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ABSTRACT 
 
Elastography refers to mapping mechanical properties in a 
material based on measuring wave motion in it using 
noninvasive optical, acoustic or magnetic resonance imaging 
methods. For example, increased stiffness will increase 
wavelength. Stiffness and viscosity can depend on both 
location and direction. A material with aligned fibers or 
layers may have different stiffness and viscosity values along 
the fibers or layers versus across them. Converting wave 
measurements into a mechanical property map or image is 
known as reconstruction. To make the reconstruction 
problem analytically tractable, isotropy and homogeneity are 
often assumed, and the effects of finite boundaries are 
ignored. But, infinite isotropic homogeneity is not the 
situation in most cases of interest, when there are pathological 
conditions, material faults or hidden anomalies that are not 
uniformly distributed in fibrous or layered structures of finite 
dimension. Introduction of anisotropy, inhomogeneity and 
finite boundaries complicates the analysis forcing the 
abandonment of analytically-driven strategies, in favor of 
numerical approximations that may be computationally 
expensive and yield less physical insight. A new strategy, 
Transformation Elastography (TE), is proposed that involves 
spatial distortion in order to make an anisotropic problem 
become isotropic. The fundamental underpinnings of TE 
have been proven in forward simulation problems. In the 
present paper a TE approach to inversion and reconstruction 
is introduced and validated based on numerical finite element 
simulations. 

Index Terms— Elastography imaging; Viscoelasticity 
imaging; Inverse methods 

 
1. INTRODUCTION 

 
Application of dynamic elastography to tissues with aligned 
fibrous structure resulting in local transverse isotropic 
mechanical properties, such as can be found in striated 
skeletal and cardiac muscle, as well as brain white matter, 
may benefit from analysis that takes into consideration 
anisotropy of the tissue. Recognizing this, many groups have 
pioneered research in this direction over the past few decades, 
using ultrasound (US)-based elastography [1-2], as well as 
magnetic resonance (MR)-based elastography [3-4]. Many of 
these studies have tried to tackle the associated inversion 
problem. Multiple configurations or a multi-directional shear 
wave excitation source may be needed in order to generate 

and measure shear wave motion that will be affected by its 
displacement polarization direction and propagation direction 
in an anisotropic material.  

A theoretical approach was recently introduced for the 
“forward” problem of predicting the slow [5-6] and fast [7] 
shear wave pattern created by radially converging [5] or 
diverging [6] shear wave fields in a cylindrical geometry. 
This approach, referred to as Transformation Elastography 
(TE), is based on the idea of spatial distortion in order to make 
the anisotropic problem become isotropic. In the present 
study using numerical finite element simulations, the 
approach is inverted, with the aim of eventually making it 
translatable to analysis of clinical (experimental) data. 

 
2. TRANSVERSE ISOTROPY 

 
Building upon Tweten et al. [8-9], we start with a linear 
elastic incompressible, transversely isotropic (ITI) material 
as our model for biological tissue with aligned fibrous 
structure subjected to deformation that is sufficiently small in 
amplitude to justify the assumption of linearity. A linear 
elastic ITI material may be fully described using three 
parameters which can be a combination of two tensile moduli, 
𝐸𝐸⊥ and 𝐸𝐸∥, and two shear moduli, 𝜇𝜇⊥ and 𝜇𝜇∥, where the 
subscripts denote whether the principle direction is 
perpendicular or parallel to the fiber direction. In other words, 
𝐸𝐸⊥ and 𝜇𝜇⊥ are in the direction perpendicular to the fibers 
(parallel to the plane of isotropy), and 𝐸𝐸∥ and 𝜇𝜇∥ are in the 
direction parallel to the fibers (parallel to the axis of 
isotropy). We define shear anisotropy 𝜙𝜙 = 𝜇𝜇∥ 𝜇𝜇⊥⁄ − 1 and 
tensile anisotropy 𝜁𝜁 = 𝐸𝐸∥ 𝐸𝐸⊥⁄ − 1. Note also that [10] 𝐸𝐸∥ =
𝜇𝜇⊥(4𝜁𝜁 + 3); thus, there are only three independent 
parameters.   

Consider a shear wave traveling in an ITI material with an 
arbitrary propagation direction that is an angle θ from the 
fiber direction. The displacement of this shear wave can be 
polarized into independent slow and fast shear wave 
components. The polarization direction of the slow shear 
wave occurs in the direction perpendicular to both the fiber 
direction and the propagation direction. If the fibers are in the 
y direction and propagation is in the x-y plane, the 
polarization will be in the z direction for the slow shear wave. 
Because the slow shear wave does not stretch the fibers, the 
speed of the slow shear wave 𝑐𝑐𝑠𝑠 only depends on the shear 
anisotropy and is given by:  
𝑐𝑐𝑠𝑠2 = 𝜇𝜇⊥

𝜌𝜌
(1 + 𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐2[𝜃𝜃])   (1) 



The corresponding slow shear wavelength 𝜆𝜆𝑠𝑠 at frequency 
𝑓𝑓 in Hertz is given by 𝜆𝜆𝑠𝑠 = 𝑐𝑐𝑠𝑠 𝑓𝑓⁄  and the corresponding 
wavenumber is 𝑘𝑘𝑠𝑠 = 2𝜋𝜋 𝜆𝜆𝑠𝑠⁄ . The ratio of the slow shear 
wavelength parallel to the fibers 𝜆𝜆𝑠𝑠∥ to the slow shear 
wavelength perpendicular to the fibers 𝜆𝜆𝑠𝑠⊥ is 𝜆𝜆𝑠𝑠∥ 𝜆𝜆𝑠𝑠⊥⁄ =
�1 + 𝜙𝜙. 

On the other hand, for the case of the fast shear wave 
whose polarization direction is perpendicular to the 
propagation direction but also perpendicular to the slow shear 
wave polarization direction, and thus not perpendicular to the 
fiber direction, we have the speed of the fast shear wave  𝑐𝑐𝑓𝑓 
given by: 

𝑐𝑐𝑓𝑓2 = 𝜇𝜇⊥
𝜌𝜌

(1 + 𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐2[2𝜃𝜃] + 𝜁𝜁𝑠𝑠𝑠𝑠𝑠𝑠2[2𝜃𝜃]).  (2) 
The corresponding fast shear wavelength 𝜆𝜆𝑓𝑓 at frequency 

𝑓𝑓 in Hertz is given by 𝜆𝜆𝑓𝑓 = 𝑐𝑐𝑓𝑓 𝑓𝑓⁄ . Note that if 𝜁𝜁 = 𝜙𝜙 then 

𝑐𝑐𝑓𝑓 = �
𝜇𝜇⊥
𝜌𝜌

(1 + 𝜙𝜙) or in other words 𝜆𝜆𝑓𝑓 = 𝜆𝜆𝑠𝑠∥ regardless of 𝜃𝜃. 

If 𝜁𝜁 ≠ 𝜙𝜙 the relationship is more complex. 
With respect to propagation of shear waves over a 

broad frequency range, soft biological tissue is not linear 
elastic, but rather linear viscoelastic, experiencing rate-
dependent energy loss (dissipated as heat) as the wave 
propagates through the material. Linear viscoelasticity can 
be accounted for in the above formulation by defining 𝜇𝜇⊥ =
𝜇𝜇⊥𝑅𝑅 + 𝑗𝑗𝜇𝜇⊥𝐼𝐼 and 𝜇𝜇∥ = 𝜇𝜇∥𝑅𝑅 + 𝑗𝑗𝜇𝜇∥𝐼𝐼 where 𝑗𝑗 = √−1 and the 
real parts of 𝜇𝜇⊥𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇∥ denote the shear storage moduli and 
the imaginary parts denote the shear loss moduli. Both shear 
storage and loss moduli may be a function of frequency 𝑓𝑓, 
possibly governed by a rheological model that establishes 
their dependence on frequency.  With the introduction of 
complex values for the shear modulus, the corresponding 
expression for the slow shear wavelengths perpendicular 
and parallel to the fibers become [11]: 

𝜆𝜆⊥ = 1
𝑓𝑓 �
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. (3-4) 

 
3. INVERSION & RECONSTRUCTION STRATEGY 

 
The following approach to inversion and reconstruction for 
the two-dimensional (2D) problem is proposed: 

1) Acquire the wave field image (and process as needed: 
filtering, masking near boundaries, etc.) [12]; 

2) Take the image into k-space (2D FFT) and identify 
dominant wavenumbers; 

3) Distort the geometry by the wavenumber ratio; 
4) Proceed with reconstruction assuming isotropy; 
5) Use the wavenumber ratio to estimate orthotropic 

properties (the orthotropic ratio). 
 
4. RESULTS: APPLICATION TO 2D PROBLEM 

 
The case study configuration (Fig. 1) is based on an 
experimental setup used by our group and others to conduct 

MRE on biological tissue and phantom material specimens, 
utilizing geometrically focused (radially converging) shear 
wave excitation [13-14]. Geometry and material property 
values, which are typical of soft biological tissue and tissue 
phantoms are provided in Table I. 

A numerical FE study using harmonic analysis (steady 
state response equivalent to particular solution in the 
frequency domain) was conducted using COMSOL 
Multiphysics Version 5.3 (COMSOL, Burlington, MA) 
software. The automatically meshed model contained 46 724 
vertices, 267 162 quadratic tetrahedral elements (0.004 to 0.4 
mm in size), 9 152 triangular elements, 328 edge elements 
and 8 vertex elements. The minimum and average element 
quality were 0.176 and 0.662, respectively. The element 
volume ratio was 0.0565 and the mesh volume was 1004 
mm3. (Mesh resolution was decided upon when further 
increases had a negligible effect on the solution.) Typical 
computation times for the single frequency harmonic analysis 
were about 30 minutes using a 64-bit operating system, x64 
based processor, Intel® Xeon® CPU E5-2609 0 with a clock 
speed of 2.40 GHz, and 256 GB RAM. 

 
Figure 1. Transversely isotropic cylindrical sample with x-z plane 
of isotropy (fibers in y direction) subjected to a nonhomogeneous 
boundary condition: harmonic displacement in the z direction of 
amplitude 𝑢𝑢𝑧𝑧𝑟𝑟0 at frequency 𝑓𝑓 = 𝜔𝜔 2𝜋𝜋⁄  on its curved boundary at 
𝑟𝑟 = 𝑟𝑟0: (a) a 3-dimensional rendering with the 𝑥𝑥,𝑦𝑦 “viewing plane” 
indicated, which is the plane used for Figures 2; (b) viewed in 𝑥𝑥,𝑦𝑦′ 
plane after transformation to an elliptic coordinate system {𝜉𝜉, 𝜂𝜂} 
with isotropic material properties. 
 

In Fig. 2 we see a comparison of the FE solution for 𝑧𝑧 
polarization on an axial slice (x-y plane) with the 
displacement excitation for the material parameter values in 
Table 1. Specifically, in Fig. 2a and 2b we see the in and out 
of phase (with respect to the excitation) responses, 
respectively. 
 



 
Table 1. Geometrical & Material Parameter Values 

Parameter Nomenclature Value(s) 
Cylinder outer radius 𝑟𝑟0 4 mm 
Shear storage modulus in 
plane of isotropy  

𝜇𝜇⊥𝑅𝑅 2.77 kPa 

Ratio of shear loss to 
storage moduli 

𝜂𝜂 =
𝜇𝜇⊥𝐼𝐼 
𝜇𝜇⊥𝑅𝑅  =

𝜇𝜇∥𝐼𝐼 
𝜇𝜇∥𝑅𝑅   

0.15  

Shear anisotropy 𝜙𝜙 0.3  
Tensile anisotropy 𝜁𝜁 0 
Density 𝜌𝜌 1000 kg

m3 
Frequency 𝑓𝑓 1 kHz 

 

 
Figure 2. Normalized z direction displacement �𝑢𝑢𝑧𝑧𝑧𝑧 𝑢𝑢𝑧𝑧𝑟𝑟0⁄ � on the x-
y plane for 𝑧𝑧-polarized slow shear waves (a: in phase, b: out of 
phase). 
 
In Fig. 3, the k-space representation of Figure 2 is shown, 
acquired via a double Fourier transform and placing the 
origin at the center via the fftshift command in Matlab. In Fig. 
4 estimates of shear storage and loss moduli are shown based 
on a 2D direct inversion (DI) algorithm. Some discrepancies 
appear around the cylindrical border due to boundary 
discontinuities affecting the spatial derivatives used in the DI 
algorithm. While DI was applied to the distorted geometry, 
results are plotted for the undistorted geometry. 

 
Figure 3. Double Fourier transform of Figure 2 to obtain k-space 
image. Dominant wavenumbers in 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 directions indicated 
with     . Their ratio is used to estimate the shear anisotropy 𝜙𝜙. 

 
 

 
 
Figure 4. Shear storage and loss moduli estimated using 2D 
direction inversion on spatially distorted geometry. Undistorted 
geometry used to plot results. 
 



In Table 2, estimates of the shear storage and loss moduli 
using Transformation Elastography are shown based on Fig. 
4, averaging the values within a 3 mm radius circle centered 
at the origin to obtain 𝜇𝜇⊥, and then multiplying the values by 
1 + 𝜙𝜙 to obtain 𝜇𝜇∥. As a comparison, values are also shown 
based on assuming isotropy and applying direct inversion to 
the undistorted geometry with all other aspects of the 
reconstruction approach the same as in the TE case. Percent 
error is based on the comparison to the actual values. For the 
isotropic assumption, two error values are shown reflecting 
the percent differences with respect to 𝜇𝜇⊥ and 𝜇𝜇∥, 
respectively. 
 

Table 2. Comparison of Material Parameter Estimates 
 

 
 

5. DISCUSSION AND CONCLUSION 
 
A new strategy, Transformation Elastography (TE), is 
proposed that involves spatial distortion in order to make an 
anisotropic problem become isotropic. The fundamental 
underpinnings of TE have been proven in forward simulation 
problems. In the present paper a TE approach to inversion and 
reconstruction has been introduced and validated based on 
numerical finite element (FE) simulations. The FE study 
results, summarized in Table 2, show that the TE approach 
provides a more accurate estimate of anisotropic shear 
storage and loss moduli, as compared to an isotropic 
assumption, and with minimal additional effort (simply 
distorting geometry based on a k-space-based estimate of the 
anisotropic ratio 𝜙𝜙. 
 
While showing promise, future studies are needed to assess 
the new strategy in the case of more complex geometries and 
mechanical wave patterns, including extension to 
heterogeneous and three-dimensional problems, with 
experimental noise levels typically found in elastography 
measurements. 
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Parameter Actual 
Value 

Isotropic 
Assumption (% Error) 

Transformation 
Elastography (% Error) 

𝜇𝜇⊥𝑅𝑅  (Pa) 2 770 
3350 ± 154 (21%, 6.9%) 

3 000 ± 74 (8.3%) 

𝜇𝜇∥𝑅𝑅  (Pa) 3 600 3 750 ± 93 (4.2%) 

𝜇𝜇⊥𝐼𝐼  (Pa) 415 
472 ± 84.7 (14%, 13%) 

399 ± 40 (3.9%) 

𝜇𝜇∥𝐼𝐼  (Pa) 540 499 ± 50 (7.6%) 
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