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Phototrophic communities of photosynthetic algae or cya-
nobacteria and heterotrophic bacteria or fungi are perva-
sive throughout the environment1. How interactions between 
members contribute to the resilience and affect the fitness of 
phototrophic communities is not fully understood2,3. Here, we 
integrated metatranscriptomics, metabolomics and phenotyp-
ing with computational modelling to reveal condition-depen-
dent secretion and cross-feeding of metabolites in a synthetic 
community. We discovered that interactions between members 
are highly dynamic and are driven by the availability of organic 
and inorganic nutrients. Environmental factors, such as ammo-
nia concentration, influenced community stability by shift-
ing members from collaborating to competing. Furthermore, 
overall fitness was dependent on genotype and streamlined 
genomes improved growth of the entire community. Our mech-
anistic framework provides insights into the physiology and 
metabolic response to environmental and genetic perturbation 
of these ubiquitous microbial associations.

Light-driven microbial communities are highly abundant and 
inhabit nearly every terrestrial and aquatic environment exposed to 
light1. These communities are either spatially highly structured, such 
as the ones found in biofilms, microbial mats or lichens4, or form 
loose associations, such as aquatic bacteria with phytoplankton5. 
Phototrophic communities consist of photosynthetic organisms that 
capture light energy and heterotrophic organisms that benefit from 
photosynthetically fixed carbon. The way in which phototrophic 
and heterotrophic partners interact and respond to environmental 
changes has not been fully understood6. For example, lichens can 
interact mutualistically, competitively or parasitically depending on 
their partners7,8. There is a lack of in-depth knowledge about the 
drivers of these interactions and the metabolic mechanisms under-
lying cell communication in light-driven communities.

Research of photosynthetic communities is often restricted by 
the stability of cultures in isolation, their potentially slow growth 
and the lack of genetic systems for individual partners9,10. Evaluating 
complexity of natural communities with high reproducibility, trac-
tability and accessibility has recently become feasible through the 
use of model systems for microbial communities11,12. Synthetic com-
munities consisting of photoautotrophic and heterotrophic mem-
bers can mimic basic characteristics of phototrophic communities, 
thereby providing knowledge about the biology of these symbionts. 
Two-species experimental systems populated by phototrophs and 

heterotrophs have provided insight into ecological niches13 and 
guided bioproduction approaches14.

Community metabolic (CM) models have become available 
for contextualization of multi-omics data2,15. Here, a systems biol-
ogy approach using constraint-based CM models in conjunction 
with multi-omics and growth physiology experiments was applied 
to elucidate the phototrophic community comprising the alga 
Chlorella vulgaris (hereafter referred to as alga) and the ascomycete 
Saccharomyces cerevisiae (that is, the fungus). The CM model iCZ-
CvSc(1748) enables systematic studies related to fitness, mainte-
nance and resilience to environmental and genetic perturbations, 
using flux balance analysis formulation (equation 1). We experi-
mentally corroborated predictions of growth rates, metabolite 
exchanges and genome content using physiological data, targeted 
metabolomics and expression data to systematically reveal gov-
erning constraints on cross-feeding, community yields and types  
of interactions.

Constraint-based models compile metabolic knowledge into a 
mathematical framework that enables a mechanistic description of 
physiology based on biological functions (constraints) determined 
experimentally. Using individual genome-scale metabolic models of 
C. vulgaris, iCZ843 (ref. 16) and S. cerevisiae, iMM90417, a photo-
trophic CM model, iCZ-CvSc(1748) was assembled (Supplementary 
Table 1). The ability of each member to exchange metabolites into 
the shared metabolite pool (SMP, consisting of 53 alga- and 164 
fungus-associated metabolites), was manually curated using experi-
mental data (Supplementary Table 2).

Despite previous studies reporting ineffective co-cultivation of 
C. vulgaris and S. cerevisiae13, we established reproducible cultiva-
tion conditions (Supplementary Fig. 1) using the reconstructed 
iCZ-CvSc(1748) model. Model properties and constraints are given 
in Supplementary Table 3. Experimental growth rates of the alga 
and fungus ranged between 0.038 ± 0.006 h−1 and 0.034 ± 0.006 h−1, 
whereas simulated growth rates were 0.041 h−1 for the algae and 
0.032 h−1 for the fungus (Fig. 1a).

The fitness of the phototrophic community relied on metabolic 
cross-feeding, also known as ‘leaky capabilities’18, characteristics 
that have been linked to coevolution19. iCZ-CvSc(1748) accurately 
predicted the distribution of external resources and metabolic 
exchange among organisms (Fig. 1b), revealing a clear benefit for 
the fungus in co-culture resulting in a doubled growth rate. This 
is similar to hypotheses about the parasitic nature of fungi in 
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lichens8. Overall, the alga provides O2 and 11 metabolites (acetate, 
glycine, succinate, ornithine, adenine, glutamine, methionine, gua-
nine, histidine, arginine and tryptophan) at a total carbon flux of 
0.66 mmol per g (dry weight) h−1 and the fungus only provides 
CO2 and leucine at 0.007 mmol per g (dry weight) h−1 (Fig. 1b).  
Predicted and experimentally observed leucine uptake by the alga 
over all other amino acids can be associated with evolutionary trad-
eoffs regarding pathway topology and energetic optimization20 as 
previously observed in photosynthetic microorganisms at natural 
environments21. We experimentally confirmed metabolic exchange 
through analysis of supernatants by target metabolomics and 
changes in pathways expression by RNA-sequencing data (Fig. 1c  
and Supplementary Fig. 2). An expanded analysis of this data is 
provided in Supplementary Notes. Simulations also showed that 
metabolic exchange is highly dynamic and community members 

can rapidly adapt when changing the secretion and uptake fluxes 
of exchanged metabolites (Supplementary Fig. 3), demonstrating all 
possible interactions among community members.

After we established how the phototrophic community is main-
tained, we evaluated the response of the growth of members to 
changing nutrient availability. Photobionts isolated from lichens or 
microbial mats can change their growth rate depending on nitrogen 
(for example, nitrate or amino acids)22, CO2 (ref. 23), O2 (ref. 10) and 
glucose24 availability. Our analysis suggested that there are four pos-
sible interactions among the community members: syntrophy (that 
is commensalism and mutualism), competition, amensalism and 
parasitism, and that these interactions are dependent on environ-
mental conditions (Fig. 2 and Supplementary Fig. 1b).

CO2, O2, NO3, NH4 and glucose were determined as key drivers  
governing interactions. Growth phenotypes of the community 

a c

b

Alga in

monoculture

Fungus in

monoculture

Phototrophic

community

–4 –2 0 2 4

Alga fold change log[monoculture/coculture]

0

1

2

3

4

5

6

7

8

–
lo

g
[P

]

Alanine, aspartate and glutamate metabolism

Glycine, serine and threonine metabolism

Pyruvate metabolism and tricarboxylic acid cycle

Valine, leucine and isoleucine metabolism

P  = 0.05

BBM + 2% glucose

BBM

CO2

Glc

H2O

NH4

O2

SUCC

SO4
AC

ADE

Met

Trp

Arg

Gln

Gly

His, GUA

Leu

ORN
Pi

0.08

Reaction flux to the alga (mmol g–1 (dry weight) h–1)

R
e

a
c
ti
o

n
 f

lu
x
 t

o
 t

h
e

 f
u

n
g

u
s

(m
m

o
l 
g

–
1
 (

d
ry

 w
e

ig
h

t)
 h

–
1
)

Alga in

monoculture

Fungus in

monoculture

Phototrophic

community

D
ay

 0

D
ay

 1

D
ay

 2

D
ay

 3

D
ay

 4

D
ay

 5

D
ay

 6

D
ay

 7

D
ay

 0

D
ay

 1

D
ay

 2

D
ay

 3

D
ay

 4

D
ay

 5

D
ay

 6

D
ay

 7

3

2

1

0

–1

–2

–3

–4

–2 0 2 4 6
0.040–0.04–0.08

–0.02

0

0.02

0.04

0.06

Fig. 1 | interwoven metabolic interactions in the phototrophic community. a, The panels show the growth of individual microorganisms (that is, the alga  

C. vulgaris and the fungus S. cerevisiae) and the phototrophic community in Bold’s basal medium (BBM) and BBM + 2% glucose. Experiments carried 

out with at least six replicates of biologically independent samples. b, Complete metabolic exchange. Error bars represent the median of predicted flux 

variability, while growth predictions reach at least 95% of the maximum growth rate. Flux variability was estimated using n = 50,000 warm-up points 

while sampling the solution space. The green area encloses metabolites produced by the alga. The pink area contains metabolites provided by the 

fungus. Metabolites in the pearl-white panel are supplied to the system through the culture medium. SUCC, succinate; AC, acetate; ORN, ornithine; ADE, 

adenosine; GUA, guanosine. c, Differential expression of metabolic pathways. Results obtained during the algal growth under monoculture and co-culture 

conditions. Upregulated and downregulated genes were determined using two-sided t-test, n = 3, and a cut-off P value of 0.05.
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members were predicted for all individual metabolites and pair-
wise combinations (Supplementary Fig. 4). The community 
formed a stable mutualistic population with a clear growth ben-
efit for the fungus. This interaction was unwavering for all glucose 
and O2 uptake rates tested in silico (Fig. 2a–c) and experimentally  
(Fig. 2d). Increased glucose uptake rates were beneficial for the fun-
gus and had a slightly beneficial effect on the alga (Supplementary 
Fig. 4b). These predictions were confirmed experimentally  
(Fig. 2d and Supplementary Fig. 5) and our results showed that the 
growth rate of the fungus in co-culture increased at higher glu-
cose concentration, whereas that of the alga remained constant. 
The fast response of the fungus to glucose can be attributed to its 
natural intrinsic growth rate (about 0.15 h−1), which is up to one 
order of magnitude higher than that of the alga under optimal 
conditions. O2 simulations show a proportional beneficial effect 
for the community members at O2 uptake rates up to 1 mmol per g 
(dry weight) h−1 (Supplementary Fig. 4d), although when higher 
O2 uptake rates were simulated the benefit was only observed for 
the fungus. Mono- and co-culture experiments using two differ-
ent O2 flows (0.2 and 0.4 l min−1) showed that the fungus growth 
rate did not change significantly under monoculture (two-sided 
t-test, P > 0.12, n = 4) but under co-culture the growth rate sig-
nificantly increased (13% at a flow of 0.4 l min−1; two-sided t-test, 
P < 0.05, n = 4). For the alga, we experimentally observed that O2 
availability reduced the growth rate by up to 60% under mono-
culture and by 45% under co-culture conditions. Our predictions 
furthermore suggest that this negative growth effect on the alga 
can be abolished under certain conditions, that is, glucose uptake 

rate of 0.5 mmol per g (dry weight) h−1 and O2 uptake rate of 
1.5 mmol per g (dry weight) h−1 (Fig. 2b).

Different types of interactions among community members 
were predicted to be possible, depending on NH4 and NO3 uptake 
rates (Fig. 2e–g). NH4 uptake rates from 0.33–0.41 mmol per g (dry 
weight) h−1 were predicted to result in the fungus dominating the 
community by changing its interaction with the alga from syntro-
phy to competition, and for NH4 uptake rates above 0.41 mmol per g 
(dry weight) h−1 the interaction changed to amensalism or parasit-
ism (Fig. 2g). Experimental supplementation of a low concentra-
tion of NH4 (0.01–0.1 mM) to the culture medium, which is utilized 
by both partners, did not enhance the fungus growth (Fig. 2h). At 
this concentration, simulations show that the alga provided most of 
the nitrogen (flux 0.35 mmol per g (dry weight) h−1) to the fungus 
in form of NH4 in addition to amino acids. However, when NH4 
was added to the culture medium at a concentration of 250 mM, 
the fungus dominated and finally outcompeted the alga, confirm-
ing amensalism as predicted (Fig. 2h). NH4 experiments were com-
bined with increased NO3 concentration from 2.5 to 250 mM, which 
enhanced the growth of the alga but not the fungus, since S. cerevi-
siae is unable to utilize NO3 (Fig. 2h). Previous studies of the micro-
algae Chlamydomonas reinhardtii and S. cerevisiae reported similar 
phenotypes under high NH4 (10 mM) conditions13. Experimental 
shift in the type of interaction was accompanied by a decrease in 
pH and production of ethanol. Measured ethanol concentrations 
at stationary phase changed from 0.43 ± 0.2 mM without NH4 to 
3.41 ± 1.0 mM once NH4 was added. When the pH was controlled 
in these experiments, the alga survived longer than without pH  
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rates of the fungus (a) and alga (b) in the phototrophic community. c, Overall community growth rate is given by the sum of growth rates shown in a and 
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Algal experimental growth rates (green) were not significantly different (two-sided t-test, P > 0.5, n = 3); fungal growth rates (yellow) were statistically 

different (two-sided t-test, P < 0.0001, n = 3) as predicted. Data are mean ± s.d. e, Fungal predicted growth rate while varying the NH4 and NO3 uptake 

rates. f, Algal predicted growth rates show that high NH4 uptake rates affected its growth. g, Community overall growth rate. The numbers delimit the type 
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details. Asterisks indicate experimentally validated interactions. h, Experimental (bar plots) and predicted (dots) growth rates at different NO3 and NH4 
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control, but was eventually overgrown by the fungus. Increasing 
supply of O2 by bubbling air into the culture with pH control led 
to an improved growth of the alga as predicted (Supplementary  
Fig. 4d). Oxygen has a very important role across the entire com-
munity network. Out of 277 reactions containing O2 in iCZ-
CvSc(1748), 194 are associated with O2 consumption and seven 
with O2 production (in the alga).

Natural phototrophic communities have been shown to be sensi-
tive to O2 and nitrogen levels10. For example, high environmental 
levels of NH4 during eutrophication trigger pH changes in pho-
totrophic communities10,25, similar to our predictions. Thus, our 
model can provide a quantitative tool to assess the responses of 
phototrophic communities to various nutrients. Additionally, this 
mechanistic framework enables identification and analysis of the 
effect of other nutrients as well as the response of phototrophic 
communities to eutrophication.

Phototrophic communities can change their biomass elemen-
tal composition in various environments as a function of nutrient 
availability (for example, nitrogen depletion)26. We predicted the 
ecological niche related to nitrogen limitations by constraining 
iCZ-CvSc(1748) with six different biomass compositions experi-
mentally determined over the course of growth27. Changes in the 
biomass composition of the phototroph have distinct effects on the 
community members in mono- and co-culture. For example, the 
alga growth rate in monoculture was reduced by approximately 40% 
once nitrogen was depleted from the medium27. In the phototrophic 
community however, the growth rates of the community members 
remained stable varying by only about 10% compared with mono-
culture after nitrogen depletion (Fig. 3a). The ability to cope with 
nutrient depletion differently in mono- and co-culture could pro-
vide insights into the ability of phototrophic communities to thrive 
in harsh conditions. Our analysis demonstrates how the community 
equalizes and tunes its metabolism and cross-feeding in response to 
resource availability (Fig. 3b,c). Simulations revealed that metabo-
lites exchanged are highly conserved and independent of the alga-
to-fungus growth ratio in the community (Supplementary Fig. 6). 
Only the flux exchange of O2, succinate, ornithine, glutamine, ribose 
and tryptophan and secreted metabolites that are part of overflow 
metabolism (that is production of formate, ethanol and acetate) 
varied in accordance with the community biomass composition. 
Overflow metabolism is currently poorly understood, even for 
axenic cultures28,29. It utilizes reducing equivalents and energy carri-
ers to synthesize these side products instead of biomass28. Overflow 
metabolism in S. cerevisiae and heterotrophic microbial communi-
ties has been associated with excess carbon supply30, and lichenized 
fungi have been found to become tolerant to overflow metabolites31.

Natural environments provide ample probability of interplay and 
exchange of metabolites. We thus elucidated the growth-limiting 
metabolites in mono- and co-culture conditions by studying the 
impact of all metabolites in the model (2,965) on the entire network 
(Supplementary Fig. 7). Predictions were performed for six biomass 
compositions. Negative values indicate metabolites limiting the 
growth rate32. Predictions clustered by culture condition instead of 
biomass composition and showed that the alga responds differently 
to metabolite supplementation in 60% of the cases. The analysis also 
highlighted that the metabolic network of mono- and co-culture 
respond differently to the same metabolite (Fig. 3b). Predictions 
suggest that the fungus supports the alga to bypass metabolic limita-
tions in the synthesis of certain coenzymes and precursors (plasto-
quinone, pantothenate and coenzyme A) (Supplementary Table 5). 
When the fungus grows in monoculture, cells are limited by valine, 
tyrosine, tryptophan and potentially butanal, but in co-culture, 
these metabolites may be provided by the alga. We also predicted 
differences in the requirements of riboflavin and 4-hydroxy-
benzoate between mono- and co-culture for the alga. To verify 
these predictions, we experimentally evaluated the effect of these  

metabolites on growth in mono- and co-culture (Supplementary 
Fig. 8). Valine, tyrosine and tryptophan improved the growth of the 
fungus as predicted, whereas riboflavin and butanal only benefited 
the alga or the fungus, respectively. Of note, tyrosine and 4-hydroxy-
benzoate additions had a toxic effect on the alga in both conditions, 
suggesting that phototrophic communities can be more resilient to 
toxic compounds than their individual partners. Overall, the model 
demonstrated accuracy of 0.69 for growth phenotype prediction on 
the metabolites tested (Supplementary Fig. 8c). Our results further 
demonstrate that data obtained for monocultures cannot readily be 
translated to phenotypes in co-cultures or even larger communities 
and exemplify current challenges in manipulating and engineering 
microbial communities.

Two key questions in evolutionary biology address how biological 
systems become genetically stable without members outcompeting 
themselves33 and how communities manage deleterious gene loss to 
attain streamlined genomes34. We predicted the essentiality of 3,496 
metabolic genes in mono- and co-culture. Previous results suggested 
that metabolic genes exhibit higher level of phenotypic variation35, 
triggering adaptive benefits to an organism36,37. We found that both 
partners compensate for loss of gene functions in the other part-
ner, contributing to the survival of the community. However, this 
compensation depends on the community growth stage and bio-
mass composition (Supplementary Fig. 9). The number of essential 
genes required for growth in co-culture was reduced by 39% (from 
194 to 115) for the alga and by 31% (from 106 to 73) for the fungus 
(Supplementary Fig. 10 and Supplementary Tables 6–8).

On the basis of model simulations, nine fungal mutants that 
changed their growth phenotypes under mono- and co-culture 
were selected for experimental validation. Seven mutants (system-
atic gene name is shown, followed by synonym in parentheses)  
with essential genotypes were associated with fructose and man-
nose metabolism (YDL055C (PSA1−); YFL045C (SEC53−); 
YER003C (PMI40−)), glutamine metabolism (YPR035W (GLN1−)),  
phospholipid biosynthesis (YBR029C (CDS1−)), riboflavin metab-
olism (YBR153W (RIB7−)) and sterol metabolism (YHR007C 
(ERG11−)), and two mutants with non-essential genotypes were 
associated with oxidative phosphorylation (YAL012W (CYS3−)) 
and methionine metabolism (YKL055C (OAR1−)). Six of the seven 
predicted essential fungal knockouts (KOs) were rescued when 
grown in co-culture, confirming our predictions (Fig. 4a,b and 
Supplementary Table 9). The recovery of essential gene loss by 
the community sheds light on the lack of cultivability routinely 
observed from environmental samples38.

Predictions showed that each gene deletion reshaped the distri-
bution of nutrients across community members, triggering changes 
to the metabolic exchange (Fig. 4c). For example, the co-culture 
with YPR035W (GLN1−) showed a strong benefit for the fungus 
at the expense of the alga by expanding the number of metabolites 
exchanged. Furthermore, we found that fungus KOs can also have a 
negative effect on the alga growth. For example, experimental results 
showed that the KO (YDL055C (PSA1−)) reduced alga growth by 
75%. Modelling predictions indicated that this growth phenotype is 
attained under high secretion fluxes of formate by the fungus and 
high acetate flux by the alga (Supplementary Fig. 10d), probably 
activating regulatory effects associated with stress conditions. Our 
simulations are consistent with metabolomics studies of microbial 
mats, in which abundance of metabolites such as formate, ethanol 
and acetate, different sugars and amino acids, change depending on 
environment conditions39. Experimental results for the two non-
essential gene KOs generally agreed with our predictions. A permu-
tation test analysis comparing experimental and predicted growth 
phenotypes suggested that the model could accurately predict up to 
80% of the phenotypes (Supplementary Fig. 11).

Surprisingly, we also identified 50 KOs for the alga and 37 
KOs for the fungus that improved the growth of the partners by  
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metabolic fluxes (see Fig. 1b) was determined using flux variability analysis and 
random sampling. To uniformly sample the solution space of iCZ-CvSc(1748), the 
model was reduced as previously described and optGpSampler16 for MATLAB with 
Gurobi Optimizer v.6.5.0 was used.

v ¼ v1 þ v2

max c
T :vð Þ

subject to S:v ¼ 0

lb<v<ub

Transport

�1; 000<v<1; 000

ð1Þ

Growth rates characterization and robustness analysis. The CM model was used 
to simulate growth rates and to predict metabolic interactions under standard 
conditions (Fig. 1b). The main metabolic compounds affecting community 
interactions were identified, that is glucose, O2, NH4, and NO3 and sensitivity 
analysis, looking for member-specific growth responses to environmental 
conditions, was performed by varying uptake rates. The sensitivity analysis deploys 
phenotypic phase planes facilitating the observation of effects on the objective 
functions by varying a particular constraint41. Predicted growth rates in mono- and 
co-culture were compared with experimental results.

Environmental conditions that benefit or harm growth rates of both 
microorganisms in the community and monoculture were identified and 
corresponding media composition were determined. Flux-balance analysis 
solutions encompass the calculation of shadow prices, which show changes in 
the growth rate by simulating single supplementation for all metabolites in the 
metabolic network, iCZ-CvSc(1748). Negative shadow prices describe metabolites 
that are demanded or are limiting the growth rate, whereas positive values identify 
metabolites that are excreted in order to improve the objective value32. Metabolites 
limiting the growth were computed for all six alga models with different biomass 
compositions and all six co-culture models (Fig. 3b). Metabolites (that is butanal, 
valine, 4-hydroxybenzoate, tyrosine, tryptophan and riboflavin) predicted to affect 
the growth rate of individual members and the phototrophic community were 
tested and their effect on growth was confirmed experimentally.

A robustness analysis at different biomass compositions was performed, 
looking at robustness of fluxes of cross-fed metabolites and shadow prices. 
Simulations were carried out at controlled changes in growth rate of individual 
members and the community (Supplementary Fig. 7-8). A confusion matrix 
and various measures of quality, such as accuracy, specificity, sensitivity, positive 
predicted, negative predicted and Matthews correlation coefficient, were estimated 
according to ref. 43.

Predicting the rescue of phenotypes in gene knockouts. In silico gene deletion 
analysis was completed by iteratively removing reaction(s) associated with each 
gene in the combined model, iCZ-CvSc(1748), as well as for iCZ843 and iMM904. 
Every knockout network was used to determine the maximum growth rate of 
the community members. This step was iteratively performed for the six models 
with different biomass objective functions. Genes predicted essential and non-
essential in mono- and/or co-culture were compared. Furthermore, we explored 
the possibility of manipulating growth rates of microorganisms in the phototrophic 
community by genetic modifying the fungus (knockout strains). Within this 
analysis we evaluated conditions as stabilizing, improving, or decreasing growth 
phenotypes of the community members. We also studied how the community 
manages to survive when the alga is co-cultured with fungus strains containing 
lethal traits (Fig. 4). Simulations were organized in a confusion matrix framework 
and the statistics and machine learning toolbox of MATLAB (MathWorks) 
was used to calculate 10,000 permutations (two-sided t-test, P < 0.0001) over 
experimentally determined and predicted growth rates of the partners in 
monoculture and co-culture (Supplementary Fig. 11).

Strains. C. vulgaris UTEX 395 (alga) was obtained from the Culture  
Collection of Algae at the University of Texas at Austin. Wild-type S. cerevisiae 
strain S288c (fungus) was obtained from the American Type Culture Collection 
(ATCC 204508). S. cerevisiae knockout strains (YPR035W, YKL055C, YAL012W, 
YHR007C, YJR077C, YPL262W, YDR529C and YGL191W) were obtained  
from GE Lifesciences. S. cerevisiae temperature-sensitive-knockout strains 
(YBR153W, YBR029C, YDR341C, YMR208W, YER003C, YFL045C and  
YDL055C) were provided by P. Stirling (Terry Fox Laboratory, BC Cancer Agency, 
Vancouver, British Columbia, Canada). Strain knockout traits, for example, 
standard name, essentiality phenotype and metabolic pathways, can be found in 
Supplementary Table 9.

Medium. Sterile BBM with 2% glucose was used to grow the community 
members in mono- and co-cultures. BBM consists of NaNO3 (250 mg l−1), KH2PO4 
(176 mg l−1), K2HPO4 (75 mg l−1), MgSO4·7H2O (75 mg l−1), Na2EDTA (50 mg l−1), 
KOH (31 mg l−1), CaCl2·2H2O (25 mg l−1), NaCl (25 mg l−1), H3BO3 (11.4 mg l−1), 

FeSO4·7H2O (4.98 mg l−1), ZnSO4·7H2O (8.83 mg l−1), H2SO4 (1.84 mg l−1), 
CuSO4·5H2O (1.57 mg l−1), MnSO4·H2O (1.44 mg l−1), MoO3 (0.71 mg l−1) and 
CoCl2·6H2O (0.50 mg l−1). The sole nitrogen source in BBM is NaNO3. For some 
experiments, NaNO3 was substituted with NH4Cl (0.055 g l−1 and 13.5 g l−1), that is, 
BBM-NH3. Specific growth effects were tested by adding glycerol, butanal, valine, 
4-hydroxybenzoate, tyrosine, tryptophan and riboflavin (1 mM each)  
to the medium.

Growth conditions. Standard growth tests were performed in 250 ml flasks 
containing 25 ml of culture medium (2% glucose in BBM medium) and the 
community members were inoculated at a ratio of 1:1 based on cell number. 
Flasks were subjected to fluorescent light (130 μmol photons m−2 s−1) with a 12:12 h 
light:dark cycle. For the fungus-knockout experiments, cultures were grown in 
25 ml T25 flasks containing 10 ml of autoclaved BBM with 2% glucose using a 
fluorescent light source with intensity of 130 μmol photons m−2s−1 and mixed with 
an orbital shaker at 40 r.p.m. The pH in the medium was measured every day and 
0.1 M sodium hydroxide was added to maintain a pH of 6.8. Experiments with 
varying nitrogen sources (NO3 and NH3) and added metabolites (that is butanal, 
valine, 4-hydroxybenzoate, tyrosine, tryptophan and riboflavin) were performed in 
250 ml flasks containing 50 ml of autoclaved BBM with 2% glucose.

Analytical methods. Glucose concentrations were measured with an YSI 2700 
analyser (YSI). NO3 and NH3 were measured with a nitrite-nitrate assay kit 
(Sigma) and ammonium assay kit (Megazyme), respectively. Cell counts for the 
community members were determined by flow cytometry. Metabolomic analysis 
was performed as previously reported44. RNA extraction, library generation 
and sequencing were performed by harvesting and snap-freezing cells in liquid 
nitrogen in biological triplicates for each condition. Cell lysates were prepared by 
grinding the frozen cell pellets in liquid nitrogen with 400 µl of RLT buffer (Qiagen 
RNeasy kit). RNA was stabilized by the addition of 2 ml Trizol reagent (Thermo 
Fisher Scientific) to each 1 ml of lysate. Total RNA was extracted using the RNeasy 
kit (Qiagen). mRNA was enriched using the Dynabeads mRNA purification kit 
(Invitrogen). Sequencing libraries were generated using the KAPA RNA HyperPrep 
kit (Roche) and by following the recommended protocol. The libraries were 
paired-end sequenced on an Illumina HiSeq TM 4000, using 100-base pair cycle 
kits. The sequencing adaptors were trimmed using the trim_galore program45. The 
reads were obtained from NCBI database46 and aligned to the C. vulgaris genome 
(Assembly No. ASM102112v1) and to the S. cerevisiae genome (accession No. 
NC_001133). Subread package-featureCounts (v.1.5.0-p1)47 was used to determine 
reads for each coding region. The aligned sequencing reads (Supplementary  
Table 12) were used to determine RNA expression as fragments per kilobase per 
million. The aligned reads were also used to determine differential gene expression 
using DESeq2 (ref. 48).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The phototrophic community model, as well as individual models are available  
in Supplementary Dataset 1 and are described in Supplementary Table 1. 
Models constrained with different biomass compositions are also provided 
in Supplementary Dataset 1 and described in Supplementary Table 4. 
Supplementary Information is also available at https://github.com/cristalzucsd/
PhototrophicCommunities. All sequencing reads were deposited in the Sequence 
Read Archive under BioProject PRJNA496045, with specific numbers listed in 
Supplementary Table 12.

Code availability
Computer code will be provided upon request from the corresponding author.
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Software and code

Policy information about availability of computer code

Data collection Physiological data was collected from experiments carried out in biologically independent triplicates. The reads were aligned to the C. 

vulgaris genome (Assembly No. ASM102112v1) and to the S. cerevisiae genome (accession No. NC_001133). Subread package-

featureCounts (version 1.5.0-p1) 11 was used to determine reads per each coding region. The aligned sequencing reads were used to 

determine RNA expression as fragments per kilobase per million. The aligned reads were also used to determine differential gene 

expression using DESeq2.

Data analysis Model simulations were performed using the Gurobi Optimizer Version 5.6.3 solver (Gurobi Optimization Inc., Houston, Texas) in the 

COBRA Toolbox 3 for MATLAB R2017b (The MathWorks Inc., Natick, MA)
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- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The phototrophic community model (CM-model) as well as individual models (M-models) are available in Supplementary Dataset 1 and described in Supplementary 

Table 1. Models constrained with different biomass compositions are also provided in Supplementary Dataset 1 and described in Supplementary Table 4. Dataset 1 

is available in the Github repository https://github.com/cristalzucsd/PhototrophicCommunities. Additionally, all sequencing reads is available in the Sequence Read 

Archive under BioProject PRJNA496045, with specific numbers listed in Supplementary Table 12.



2

n
atu

re research
  |  rep

o
rtin

g
 su

m
m

ary
O

c
to

b
e

r 2
0

1
8

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Determination of cellular communication in a phototrophic community, integrating metatranscriptomics, metabolomics, and 

phenotyping with computational modeling. 

Research sample Samples of the phototrophic community composed of the photobiont, C. vulgaris, and the mycobiont, S. cerevisiae, and individual 

members were subjected to different treatments e.g. nutrients addition (43 conditions), target metabolomics and 

metatranscriptomics (2 conditions), and knock-outs (13). 

Sampling strategy Not applicable. The experimental design for all treatments did not test for interactions between treatments.

Data collection Geng Yu, Chien-Ting Li, Ting-Ting Li, and Liqun Jiang collected the data in a systematic matter to evaluate the response variables such 

as growth and metabolites concentration. In the case of RNA-seq data the samples were collected by Chien-Ting Li during the bionts 

exponential phase under monoculture and coculture conditions.

Timing and spatial scale Not applicable. Samples were taken in steady state.

Data exclusions Data was not excluded

Reproducibility All experiments, metatranscriptomics, metabolomics, and phenotypic of gene knock-outs, were carried out at least in triplicate.

Randomization Not applicable.

Blinding No blinding was done in this study. Experiments were model-driven and data are quantitative, most measurements are made using a 

machine, and not easily subject to operator bias.

Did the study involve field work? Yes No
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