituting the continuous derivatives present in
these error terms, by appropriate finite difference approximations acting on the (p — 2)th order discrete approximation,

Up ~2 of the exact solution u. More precisely, for ¢ = 4, 6,8, ..., p, we replace the continuous derivatives of the exact
solutlon (uqr)u (uge— W) and (qu) in (31) by a (p+2 —q)th order finite difference approximations given by D% 1U2~?,
quJr 21 Uf 2 D qu 2 respectively. This construction suggests the definition of the following pth order DC finite

dlfference approximation to the Helmholtz differential operator,

, and

p p p p p
HPUP = U1+1] - ZU + Uz 1,j 4+ U1+1j Ul 1,j 1 Uu+1 2U + Ul] 1 sz-l?
370 h2 Ti 2h Tz h2 Y
2 2
—2 p 2 p—2 p—2yp—2 2
B (3| D5 °Uj 4|DZr Uj ~+ PD Uj )h

1 2
- (5’1”'D15’r4 P 2 Dp Up 2 "F FDP 4Up 2) h4 _
T
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1 ) 2 P2 2 1 p-2 ) pp-2
- ((P—l)!r,-D“’ ol 'DWU'J +ﬁDP9U L (32)

We claim that the equation, Hg Ug = 0, is consistent with the Helmholtz equation (9) of order O(hP). This is the content
of our next theorem whose proof is provided below. The formulas for the discrete differential operators acting on Ui’;_z,

Dp+2 qu 2 D?q+21 qu 2 DPF79yP~? for arbitrary p and q = 4, ... p, can be obtained by applying computational

algorlthms such as fdcoeffF.m written as a MATLAB function by Leveque [10]. As an illustrative example, we define the
operators needed to obtain a sixth order DC scheme, p = 6 and q = 4, 6 in the Appendix A.

Notice that the new finite difference operator H in (32) acts on the unknown discrete function Ué’ , generating the
same 5-point stencil of the standard centered second orcler discrete operator H§ The difference is in the additional known

terms which depend on the numerical approximation Ug_z of the exact solution u. They are given by

,and

1 , 0 5 2 2
(Soor™ U™+ atha g )
=i

Pr J

1 2 2
+ | =Dl 1)ru" 24 Zp2uk 2+—2D§9UP 2) pp2
(p— D'y p! plr;

Remark 3. Near the artificial boundary r = R, we use appropriate one-sided finite difference to approximate the various
derivatives present in the leading terms of the truncation error in (32).

Theorem 2. The new DC numerical scheme,

s (3po U a0 e anr zDﬁe Ui 2) W
1 —4 2 2 4 2 2 5 4
B <?ﬁD§r Up + 6!Dp Ug 6! ZDIéQ Ug h* —
1 2 2
p—2 2 yp—2 2 p—2 2
- (MD“’ ety " Doy~ lﬁDpeUu )hp =0, (33)

is a consistent finite difference approximation of the Helmholtz equation in polar coordinates
2 1 1 2
Ar9u+ku:urr+*ur+ 2“99""(“:07
r r

of order O(hP) on §2~, if the continuous function u has derivatives of order p in its two variables r and 6 on 2~ ; and if the
discrete function Ué’*z is a (p — 2)th order approximation of u, i.e., there exists z(r, 0) sufficiently smooth and bounded on the
closure of 2~ such that

Up > = u(r;, ;) + hP~22(r;, 6), with h = max{Ar, Af}. (34)
The following lemma is the analogue of Lemma 1 for a p ordered scheme.
Lemma 2. For Up % and u(r, 0) satisfying the hypothesis of Theorem 2, it holds that the standard (p + 2 — q)th order centered
finite difference operator

(i) Dz:»Z—q acting on Uijf2 is consistent with the derivative ug, of order O(hP*279),
for q =4,6...,p.
(ii) qu Ir actmg on Ugfz is consistent with the derivative ug_y of order O(hP+271),
forq—4,6...,p.
(iii) j[r)’;;z*q c‘llcting on U,-’;fz is consistent with the derivative uge of order O(hPT2~19),
orq=4,...,p.

Proof. To prove (i), we apply Di> % to Ugfz and use (34). This leads to
DPF2-ayP2 = pR2-ty; 4 P2 Dbtz
= (Ugr)j + O(WPT?79) + hP~%(24,)5 + O(h*P )
Therefore,
DRFIUR? = (1 )y + O(HPT279), (35)

forq=4,6...,p. The proofs of parts (ii) and (iii) follow the same pattern. O
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Now, we are ready to prove Theorem 2

Proof of Theorem 2. First, we rewrite H2Uj; as
2h?

h4
2002 4, p—2 2 1 p—2
HEU; =D35,Ujj — 2 —-DCuf T — D’G’r Uy —- = . D;,Uf
1 2 hp2p2 hp4p2 hP—2 2 p—2
* F,(D Us= 505 Uy " = 505 Uy = = sy DUy
1/, 2 —4;p—2 2hP2 2 2
+ 2 (Dze i — D" Ut~ —HDQQ Uyt = - o ——DpUf " ) + 12Uy

Then applying #£ to u, which satisfy (34), and expanding the individual terms where the discrete operators act on u;
results in

2h? 2hP2
HI;U,‘J' = (U )ij + ar (Ugr)yj+ -+ T(”pr)ij + O(h*)
_ﬁ 2yP2_ ... 2R~ 2D2 uP~
4) T4 T p! i
1 h? hp—2
+ E ((ur)ij + — (u3r)ij + -+ ﬁ (U(p 1)r) + O(hp)
hp—2
27 1p— 2 2 p—2
_ng’r Ui S 1)!D(p71)rUij )

1 2h? p—2
+ 2 ((Uee)ij + ar (Uap)yj + -+ + T(Upe)ij + O(hP)

i

2R 5 2072 5
ID’j’w Ut - - o ——D,U;"~ )+I<u,~j.
Reordering and appropriately combining terms yields
1 1
Hauy = (Un )y + —(ur)j + rj(uee)g + KPuy
i i
2h? 2hP—2
- = <D4r U 2 (u4r)ij) — e (Dp,Ué7 2 (upr)ij)
h? 2, p-2 hP—2 2 p—2
D (D§, Uy (”3”“) O p-n (D ooty - (”(P*”f)ff)
2R o 2hP—2 _
- (DZQZU,-’; 2 (u4e),-,-) —m T (Dggug 2 (Upe)ij) + O(hP).
T T

Thus, applying the statements of Lemma 2 to each of the expressions in parentheses yields
Houyj = (Argu + k u) + O(hP),
which finishes the proof. O

3.4. Arbitrary order DC approximation for the KFE

Following the derivation described in the previous three sections, we can obtain arbitrary order DC approximations
for the KFE at the grid points (ry, 6;) by using appropriate one-sided finite difference for the derivatives present in
the truncation error terms. For instance, the definitions of the pth order approximations for (12) and (13) are natural
extensions of (25)-(26). They consists of adding discrete approximations up to the pth order to all the continuous
derivatives present in the truncation error terms. In fact,

U — Uiy ( Syt S¥eh
+1,j J /) ]
g (Holkr) L+ Hakr) Y l) (36)
24r 1=0 r =0 r r=ry=R
_r p—2

h h
P 2 P 2 P 4 P 2 p-2

UR,p = 2U% + UR_y; = j’ < G}
2 - Ho(kr) Z — 1(kr) Z = (37)
r=ry=R

1=0 1=0
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_ 2h? 2h* 2hP—2

~2pyp—2 —4, p—2 _y
In the discrete equations (36)-(37), we employ (p + 2 — q)th order discrete finite difference operators, (Dl)f’;_zl‘)rq and

(Dl)’q’,H*q (for ¢ = 4,6, ..., p) acting on the discrete function Ugfz approximating u of order (p — 2)th. The use of DI
instead of D states that left one-sided finite difference approximations of the corresponding continuous derivatives are
used.

Analogously, we formulate pth order approximations of the recurrence formulas as

FP. . —2F" 4+F .
P 2pp I=1,j+1 I-1,j I-1,j—1
265 = (= Ui = 202 (38)
2k o o2 2K 4 po 2072
= —T!Dﬂe = EDEQ == TDPQF,{U,
G) i =260+ G
—1Ljt+1 -1, I-1,j—1
20F] + PGy + 202 (39)
20 5 0 20 4 o 2pP72
= 4! DZG Gf—],j + FDgg Gf—],j +---+ TDPQG;)—L]"

p—2
where Fl—],j

Df;gz_q are centered finite difference operators. Summarizing, the set of Eqs. (32), (36)-(37), (38)-(39), the discrete version

and Gf:ﬁj are part of the previously calculated (p—2)th ordered numerical solution, and the discrete operators

of the continuity of the scattered field (11), and the appropriate discretization of the boundary condition at the obstacle
(10) form the pth order DC discrete system of equations to be solved. We denote this system as KDCp.

4. Standard fourth order numerical method for the KFE-BVP

In this section, we formulate a standard fourth order numerical method for the KFE-BVP (9)-(15) in polar coordinates.
This constitutes an alternative high order method for this BVP. In Section 6, we compare it with the DC fourth order
method and access convergence, accuracy and computational efficiency of both. This fourth order method is also a natural
extension of the standard second order finite difference method, carefully constructed in [33], where the KFE was first
introduced.

We begin by considering the centered 9-point standard finite difference scheme for the Helmholtz equation in polar
coordinates,

sl = —Uf,, +16U% ; — 3007 + 16U |, — U, N 1 —Uf,, +8U%, —8UL  + UL,
i 12Ar2 i 124r
1 (0%, +160%,, —300% 4 16U~ _, — U _ i
+ = i,j+2 ij+1 12.] ij—1 i,j—2 + kZU,;-l —0. (40)
ri 1246

at the interior gridlines r, < r; < ry_;. We adopt the alternative notation for the standard fourth order numerical solution
Uij-‘, because it is different from its DC counterpart U,-‘.‘, as confirmed by our numerical results in the next section. At the
boundaries of the domain, appropriate fourth order one-sided finite difference approximations of the various derivatives
of the Helmholtz equation are required.

We also need non-centered fourth order finite difference approximations for the various equations of the KFE. For
instance,

(i) Continuity of the first derivative at the artificial boundary:

1[1-, 5-, 3., 1-, 1-,
T [ZUNHJ + gUn = SUn-1y+ 5Unay = 5 Unosy (41)
-1 1:-14 -1 Cf.
— 9 | Ho(kr) ) TJI + Hiy(kr) ) {) =0.
1=0 1=0 r=ry
(ii) Continuity of the second derivative at the artificial boundary:
1 [5-, 5-, 1-, 7 -4 1-, 1-,
yrsl |:6UN+1.j ~ 20T Uit gUn S Uns 5 Una (42)

=0

L-1 I__~l4 L-1 C;}
2 Y y —
— 3 Ho(kr)g 7+ Hilkr) > = =0.
= r=ry
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Approximated Total Field for Far-Field Pattern Comparison

Dirichlet BC k =27 L-Norm Rel. Error = 1.7002e-05

Farfield Pattern
Order of Convergence = 4.0643

=
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Fig. 1. Numerical results for scattering from a circular scatterer using KFE. Shown from left to right are the wave amplitude, Farfield Pattern, and
order of convergence for Dirichlet (top) and Neumann (bottom) BCs.

(iii) Standard fourth order discretization of the recursion formulas along the angular direction:
_Fl4—l,j+2 + 161:1471,j+1 - 3OF1471,; + 161'7471,]'71 - Fl471,j72

21G; — (1= 1°FL ;- DA =0, (43)
_ _ -Gt . 4+ 16GH. ... —30G* .. +16G* .., —G* .
2"_.;_{_126;171‘]'_’_ 1-1,j+2 I-1,j+1 1ZAlrzl,] I-1,j—1 I-1,j—2 =0, (44)

for=1,...L— 1. Again, we have adopted the alternative notation for the standard fourth order numerical solutions F4,
and G* to differentiate them from their DC fourth order counterparts F#, and G*, respectively. Notice that we have retained
the values of the unknown functions at the ghost points (ry41, ;) in all the one-sided finite difference approximations. As
a consequence another set of unknowns is added to the problem. However, they are eliminated considering an additional
set of equations given by the discretization of the Helmholtz equation (40) at the nodes located on the artificial boundary
r = ry. Our numerical experiments suggests that this practice leads to a more accurate and stable numerical solutions
than just using typical one-sided finite differences. The set of Eqs. (40)-(44) and the discrete version of the continuity
u (11) at the artificial boundary form the standard 4th order method for the KFE-BVP (9)-(15). We will denote this method
as KS4.
At the computational level, this fourth order standard method reduces to a new linear system of equations (LSE) given
by
AU =b. (45)

This matrix A4 has a greater number of nonzero entries than the matrix associated to the fourth order DC method described
above. As a consequence, memory and computing costs increase for this standard formulation. In Section 6, we compare
both fourth order techniques through some numerical experiments.

5. Implementation of the DC numerical method coupled with the KFE absorbing boundary condition

The practical advantage of the DC method coupled with appropriate discretizations of the KFE is that it leads to arbitrary
high order numerical approximations to the solution of scattering BVPs, such as (9)-(15). Here, we choose an obstacle of
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Fig. 2. Matrix structure for Dirichlet BVP of Fig. 1 with PPW = 20 (grid size 40 x 126) and NKFE = 9.

circular shape to alleviate the transformation of the KFE-BVP into the ultimate linear system. In Section 7, we discuss the
scattering from arbitrarily shaped scatterers. Our strategy to generate a pth order DC numerical approximation Ug to the
exact solution u of the BVP (9)-(15) can be summarized by the following steps:

(i) Obtain a second order approximation Uif to the exact solution u using a standard second order finite difference
technique for the Helmholtz equation and the BCs. This technique was adopted in [33]. As shown there, the set of
discrete equations employed to obtain U,-Jz- can be recast into the LSE,

AU =b. (46)

In particular, the vector U? consists of the unknown discrete value approximations of the scattered field u, and the
unknown angular coefficients of the Karp’s expansion for a given grid. The vector b is assembled from the boundary
data at the obstacle generated from the incident wave. More precisely, the unknown vector U? is defined as

at obstacle at interior grid points
——

U= [U2, 02 U3 U2 Uy U

at artificial boundary

T
F2 P2 Gy GRo PRy PR ch,]...cff]’m] , (47)
and the vector b, for a Dirichlet boundary condition on the obstacle, as
at obstacle at interior grid points at artificial boundary
m———— —— m——— —— T
b= [—(u,-m)m... ~(Um)im  0..0.0.0  0.0.0.0 ] : (48)

As a result, the matrix A, dimension is (N — 1+ 2L)m x (N — 14 2L)m, where the first m x m block corresponds to
the identity matrix. In the case of a Neumann BC, minor updates to the m first equations should be made. In this
case, A, is affected by the ghost-point based treatment of the discretization of the radial derivative in (10), and b
depends on the boundary data 9;u;,.. See details in Appendix B.

The sparse structure of the matrix A, is studied in [33], where built-in MATLAB linear solvers were employed to
obtain second order accurate solutions. In fact, the complex matrix A, is non-Hermitian. The discretization of the
KFE and the ordering of the discrete unknowns in U? lead to a highly asymmetric block structure of the lower rows
of A,. A typical structure of A, is shown in Fig. 2. This particular matrix corresponds to the first experiment described
in Section 6 and illustrated in Fig. 1. As can be seen in Fig. 2, the matrix A, consists of mainly five diagonals, which
are obtained from the 5-point scheme used in the finite difference approximation of the Helmholtz equation. But,
it also has a non-symmetric tail corresponding to the unknowns angular functions of the karp’s expansion.

In [33], the LU MATLAB solvers were successfully used for an ample set of scattering problems whose discretization
led to A, type matrices. In this work, we also employ the direct built-in MATLAB linear solvers for our two
dimensional high order DC schemes. As can be seen in our numerical experiments in Section 6, we also obtained
excellent high order approximations for very refined grids up to 60 PPW and up to a maximum of 12 terms in the
Karp’s farfield expansion.
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(ii) Construct a fourth order finite difference DC consistent scheme of the Helmholtz equation by subtracting the
second order leading terms of the truncation errors from the second order standard scheme (16). This leads to
the desired fourth order finite difference deferred correction discrete equation (22) consistent with the Helmholtz
equation. Likewise, obtain fourth order approximations to the boundary conditions (10)-(15). For this purpose,
use appropriate approximations to the various continuous derivatives present in the leading order truncation
error terms using the second order approximation U2 obtained in step (i). This process is described in detail in
Sections 3.1-3.2. The resulting linear system is given 6

AU* = b+ bj(U?). (49)

The unknown vector U* is identical to U? in (46), except in the replacement of the superscript number 2 by 4. Also,
the dependence of the correction vector bgc on the second order numerical solution has been made explicit. This
new vector consists of all the corrections in (22), (25), (26), (29) and (30). In the particular case of Dirichlet BC, it
reads

at interior grid points

at boundary

b4(U2)—[0«--0 Ar? (DZU n DUZ)—i—AeD U2
DC - 4r~2,1 2,1 12 2 Y4ap%Y2,1°
at interior grid points (continued)
Ar? 2 262
— (D3 Ui, +—D3U: + ——D2,U}
12 ( 4r~N—-1,m N_1 3rN—-1,m 121,)%’7] 46~ N—1,m
at artificial boundary
Ar? S 2, 5o, A0% Ar Ar?
77 \ (DD Uy, + E(Dl)arUNJ + ﬁ(DI)MUNJ “\3 T e (DD3,UR -
at artificial boundary (continued)
Ar? ) 2 A0% Ar Ar? 5y
T (0005 + ZOB ) + S0~ (5 + 5o ) OV Ui
at artificial boundary (continued)
Ar? o Ar, o Ao Ar, o
H(DI)MUN,] - ?(Dl)BrUN,l T H(Dl)zlrUN,m - ?(Dl)E'rUN,m
at artificial boundary (continued)
A0% , A0% A0% 5 A0% ,
_7D49F0.1“'_ 12 D49F0m 12 D49601 12 D4QG om’ "
at artificial boundary (continued)
A6? A0? A0% A0, o T
- 12 D49FL 1,1° 12 D4GFL 1,m 12 D49GL 1,1° 12 D4GGL lm] . (50)

Alternatively, under Neumann conditions, the first m components of this vector must account for the correction
term in ((B.1), Appendix B) combined to those arising from the ghost-point boundary treatment. By solving the
linear system (49), we obtain a fourth order numerical approximation, U4, of the solution u of the original BVP.
An important aspect of this approach is that the matrix A, remains the same in both the second and fourth order
computations. The only difference with respect to the LSE (46) occurs in the forcing term.

(iii) Continue the iterative construction process described in (ii) until a desired pth order approximation U§ of the exact

solution u is obtained from the previous approximation Ugfz. The associated linear system in this general case is
given by

AUP = b + b)) (UP2). (51)

The components of the vector hf)c consists of the approximations of the high order correction terms present in
(32), (36), (37), (38) and (39). All of them are computed from UP~2. The unknown vector UP is identical to U? in
(46), by replacing 2 by p in all its components. Therefore, to obtain a numerical solution approximating the exact
solution two orders higher, it is required to solve an additional linear system. However, all the linear systems to be
solved using the DC technique have the same sparse matrix A,. The difference is in the forcing terms as explained
above. Compared to high order standard schemes, this DC implementation feature is advantageous regardless of the
adopted LSE resolution strategy. In the case of direct solvers, A, factorization is performed once and then reused
throughout the high order DC iteration. In the case of iterative solvers, all the linear systems to be solved as part
of the DC iteration use the same solving algorithm, under the same preconditioning and optimal implementation.
Therefore, the resolution strategy requires a one-time computational investment over a rather simple matrix for
every DC iteration step.
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In Section 6, we perform numerical experiments employing the discrete DC Helmholtz operators #2 and #¢ of fourth
and sixth order, respectively. As a result, we obtain numerical solutions approximating the scattered field u of the KFE-
BVP (9)-(15). By comparing these numerical solutions against the corresponding exact solutions for circular scatterers, the
expected fourth and sixth order of convergence, respectively, are achieved. For completeness, several of the sixth order
finite difference formulas, used in this work, approximating continuous derivatives are given in the Appendix A. These
continuous derivatives are contained in the leading order truncation error terms of the finite difference approximations
of the Helmholtz equation and the equations forming the KFE, respectively. Also, the deferred corrections approximations
for the Neumann boundary condition are given in Appendix B.

6. Numerical results

In this section, we discuss numerical results for the scattering of a time harmonic incident plane wave, uj,c = e~ ek
propagating in the direction of the positive x-axis, from a circular obstacle. We obtain numerical solutions for our proposed
deferred correction method coupled with the Karp’s farfield expansion ABC, which is applied to the KFE-BVP defined by
(9)-(15). To access the high accuracy and high order of convergence of this technique, we compare our numerical results
to the exact solution of the exterior BVP defined by (1)-(3) for a circular obstacle of radius ro and wavenumber k. This
exact solution for the scattered field u and its corresponding Farfield Pattern (FFP), P(9) are as follows:

a. Dirichlet boundary condition: u = —ujp,,
o0
o Jn(kro)
u(r,0)=—Y eni" =———H(kr)cosno (52)
; " H (ko)
2\ it kr,
P(H) = — (—) e"”/“Zen]?l()io) cosné, (53)
ke n—o Hu (kro)
b. Neumann boundary condition: d,u = —0d,Uinc,
S /
k
u(r,0) = — Z eni"];gf)AHfl”(kr) cos né (54)
n=0 Hn (kro)
2\"* > ’ (kr,
PH) = — (—) e—m/4Z€nJ/'(1]()7°) cosnb, (55)
km “— Hy ’(kro)

where¢g =land ¢, =2 forn>1

In Fig. 1, we show some numerical results obtained by applying the fourth order deferred correction technique KDC4,
introduced in Sections 3.1-3.2, to the KFE-BVP. The left graphs illustrate the amplitude of the total field, g = Uinc +u for
both boundary conditions. The middle graphs shows the comparison of the numerical Farfield Patterns (defined below)
against the exact ones. The rightmost graphs show the fourth order of convergence of the numerical solution to the exact
solution. In both numerical experiments, the wavelength is 2, the number of Karp’s expansion terms is 9, the outer
radius is 3, and the number of gridpoints per wavelength to determine the order of convergence is [20, 30, 40, 50, 60].
The infinite series defining the exact solutions have been truncated to 60 terms for our calculations. The structure of the
A, matrix for the Dirichlet BVP of Fig. 1 with 20 gridpoints per wavelength is shown in Fig. 2.

In the following subsections, we present numerous results for the application of the DC technique to the KFE-BVP
for the two BCs under studied. Discussion of the order of convergence and accuracy of the DC techniques, along with
comparisons against other high order techniques are included as well.

6.1. Accuracy and convergence under Dirichlet BC

We perform several numerical experiments to obtain approximations of the FFP of the scattered wave for the BVP
(9)-(15) under Dirichlet boundary conditions. The FFP is an important property to be analyzed in scattering problems.
It depends on the shapes and physical properties of the scatterers. In Section 4.2.1 of [39], Martin defines the Farfield
Pattern (FFP) as the angular function present in the dominant term of the asymptotic expansions for the scattered wave
when r — oo. For instance, in 2D, the Farfield Pattern is the coefficient fo(6) of the leading order term of the asymptotic
approximation of Karp expansion,

eikr 32
u(r,0) = Wfo(@)-}- 0 (1/(kr)*?). (56)
Following Bruno and Hyde [40], we calculate it from the approximation of the scattered wave at the artificial boundary.
A detailed computation is found in [33].

In our first set of experiments, we obtain the L? norm relative errors made by approximating the exact FFP by the

numerical FFP using both the DC and standard techniques. In all these experiments, the wavenumber is k = 27 and the



16 V. Villamizar, D. Grundvig, O. Rojas et al. /| Wave Motion 95 (2020) 102529

NKFE =4 NKFE = 8

1072

- -
° 9
» [~

-

S,
3]
T

L2-norm Rel. Error
L2-norm Rel. Error

-
S
o
T
-
S
D

“-Ks2 -~ Ks2
,f|-—kDC4 ] |-—kDca
107" —KDC6 10 —KDC6
e KS4 e KS4

-8 L L L L L L L L L L L L

1

%% 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
PPW PPW

NKFE = 10 NKFE = 13

102F

103}

Error

. 107

-norm Rel
—
S
(5]

L2-norm Rel. Error

-
<
o

L10®

1077 107
108 - - - e 108 : . : —
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
PPW PPW

Fig. 3. Comparison of L>-norm relative errors of the Farfield Pattern computed from KS2, KDC4, KDC6 and KS4 methods for R = 2.

radius of the circular obstacle is ry = 1 while the radius of the artificial boundary is either R = 2 or R = 3. To determine
the convergence rates of the numerical solutions to the exact solution, we refine our polar grid by increasing the number
of gridpoints per wavelength (PPW) from 20 to 60. These results are illustrated in Figs. 3 and 4. In Fig. 3, we present four
cases with varying number of Karp Expansion terms, NKFE = 4, 8, 10, 13 while the grid is systematically refined. In these
figures, we denote solutions using the DC methods of fourth and sixth order as KDC4 and KDC6, respectively. Also, those
solutions obtained from the application of the standard second and fourth order schemes are referred as KS2 and KS4,
respectively.

An analysis of the graphs in Fig. 3 reveals how the accuracy and convergence rate of the standard and DC techniques,
coupled with the KFE, depend on both PPW and the number of Karp’s expansion terms. From the top left plot of Fig. 3,
it is observed that the only method that attains the expected convergence rate (2nd order convergence), when NKFE
= 4, is KS2. Furthermore, KDC4 seems to attain the expected convergence rate only for coarser grids, while errors of
the other methods remain nearly constant as PPW increases. As NKFE increases from 4 to 8 terms (top right plot of
Fig. 3), we observe that KS2 continues attaining the second order rate, but now KDC4 also achieves the expected 4th order
convergence rate along the full PPW range. However, KDC6 and KS4 convergence rates improve for the coarser grids, but
as we continue refining, they degrade quickly. More consistent experimental results are attained by all methods for 10
KFE terms, as depicted in the bottom left plot of Fig. 3, with the exception of KS4 whose order drops slightly below 4 for
the finer grids. Finally for NKFE = 13, all these methods attain their theoretical convergence rate, as shown in the bottom
right plot of Fig. 3.

Alternatively, Fig. 4 shows the convergence rates attained by the DC and the standard methods as the number of terms
in Karp expansion (NKFE) increases. In these experiments, the artificial boundary is located at R = 3 and the various grids
used to determine the convergence rate consist of PPW = 20, 30, 40, 50 and 60. It is seen from Figs. 3 and 4 that any of
these four methods can reach its theoretical order of convergence, if enough terms in Karp’s expansion are retained for
sufficiently fine grids. This fact illuminates the arbitrary high order character of the KFE-ABC, whose accuracy is easily
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Table 1

Order of convergence of the KDC6 method for Dirichlet BC when k = 27, NKFE = 13,
and R = 3.

PPW Grid size h=ro460 = Ar L?-norm Rel. error Observed order
20 40 x 126 0.04987 5.86 x 107>

30 60 x 189 0.03324 5.05 x 1076 6.04

40 80 x 252 0.02493 9.15 x 1077 5.94

50 100 x 315 0.01995 2.47 x 1077 5.87

60 120 x 377 0.01667 8.58 x 1078 5.89

adjustable to the precision of the interior Helmholtz solver. In addition, the order of convergence of the proposed interior
scheme can be efficiently increased by adding higher order error terms of the discretized Helmholtz differential operator
into the DC numerical scheme. We present a detailed convergence process in Table 1 for k = 277, NKFE = 13 and R = 3.
This table clearly shows not only how the accuracy improves by refining the grid, but more important that the expected
6th order of convergence can be observed if enough terms are used in the Karp’s expansion.

The dependence of the L2-norm FFP relative error on PPW and NKFE is explored in Fig. 5 for the KDC6 method. Note
that at coarser grids, increasing the number of Karp’s expansion terms only leads to minor accuracy improvements. On
the contrary, as the grids become more refined using larger NKFE, greater accuracy occurs. In fact, for NKFE = 8, the L2
relative error approaches 1077 as the grid is refined. This represents a significant improvement over the results obtained
using lower NKFE.

6.2. Comparison of computational times

We performed several experiments to evaluate the computational times spent by DC and Standard methods when
solving similar problems to those in the previous section. The results of these experiments are depicted in Fig. 6. To
obtain them, a set of baseline error tolerances are defined, and then pairs (NKFE,PPW) close to optimal are found for each
method to satisfy such thresholds. By an optimal pair we mean, the minimum values of NKFE and PPW that are needed
to attain the target L>-norm FFP relative error. Once each pair (NKFE,PPW) is found, the same simulation is performed
ten times. Then, the resulting CPU times are averaged and this time average is plotted in Fig. 6.

For all simulations represented in Fig. 6, the relevant parameters values are rp = 1, k = 27 and R = 3. Also, the pairs
needed (close to optimal) to attain the FFP target errors for the different methods are depicted in Table 2. The curves on
the left plot show that KS2 is not able to reach errors smaller than 10~* during a time interval of 4 s, a threshold that is
much earlier reached by the higher order methods, as depicted in the right plot. In fact, it is observed that the time spent
by KS2 to attain an error close to 10~ is about 8 times the one spent by KDC4. The limited KS2 accuracy prompted us to
present two different plots with different time scales in Fig. 6. We noticed that KDC6 is at least three times faster than
both fourth order schemes, to reach an error of 10~>. The KDC4 method was second best in terms of computational time.
All these experiments were performed on an Intel Core i5 laptop computer of 8 GB RAM. The codes were written and
executed in MATLAB R2017b. The results are not meant to represent our methods’ limiting computational speed. Instead,
these are presented to demonstrate the relative speed of the different methods described.
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Fig. 6. Computational times vs. L>-norm FFP relative errors for the KS2, KDC4, KS4, and KDC6 methods.

Notice, that we needed to choose R = 3 to allow lower order methods to reach higher accuracies comparable to their
higher order counterpart.

The sources of the time savings that are shown in Fig. 6 are most easily explained by examining Table 2. At all error
levels, the DC6 scheme requires a much less refined grid and fewer Karp Expansion terms than DC4 or KS4. This leads
to a smaller matrix and allows the scheme to be solved more efficiently despite the additional steps required. A similar
phenomena can be seen when comparing DC4 and KS4 (especially in regards to the NKFE). The DC4 scheme have an
additional efficiency advantage over the KS4 since the matrix used for solving the DC4 system is less dense than the matrix
used by the KS4 method. As a note, the error values given in the table are approximations since it was not possible to find
values of PPW and NKFE that would give identical errors for all three schemes. Additionally, the information displayed in
Table 2 corresponds to the right plot in Fig. 6, a similar table could be derived for the left plot.

6.3. Accuracy and convergence under Neumann BC

In this final section, we compare the FFP relative errors and convergence rates of fourth- and sixth-order DC solutions
for the BVP (9)-(15), under Neumann boundary conditions. For this boundary condition, the deferred correction schemes
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Table 2
Points per wavelength and KFE number of terms needed to reach a target FFP relative
€eITor.

FFP Tol error KS4 KDC4 KDC6
PPW NKFE PPW NKFE PPW NKFE
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5% 1075 35 9 40 3 20 6
1073 51 11 60 8 26 7
5x 1076 60 11 70 8 29 8
102 NKFE = 4 102 NKFE =8
[ | S 3 10°®
2104k E 210
w w
g 5 2. s
107°F E 10
£ £
S ]
[ 3
o 10°8F E o 108} i
- -
7l|-- KS2 ] -7|- - KS2
107t 10 3
--KDC4 ---KDC4
—KDC6 —KDC6
1 O-8 L L L L L L 10-8 " L " L " L
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
PPW PPW
- NKFE = 10 102 NKFE = 13
al TR 4 Y ik ST E
S L i S 1 T TTree-al ]
4l T 4 P e ]
0% T 10 i §

L2-norm Rel. Error
—
S
(3]
-
S,
o

L2-norm Rel. Error
-
S,
(4]

10—7,--KSZ 10-7_--K32
---KDC4 ----KDC4
—KDC6 —KDC6
108 ’ ; ’ y y y 108 ’ ; y . y *
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
PPW PPW

Fig. 7. Comparison of L,-norm FFP relative errors computed from KS2, KDC4 and KDC6 under Neumann BC.

are detailed in the Appendix B. In the following experiments, problem parameters, PPW, and NKFE, are the same ones
used for the Dirichlet type tests in Section 6.1. In Fig. 7, we compare the FFP relative errors make by the application of
KS2, KDC4 and KDC6 methods for NKFE = 4, 8, 10 and 13, while in Fig. 8, we exhibit the convergence rates dependence
on NKFE. In both figures, the illustrated results nearly resemble the ones given in Figs. 3 and 4. Therefore, we conclude
that DC accuracy and convergence rates are not affected by the type of obstacle boundary condition.

As in the Dirichlet case, the KDC4 and KDC6 methods require at least NKFE = 8 to fully reach their highest accuracy
and expected convergence rates, respectively. Furthermore, for NKFE = 10 or 13, the KDC6 relative errors are two order
of magnitude smaller than their KDC4 counterparts for sufficiently fine grids.

7. Concluding remarks and future work

We have constructed an arbitrary high order numerical method for the two-dimensional time-harmonic acoustic
scattering problem. This is based on applying a general pth order DC technique to approximate the Helmholtz equation
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(interior approximation), and using an appropriate number of terms (NKFE) for the Eqgs. (11)-(15) defining the Karp’s
farfield expansion absorbing boundary condition. The KFE equations are also approximated by a pth order DC finite
differences.

The DC approximation of the governing Helmholtz equation of arbitrary order p is given by (33), while the pth order
DC approximation of the Karp’s farfield expansion ABC with enough NKFE terms is given by the discrete equations (36)-
(37), (38)-(39). The algebraic linear system for the scattered field obtained from all these discretizations is completed
by the discrete equations corresponding to the continuity of the scattered field (11) at the artificial boundary and the
appropriate discretization of the boundary condition at the obstacle (10). In the case of Neumann or Robin condition, a
pth order DC finite difference discretization of the boundary condition at the obstacle should be constructed. The details
in the construction of this DC scheme for the BVP (9)-(15) are given in Section 3.

It is seen from Figs. 3-5 and 7-8 that the proposed method can reach its theoretical order of convergence, if enough
terms in Karp’s expansion are retained for sufficiently fine grids. This fact confirms the arbitrary high order character of
the KFE-ABC that was claimed in [33]. Actually, this high order property was already observed in [41] where the KFE-ABC
was combined with a high order isogeometric finite element method employed as a Helmholtz solver for the interior.

The virtue of this approach is that any pth order approximation of the Helmholtz equation consists of the same 5-point
stencil which is used by the standard centered second order finite difference approximation. The difference between these
two approximations is that the right hand side of the pth order scheme includes some additional terms that come from
leading terms of the truncation error of the Helmholtz equation centered second order finite difference approximation.
These new terms are calculated from a (p—2)th order numerical solution UP~2, previously computed. Hence, the proposed
DC method is an iterative technique. For instance, the application of the DC fourth order method that leads to a fourth
order approximation U? is preceded by the calculation of U? by applying a second order DC scheme. Moreover, the matrix
defining the LSE associated to both steps is the same matrix A,. However, it is important to notice (as shown in Fig. 2)
that this matrix, although highly sparse, is not banded due to the presence of the unknown angular functions of the Karp’s
expansion. In Section 5, we describe this iterative process in detail.

In Section 3, we rigorously proved how our proposed DC finite difference method approximates the Egs. (9)-(15),
defining the KFE-BVP, to any order p. In Section 6, these theoretical results are experimentally confirmed by showing that
the numerical solution obtained by applying KDC4 and KDC6, indeed converge to the exact solution with a fourth and
sixth order convergence rate, respectively.

We accessed the computational effectiveness of our proposed technique by choosing target tolerance errors to be
satisfied by the numerical FFP. An analysis of the right plot in Fig. 6 reveals that KDC4 reaches the tolerance errors
faster than its standard counterpart KS4. This is remarkable since the combined KDC4 technique requires the solution
of two linear systems while KS4 needs to solve only one linear system. We attribute this performance to the greater
sparsity of KDC4 matrix A, compared with the less sparse matrix A4, associated to the 9-point standard finite difference
approximation of Helmholtz equation. We also notice that KS4 requires more KFE terms than KDC4 for similar grid sizes
to reach a given tolerance error. But, more important KDC6 is eight times faster than KDC4, although its application has
one more step in the iterative process. The reason for this is the coarser grid and lower number of KFE terms used by
KDC6 compared with those employed by KDC4. For instance, KDC6 reaches an error close to 107> for (PPW,NKFE) = (26,
7), while KDC4 needs (PPW,NKFE) = (60, 8).

In this work, we chose to limit our study to the two-dimensional Helmholtz equation in polar coordinates for clarity in
the formulation and presentation of the theoretical results. However, we anticipate that an extension of the DC technique
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to the KFE-BVP in generalized curvilinear coordinates will follow a similar pattern of what we have already observed
in polar coordinates. We will base this extension on Villamizar and Acosta previous works on the grid generation for
single and multiple scatterers of complexly shaped geometries [42,43]. These grids correspond to generalized curvilinear
coordinates conforming to the boundaries of the scatterers. Moreover, this grids were used by the same authors to solve
single and multiple scattering problems from complexly shaped obstacles in the following articles [33,44,45]. In particular
in [33], they obtained second order convergence for a star shaped scatter with smooth boundary by using second order
finite difference approximation based on curvilinear coordinates conforming to the scatterer boundary.

To provide some insight into the formulation of the DC finite difference technique in curvilinear coordinates, we
consider the Helmholtz equation in the curvilinear coordinates (£, n), derived by Winslow,

algs — 2BUs, + yuy, + K¥Ju=0 (57)

where the coefficients « = «(&, 1), B = B(&,n), y = y(&,n) and ] = J(&, n) are defined by a coordinates transformation.
If these coefficients are known exactly, then the deferred correction approach presented in this paper can be directly
extended to (57) to approximate the derivatives ug¢, ug, and u,, up to a desired order. However, in practice the coefficients
«, B, y and J are also approximated with finite difference schemes. Hence, in order to maintain the desired order of
convergence, the coefficients «, 8, y and J of the coordinates transformation must be approximated to match the same
desired order for the truncation error. Our immediate plan is to attempt this extension to high order methods in curvilinear
coordinates within the framework of DC methods.

Another direction for future work will be to consider an extension of the DC technique for scattering problems in
heterogeneous media (variable wavenumber) which can be handled by finite difference methods. In fact, the approach to
be followed for the generalized curvilinear coordinates extension my also apply for this one.

One more extension within our reach is the construction of the DC finite difference approach for the three-dimensional
scattering modeled by the Helmholtz equation coupled with a high order local farfield expansions ABC. For this, we will
start by considering the three-dimensional Helmholtz equation in spherical coordinates,

Argol + Ku = uy + %ur + ﬁ(sin@ ug)e + muw +ku=0, (58)
coupled with the high order local farfield expansion ABC for the three-dimensional case (WFE), which was constructed
in [33] from the Wilcox'’s farfield expansion (5). In this previous work, it was shown that combining a standard centered
second order finite difference method in the interior with the WFE at the artificial boundary, having enough terms, leads
to a second order convergence rate of the numerical solution to the exact solution. Therefore, we have all the ingredients
to derive a higher order DC finite difference method for the acoustic scattering problem WFE-BVP governed by (58). In fact,
by approximating the derivatives present in (58) and in the WFE absorbing boundary condition, and keeping the necessary
truncation errors terms, a DC approximation of any order can be derived. Nonetheless, these new DC developments may
inevitably require iterative LSE resolution algorithms, suitable for large and sparse, non-Hermitian, and poorly conditioned
(under large wavenumbers) matrices. The high demand of computer memory of direct solvers, make themselves infeasible
choices in the case of 3-D refined grids. To downsize study efforts, we will consider some Krylov subspace methods for
the Helmholtz equation, including e.g., the work by Kechroud et al. [46], Erlangga [47] and Gordon and Gordon [48]. At
the discrete level, the local WFE transforms into a unique sparse matrix structure, that highly motivates the exploration
for efficient LSE solvers. Furthermore, we want to emphasize that the DC procedure developed in this work is not limited
to the BVP modeled by the Helmholtz equation. Indeed, it can be easily applied to any other BVP modeled by linear partial
differential equations.

In its present form the KFE can only be applied to problems in the full-plane since its artificial boundaries need to be
circles. However, we foresee that it can be adapted to wave problems in the half-plane with an acoustically soft or hard
condition on the plane boundary. For this adaptation, we will use our recently developed multiple KFE absorbing boundary
condition [49]. In fact, we plan to use the method of images to extend the single scattering problem in the half-plane to
a multiple scattering problem containing two identical scatterers in the full-plane. Then, we will use the multiple-KFE
condition and symmetry relations between the outgoing waves to construct the KFE condition for the half-plane. Our
purpose is to imitate the procedure employed by Acosta and Villamizar in [45] for the construction of the Dirichlet to
Neumann (DtN) condition for a single obstacle in the half-plane from the multiple DtN condition for the full-plane [44,50].
However, a formulation of the KFE for waveguides or more arbitrary geometries may not be possible.

As parallel efforts, we are aware of several attempts to formulate high order methods for time-harmonic acoustic
scattering using finite element techniques. A rather complete set of these contributions can be found in [51]. Most of
them have been done without employing high order local ABC. However, we are aware of three works where high
order finite element basis were used in combination with high order local ABCs to formulate overall high order methods
for acoustic scattering. For instance, Schmidt and Heier [52] used high order Lagrange polynomials as a finite element
basis combined with Feng's ABC of several orders. They obtained high order of convergence but only for wavenumber
k = 1. Moreover, Feng’'s absorbing boundary condition is obtained from an asymptotic expansion of the exact Dirichlet-
to-Neumann ABC. This is a disadvantage compared with the Karp’s expansion, which is an exact representation of the
outgoing wave outside the artificial boundary. Also, Barucq et al. [53] derived an ABC for exterior problems modeled by
the Helmholtz equation in the plane from an approximation of the Dirichlet-to-Neumann map. They reached only fourth
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order convergence for circular obstacles. More recently, Tahsin and Villamizar [41], formulated an overall arbitrary high
order method for acoustic scattering combining a finite element implementation in isogeometric analysis (IGA), which
uses arbitrary high order non-uniform rational B-splines (NURBS) as a basis, with the high order local farfield expansions
ABC employed in this study. Their experiments corroborated the overall high order convergence for high and very low
frequencies (wavenumbers). Our plan is to compare the accuracy and computational cost performances of our overall high
order DC scheme combined with the KFE, constructed in this work, against the high order method introduced in [41] and
report these results elsewhere.
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Appendix A. Sixth order DC finite difference approximations

The sixth order DC finite difference approximation to the Helmholtz differential operator is obtained by substituting
p = 6 in (33) which leads to

1 2 2
6716 _ 4,2116 4 114 4 114 4 114\ 12
HaUjp = H5Uj — (B!HD%UU + IDMUU‘ + 4!ri2D49UU> h
1 2 174 2 2 174 2 2 174 4
- (%DSrUij + 50U + FrizDGeuij h”, (A1)

where D} Ujf, D3 U, and Dj,U; are fourth order approximations of (i), (us)y, and (us);, respectively. They are

obtained by applying standard centered fourth order finite difference to Ug and are given by

1 [-1 13 28 13 1
(usr)y ~ D3, Uj = e [6u,.434j +2U},, - 711,.4,1,]. + ?U;}j - ju,iu +2Uh,, - GU{;&J (A2)
1 J1 13 13 1
(usr)y ~ D3, U} = =3 [guf_w —Ul,+ gu;‘_u - gu,f}w +Uh — gui‘i&j] (A3)
-1 13 28 13 1
(uag)y ~ D3y Uyt = 7 [?u;}j_3 +2U% , - 7U,.‘}j_l + ?Ufj - 7U,.‘}].H +2U%, - EU{_‘j+3] . (A4)

Also, D¢ Uy, DZ.Ujf, and Dg,U;! are second order approximations of (ue);, (us)y and (uss);, respectively. They are

obtained by applying standard centered second order finite difference to Ug and are given by

1 [-1 5 5 1
~ D24 — 4 4 4 4 4 4
(usr)y ~ D5, Uy = A |:2U1'34,j +2U,; — Eui—l,j + EUHIJ —2U,; + 2U1'+34,jj| (A5)
1
(ugr)j ~ DG, Uy = e (Ut — 68U, + 15U | — 20U 4+ 15U, ; — 6U7L,; + Uf 5] (A.6)
1
(uss)yj ~ DEy Uyt = g5 [U} 5 —6U%_, + 15U — 20U, + 15U, — 6U,, + U 5] (A7)

For points close to the artificial boundary, appropriate one-sided finite difference approximations are employed.
Appendix B. Approximations for the Neumann boundary condition

In the case of the Neumann condition at the boundary of a circular obstacle of radius ry, the strategy to be employed
for the construction of the fourth order approximation follows very closely the one employed at the artificial boundary
for the KFE in Section 3.2.
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First, we consider the standard second order centered finite difference approximation for the Neumann boundary
condition at r = ry, retaining an approximation of its leading order truncation error,
Uy, — Ug; A,
2,j 0,j inc
= + — (bniu? B.1
2Ar ar ( i Uiy (51
This equation contains the ghost values U4 They are also present in the fourth order approximation of the Helmholtz
equation (22) evaluated ati = 1. Therefore ‘they can be eliminated by combining these equations. The Egs. (B.1) and (22)
also contain second order approximations of one-sided third and fourth forward radial derivatives at r = ry, respectively.
They act on the second order approximations Uf,j of u obtained in the first step and they are given by

1 [ 3 1
2 2 2 2 2
(Dr)3, U3 = e [—EUOJ +5U7; — 6U;; 4 3U3; — 5UM] , (B.2)
(Dr);, Ui = = [2Ug; —9U7; + 16U3 ; — 14U3; + 6U;; — UZ] . (B.3)

It can be shown that the DC formula (B.1) is also a fourth order approximation to the Neumann boundary condition and
its proof is completely analogous to those performed in Section 3. Therefore, it is not included.

We can increase the fourth order discrete approximation (B.1) of the Neumann condition to an arbitrary pth order.
Again, the definition is a natural extension of (B.1), where the continuous derivatives of higher order truncation error
terms (usr)yj, (Usr)js---» (u(p—l)r)u- are approximated by appropriate right one-sided discrete operators acting on the

previously calculated (p — 2)th ordered numerical solution Ufjfz, approximating the exact solution u. More precisely,

Uy j— Uy Mine  h? o bn 4 hp—2 P2
AT = "By + i(D Ny Uy "+ o = = (Dr)g U 4+ m( )(p Ui (B.4)
The proofs that the finite difference formulas (36)-(39) and (B.4) approximate their continuous counterparts to pth
order are very similar to the proof of Theorem 2. Therefore, they are omitted. The key assumption for these proofs is that
the discrete functions U,’\’, B and G, 1 ., which are obtained in a previous step, are (p — 2)th order approximations of
the continuous solutions u(R, 9), F1—1( ), and G_ (0), respectively.
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