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ABSTRACT

Elastography refers to mapping mechanical properties in a
material based on measuring wave motion in it using
noninvasive optical, acoustic or magnetic resonance imaging
methods. For example, increased stiffness will increase
wavelength. Stiffness and viscosity can depend on both
location and direction. A material with aligned fibers or
layers may have different stiffness and viscosity values along
the fibers or layers versus across them. Converting wave
measurements into a mechanical property map or image is
known as reconstruction. To make the reconstruction
problem analytically tractable, isotropy and homogeneity are
often assumed, and the effects of finite boundaries are
ignored. But, infinite isotropic homogeneity is not the
situation in most cases of interest, when there are pathological
conditions, material faults or hidden anomalies that are not
uniformly distributed in fibrous or layered structures of finite
dimension. Introduction of anisotropy, inhomogeneity and
finite boundaries complicates the analysis forcing the
abandonment of analytically-driven strategies, in favor of
numerical approximations that may be computationally
expensive and yield less physical insight. A new strategy,
Transformation Elastography (TE), is proposed that involves
spatial distortion in order to make an anisotropic problem
become isotropic. The fundamental underpinnings of TE
have been proven in forward simulation problems. In the
present paper a TE approach to inversion and reconstruction
is introduced and validated based on numerical finite element
simulations.

Index Terms— Elastography imaging; Viscoelasticity
imaging; Inverse methods

1. INTRODUCTION

Application of dynamic elastography to tissues with aligned
fibrous structure resulting in local transverse isotropic
mechanical properties, such as can be found in striated
skeletal and cardiac muscle, as well as brain white matter,
may benefit from analysis that takes into consideration
anisotropy of the tissue. Recognizing this, many groups have
pioneered research in this direction over the past few decades,
using ultrasound (US)-based elastography [1-2], as well as
magnetic resonance (MR)-based elastography [3-4]. Many of
these studies have tried to tackle the associated inversion
problem. Multiple configurations or a multi-directional shear
wave excitation source may be needed in order to generate

and measure shear wave motion that will be affected by its
displacement polarization direction and propagation direction
in an anisotropic material.

A theoretical approach was recently introduced for the
“forward” problem of predicting the slow [5-6] and fast [7]
shear wave pattern created by radially converging [5] or
diverging [6] shear wave fields in a cylindrical geometry.
This approach, referred to as Transformation Elastography
(TE), is based on the idea of spatial distortion in order to make
the anisotropic problem become isotropic. In the present
study using numerical finite element simulations, the
approach is inverted, with the aim of eventually making it
translatable to analysis of clinical (experimental) data.

2. TRANSVERSE ISOTROPY

Building upon Tweten et al. [8-9], we start with a linear
elastic incompressible, transversely isotropic (ITI) material
as our model for biological tissue with aligned fibrous
structure subjected to deformation that is sufficiently small in
amplitude to justify the assumption of linearity. A linear
elastic ITI material may be fully described using three
parameters which can be a combination of two tensile moduli,
E, and E|, and two shear moduli, ¢, and p;, where the
subscripts denote whether the principle direction is
perpendicular or parallel to the fiber direction. In other words,
E, and pu, are in the direction perpendicular to the fibers
(parallel to the plane of isotropy), and E} and y; are in the
direction parallel to the fibers (parallel to the axis of
isotropy). We define shear anisotropy ¢ = p;/u; — 1 and
tensile anisotropy { = E;/E, — 1. Note also that [10] E;, =
u, (47 +3); thus, there are only three independent
parameters.

Consider a shear wave traveling in an ITI material with an
arbitrary propagation direction that is an angle 6 from the
fiber direction. The displacement of this shear wave can be
polarized into independent slow and fast shear wave
components. The polarization direction of the slow shear
wave occurs in the direction perpendicular to both the fiber
direction and the propagation direction. If the fibers are in the
y direction and propagation is in the x-y plane, the
polarization will be in the z direction for the slow shear wave.
Because the slow shear wave does not stretch the fibers, the
speed of the slow shear wave ¢, only depends on the shear
anisotropy and is given by:

ct = % (1 + ¢pcos?[0]) (D)



The corresponding slow shear wavelength A, at frequency
f in Hertz is given by A; = ¢,/f and the corresponding
wavenumber is kg = 2m/A;. The ratio of the slow shear
wavelength parallel to the fibers Ay to the slow shear
wavelength perpendicular to the fibers A5, is Ag /A5y =
J1+ 9.

On the other hand, for the case of the fast shear wave
whose polarization direction is perpendicular to the
propagation direction but also perpendicular to the slow shear
wave polarization direction, and thus not perpendicular to the
fiber direction, we have the speed of the fast shear wave ¢
given by:

¢t = ‘% (1 4 ¢pcos?[20] + {sin?[26]). ()

The corresponding fast shear wavelength Af at frequency
f in Hertz is given by A = ¢;/f. Note that if { = ¢ then

¢ = /% (1 + ¢) or in other words A; = A regardless of 6.

If { # ¢ the relationship is more complex.

With respect to propagation of shear waves over a
broad frequency range, soft biological tissue is not linear
elastic, but rather linear viscoelastic, experiencing rate-
dependent energy loss (dissipated as heat) as the wave
propagates through the material. Linear viscoelasticity can
be accounted for in the above formulation by defining u, =
fig + jpiy and gy = g + jpy; where j = V=1 and the
real parts of ) and p, denote the shear storage moduli and
the imaginary parts denote the shear loss moduli. Both shear
storage and loss moduli may be a function of frequency f,
possibly governed by a rheological model that establishes
their dependence on frequency. With the introduction of
complex values for the shear modulus, the corresponding
expression for the slow shear wavelengths perpendicular
and parallel to the fibers become [11]:
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3. INVERSION & RECONSTRUCTION STRATEGY

AJ_ = ,A” = . (3'4)

The following approach to inversion and reconstruction for
the two-dimensional (2D) problem is proposed:
1) Acquire the wave field image (and process as needed:
filtering, masking near boundaries, etc.) [12];
2) Take the image into k-space (2D FFT) and identify
dominant wavenumbers;
3) Distort the geometry by the wavenumber ratio;
4) Proceed with reconstruction assuming isotropy;
5) Use the wavenumber ratio to estimate orthotropic
properties (the orthotropic ratio).

4. RESULTS: APPLICATION TO 2D PROBLEM

The case study configuration (Fig. 1) is based on an
experimental setup used by our group and others to conduct

MRE on biological tissue and phantom material specimens,
utilizing geometrically focused (radially converging) shear
wave excitation [13-14]. Geometry and material property
values, which are typical of soft biological tissue and tissue
phantoms are provided in Table 1.

A numerical FE study using harmonic analysis (steady
state response equivalent to particular solution in the
frequency domain) was conducted using COMSOL
Multiphysics Version 5.3 (COMSOL, Burlington, MA)
software. The automatically meshed model contained 46 724
vertices, 267 162 quadratic tetrahedral elements (0.004 to 0.4
mm in size), 9 152 triangular elements, 328 edge elements
and 8 vertex elements. The minimum and average element
quality were 0.176 and 0.662, respectively. The element
volume ratio was 0.0565 and the mesh volume was 1004
mm?. (Mesh resolution was decided upon when further
increases had a negligible effect on the solution.) Typical
computation times for the single frequency harmonic analysis
were about 30 minutes using a 64-bit operating system, x64
based processor, Intel® Xeon® CPU E5-2609 0 with a clock
speed of 2.40 GHz, and 256 GB RAM.
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Figure 1. Transversely isotropic cylindrical sample with x-z plane
of isotropy (fibers in y direction) subjected to a nonhomogeneous
boundary condition: harmonic displacement in the z direction of
amplitude u,,, at frequency f = w/2m on its curved boundary at
r = 1y: (a) a 3-dimensional rendering with the x, y “viewing plane”
indicated, which is the plane used for Figures 2; (b) viewed in x, y’
plane after transformation to an elliptic coordinate system {&,n}
with isotropic material properties.

In Fig. 2 we see a comparison of the FE solution for z
polarization on an axial slice (x-y plane) with the
displacement excitation for the material parameter values in
Table 1. Specifically, in Fig. 2a and 2b we see the in and out
of phase (with respect to the excitation) responses,
respectively.



Table 1. Geometrical & Material Parameter Values
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Figure 3. Double Fourier transform of Figure 2 to obtain k-space
image. Dominant wavenumbers in k, and k, directions indicated
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Parameter Nomenclature Value(s)
Cylinder outer radius Ty 4 mm £
Shear storage modulus in UiR 2.77 kPa E
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storage moduli Hir MR E
Shear anisotropy ¢ 0.3 =
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Figure 2. Normalized z direction displacement (uz,, / uzro) on the x-

y plane for z-polarized slow shear waves (a: in phase, b: out of
phase).
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In Fig. 3, the k-space representation of Figure 2 is shown,
acquired via a double Fourier transform and placing the
origin at the center via the fftshift command in Matlab. In Fig.
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on a 2D direct inversion (DI) algorithm. Some discrepancies x axis: parallel to plane of isotropy (mm)

appear around the cylindrical border due to boundary o .
discontinuities affecting the spatial derivatives used in the DI ~ Figure 4. Shear storage and loss moduli estimated using 2D
algorithm. While DI was applied to the distorted geometry, direction inversion on spatially distorted geometry. Undistorted
results are plotted for the undistorted geometry. geometry used to plot results.



In Table 2, estimates of the shear storage and loss moduli
using Transformation Elastography are shown based on Fig.
4, averaging the values within a 3 mm radius circle centered
at the origin to obtain p, , and then multiplying the values by
1 + ¢ to obtain u;. As a comparison, values are also shown
based on assuming isotropy and applying direct inversion to
the undistorted geometry with all other aspects of the
reconstruction approach the same as in the TE case. Percent
error is based on the comparison to the actual values. For the
isotropic assumption, two error values are shown reflecting
the percent differences with respect to u;, and p,
respectively.

Table 2. Comparison of Material Parameter Estimates

Parameter Actual Isotropic Transformation
Value Assumption (% Error) Elastography (% Error)
Hyg (Pa) 2770 3000 + 74 (8.3%)
g (Pa) 3600 3350 4 154 (21% 6.9%] 3750 £+ 93 (4.2%)
1y (Pa) 415 399 + 40 (3.9%)
tar (Pa) 520 472 + 84.7 (14%, 13%) 199 £ 50 (7.6%)

5. DISCUSSION AND CONCLUSION

A new strategy, Transformation Elastography (TE), is
proposed that involves spatial distortion in order to make an
anisotropic problem become isotropic. The fundamental
underpinnings of TE have been proven in forward simulation
problems. In the present paper a TE approach to inversion and
reconstruction has been introduced and validated based on
numerical finite element (FE) simulations. The FE study
results, summarized in Table 2, show that the TE approach
provides a more accurate estimate of anisotropic shear
storage and loss moduli, as compared to an isotropic
assumption, and with minimal additional effort (simply
distorting geometry based on a k-space-based estimate of the
anisotropic ratio ¢.

While showing promise, future studies are needed to assess
the new strategy in the case of more complex geometries and
mechanical wave patterns, including extension to
heterogeneous and three-dimensional problems, with
experimental noise levels typically found in elastography
measurements.

6. ACKNOWLEDGMENTS
NSF #1852691 and NIH #AR071162 funding acknowledged.

7. REFERENCES

[1] S. Chatelin, M. Bernal, T. Deffieux, C. Papadacci, P. Flaud, A.
Nahas, C. Boccara, J.-L. Gennisson, M. Tanter, and M. Pernot,
“Anisotropic polyvinyl alcohol hydrogel phantom for shear wave
elastography in fibrous biological soft tissue: a multimodality
characterization,” Phys. Med. Biol., vol. 59, pp. 6923-6940, 2014.

[2] M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale,
“Imaging transverse isotropic properties of muscle by monitoring
acoustic radiation force induced shear waves using a 2-D matrix
ultrasound array,” IEEE Trans. Med. Imaging, vol. 32, pp. 1671-
1684, 2013.

[3] A.J. Romano, P.B. Abraham, P.J. Rossman, J.A. Bucaro, and
R.L. Ehman, “Determination and analysis of guided wave
propagation using magnetic resonance elastography,” Magn. Reson.
Med., vol. 54, pp. 893-900, 2005.

[4] D. Klatt, S. Papazoglou, J. Braun, and 1. Sack, “Viscoelasticity-
based MR elastography of skeletal muscle,” Phys. Med. Biol., vol.
55, pp. 6445-6459, 2010.

[5] M. Guidetti and T.J. Royston, “Analytical solution for
converging elliptic shear wave in a bounded transverse isotropic
viscoelastic material with nonhomogeneous outer boundary,” J.
Acous. Soc. Am. vol. 144, pp. 2312-2323, 2018.

[6] M. Guidetti and T.J. Royston, “Analytical solution for diverging
elliptic shear wave in bounded and unbounded transverse isotropic
viscoelastic material with nonhomogeneous inner boundary,” J.
Acous. Soc. Am., vol. 145, pp. EL59-65, 2019.

[7] M. Guidetti, D. Caratelli, and T.J. Royston, “Converging super-
elliptic torsional shear waves in a bounded transverse isotropic
viscoelastic material with nonhomogeneous outer boundary,” J.
Acous. Soc. Am., Accepted, 2019.

[8] D.J. Tweten, R.J. Okamoto, J.L. Schmidt, J.R. Garbow, and P.V.
Bayly, “Estimation of material parameters from slow and fast shear
waves in an incompressible, transversely isotropic material,” J.
Biomech., vol. 48, pp. 4002-4009, 2015.

[9] D.J. Tweten, R.J. Okamoto, P.V. Bayly, “Requirements for
Accurate Estimation of Anisotropic Material Parameters by
Magnetic Resonance Elastography: A Computational Study,”
Magn. Reson. Med., vol. 78, pp. 2360-2372,2017.

[10] J.L. Schmidt, D.J. Tweten, A.N. Benegal, C.H. Walker, T.E.
Portnoi, R.J. Okamoto, J.R. Garbow, and P.V. Bayly, “Magnetic
resonance elastography of slow and fast shear waves illuminates
differences in shear and tensile moduli in anisotropic tissue,” J.
Biomech., vol. 49, pp. 1042 — 1049, 2016.

[11] S.F. Othman, H. Xu, T.J. Royston, R.L. Magin, “Microscopic
Magnetic Resonance Elastography (UMRE),” Magn. Reson. Med.,
vol. 54, pp. 605 — 615, 2005.

[12] S. Hirsch, J. Braun, 1. Sack. Magnetic Resonance Elastography.
Wiley-VCH, Weinheim, Germany, 2017.

[13] T.K. Yasar, T.J. Royston, and R.L. Magin, “Wideband MR
elastography for viscoelasticity model identification,” Mag. Res.
Med., vol. 70, pp. 479 — 489, 2013.

[14] J. Braun, H. Tzschatzsch, C. Korting, A.A. de Schellenberger,
M. Jenderka, T. Driessle, M. Ledwig, and 1. Sack, “A compact 0.5
T MR elastography device and its application for studying
viscoelasticity changes in biological tissues during progressive
formalin fixation,” Magn. Reson. Med., vol. 79, pp. 470—478, 2018.



	Transformation Elastography: converting anisotropy to isotropy
	Abstract


