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Interaction-free measurement (IFM) has been proposed as a method of reduced-damage electron
microscopy [1-3]. Recently, with the implementation of Mach-Zehnder interferometers in conventional
transmission electron microscopes (TEMs), it has become possible to potentially implement IFM in these
tools [4-6]. Therefore, a comparison of the theoretical performance of IFM with conventional microscopy
is of interest [7].

In this work, we theoretically analyzed the performance of IFM imaging of both opaque-and-transparent
and semitransparent samples, and compared it to the performance of conventional scanning transmission
electron microscopy (STEM)[8]. For opaque-and-transparent samples, we compared the performances of
the two schemes using two metrics — P, ., the probability of misidentifying an opaque pixel as transparent
or vice-versa, and g mage» the mean number of electrons required to image an opaque pixel. Figure 1(a)
compares P, for [FM with that for conventional STEM, at a constant 7g,mage 0f 2.5 electrons per pixel,
for q (the prior probability of a given pixel being opaque) between 0 and 1. We performed this comparison
for IFM and conventional STEM both with and without a detector for scattered electrons (D), to account
for different microscope configurations. We can see that P... was lower for IFM (green dashed-dotted
curve) than conventional STEM (purple solid curve) for a wide range of g. This includes the important
limit of low g, which is commonly encountered for high-transparency electron microscopy samples.

In figure 1(b), we compare Py VS flgamage for IFM and STEM, for ¢ = 0.5. In these calculations, we
included a sample re-illumination scheme based on updating a prior for each pixel of the sample after each
round of illumination with a Poisson-limited electron beam, based on the statistics at the imaging
detectors. The re-illumination for a pixel ceases once a stopping criterion is met. This scheme reduces
Ngamage for both IFM and STEM imaging to their ideal values - % for IFM imaging with D (green solid
curve with square markers) and 1 for STEM imaging with Dy (purple solid curve with circle markers).
Therefore, conditional re-illumination allowed us to circumvent the Poisson statistics of the beam.

For semi-transparent samples, we treated the transparency a € [0,1] as a continuous random variable.
The statistics at the imaging detectors can be used to form an estimate of a, and the performance of the
estimator can be analyzed by looking at its mean squared error (MSE). For unbiased estimators, the inverse
of the classical Fisher Information (FI) forms a lower bound for this MSE (Cramér-Rao bound). We found
that the FI for IFM and STEM imaging was identical, shown by the solid blue curve in figure 2. Figure 2
also shows the MSE for two estimators for &« — &; and @, calculated using Monte-Carlo simulations.
These estimators use the counts from the imaging detectors in different ways - @; (purple dashed curve)
averages over these counts to estimate a, while @&, (orange dashed-dotted curve) uses the square of the
difference between the counts. This analysis is important for establishing the best estimator for the pixel
transparency. Future work will focus on combining this analysis with conditional re-illumination, to obtain
the best possible performance for IFM imaging of semi-transparent samples[9].
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Figure 1: P, and fig;mage for [IFM and STEM with and without Dg. (2) Perr vs q for gamage = 2.5

electrons per pixel. IFM (green dashed-dotted curve) outperforms STEM (purple solid curve) for g < 0.8.
(b) Perr VS Ngamage for ¢ = 0.5, with conditional sample re-illumination. f1gamage 1s limited to 1 for STEM

and % for IFM with Dy for arbitrarily low P,
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Figure 2: MSE vs a for IFM. The theoretical Cramér-
Rao bound is indicated by the solid blue curve. The
dashed purple curve is the MSE for estimator a7, while
the dashed-dotted ornage curve is the MSE for estimator
a,. These MSEs were calcluated using Monte-Carlo
simulations. The MSE for @; is very close to the
Cramér-Rao bound, and much lower than the MSE for
a,. However, MSE for &, is approximately constant for

all a.



