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Environmental stimuli drive a transition
from cooperation to competition in synthetic
phototrophic communities

Cristal Zuiiga®’, Chien-Ting Li

Livia S. Zaramela', Michael Guarnieri3, Michael J. Betenbaugh? and Karsten Zengler

Phototrophic communities of photosynthetic algae or cya-
nobacteria and heterotrophic bacteria or fungi are perva-
sive throughout the environment'. How interactions between
members contribute to the resilience and affect the fitness of
phototrophic communities is not fully understood®:. Here, we
integrated metatranscriptomics, metabolomics and phenotyp-
ing with computational modelling to reveal condition-depen-
dent secretion and cross-feeding of metabolites in a synthetic
community. We discovered that interactions between members
are highly dynamic and are driven by the availability of organic
and inorganic nutrients. Environmental factors, such as ammo-
nia concentration, influenced community stability by shift-
ing members from collaborating to competing. Furthermore,
overall fitness was dependent on genotype and streamlined
genomes improved growth of the entire community. Our mech-
anistic framework provides insights into the physiology and
metabolic response to environmental and genetic perturbation
of these ubiquitous microbial associations.

Light-driven microbial communities are highly abundant and
inhabit nearly every terrestrial and aquatic environment exposed to
light'. These communities are either spatially highly structured, such
as the ones found in biofilms, microbial mats or lichens*, or form
loose associations, such as aquatic bacteria with phytoplankton®.
Phototrophic communities consist of photosynthetic organisms that
capture light energy and heterotrophic organisms that benefit from
photosynthetically fixed carbon. The way in which phototrophic
and heterotrophic partners interact and respond to environmental
changes has not been fully understood®. For example, lichens can
interact mutualistically, competitively or parasitically depending on
their partners”®. There is a lack of in-depth knowledge about the
drivers of these interactions and the metabolic mechanisms under-
lying cell communication in light-driven communities.

Research of photosynthetic communities is often restricted by
the stability of cultures in isolation, their potentially slow growth
and the lack of genetic systems for individual partners”'’. Evaluating
complexity of natural communities with high reproducibility, trac-
tability and accessibility has recently become feasible through the
use of model systems for microbial communities'-'?. Synthetic com-
munities consisting of photoautotrophic and heterotrophic mem-
bers can mimic basic characteristics of phototrophic communities,
thereby providing knowledge about the biology of these symbionts.
Two-species experimental systems populated by phototrophs and
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heterotrophs have provided insight into ecological niches” and
guided bioproduction approaches'.

Community metabolic (CM) models have become available
for contextualization of multi-omics data>'®. Here, a systems biol-
ogy approach using constraint-based CM models in conjunction
with multi-omics and growth physiology experiments was applied
to elucidate the phototrophic community comprising the alga
Chlorella vulgaris (hereafter referred to as alga) and the ascomycete
Saccharomyces cerevisiae (that is, the fungus). The CM model iCZ-
CvSc(1748) enables systematic studies related to fitness, mainte-
nance and resilience to environmental and genetic perturbations,
using flux balance analysis formulation (equation 1). We experi-
mentally corroborated predictions of growth rates, metabolite
exchanges and genome content using physiological data, targeted
metabolomics and expression data to systematically reveal gov-
erning constraints on cross-feeding, community yields and types
of interactions.

Constraint-based models compile metabolic knowledge into a
mathematical framework that enables a mechanistic description of
physiology based on biological functions (constraints) determined
experimentally. Using individual genome-scale metabolic models of
C. vulgaris, iCZ843 (ref. '°) and S. cerevisiae, iMM904", a photo-
trophic CM model, iCZ-CvSc(1748) was assembled (Supplementary
Table 1). The ability of each member to exchange metabolites into
the shared metabolite pool (SMP, consisting of 53 alga- and 164
fungus-associated metabolites), was manually curated using experi-
mental data (Supplementary Table 2).

Despite previous studies reporting ineffective co-cultivation of
C. vulgaris and S. cerevisiae"’, we established reproducible cultiva-
tion conditions (Supplementary Fig. 1) using the reconstructed
iCZ-CvSc(1748) model. Model properties and constraints are given
in Supplementary Table 3. Experimental growth rates of the alga
and fungus ranged between 0.038 +0.006h~' and 0.034 +0.006 h~",
whereas simulated growth rates were 0.041h~' for the algae and
0.032h! for the fungus (Fig. 1a).

The fitness of the phototrophic community relied on metabolic
cross-feeding, also known as ‘leaky capabilities’®, characteristics
that have been linked to coevolution'. iCZ-CvSc(1748) accurately
predicted the distribution of external resources and metabolic
exchange among organisms (Fig. 1b), revealing a clear benefit for
the fungus in co-culture resulting in a doubled growth rate. This
is similar to hypotheses about the parasitic nature of fungi in
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Fig. 1| Interwoven metabolic interactions in the phototrophic community. a, The panels show the growth of individual microorganisms (that is, the alga
C. vulgaris and the fungus S. cerevisiae) and the phototrophic community in Bold's basal medium (BBM) and BBM + 2% glucose. Experiments carried

out with at least six replicates of biologically independent samples. b, Complete metabolic exchange. Error bars represent the median of predicted flux
variability, while growth predictions reach at least 95% of the maximum growth rate. Flux variability was estimated using n=50,000 warm-up points
while sampling the solution space. The green area encloses metabolites produced by the alga. The pink area contains metabolites provided by the
fungus. Metabolites in the pearl-white panel are supplied to the system through the culture medium. SUCC, succinate; AC, acetate; ORN, ornithine; ADE,
adenosine; GUA, guanosine. ¢, Differential expression of metabolic pathways. Results obtained during the algal growth under monoculture and co-culture
conditions. Upregulated and downregulated genes were determined using two-sided t-test, n=3, and a cut-off P value of 0.05.

lichens®. Overall, the alga provides O, and 11 metabolites (acetate,
glycine, succinate, ornithine, adenine, glutamine, methionine, gua-
nine, histidine, arginine and tryptophan) at a total carbon flux of
0.66 mmolper g (dry weight) h™' and the fungus only provides
CO, and leucine at 0.007mmolperg (dry weight) h™ (Fig. 1b).
Predicted and experimentally observed leucine uptake by the alga
over all other amino acids can be associated with evolutionary trad-
eoffs regarding pathway topology and energetic optimization® as
previously observed in photosynthetic microorganisms at natural
environments®'. We experimentally confirmed metabolic exchange
through analysis of supernatants by target metabolomics and
changes in pathways expression by RNA-sequencing data (Fig. 1c
and Supplementary Fig. 2). An expanded analysis of this data is
provided in Supplementary Notes. Simulations also showed that
metabolic exchange is highly dynamic and community members
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can rapidly adapt when changing the secretion and uptake fluxes
of exchanged metabolites (Supplementary Fig. 3), demonstrating all
possible interactions among community members.

After we established how the phototrophic community is main-
tained, we evaluated the response of the growth of members to
changing nutrient availability. Photobionts isolated from lichens or
microbial mats can change their growth rate depending on nitrogen
(for example, nitrate or amino acids)?, CO, (ref. **), O, (ref. '°) and
glucose* availability. Our analysis suggested that there are four pos-
sible interactions among the community members: syntrophy (that
is commensalism and mutualism), competition, amensalism and
parasitism, and that these interactions are dependent on environ-
mental conditions (Fig. 2 and Supplementary Fig. 1b).

CO,, 0,, NO;, NH, and glucose were determined as key drivers
governing interactions. Growth phenotypes of the community
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Fig. 2 | Community interactions depend on culture conditions. a,b, Contour plots showing predicted growth rates while varying O, and glucose uptake
rates of the fungus (a) and alga (b) in the phototrophic community. ¢, Overall community growth rate is given by the sum of growth rates shown in a and
b. Interaction types are assigned on the basis of growth-rate ratios (see Supplementary Fig. 1b). Growth-rate ratios around 1 define syntrophic interactions
and ratios below 0.1 and above 10 represent amensalism. Panels labelled with a circled ‘2*" highlight syntrophic interactions that were experimentally
validated. d, Growth rates at various glucose uptake rates were experimentally validated (solid lines). Predictions are shown in dotted lines and were
performed by using physiologically determined glucose uptake rates of 0.14 +0.01Tmmol g~' (dry weight) h~'to 0.38 +0.04 mmol g~' (dry weight) h-".
Algal experimental growth rates (green) were not significantly different (two-sided t-test, P> 0.5, n=3); fungal growth rates (yellow) were statistically
different (two-sided t-test, P< 0.0001, n=3) as predicted. Data are mean +s.d. e, Fungal predicted growth rate while varying the NH, and NO, uptake
rates. f, Algal predicted growth rates show that high NH, uptake rates affected its growth. g, Community overall growth rate. The numbers delimit the type
of interaction: 1, syntrophy (commensal); 2, syntrophy (mutualism); 3, competition; 4, amensalism or parasitism. See Supplementary Fig. 1b for further
details. Asterisks indicate experimentally validated interactions. h, Experimental (bar plots) and predicted (dots) growth rates at different NO; and NH,
concentrations for the fungus (yellow) and alga (green). Data in bar plots are mean +s.d. of independent replicates (grey dots). Growth rates under 0.01

and 250 mM NH, were statistically different (two-sided t-test, P<0.0001, n=

members were predicted for all individual metabolites and pair-
wise combinations (Supplementary Fig. 4). The community
formed a stable mutualistic population with a clear growth ben-
efit for the fungus. This interaction was unwavering for all glucose
and O, uptake rates tested in silico (Fig. 2a—c) and experimentally
(Fig. 2d). Increased glucose uptake rates were beneficial for the fun-
gus and had a slightly beneficial effect on the alga (Supplementary
Fig. 4b). These predictions were confirmed experimentally
(Fig. 2d and Supplementary Fig. 5) and our results showed that the
growth rate of the fungus in co-culture increased at higher glu-
cose concentration, whereas that of the alga remained constant.
The fast response of the fungus to glucose can be attributed to its
natural intrinsic growth rate (about 0.15h™"), which is up to one
order of magnitude higher than that of the alga under optimal
conditions. O, simulations show a proportional beneficial effect
for the community members at O, uptake rates up to 1 mmol perg
(dry weight) h™' (Supplementary Fig. 4d), although when higher
O, uptake rates were simulated the benefit was only observed for
the fungus. Mono- and co-culture experiments using two differ-
ent O, flows (0.2 and 0.41min~") showed that the fungus growth
rate did not change significantly under monoculture (two-sided
t-test, P>0.12, n=4) but under co-culture the growth rate sig-
nificantly increased (13% at a flow of 0.41min™'; two-sided ¢-test,
P<0.05, n=4). For the alga, we experimentally observed that O,
availability reduced the growth rate by up to 60% under mono-
culture and by 45% under co-culture conditions. Our predictions
furthermore suggest that this negative growth effect on the alga
can be abolished under certain conditions, that is, glucose uptake
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rate of 0.5mmolperg (dry weight) h™' and O, uptake rate of
1.5mmolperg (dry weight) h~' (Fig. 2b).

Different types of interactions among community members
were predicted to be possible, depending on NH, and NO, uptake
rates (Fig. 2e-g). NH, uptake rates from 0.33-0.41 mmol perg (dry
weight) h™ were predicted to result in the fungus dominating the
community by changing its interaction with the alga from syntro-
phy to competition, and for NH, uptake rates above 0.41 mmol perg
(dry weight) h™' the interaction changed to amensalism or parasit-
ism (Fig. 2g). Experimental supplementation of a low concentra-
tion of NH, (0.01-0.1 mM) to the culture medium, which is utilized
by both partners, did not enhance the fungus growth (Fig. 2h). At
this concentration, simulations show that the alga provided most of
the nitrogen (flux 0.35mmolperg (dry weight) h™!) to the fungus
in form of NH, in addition to amino acids. However, when NH,
was added to the culture medium at a concentration of 250 mM,
the fungus dominated and finally outcompeted the alga, confirm-
ing amensalism as predicted (Fig. 2h). NH, experiments were com-
bined with increased NO, concentration from 2.5 to 250 mM, which
enhanced the growth of the alga but not the fungus, since S. cerevi-
siae is unable to utilize NO, (Fig. 2h). Previous studies of the micro-
algae Chlamydomonas reinhardtii and S. cerevisiae reported similar
phenotypes under high NH, (10mM) conditions". Experimental
shift in the type of interaction was accompanied by a decrease in
pH and production of ethanol. Measured ethanol concentrations
at stationary phase changed from 0.43+0.2mM without NH, to
3.41+1.0mM once NH, was added. When the pH was controlled
in these experiments, the alga survived longer than without pH
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control, but was eventually overgrown by the fungus. Increasing
supply of O, by bubbling air into the culture with pH control led
to an improved growth of the alga as predicted (Supplementary
Fig. 4d). Oxygen has a very important role across the entire com-
munity network. Out of 277 reactions containing O, in iCZ-
CvSc(1748), 194 are associated with O, consumption and seven
with O, production (in the alga).

Natural phototrophic communities have been shown to be sensi-
tive to O, and nitrogen levels'’. For example, high environmental
levels of NH, during eutrophication trigger pH changes in pho-
totrophic communities'”, similar to our predictions. Thus, our
model can provide a quantitative tool to assess the responses of
phototrophic communities to various nutrients. Additionally, this
mechanistic framework enables identification and analysis of the
effect of other nutrients as well as the response of phototrophic
communities to eutrophication.

Phototrophic communities can change their biomass elemen-
tal composition in various environments as a function of nutrient
availability (for example, nitrogen depletion)®. We predicted the
ecological niche related to nitrogen limitations by constraining
iCZ-CvSc(1748) with six different biomass compositions experi-
mentally determined over the course of growth?. Changes in the
biomass composition of the phototroph have distinct effects on the
community members in mono- and co-culture. For example, the
alga growth rate in monoculture was reduced by approximately 40%
once nitrogen was depleted from the medium?. In the phototrophic
community however, the growth rates of the community members
remained stable varying by only about 10% compared with mono-
culture after nitrogen depletion (Fig. 3a). The ability to cope with
nutrient depletion differently in mono- and co-culture could pro-
vide insights into the ability of phototrophic communities to thrive
in harsh conditions. Our analysis demonstrates how the community
equalizes and tunes its metabolism and cross-feeding in response to
resource availability (Fig. 3b,c). Simulations revealed that metabo-
lites exchanged are highly conserved and independent of the alga-
to-fungus growth ratio in the community (Supplementary Fig. 6).
Only the flux exchange of O,, succinate, ornithine, glutamine, ribose
and tryptophan and secreted metabolites that are part of overflow
metabolism (that is production of formate, ethanol and acetate)
varied in accordance with the community biomass composition.
Overflow metabolism is currently poorly understood, even for
axenic cultures®”. It utilizes reducing equivalents and energy carri-
ers to synthesize these side products instead of biomass*. Overflow
metabolism in S. cerevisiae and heterotrophic microbial communi-
ties has been associated with excess carbon supply®, and lichenized
fungi have been found to become tolerant to overflow metabolites’'.

Natural environments provide ample probability of interplay and
exchange of metabolites. We thus elucidated the growth-limiting
metabolites in mono- and co-culture conditions by studying the
impact of all metabolites in the model (2,965) on the entire network
(Supplementary Fig. 7). Predictions were performed for six biomass
compositions. Negative values indicate metabolites limiting the
growth rate®. Predictions clustered by culture condition instead of
biomass composition and showed that the alga responds differently
to metabolite supplementation in 60% of the cases. The analysis also
highlighted that the metabolic network of mono- and co-culture
respond differently to the same metabolite (Fig. 3b). Predictions
suggest that the fungus supports the alga to bypass metabolic limita-
tions in the synthesis of certain coenzymes and precursors (plasto-
quinone, pantothenate and coenzyme A) (Supplementary Table 5).
When the fungus grows in monoculture, cells are limited by valine,
tyrosine, tryptophan and potentially butanal, but in co-culture,
these metabolites may be provided by the alga. We also predicted
differences in the requirements of riboflavin and 4-hydroxy-
benzoate between mono- and co-culture for the alga. To verify
these predictions, we experimentally evaluated the effect of these
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metabolites on growth in mono- and co-culture (Supplementary
Fig. 8). Valine, tyrosine and tryptophan improved the growth of the
fungus as predicted, whereas riboflavin and butanal only benefited
the alga or the fungus, respectively. Of note, tyrosine and 4-hydroxy-
benzoate additions had a toxic effect on the alga in both conditions,
suggesting that phototrophic communities can be more resilient to
toxic compounds than their individual partners. Overall, the model
demonstrated accuracy of 0.69 for growth phenotype prediction on
the metabolites tested (Supplementary Fig. 8c). Our results further
demonstrate that data obtained for monocultures cannot readily be
translated to phenotypes in co-cultures or even larger communities
and exemplify current challenges in manipulating and engineering
microbial communities.

Two key questions in evolutionary biology address how biological
systems become genetically stable without members outcompeting
themselves® and how communities manage deleterious gene loss to
attain streamlined genomes™. We predicted the essentiality of 3,496
metabolic genes in mono- and co-culture. Previous results suggested
that metabolic genes exhibit higher level of phenotypic variation®,
triggering adaptive benefits to an organism’>’. We found that both
partners compensate for loss of gene functions in the other part-
ner, contributing to the survival of the community. However, this
compensation depends on the community growth stage and bio-
mass composition (Supplementary Fig. 9). The number of essential
genes required for growth in co-culture was reduced by 39% (from
194 to 115) for the alga and by 31% (from 106 to 73) for the fungus
(Supplementary Fig. 10 and Supplementary Tables 6-8).

On the basis of model simulations, nine fungal mutants that
changed their growth phenotypes under mono- and co-culture
were selected for experimental validation. Seven mutants (system-
atic gene name is shown, followed by synonym in parentheses)
with essential genotypes were associated with fructose and man-
nose metabolism (YDL055C (PSAI-); YFL045C (SEC537);
YER003C (PMI407)), glutamine metabolism (YPRO35W (GLN1")),
phospholipid biosynthesis (YBR029C (CDSI7)), riboflavin metab-
olism (YBRI53W (RIB7-)) and sterol metabolism (YHR007C
(ERGII7)), and two mutants with non-essential genotypes were
associated with oxidative phosphorylation (YALOIZW (CYS3"))
and methionine metabolism (YKL055C (OAR1-)). Six of the seven
predicted essential fungal knockouts (KOs) were rescued when
grown in co-culture, confirming our predictions (Fig. 4a,b and
Supplementary Table 9). The recovery of essential gene loss by
the community sheds light on the lack of cultivability routinely
observed from environmental samples*.

Predictions showed that each gene deletion reshaped the distri-
bution of nutrients across community members, triggering changes
to the metabolic exchange (Fig. 4c). For example, the co-culture
with YPRO35W (GLNI-) showed a strong benefit for the fungus
at the expense of the alga by expanding the number of metabolites
exchanged. Furthermore, we found that fungus KOs can also have a
negative effect on the alga growth. For example, experimental results
showed that the KO (YDL055C (PSAI17)) reduced alga growth by
75%. Modelling predictions indicated that this growth phenotype is
attained under high secretion fluxes of formate by the fungus and
high acetate flux by the alga (Supplementary Fig. 10d), probably
activating regulatory effects associated with stress conditions. Our
simulations are consistent with metabolomics studies of microbial
mats, in which abundance of metabolites such as formate, ethanol
and acetate, different sugars and amino acids, change depending on
environment conditions®”. Experimental results for the two non-
essential gene KOs generally agreed with our predictions. A permu-
tation test analysis comparing experimental and predicted growth
phenotypes suggested that the model could accurately predict up to
80% of the phenotypes (Supplementary Fig. 11).

Surprisingly, we also identified 50 KOs for the alga and 37
KOs for the fungus that improved the growth of the partners by
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Fig. 3 | Nitrate availability and genetic drift stimulate community cooperation. a, Experimental (E) and predicted (P) growth rates of the alga in

monoculture and the community under nitrogen limitation. Growth data for all

conditions are provided in Supplementary Table 4. Experiments carried

out by triplicate using biologically independent samples. Data are mean +s.d. b, Predicted shadow prices under different biomass compositions of the
alga (dark green, monoculture; light green, co-culture). Metabolites limiting, increasing and without effect on the growth rate are shown in blue, red and

white, respectively. The named metabolites were tested experimentally. ¢, Predicted metabolic exchange by the community over the course of growth. RIB,
ribose. d, Fungus knockouts with enhanced growth phenotypes were experimentally tested, showing a significant increase of the community growth rate
(MIRT-, FUM1-, QCR7- and OART") of up to 15% in comparison with the co-culture of wild-type strains (two-sided t-test, **P < 0.05, n=3). Growth rates
were determined by cell counts over the course of growth for monoculture (M) and co-culture (C) conditions. The fungus grew significantly faster under
co-culture conditions than in monoculture (two-sided t-test, *P < 0.05, n=3). Data are mean +s.d. of three biologically independent replicates (grey dots).

e, The box plots show the final biomass concentration measured by dry weight at the end of the experiments for all treatments (KO). Box plots indicate

the sum of experimentally determined final biomass under monoculture condi

tions (orange) and the final biomass of the community (blue). The central

mark indicates the median of at least six independent biological replicates (grey dots), and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

shifting the available metabolic resources from one member to
another (Supplementary Tables 10 and 11). Knocking out YDR529C
(QCR7"), YJR077C (MIRI"), YKL0O55C (OARI") or YPL262W
(FUM1I") was predicted to improve the overall growth rate of the
phototrophic community by 15-25%. Experimental results con-
firmed a growth rate increase of 10-15%, indicating that KO of
these genes provides an ecological advantage for the community
(Fig. 3d,e). Thus, CM models can identify target genes that enable
higher growth rates as observed experimentally in individual cul-
tures’” or in communities®.

Predicted genotype-environment responses tune the pheno-
types and metabolic exchange in a phototrophic community and
highlight the interplay between the stoichiometric architecture of
the community metabolic network. Our results reveal the impor-
tance of metabolic exchanges that share and optimally allocate
cellular resources. Furthermore, the CM model facilitates the
identification of suitable genotype-environment conditions for
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maintaining a phototrophic community as well as factors influenc-
ing the proliferation of specific members.

Model communities, like the one used here, are of great
importance for unravelling dynamic interactions and provid-
ing a detailed mechanistic understanding of complex exchanges
between community members''. Our conceptual framework
could in principle be used to study interactions of microorgan-
isms in their natural environment’. Recent advances in sequencing
deliver almost complete genomes and accompanying expression
data. Temporal and spatial measurements not only offer a com-
prehensive assessment of environmental parameters but also gen-
erate information about community structure. Combined with
high quality genome-scale reconstructions, these data enable
deciphering of dynamic interactions of community members in
their natural environment. This information will lay the foun-
dation for rational understanding, design and manipulation of
microbial communities.
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Fig. 4 | Member-specific genomic capabilities help to overcome lethal genetic gaps in the community. a, Fungal mutant strains with lethal phenotypes
(RIB7-, PMI140-, SEC53-, PSAT-, ERG11~ and GLNT-) and mutants with nonlethal phenotypes (CYS3~ and OART-) were assayed in co-culture (C) and
monoculture (M) conditions. Predicted growth phenotypes are shown with orange circles and experimental results with bar plots. Experiments were
carried out using three independent biological replicates (dark dots). Data are mean +s.d. A permutation test for heterogeneity comparison among
experimental outcomes and predicted phenotypes showed an accuracy above 0.8 for modelling predictions, this result is markedly higher than would
expected for a random result (~ 0.2-0.5, see Supplementary Fig. 11). Results regarding the gene YBR0O29C (CDS1-, phosphatidate cytidylyltransferase
(CDP-diglyceride synthase) yeast specific) are shown in Supplementary Notes. b, Algal growth rates were determined in co-culture with each mutant

strain (fungal KO) and the wild-type strain as control. ¢, Predicted metabolites exchanged for each pair condition, all fluxes were normalized by the
predicted flux for the wild type. HXAN, hypoxanthine; FOR, formate; ETOH, ethanol.

Methods

Community metabolic model reconstruction. The phototrophic community
model was reconstructed using the metabolic models of C. vulgaris UTEX 395,
iCZ843 (ref. '°) and S. cerevisiae, IMM904 (ref. 7). Properties of individual and
CM models are listed in Supplementary Table 1. Fields such as gene matrix and
reaction localization were created de novo if missing. Naming of reactions and
metabolites was adjusted to be consistent between models. After manual curation,
the quality control and assessment tests for AT, NADPH and NADH maintenance
were executed for each model using the available tools in COBRA toolbox"' and
formulation in equation (1).

The models iCZ843 and iMM904 were integrated into a combined model using
the COBRA toolbox as described*. An artificial compartment referred to as SMP*
was created during the CM model manual curation process. The SMP defines the
connectivity of individual models and the extracellular space through a common
metabolite pool. Metabolites suitable for sharing were manually set (53 alga- and
164 fungus-associated metabolites) according to experimental data, such as growth
curves using the BIOLOG system (Supplementary Table 2)'*"”. Experimental data
was used to set constraints on uptake of CO, (13.6 mmol per g (dry weight) h™"),
glucose (0.75 mmol per g (dry weight) h™'), and other compounds (for example,
nitrate, nicotinamide and pantothenate), to simulate growth of the community
members (Supplementary Table 3).

Transport reactions from SMP to each microorganism were created
within the boundaries shown in equation (1). Uptake or secretion fluxes
through reactions associated with SMP were determined by flux balance
analysis. For example, when the exchange flux of the reaction or metabolite
was vital for simulating growth, the exchange reaction associated with
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this process carries flux, meaning that not all reactions in the SMP carry flux
at the same time.

Constraints and simulation tools. Photosynthetic microbes are able to adapt and
drastically change the elemental composition of their biomass (carbon, nitrogen,
phosphorus, and sulfur) in response to environmental perturbations®. The alga
C. vulgaris is able to adjust its elemental composition during nitrogen starvation,
resulting in changes in its proteins, lipids, carbohydrates, and nucleotides”. iCZ-
CvSc(1748) was constrained using six different biomass compositions, in which
the available biomass compositions of the alga were alternated with the single
biomass composition of the fungus'®". Every pairwise biomass composition
(alga-fungus) was set as an individual biomass objective function. Standard
constraints, such as light, CO,, and uptake rates of BBM components were applied
to predict the overall and member-specific growth rates (Supplementary Table 3).
The glucose uptake rate was calculated on the basis of experimental data obtained
from the co-culture.

All CM-model simulations were performed using the Gurobi Optimizer v.5.6.3
solver (Gurobi Optimization) in the COBRA toolbox*' for MATLAB (MathWorks).
We simulated the maximal growth rate of members in the community using
flux-balance analysis together with OptCom (equation (1)), an algorithm
that allows the optimization of multiple objective functions at the same time
considering thermodynamic, capacity and mass constraints (Ib, ub and biomass
stoichiometric coefficients). Although both members are considered independent
and the reactions in each microorganism are mathematically assumed to have a
self-governing role in every microorganism, the community growth rate results
from the sum of fluxes through each member-biomass reaction. The amplitude of
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metabolic fluxes (see Fig. 1b) was determined using flux variability analysis and
random sampling. To uniformly sample the solution space of iCZ-CvSc(1748), the
model was reduced as previously described and optGpSampler'® for MATLAB with
Gurobi Optimizer v.6.5.0 was used.

v=v+n

max(c’.v)

subjecttoS.v =0

Ib<v<ub (1)

Transport
—1,000<v<1,000

Growth rates characterization and robustness analysis. The CM model was used
to simulate growth rates and to predict metabolic interactions under standard
conditions (Fig. 1b). The main metabolic compounds affecting community
interactions were identified, that is glucose, O,, NH,, and NO, and sensitivity
analysis, looking for member-specific growth responses to environmental
conditions, was performed by varying uptake rates. The sensitivity analysis deploys
phenotypic phase planes facilitating the observation of effects on the objective
functions by varying a particular constraint"’. Predicted growth rates in mono- and
co-culture were compared with experimental results.

Environmental conditions that benefit or harm growth rates of both
microorganisms in the community and monoculture were identified and
corresponding media composition were determined. Flux-balance analysis
solutions encompass the calculation of shadow prices, which show changes in
the growth rate by simulating single supplementation for all metabolites in the
metabolic network, iCZ-CvSc(1748). Negative shadow prices describe metabolites
that are demanded or are limiting the growth rate, whereas positive values identify
metabolites that are excreted in order to improve the objective value®. Metabolites
limiting the growth were computed for all six alga models with different biomass
compositions and all six co-culture models (Fig. 3b). Metabolites (that is butanal,
valine, 4-hydroxybenzoate, tyrosine, tryptophan and riboflavin) predicted to affect
the growth rate of individual members and the phototrophic community were
tested and their effect on growth was confirmed experimentally.

A robustness analysis at different biomass compositions was performed,
looking at robustness of fluxes of cross-fed metabolites and shadow prices.
Simulations were carried out at controlled changes in growth rate of individual
members and the community (Supplementary Fig. 7-8). A confusion matrix
and various measures of quality, such as accuracy, specificity, sensitivity, positive
predicted, negative predicted and Matthews correlation coefficient, were estimated
according to ref. **.

Predicting the rescue of phenotypes in gene knockouts. In silico gene deletion
analysis was completed by iteratively removing reaction(s) associated with each
gene in the combined model, iCZ-CvSc(1748), as well as for iCZ843 and iMM904.
Every knockout network was used to determine the maximum growth rate of

the community members. This step was iteratively performed for the six models
with different biomass objective functions. Genes predicted essential and non-
essential in mono- and/or co-culture were compared. Furthermore, we explored
the possibility of manipulating growth rates of microorganisms in the phototrophic
community by genetic modifying the fungus (knockout strains). Within this
analysis we evaluated conditions as stabilizing, improving, or decreasing growth
phenotypes of the community members. We also studied how the community
manages to survive when the alga is co-cultured with fungus strains containing
lethal traits (Fig. 4). Simulations were organized in a confusion matrix framework
and the statistics and machine learning toolbox of MATLAB (MathWorks)

was used to calculate 10,000 permutations (two-sided t-test, P<0.0001) over
experimentally determined and predicted growth rates of the partners in
monoculture and co-culture (Supplementary Fig. 11).

Strains. C. vulgaris UTEX 395 (alga) was obtained from the Culture

Collection of Algae at the University of Texas at Austin. Wild-type S. cerevisiae
strain $288c (fungus) was obtained from the American Type Culture Collection
(ATCC 204508). S. cerevisiae knockout strains (YPR0O35W, YKL0O55C, YALO12W,
YHR007C, YJR077C, YPL262W, YDR529C and YGL191 W) were obtained

from GE Lifesciences. S. cerevisiae temperature-sensitive-knockout strains
(YBRI153W, YBR029C, YDR341C, YMR208W, YER003C, YFL045C and
YDL055C) were provided by P. Stirling (Terry Fox Laboratory, BC Cancer Agency,
Vancouver, British Columbia, Canada). Strain knockout traits, for example,
standard name, essentiality phenotype and metabolic pathways, can be found in
Supplementary Table 9.

Medium. Sterile BBM with 2% glucose was used to grow the community
members in mono- and co-cultures. BBM consists of NaNO, (250 mg1™), KH,PO,
(176 mgl™), K,HPO, (75mgl~"), MgSO,-7H,0 (75mgl™), Na,EDTA (50 mgl™'),
KOH (31mgl"), CaCl,-2H,0 (25mgl™"), NaCl (25mgl™'), H,BO, (11.4mgl™),
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FeSO,7H,0 (4.98 mgl™'), ZnSO,-7H,0O (8.83mgl™"), H,SO, (1.84mgl™),
CuSO,-5H,0 (1.57mgl™"), MnSO,-H,0 (1.44mgl™'), MoO, (0.71 mgl™') and
CoCl,-6H,0 (0.50mgl™"). The sole nitrogen source in BBM is NaNO,. For some
experiments, NaNO, was substituted with NH,Cl (0.055g1~" and 13.5g1™"), that is,
BBM-NH,. Specific growth effects were tested by adding glycerol, butanal, valine,
4-hydroxybenzoate, tyrosine, tryptophan and riboflavin (1 mM each)

to the medium.

Growth conditions. Standard growth tests were performed in 250 ml flasks
containing 25 ml of culture medium (2% glucose in BBM medium) and the
community members were inoculated at a ratio of 1:1 based on cell number.
Flasks were subjected to fluorescent light (130 pmol photonsms™!) with a 12:12h
light:dark cycle. For the fungus-knockout experiments, cultures were grown in
25ml T25 flasks containing 10 ml of autoclaved BBM with 2% glucose using a
fluorescent light source with intensity of 130 pmol photons m~s~" and mixed with
an orbital shaker at 40 r.p.m. The pH in the medium was measured every day and
0.1 M sodium hydroxide was added to maintain a pH of 6.8. Experiments with
varying nitrogen sources (NO; and NH;) and added metabolites (that is butanal,
valine, 4-hydroxybenzoate, tyrosine, tryptophan and riboflavin) were performed in
250 ml flasks containing 50 ml of autoclaved BBM with 2% glucose.

Analytical methods. Glucose concentrations were measured with an YSI 2700
analyser (YSI). NO, and NH, were measured with a nitrite-nitrate assay kit
(Sigma) and ammonium assay kit (Megazyme), respectively. Cell counts for the
community members were determined by flow cytometry. Metabolomic analysis
was performed as previously reported*. RNA extraction, library generation

and sequencing were performed by harvesting and snap-freezing cells in liquid
nitrogen in biological triplicates for each condition. Cell lysates were prepared by
grinding the frozen cell pellets in liquid nitrogen with 400 ul of RLT buffer (Qiagen
RNeasy kit). RNA was stabilized by the addition of 2 ml Trizol reagent (Thermo
Fisher Scientific) to each 1 ml of lysate. Total RNA was extracted using the RNeasy
kit (Qiagen). mRNA was enriched using the Dynabeads mRNA purification kit
(Invitrogen). Sequencing libraries were generated using the KAPA RNA HyperPrep
kit (Roche) and by following the recommended protocol. The libraries were
paired-end sequenced on an Illumina HiSeq TM 4000, using 100-base pair cycle
kits. The sequencing adaptors were trimmed using the trim_galore program®. The
reads were obtained from NCBI database™ and aligned to the C. vulgaris genome
(Assembly No. ASM102112v1) and to the S. cerevisiae genome (accession No.
NC_001133). Subread package-featureCounts (v.1.5.0-p1)*” was used to determine
reads for each coding region. The aligned sequencing reads (Supplementary

Table 12) were used to determine RNA expression as fragments per kilobase per
million. The aligned reads were also used to determine differential gene expression
using DESeq2 (ref. **).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The phototrophic community model, as well as individual models are available
in Supplementary Dataset 1 and are described in Supplementary Table 1.

Models constrained with different biomass compositions are also provided

in Supplementary Dataset 1 and described in Supplementary Table 4.
Supplementary Information is also available at https://github.com/cristalzucsd/
PhototrophicCommunities. All sequencing reads were deposited in the Sequence
Read Archive under BioProject PRINA496045, with specific numbers listed in
Supplementary Table 12.

Code availability

Computer code will be provided upon request from the corresponding author.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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OO0 X X XO KX XK

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Physiological data was collected from experiments carried out in biologically independent triplicates. The reads were aligned to the C.
vulgaris genome (Assembly No. ASM102112v1) and to the S. cerevisiae genome (accession No. NC_001133). Subread package-
featureCounts (version 1.5.0-p1) 11 was used to determine reads per each coding region. The aligned sequencing reads were used to
determine RNA expression as fragments per kilobase per million. The aligned reads were also used to determine differential gene
expression using DESeq?2.

Data analysis Model simulations were performed using the Gurobi Optimizer Version 5.6.3 solver (Gurobi Optimization Inc., Houston, Texas) in the
COBRA Toolbox 3 for MATLAB R2017b (The MathWorks Inc., Natick, MA)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The phototrophic community model (CM-model) as well as individual models (M-models) are available in Supplementary Dataset 1 and described in Supplementary
Table 1. Models constrained with different biomass compositions are also provided in Supplementary Dataset 1 and described in Supplementary Table 4. Dataset 1
is available in the Github repository https://github.com/cristalzucsd/PhototrophicCommunities. Additionally, all sequencing reads is available in the Sequence Read
Archive under BioProject PRINA496045, with specific numbers listed in Supplementary Table 12.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Determination of cellular communication in a phototrophic community, integrating metatranscriptomics, metabolomics, and
phenotyping with computational modeling.
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Research sample Samples of the phototrophic community composed of the photobiont, C. vulgaris, and the mycobiont, S. cerevisiae, and individual
members were subjected to different treatments e.g. nutrients addition (43 conditions), target metabolomics and
metatranscriptomics (2 conditions), and knock-outs (13).

Sampling strategy Not applicable. The experimental design for all treatments did not test for interactions between treatments.
Data collection Geng Yu, Chien-Ting Li, Ting-Ting Li, and Liqun Jiang collected the data in a systematic matter to evaluate the response variables such
as growth and metabolites concentration. In the case of RNA-seq data the samples were collected by Chien-Ting Li during the bionts

exponential phase under monoculture and coculture conditions.

Timing and spatial scale  Not applicable. Samples were taken in steady state.

Data exclusions Data was not excluded

Reproducibility All experiments, metatranscriptomics, metabolomics, and phenotypic of gene knock-outs, were carried out at least in triplicate.
Randomization Not applicable.

Blinding No blinding was done in this study. Experiments were model-driven and data are quantitative, most measurements are made using a

machine, and not easily subject to operator bias.

Did the study involve field work? || Yes X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZ |:| ChlIP-seq
Eukaryotic cell lines IZ |:| Flow cytometry
Palaeontology IZ |:| MRI-based neuroimaging
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