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a b s t r a c t

The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of
time-synchronized, geographically separated, optically pumped atomic magnetometers that is being
used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic
couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work
presents a data analysis procedure to search for axion dark matter in the form of topological defects:
specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain
wall crossing the Earth creates a distinctive signal pattern in the network that can be distinguished
from random noise. The reliability of the analysis procedure and the sensitivity of the GNOME to
domain-wall crossings are studied using simulated data.

© 2020 Published by Elsevier B.V.

1. Introduction

The compelling evidence for dark matter [1] has inspired
various theories to explain its nature [2,3]. Many of these the-
ories propose new particles as dark matter candidates [2,4], and
various experiments have been designed to search for these par-
ticles [5–9]. A well-motivated class of plausible dark matter con-
stituents are axions and axion-like particles [10,11]. The canonical
QCD axion was originally introduced to solve the strong-CP prob-
lem [12], and variants of this idea have surfaced, for example, in
string theory [13] and in solutions to the hierarchy problem [14].
Hereafter, ‘‘axion’’ will refer to any axion-like particle and not
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only the canonical axion (which possesses particular constraints
on the mass-coupling relationship).

Axions may form topological defects such as domain walls
[15,16] or composite objects such as axion stars due to self-
interactions [17–20]. In particular, axion domain walls form be-
tween spatial domains wherein the axion field is centered around
discrete vacua — so the transition between these states must
include field values that are not locally vacuum states. Axion
domain walls are formed during a phase transition as the universe
cools through expansion [21]. If the phase transition occurred
after inflation, domain walls may continue to exist today; oth-
erwise inflation would have pushed other domains outside of the
observable universe. The domain walls may contain a substantial
amount of energy, which may explain some component of dark
matter [16] and possibly dark energy [22]. If the axion domain
walls are a component of dark matter, it is reasonable to assume
that they are virialized in the galaxy according to the standard
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Table 1
Characteristics of the sensors used for the simulated data. This information is
based on GNOME but may not fully reflect the real network. The positions,
orientation of the sensitive axes, and noise are listed. The noise is the standard
deviation of the Gaussian-distributed background used in the simulations.

Location Orientation Noise

Station Longitude Latitude Az Alt (pT)

Beijing 116.1868◦ E 40.2457◦ N +251◦ 0◦ 10.4
Berkeley 122.2570◦ W 37.8723◦ N 0◦

+90◦ 14.5
Daejeon 127.3987◦ E 36.3909◦ N 0◦

+90◦ 116
Fribourg 7.1581◦ E 46.7930◦ N +190◦ 0◦ 12.6
Hayward 122.0539◦ W 37.6564◦ N 0◦

−90◦ 14.3
Hefei 117.2526◦ E 31.8429◦ N +90◦ 0◦ 12.0
Krakow 19.9048◦ E 50.0289◦ N +45◦ 0◦ 15.6
Lewisburg 76.8825◦ W 40.9557◦ N 0◦

+90◦ 54.5
Mainz 8.2354◦ E 49.9915◦ N 0◦

−90◦ 6.8

halo model (SHM) with velocity dispersion of ≈290 km/s [23–25].
In this study, an analysis method is developed to search for axion
domain walls using a global network of optical magnetometers,
though the methods discussed in this paper could be applied to
search for other objects such as axion stars.

The axion field can couple to ordinary matter in a variety of
ways. For example, fermion spins may couple to the gradient of
the axion field [21]. If fermionic matter crosses a region with an
axion field gradient, such as a domain wall, it would experience
a transient spin-dependent energy shift. This energy shift would
appear as an effective magnetic field in atomic magnetometers
which measure the energy-level splitting of different spin states.

To search for such transient spin-dependent effects, optical
atomic magnetometers [26] were set up around the Earth to form
the Global Network of Optical Magnetometers for Exotic physics
searches (GNOME) [27,28]. At the core of each GNOME magne-
tometer is a vapor cell containing a gas of spin-polarized atoms.
The atomic vapor cells are mounted within multi-layer magnetic
shields that isolate them from external magnetic perturbations
while retaining sensitivity to exotic fields causing spin-dependent
energy shifts [29]. Based on the experimental configuration, each
magnetometer is sensitive to fields along a particular spatial axis
and relatively insensitive to fields in the plane perpendicular to
the sensitive axis. Each magnetometer has a characteristic band-
width, typically ≈ 100 Hz. There are additional sensors (e.g., ac-
celerometers, gyroscopes, unshielded magnetometers, laser diag-
nostics) to monitor data quality. Under typical operating condi-
tions, individual GNOME magnetometers experience occasional
periods of poor-quality data which are flagged by these additional
sensors. Furthermore, there are down times during which the
magnetometers are off and no data are collected. The position,
alignments of sensitive axes, and average noise background of
nine of the magnetometers are shown in Table 1. The noise
background of each magnetometer is estimated by the average
standard deviation of 30 min pre-processed data segments from
December 2017. For further technical details on characteristics of
the GNOME, see Ref. [27].

If the Earth encounters a domain wall, a distinctive signal
pattern is imprinted in the network. Signals would appear at each
station at particular times and with particular amplitudes. The
pattern is determined by the relative velocity between the Earth
and the domain wall as well as the orientation of the sensitive
axes of the magnetometers. These distinctive signal patterns are
used to distinguish potential domain-wall-crossing events from
random noise. In the event of a discovery, signal characteris-
tics can be used to extract information about the axion domain
wall. For example, the physical thickness of the domain wall is
inversely proportional to the axion mass [21].

This paper describes an analysis algorithm to search for signal
patterns in the GNOME data that are consistent with domain-
wall-crossing events and quantify their statistical significance.

Additionally, a definition of network sensitivity is established that
characterizes the properties of domain-wall signals observable by
GNOME.

Before discussing the details of the analysis methods, a geo-
metrical interpretation of the principles of the analysis procedure
is introduced in Section 2. The analysis procedure follows sev-
eral steps that are described in detail in Section 3. The data
are first binned and filtered to optimize the detection poten-
tial of the network. Then the processed data are analyzed to
search for correlated signals matching the predicted pattern as-
sociated with the Earth crossing a domain wall. Each of the
magnetometer’s data are time-shifted according to the expected
delays. The most likely effective field vector associated with a
potential domain wall is calculated at each time, accounting for
the directional sensitivity of the sensors. Consistency between
the expected and observed signals in the network is assessed to
determine if the deviation between the observed and expected
signal patterns can be explained by random noise. The statistical
significance of a potential domain-wall-crossing event is assessed
according to its signal-to-noise ratio. Thresholds used to evaluate
both the consistency with a domain-wall signal pattern and the
statistical significance of the event are determined by studying
false-positive and false-negative rates [30]. This analysis proce-
dure is shown to be sensitive to domain-wall-crossing events
characterized by a particular range of parameters as discussed in
Section 4. The analysis algorithm is tested with simulated data,
as described in Section 5. Finally, concluding remarks are given
in Section 6.

2. Geometrical picture

A geometric viewpoint of the measurements is used to de-
scribe the analysis procedure. The magnetometer network mea-
sures the signals {si} from a domain-wall-crossing event in n
magnetometers, where si corresponds to the amplitude measured
at the ith magnetometer. A single measurement in the network
can be expressed as an n-dimensional vector s. The measure-
ments, s, have a corresponding uncertainty that can be expressed
in terms of the covariance matrix Σs. Since the magnetometers
have uncorrelated noise, Σs is diagonal with entries correspond-
ing to the respective variance in the magnetometer signals. For
statistical considerations of significance, it helps to describe the
measurements in terms of signal-to-noise ratios. The abstract
vector space of all possible measurement vectors s can be rescaled
by the noise, so that a point u ↦→ ũ ≡ Σ

−1/2
s u, where Σ

−1/2
s is

the matrix square-root2 of Σ−1
s . In the rescaled coordinates, each

component of the vector s̃ corresponds to the signal-to-noise ratio
for some sensor.

The effective field associated with a domain-wall-crossing
event can be described using a three-dimensional vector m nor-
mal to the plane of the domain wall. This effective field vector will
be referred to as the ‘‘m-vector’’. For GNOME, the m-vector de-
scribes an effective magnetic field value due to coupling between
atomic spins and an axion field. The strength of the signal is
proportional to the norm ∥m∥. Note that there is some ambiguity
since m can be either in the same or opposite direction to the
relative velocity v between the domain wall and the Earth. One
can relate m to the observed signal s with the linear equation
Dm ≈ s, where D is a n × 3 matrix whose rows represent
the sensitive direction of the magnetometers, adjusting for the
interaction of an axion field with the particular atomic species

2 Specifically,
(
Σ

−1/2
s

)T
Σ

−1/2
s = Σ−1

s . Existence of this matrix follows from
the fact that the covariance matrix is positive definite. In this particular case,
Σ

−1/2
s = diag{σ−1

i }, where σi is the noise of the ith magnetometer expressed as
the standard deviation.
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Fig. 1. Geometric view of consistency check focusing on the plane in rescaled
measurement space spanned by two sensors. A measured signal s̃ shown with
the expected amplitudes µ̃ defined by the physical parameters that would most-
closely reproduce the measurement. The dashed line represents the subspace of
possible domain wall measurements, while the dotted line represents the space
of measurements that would yield the same expected amplitudes. The degree
of statistical agreement between s̃ and µ̃ scales with their distance

√
χ2 . The

signal-to-noise is given by the magnitude of µ̃.

used in each magnetometer [31]. Note that, in the event of a
real domain-wall-crossing signal, equality will not quite hold
due to measurement uncertainty. To distinguish the measured
amplitudes s from the expected observations from anm-vectorm,
µ ≡ Dm is introduced. According to this linear equation,3 all pos-
sible domain-walls signals are contained in a three-dimensional
subspace spanned by the columns of D. The points in this sub-
space can be expressed as either the three-dimensional vector
m or its corresponding point in the n-dimensional measurement
space, µ = Dm.

A key parameter used to test the consistency of an observed
signal s with that expected for a domain-wall crossing is the χ2.
Given an expected domain wall effective field vector m0, the χ2

is defined as

χ2
= (s − Dm0)TΣ−1

s (s − Dm0) . (1)

For the distance ∆s ≡ s − µ0 (for µ0 ≡ Dm0),
χ2

= ∆sTΣ−1
s ∆s = ∥∆s̃∥2. Thus, the χ2 is the square of the

distance from the set of measurements to the expected value in
rescaled measurement space. Minimizing the χ2 is the same as
finding the closest point between a measurement and a point µ̃
in the 3-dimensional subspace, which can be accomplished via a
projection. A pictorial model simplified to have only two sensors
and a one-dimensional subspace of possible measurements is
shown in Fig. 1.

In the GNOME analysis procedure, the geometric picture pro-
vided in this section serves as a means of visualizing the data.
In the rescaled measurement space, distances represent the de-
gree of statistical agreement and measurements corresponding to

3 It is possible to include non-linear effects, such as Earth’s rotation and non-
linear responses in the sensors, but these will not be considered here, because
they are expected to be negligible. For sensors on Earth with domain walls
traveling at 3 × 105 m/s, the effects of the Earth’s rotation will attenuate a
signal by about 0.3%.

domain-wall-crossing events exist in a three-dimensional linear
subspace. Values s in measurement space are constructed by
sampling values from each magnetometer at some time account-
ing for expected delays. The delays are estimated by selecting a
particular domain-wall-crossing velocity. As a result, a measure-
ment s can be generated for any given time and velocity, since
each velocity results in a different set of delays. The direction
of the velocity should be in agreement with the direction of the
calculated m.

3. Analysis procedure

The analysis procedure presented here is designed to search
the GNOME data for domain-wall-crossing events. These events
are modeled as a plane of finite thickness that travels through
the Earth at a constant velocity. For a given plane orientation and
speed,4 the signal pattern in the sensor network can be predicted.
Assuming a linear coupling between the axion field gradient and
fermion spins (i.e., of the form Jµ∂µa for Jµ related to the fermion
spin and a being the axion field [21]), a transient pulse will appear
in the measured magnetic field data as the domain wall crosses
the Earth [21]. The transient pulse amplitude observed by an
individual GNOME sensor is also affected by the specific axion-
field coupling to that atomic species [31] and the angle between
the axion-field gradient and the sensitive axis of the sensor [27].

The analysis procedure is composed of three steps designed
to find domain-wall events. First, in the pre-processing stage, the
raw data are filtered and a rolling average is applied in order
to enhance the detection capabilities of the network. Second, in
the velocity-scanning stage, the data from the individual mag-
netometers are time-shifted according to different domain-wall
velocities. This ensures that the transient signals corresponding to
a domain-wall crossing appear simultaneously in all magnetome-
ters. Third, in the post-selection stage, each network measure-
ment is characterized by three parameters: direction, magnitude,
and consistency between the observed signal pattern and the
expected signal for a domain-wall crossing. If an event passes
a set of thresholds applied to these three parameters, it will
be considered statistically significant (see Section 3.3.1). A basic
flowchart of the procedure can be seen in Fig. 2.

3.1. Data pre-processing

In order to optimize for domain-wall search, the data are pre-
processed through filtering and a rolling average is taken. Filters
are used to remove long-term drifts as well as noisy frequency
bands, e.g., the power-line frequency [27]. After filtering, we
perform a rolling average of the data over time Tavg. Averaging
the data enhances the signal-to-noise ratio for a certain signal
duration and avoids complications arising from different mag-
netometers having different bandwidths. However, filtering and
averaging data will also attenuate and modify the shape of the
signal. A detailed analysis of the effects of filtering and averaging
on the data is given in Appendix.

The filters attenuate frequency bands containing known noise
sources, however some non-Gaussian noise from unidentified
sources may remain. Therefore, the noise is determined after the
pre-processing steps. The uncertainty at a given time is estimated
by the standard deviation of the data around that time. In or-
der to minimize the effects of a signal in the estimation of the
noise, outliers are removed from the calculation of the standard
deviation.

4 For an ideal plane, only the velocity perpendicular to the plane is observ-
able. Thus, the velocity is entirely described by the speed and normal direction
of the wall.
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Fig. 2. Flowchart describing the analysis algorithm used to detect domain-wall-
crossing events in the GNOME data. After pre-processing, the data are aligned
in time according to a velocity scanning grid (see Section 3.2). Comparing the
measured and expected signals, different statistical parameters are extracted
to quantify the agreement (see Section 3.3.1). Thresholds are applied to these
statistical parameters to filter out plausible domain-wall-crossing signals (see
Section 3.3.2).

3.2. Scanning over velocities

After the pre-processing stage, the data are time-shifted so
that a domain-wall signal would appear at all magnetometers
at the same time. This is possible because, for a given relative
velocity between a domain wall and the Earth, the magnetometer
signals appear in a predictable pattern.

The sensors in the network are located at different positions,
{xi} on the surface of the Earth. A domain wall with speed ∥v∥
in direction v̂ crossing the Earth is observed by different sensors
at times {ti}. The time difference from when a wall passes two
locations can be expressed as

∆ti = (xi − x0) ·
v

∥v∥2 ,

where the sensor at x0 is used as a reference. The time at each
data point is shifted according to ∆ti to align all the signals. The
delays ∆ti are calculated in intervals of Tavg/2. Then, the cor-
responding points are extracted from the rolling averaged data.
After this operation, an aligned set of measurements calculated
with overlapping averaging windows is obtained. A graphical
representation of the time shifting operation can be seen in Fig. 3.

Earth-based sensors are in a noninertial (rotating) reference
frame. For Earth’s radius (≈ 6.4×106 m), rotation period (1 day),
and a domain-wall velocity of v ≈ 3 × 105 m/s, according
to numerical estimates, the additional signal delay due to the
Earth’s rotation would be ∆t ≲ 33 ms. This effect is significant

compared to the sensor bandwidth (expected to be ≈ 250 Hz)
and should be corrected. To first order in time derivatives, each of
the sensors moves at a constant velocity tangential to the Earth’s
surface, though only the component that is normal to the wall is
observable. Including this correction,

∆ti = ∆xi ·
v

∥v∥2 − δvi · v
, (2)

where δvi is the tangential velocity of the ith sensor at the cross-
ing time (when the wall crosses the center of the Earth). The first-
order correction reduces the relative time error to ∆t ≲ 0.05 ms;
well below the bandwidth of the GNOME magnetometers.

Assuming the Standard Halo Model (SHM), the distribution of
domain wall velocities can be predicted. Within this model, the
dark matter structures are virialized in the galaxy. This means
that the domain-wall velocity distribution is isotropic and quasi-
Maxwellian5 with dispersion σv ≈ 290 km s−1 and a cut-off
above the galactic escape velocity of vesc ≈ 550 km s−1 [25]. The
Earth moves through the dark matter halo with apparent velocity
towards the Cygnus constellation. A range of speeds and relative
angles with respect to the Earth movement are selected in the
analysis so that 95% of the expected velocities are observable.

The scanning step size is estimated by considering two an-
tipodal magnetometers. From Eq. (2) the changes in the delay
time with respect to variation in the speed can be estimated.
However, the delay is also dependent on the direction of the wall.
In order to give an upper bound, the direction giving the largest
variation of the delay is chosen. In addition, it is required that the
maximum delay change must be smaller than half the bin size,
Tavg/2, so the signal remains in the same bin. The speed range
given by the SHM is scanned in steps of

δv ≤
Tavgv2

4R⊕

, (3)

where R⊕ is the radius of the Earth. The same procedure can be
followed to establish a scanning step for the angles. The step is
given by

δθ ≤
Tavgv
4R⊕

. (4)

For a given speed, a lattice on the celestial hemisphere should
have a point within every circle whose diameter spans an arc of
δθ . Note that the scanning step size is dependent on the speed.

To determine the lattice of directions, a set of points evenly
distributed on the sphere are needed. One wants to guarantee
that any circle whose radius on the sphere is given by δθ [Eq. (4)]
contains at least one scanned direction. A roughly even distri-
bution of points on the sphere is generated using the Fibonacci
lattice method, with the number of points based on the step size
(see, e.g., Ref. [32] for a description). Briefly, the Fibonacci lattice
method is a means of generating a sequence of points that covers
a surface. In this case, each sequential point has an azimuthal
angle that increments by a factor of 2πϕ, where ϕ ≡

1+
√
5

2 is
the golden ratio, while the polar angle is incremented such that
the points are evenly distributed between the poles.

For each velocity, an abstract ‘‘measurement space’’ is con-
structed as described in Section 2. After adjusting for delays, the
amplitudes measured at a given time belong to the same event.
The events are represented as a vector in an n-dimensional space,
where n is the number of magnetometers. However, measured
events corresponding to a domain-wall crossing must lie in a 3-
dimensional subspace of the measurement space parametrized by
them-vector. The application of the mathematical tools presented
in Section 2 to the time-shifted data is discussed in the following
sections.

5 It is quasi-Maxwellian as opposed to Maxwellian due to the cut-off at the
galactic escape velocity and the relative velocity of the Earth.
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Fig. 3. Simulated GNOME data featuring a domain wall signal before time-shifting (left) and after (right). The ∆ti for the different stations are determined by their
geographical location and the velocity of the domain wall. The different amplitudes are determined by the orientation of the sensitive axes of the detectors relative
to the domain wall velocity.

Fig. 4. Illustration of the signal magnitude proportional to ∥m∥ found at different directions, v̂scan , across a single hemisphere. Left: a domain-wall-crossing event is
inserted in the data with effective field magnitude corresponding to 20 pT and direction at polar angle 60◦ and azimuthal angle 135◦ . Note that the amplitude of the
inserted signal is attenuated due to pre-processing. The bright arcs are the result of cases in which the different velocity does not change the delay time for some
magnetometer(s). Right: the same domain-wall-crossing event is inserted but the time delays at each magnetometer are randomized. The simulation is performed
using the magnetometers’ characteristics from Table 1.

3.3. Post-selection

After the measurements are temporally aligned according to
the scanned velocities, their agreement with a domain-wall cross-
ing is assessed by comparing the expected domain-wall signal
pattern with the observed pattern. In the geometrical picture,
the measured event is projected to the domain-wall subspace in
coordinates scaled by the noise of the magnetometers, and the
distance between the measurement and projected value quanti-
fies the statistical agreement of the observation with an expected
measurement; where the expected measurement is given by
choosing physical parameters of the wall that most-closely re-
produce the observed signal. Three parameters are relevant to
determine if a set of measurements is statistically significant:
the p-value measuring the statistical agreement between the
measured signals s and an expected domain-wall-crossing signal
µ, the angle between the scanned velocity v̂ and observed wall
orientation m̂, and the signal-to-noise ratio of ∥m∥.

3.3.1. Project into subspace
After time-shifting the data for a given velocity, one obtains

a measurement s at every time consisting of data from all active
sensors. At each time, there is an expected domain-wall-crossing
signal µ ≡ Dm that is the closest point in the subspace of
domain-wall signals to s when using rescaled coordinates (as
described in Section 2). The m-vector m describes the effective
field associated with the domain-wall-crossing event. Thus for
every scanned velocity, a ‘‘most likely’’ m-vector is found for the s
at every time; i.e., the m-vector that would result in an expected
signal that most closely reproduced the observed signal. In the
next stages of the analysis it is determined whether s is in sta-
tistical agreement with the ‘‘most likely’’ domain-wall-crossing
event and cannot be explained by random noise.

One can assume that the amplitudes from the n sensors {si}
(for i = 1, . . . , n) obey a linear equation with signal attenuation
caused by misalignment between the magnetometers’ sensitive
directions {d̂ i} and the effective magnetic field induced by the
axion field:

Dm = s for D ≡

⎡⎢⎢⎢⎢⎣
d̂
T
1

d̂
T
2
...

d̂
T
n

⎤⎥⎥⎥⎥⎦ , s ≡

⎡⎢⎢⎣
s1
s2
...

sn

⎤⎥⎥⎦ , (5)

where m is the three-dimensional m-vector whose norm repre-
sents the strength of the effective field and whose direction is
normal to the domain wall. In general, the magnetometers are
expected to experience different (though still linear) responses to
an event due to different couplings of the axion field to different
atomic species [31]. These effects can be included by multiplying
the corresponding row in D by the appropriate response fac-
tor, though all magnetometers are assumed to have the same
response here, for simplicity.

As discussed in Section 2, solving Eq. (5) as a least-squares
minimization problem – given amplitudes s and covariance Σs –
is equivalent to performing a fit/projection of s into the subspace
spanned by the columns of D. The result is

m = ΣmDTΣ−1
s s for Σm = (DTΣ−1

s D)−1 . (6)

Scanning velocities produces different values for s at a given time,
and therefore, different values for m. A maximum on the norm
of m is expected when the scanned velocity corresponds to the
domain-wall-crossing velocity present in the data, as can be seen
in Fig. 4. The figure shows the signal magnitude observed at the
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Fig. 5. Geometric view of consistency check simplified in a lower dimension. The dashed line on the left image represents the 3-dimensional subspace of expected
signals. A visualization of the thresholds where the green shaded region is accepted as a likely and significant signal. The signal-to-noise ratio threshold is Amin while
the χ2 threshold is χ2

max (See the web version of the article for color).

Fig. 6. Illustration of the signal magnitude found at different velocities, v̂scan ,
across a single hemisphere. The speed is kept constant. The same data as in Fig. 4
are used, however the requirement of a p-value greater than 0.05 is imposed.
The high-magnitude points are now reduced to a point corresponding to the
direction where the domain wall was injected.

time when the signal was inserted for different directions. The
arcs originate when, for different directions, the signal occurs at
the same delay time. The decrease in the signal magnitude is due
to the effects of pre-processing the data.

An important statistical result from the fit is the χ2 [Eq. (1)],
which describes the deviation between a measurement and ex-
pected signal pattern. Assuming that the noise in the measure-
ments are normally distributed, the χ2 values are distributed
according to the number of degrees of freedom (dim s−dimm =

n−3). The p-value is given by the integrated right tail of this dis-
tribution starting from the measured χ2. The p-value corresponds
to the probability that the residual between the expected and
measured values can be explained by deviations due to Gaussian
noise.

3.3.2. Thresholds
For each time and scanned velocity, a signal vector s and

its corresponding m-vector and p-value are determined. Mea-
surement vectors consistent with domain-wall crossings must be
distinguished from signals originating from noise or systematic
effects. This identification is accomplished by imposing thresh-
olds on the p-value, the signal-to-noise ratio, and the direction of
m.

The agreement between the observed event and the domain-
wall-crossing model is quantified by the p-value. This is related to
the distance from the measured point s to the subspace of domain
walls, see Fig. 5. If the p-value is small, the candidate event can be

rejected because the deviation from the expected signal pattern
is too large to be explained by uncertainty in the measurement.
For instance, if two sensors have the same sensitive direction,
then it is unlikely that they would report significant amplitudes
with opposite sign. The p-value is a powerful tool for rejecting
spurious spikes in signals from individual magnetometers, as can
be seen in Fig. 6. The magnitude reported could be large, however
the p-value would be small because the other magnetometers
would not feature a signal. The p-value threshold is chosen so
that only 5% of real domain-wall events would be misidentified
as noise. For Gaussian-distributed noise, this corresponds to a p-
value threshold of 0.05, meaning that only events with greater
p-values are processed further. However, if the noise is more
complex, the p-value corresponding to 5% false-negatives has to
be explicitly calculated, as shown in Section 5.1.

The data from each magnetometer are time-shifted according
to a discrete set of velocities (see Section 3.2). However, the di-
rection m̂ is reconstructed independent of the scanning velocity,
vscan. Therefore, the agreement between the scanned and recon-
structed directions must be checked. If the angular difference
between vscan and m is found to be larger than the angular lattice
spacing, from Eq. (4), the event is rejected; it is inconsistent with
a domain-wall crossing because the velocity v̂ is not parallel to
the axion field gradient m̂.

After an event has passed the consistency checks, its signifi-
cance has to be evaluated in terms of magnitude. The magnitude
is given by the norm of the projection of s onto the domain-wall
subspace,

∥m∥ ±
1

∥m∥

√
mTΣmm , (7)

where Σm is the covariance matrix of the m-vector defined in
Eq. (6). The quotient of the norm and its uncertainty is the signal-
to-noise ratio. Events featuring a large signal-to-noise ratio are
less likely to be produced by noise. Since the noise in the network
is not purely Gaussian, the specific signal-to-noise ratio needed
to claim a detection is fixed by studying the data. For this, a
data set not containing any sought signal but featuring the typical
noise characteristics of the network is analyzed. The rate of events
found is studied with respect to their signal-to-noise ratio. Then
the probability of finding an event above certain signal-to-noise
threshold is assessed. This is called false-positive analysis and a
case with simulated data is evaluated in Section 5. The thresholds
are visualized in Fig. 5.

The rate of events found is expected to follow Poissonian
statistics. Namely, the probability that one finds nf events over
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Fig. 7. Directional sensitivity of the network according to the configuration used to generate simulated data (see Table 1). The color overlayed on the map of the
Earth is β1(m̂) from Eq. (11), where the position on the map corresponds to the first contact point of a domain wall on the Earth’s surface (See the web version of
the article for color).

an interval of duration T , with an expected occurrence rate, r , is
given by

P(nf ; rT ) = e−rT (rT )nf

nf !
. (8)

For an interval Tsamp of data, if nf events are found, the upper-
bound on the rate r0 ≥ r at a confidence level C is given by
solving

C =

∫ r0Tsamp

0
P(nf ; x)dx . (9)

From Eq. (8), the probability of finding more than zero events over
the course of a T -long run is then

PFP ≤ 1 − e−r0T . (10)

To reach 5σ significance for detection, the maximum probability
for finding more than zero events due to noise must be PFP <

5.7×10−7, or 1 in 1.7 million, over the course of a data collection
run. The signal-to-noise threshold for detection is chosen so the
rate of events found is smaller than 1 in 1.7 million. An example
with simulated data is given in Section 5.

Note that if no domain-wall-crossing event is found above
the detection threshold, no detection can be claimed. The re-
jected event found with the maximum signal-to-noise ratio de-
fines the sensitivity threshold of the network for the measured
time interval.

4. Network sensitivity

In order to define the detection capabilities of GNOME, a
notion of sensitivity must be established. Defining the matrix D
and m-vector m as in Eq. (5), one can define a function A that
takes the effective field vector m, noise Σs, and D and returns a
collective signal-to-noise ratio.

The output of this function is compared to some thresh-
old α for finding a domain-wall-crossing event. For example, if
A(m, Σs,D) ≥ α for the event, then a signal is found, otherwise
it is missed. Thus, the exact definition of A is based on the
analysis method. For the analysis described here, one finds signals
by searching for instances in which the norm of the m-vector
exceeds some multiple of its uncertainty. According to Eq. (7),
one finds

A(m, Σs,D) =
m√

m̂T (DTΣ−1
s D)−1m̂

.

Observe that when m is an eigenvector of DTΣ−1
s D, then

A(m, Σs,D) = ∥Σ
−1/2
s Dm̂∥ ≡ A′(Σ−1/2

s Dm̂).
The sensitivity of the system can be defined as the mini-

mum signal needed to guarantee that the signal-to-noise is at
least α. The sensitivity in the direction m̂ is obtained by solving
A(βαm̂, Σs,D) = α for βα:

βα(m̂) ≡
α

A(m̂, Σs,D)
= α

√
m̂T (DTΣ−1

s D)−1m̂ , (11)

since A is absolutely scalable — i.e., A(βm̂) = |β|A(m̂). Thus,
if βα(m̂) is large, then a large magnitude m is needed to in-
duce a measurable signal in the direction m̂. The signal-to-noise
threshold will be α, so a stricter, higher threshold results in a
proportionally worse sensitivity.

An example of the network sensitivity is plotted in Fig. 7
in geocentric coordinates for α = 1. The configuration of the
sensors is described in Table 1. A clear pattern can be observed
where the network is more sensitive to certain directions. An
ideal configuration would show an homogeneous sensitivity in
all directions. Nevertheless, the network features a fairly uniform
sensitivity, only varying by a factor of two between the best and
worse direction.

To reduce βα(m̂) to a single number, one could assume a
distribution of signals based on some model (e.g., the SHM) and
take the weighted average of the sensitivity over the signal dis-
tribution. Alternatively, one could achieve a sensitivity bound by
considering the worst-case scenario in which βα is maximized. In
this case, this is accomplished by finding the smallest eigenvalue
of DTΣ−1D. Denote λmin as the smallest eigenvalue and x̂min as
the corresponding eigenvector. Then the sensitivity in the worst
direction is α/λmin for the worst direction x̂min. Note that the op-
timal orientation for adding an additional sensor to the network
would be x̂min in any location. Additionally, filtering and binning
will alter the sensitivity of the network to particular signal shapes
(e.g., for signals with different widths). These effects are discussed
in Appendix.

5. Testing analysis methods

The previous sections present the analysis algorithm and the
relevant statistical parameters to identify domain-wall crossings
in the GNOME data. In this section, this analysis algorithm is
tested with simulated data. The reliability of the algorithm is
assessed based on the false-negatives and false-positive rates.
False negatives occur when a domain-wall crossing is present but
the algorithm fails to identify it, while false positives occur when
noise is wrongly identified as a domain-wall crossing.
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Fig. 8. Blue line: the percent of false-negative signals as a function of p-value.
This line was determined by simulating domain-wall signals on Gaussian-
distributed noise (as per Table 1). Red line: percent of true-negative signals as
a function of p-value. The true-negative signals were generated similar to the
true-positive signals, except with amplitude measurements inconsistent with a
domain-wall signal (See the web version of the article for color).

5.1. False-negative analysis

The proposed algorithm has to be able to identify signals
which match the characteristics of a domain-wall-crossing event
occurring at any time in the data. The expected directions and
speeds of crossings are described by a probability distribution
based on the SHM (see Section 3.2). Though the magnitude of m
and the duration of the domain-wall crossing can take any values,
the range of observable values is limited by the sensitivity of the
sensor network (see Section 4).

Twenty-minute-long simulated data segments with 512 Hz
sampling rate are constructed with Gaussian-distributed noise
according to Table 1. A Lorentzian-shaped pulse is added into
the data of each magnetometer according to the model of a
domain-wall-crossing event for a given velocity. The timing and
amplitudes of the pulses are calculated based on Eqs. (2) and (5).
The crossing time is defined to be the moment the domain wall
crosses the center of the Earth; this fixes the relative delays.

For the false-negative analysis, the crossing time and domain
wall direction v̂ are randomized while the speed is kept constant.
An effective field magnitude corresponding to 20 pT is chosen
so that the signal amplitudes are clearly visible in the averaged
data. A rolling average of the data is taken with averaging time
of Tavg = 1 s, and a high-pass filter with a cut-off frequency of
1/300 Hz is applied to the data. Moreover, notch filters are applied
corresponding to the electric network frequency for each station
to include the effects of filtering on the signal.

The p-value represents the likelihood that deviations between
the amplitudes measured at each sensor and the expected am-
plitudes corresponding to the most likely domain-wall-crossing
event (as defined in Section 3.3.1) can be explained by the char-
acteristic noise of the sensors. A relevant check of the analysis
algorithm is the distribution of the false negatives with respect to
the p-value. Domain-wall signals inserted in Gaussian-distributed
noise should exhibit a flat distribution with respect to the p-
value. This can be seen in blue in Fig. 8, where the cumulative
probability of finding an event is proportional to the p-value,
confirming the expected behavior.

In contrast, if pulses with random amplitudes are inserted into
Gaussian-distributed noise, the p-value is generally close to zero;
which can be seen in the red line in Fig. 8. The line is obtained
by inserting pulses with timings consistent with a domain-wall
crossing but having random amplitudes. This demonstrates how

Fig. 9. The false-positive analysis for the different stages of the post-selection.
The rates are reported as upper-bounds at 90% confidence. The data are
composed of Gaussian noise with spurious Lorentzian spikes. The amplitude
of the spikes take random values between −20 pT and +20 pT. The black
line accounts for all the events, the blue line introduces the p-value threshold,
the green includes the angle selection. In addition, the orange line shown the
extrapolation to 5σ significance of detection (See the web version of the article
for color).

the p-value threshold provides a method to distinguish signal pat-
terns matching domain-wall-crossing events from spurious non-
Gaussian noise (such as random ‘‘spikes’’ in the magnetometer
data).

5.2. False-positive analysis

In order to quantify whether a measured signal pattern is
sufficiently unlikely to occur due to random noise, it is necessary
to study the noise characteristics of the network. The first two
stages of the post-selection process are to identify events whose
p-values are above the designated threshold pmin and to identify
events for which the direction of m matches that of vscan within
the angular lattice spacing. Inevitably, some events arising from
noise may pass the thresholds on p-value and directional consis-
tency between m and v, so a third threshold characterizing the
signal-to-noise of a measurement is introduced. A 5σ significance
for an observed domain-wall-crossing event is imposed in order
to claim discovery of a domain-wall crossing. This means a prob-
ability of about 1 in 1.7 million of being produced by noise over
the course of the measurement campaign, T .

The number of events above a certain signal-to-noise thresh-
old is expected to follow Poissonian statistics. For a given period
of time and number of events detected, a bound with 90% confi-
dence level can be given as rate of false-positives per year. This
bound on the false positive rate can be determined by solving
Eq. (9) for r0, where nf is determined by simulating Tsamp-long
data. For events appearing seldom in the period of time analyzed,
the bound is inaccurate because there are not enough events to
accurately estimate the underlying rate. This effect is visible when
demanding high signal-to-noise ratio events. However, if one
would continue adding data, the rates are expected to continue
an exponential trend.

In order to test the exclusion power of the post selection
steps, simulated data with Gaussian-distributed noise and ran-
dom Lorentzian spikes are studied. The data are simulated in
20 min segments. Spikes are inserted randomly with a proba-
bility of 10% at each magnetometer with at most one spike per
simulated segment. The amplitude takes random values between
−20 pT and +20 pT, and the width is fixed to 0.5 s. The standard
deviation of the background noise is extracted from Table 1.

The spikes produce large signal-to-noise events which are
shown by the black dotted line in Fig. 9. However, because the
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Fig. 10. Left: False-positive analysis with different network sizes. The analysis is performed with Gaussian-distributed noise (solid lines) and Gaussian-distributed
noise with spurious spikes injected randomly (dashed lines). Right: sensitivity of the GNOME network when containing different amount of magnetometers active.
The box-and-whisker plots are constructed by considering all subsets of the nine magnetometers. The box-and-whisker plot separates ranges of 25% of the subsets
with the boxes marking the upper- and lower-quartiles separated by the median (orange line) (See the web version of the article for color).

spikes are unrelated to domain walls, the p-value of a spike event
is likely to be close to zero. Therefore, a significant amount of
high signal-to-noise events can be easily rejected by the p-value
threshold, as shown by the blue dotted line in Fig. 9. The rate of
detected events is further decreased with the angle threshold as
the green dotted line shows. After the post-selection procedure,
the rate of false positives is reduced by about four orders of
magnitude at a signal-to-noise ratio of 10. For reference, the solid
red line indicates the rate of false positives measured with only
Gaussian noise background (according to Table 1) and no spikes.
As expected, it decays exponentially with the signal-to-noise ratio
threshold.

For the 1.3 years of simulated data, the most stringent bound
on the rate achievable is about 1.8 events per year. However, to
determine the threshold for detection, that is, the signal-to-noise
ratio resulting in a 5σ significance for detection for a measuring
time of 1 month, a bound of less than r0 = 6.9 × 10−6 yr−1 is
required. To ensure this significance, one would need to create
about 4 million times more data than is being analyzed from a
measuring campaign. This is computationally impractical, so the
false positive rate as a function of the thresholds must be extrap-
olated to establish the appropriate signal-to-noise ratio threshold.
The red solid line in Fig. 9 is extrapolated with a exponential
decay shown by the orange solid line. The 5σ significance level
is reached for a signal-to-noise ratio of 9.3 when measuring for
1 month.

A network configuration offers several benefits for detecting
domain-wall-crossing events and other transient signals associ-
ated with beyond-standard-model physics. Since the same event
is detected multiple times, a network of sensors offers greater
statistical sensitivity compared to only one sensor. Furthermore,
the global distribution of the magnetometers along with the GPS-
disciplined timing enables accurate characterization of domain-
wall-crossing event dynamics. Finally, the combination of the
time-domain signal pattern and the pattern of signal amplitudes
in the network enables efficient rejection of false-positive events.
The rejection of spurious events improves with the number of
magnetometers taking part in the network.

The identification of plausible events is mainly based on solv-
ing Eq. (5), a system of linear equations with n − 3 = 6 degrees
of freedom for n = 9 magnetometers. When more than four
magnetometers are active, the analysis is able to veto events that
do not match the expected pattern as described in Section 3.3.2.

To test the effects of adding/removing sensors, data were sim-
ulated in 1000 samples of 20 min segments. A randomly selected
subset of magnetometers is used to simulate the performance of
a network with seven and five magnetometers in each sample.
Thus the effect of choosing a particular set of magnetometers is
averaged out. Apart from the number of magnetometers used, the

parameters of the simulation are the same as in Fig. 9. The results
are shown in Fig. 10. The left plot demonstrates the reduction
in the rate of false-positive events with additional sensors for
background data with random spikes injected (dashed lines). A
network of 9 sensors reduces the rate of false-positive events
by more than an order of magnitude at a signal-to-noise thresh-
old of 15 as compared to a network of 5 magnetometers. The
solid lines show the bound on the false-positives rate for pure,
Gaussian-distributed noise. No significant change in the rate of
false-positive events on Gaussian-distributed noise is observed
with different network sizes because the p-value behavior is
independent of the number of sensors (or degrees of freedom)
in this case. However, there is an improvement on the sensitivity
with additional sensors. The right plot in Fig. 10 shows the β1
sensitivity in the least-sensitive direction, as defined in Eq. (11).
Every combination of the nine magnetometers is used to generate
the box-and-whisker plots for different sizes of the subsets.

5.3. Sensitivity

The detector network and analysis method determine a class
of detectable signals. In particular, the noise of the individual
magnetometers, the filters used, and the averaging time deter-
mine the duration and magnitude of the detectable signals. The
sensitivity is discussed in Section 4 with the effects of averaging
(binning) and filtering discussed in Appendix. For the network
characteristics described in Table 1, an averaging time of 1 s,
1

300 Hz high-pass filters, and notch filters corresponding to the
power line frequencies, the sensitivity to domain-wall signals
(assumed to have a Lorentzian shape in the time-domain) is
shown by the gray line in Fig. 11.

The ability of the analysis algorithm to detect signals with
different durations and magnitudes is studied in 40000 segments
of 20 minutes (summarized in Fig. 11). Each of the segments
contains a domain-wall signal at random amplitude, duration,
direction, and crossing time. The signal is inserted on a Gaussian-
distributed noise background defined from the noise characteris-
tics shown in Table 1.

The signal-to-noise limit for accepting the signal is fixed to 9.3,
to achieve the false-positive rate needed to reach 5σ significance
for detection for one month of measurement time (as per Sec-
tion 5.2). If any event is found above the detection limit in the
segment, it is marked as a detection. The parameter space is
clearly split in two regions: in the lower part the algorithm is
unable to identify events, while in the upper part, the events
are reliably detected. These two regions are split by the theo-
retical sensitivity limit. The decrease on the sensitivity for small
durations is due to the effects of averaging the data, while the de-
crease for long signals is due to the high-pass filtering of the data.
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Fig. 11. The probability of detection for the algorithm in terms of the magnitude
and duration of a domain-wall-crossing signal. This plot is generated with 1 s
averaging and a 1

300 Hz high-pass filter. The gray line represents the theoretical
limit of detection (see Appendix) at 9.3 signal-to-noise ratio.

The deviation from the theoretical line at large signal durations
is likely due to poor noise estimations since the signal spans a
time comparable to the segment length. For short signal duration,
small errors in aligning the signals through time-shifting leads to
significant deviations from the expected amplitude. This results
in poor statistical agreement; i.e., a small p-value.

The sensitivity plot is expressed in terms of signal character-
istics. However, one is often interested in sensitivity to domain
walls in terms of physical parameters. The exact conversion be-
tween the signal characteristics and physical parameters depends
on the phenomenology being considered. Roughly speaking, the
duration of a wall signal is determined by the axion mass (i.e.,
the physical width scales inversely with axion mass) and ve-
locity, while the magnitude of the signal is related to the cou-
pling strength. Furthermore, the likelihood that no domain wall
was observed because they are rarer than the experiment dura-
tion must be considered. These issues will be explored in future
publications.

6. Conclusions

In this work, an analysis algorithm was developed to search
for signals in the GNOME data associated with domain-wall cross-
ings. The analysis algorithm is designed to look for peaks repro-
ducing the expected timing and amplitude pattern of a domain-
wall crossing. The signal pattern is specific to the configuration
of GNOME, depending on the geographical location, the align-
ment of the sensitive axes and the noise characteristics of the
magnetometers. The algorithm is demonstrated to effectively dis-
criminate between real domain-wall crossings and noise. The
false-positive and false-negative rates for simulated data were
analyzed, and a method to evaluate the overall sensitivity of the
GNOME network was described.

The analysis algorithm presented in this work is currently
being applied to the data of the GNOME collaboration. The main
challenge with real data is the complexity of the noise character-
istics. In order to assess the detection signal-to-noise threshold,
the same data being analyzed must be used to estimate the noise.
The event rate background will be calculated sampling chunks
of the data at random times. A real domain-wall signal would
not be visible but the noise characteristics would remain. On
these incoherent data, the signal-to-noise ratio required for a
5σ significance detection over the duration of the measurement
campaign can be determined. If no events are found above this
threshold, the strongest event detection will define the region
of exclusion. This will move the gray curve in Fig. 11 down and
include a larger region of signal characteristics.
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Appendix. Filtering/binning effects

Filtering and binning will affect both the signal and noise of
a signal. The exact nature of these effects will be dependent on
the specific characteristics of the signal and noise. Some relevant
examples of signals and reasonable approximations of noises will
be considered in this appendix. Specialized filters can be used
to optimize dark matter searches [30], however this appendix
will focus on the application of general frequency filters. Further
reading related to this appendix can be found in textbooks on
signal processing, e.g., Ref. [33].

The effects on noise and signal will be calculated in slightly
different ways. In particular, the effects on noise will be calculated
with discrete points, while the effects on the signal will be calcu-
lated in the continuous limit to simplify the calculation. For these
calculations, it helps to define the discrete Fourier transform

(FDf )[k] ≡

N−1∑
n=0

f [n]e−
2πnk
N i and

(F−1
D f̃ )[n] =

1
N

N−1∑
k=0

f̃ [k]e+
2πnk
N i ,

(A.1)

where f is a set of data with N points and f̃ is the Fourier
transform. Similarly, the continuous Fourier transform is

{FCf }(ω) ≡

∫
∞

−∞

dt f (t)e−iωt and

{F−1
C f̃ }(t) =

1
2π

∫
∞

−∞

dω f̃ (ω)e+iωt .

(A.2)

Note that the discrete Fourier transform is given in terms of
frequencies (in units of r/2N where r is the sampling rate) and
the continuous transform is given in terms of angular frequency,
where ω ∼ 2πk.
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Jfilt[n,m] =
1
N

×

⎡⎣⎧⎨⎩ sin
(
2π
N (m−n)(min{⌈

N
2 ⌉,k1}−

1
2 )

)
−sin

(
2π
N (m−n)(max{k0,1}− 1

2 )
)

sin( π
N (m−n))

m ̸= n

2(min{⌈
N
2 ⌉, k1} − max{k0, 1}) m = n

⎫⎬⎭ + g̃[0] +

{
(−1)m−ng̃

[N
2

]
N even

0 else

}⎤⎦

Box I.

A.1. Effects on noise

For simplicity, the noise in the sensors will be assumed to be
Gaussian distributed. Later, additional approximations will be ap-
plied to make the effects easier to calculate. A general frequency
filter g̃[k] will affect the signal according to

ffilt[n] =
(
F−1

D (g̃ · FDf )
)
[n] . (A.3)

The filter satisfies g̃[k] = g̃∗
[N−k] so that ffilt ∈ R. Note, also, that

a circular boundary is assumed for simplicity, so g̃[k] = g̃[N + k].
Filtering is a linear operation with a Jacobian matrix given by

Jfilt[n,m] ≡
∂ ffilt[n]
∂ f [m]

=
1
N

N−1∑
k=0

g̃[k]e−
2π i
N (m−n)

=
1
N

×

⎧⎪⎪⎨⎪⎪⎩
2
∑ N+1

2 −1
k=1 Re

(
g̃[k]e−

2π i
N (m−n)

)
+ g̃[0] N odd

2
∑ N

2 −1
k=1 Re

(
g̃[k]e−

2π i
N (m−n)

)
+ g̃[0]

+ (−1)m−ng̃[N/2] N even

, (A.4)

where g̃[k] ∈ R in the second line which will not shift the signal
after filtering. One can show that the Jacobian is a real, circulant
(i.e., elements given by the difference between the column and
row number), and symmetric matrix.

For example, consider a simple band-pass filter,

g̃[k] =

{
1 k0 ≤ k < k1 or N − k1 < k ≤ N − k0
0 else

.

One obtains the Jacobian shown in Box I.
Likewise, averaging over M points in left-justified bins yields

the Jacobian,

Javg[n,m] =

{ 1
M 0 ≤ m − n < M
0 else

.

This is a rolling average, which can be extended by assuming
circular boundary conditions on the indices, n ∼ n+N . The rolling
average is equivalent to applying the frequency filter

g̃avg[k] =
sin Mπ

N k
M sin π

N k
e−i πN k(M−1) .

Observe that the phase is a result of the bins being left-justified
and can be removed by using center-justified bins. According to
the convolution theorem, the frequency filters can be combined
via a product into a single filter.

If the initial covariance of the data is Σ , then the covariance in
the filtered data is (Σfilt)[n,m] =

∑N−1
j,k=0 Jfilt[j, n]Σ[j, k]Jfilt[k,m].

Assuming that the errors are constant and uncorrelated
(Σ[m, n] = σ 2δmn), then the resulting covariance is also circulant.
This means that the covariance between two points only depends
on the distance between those two points. The variance σ̄ 2

=

σ 2 ∑N−1
j=0 Jfilt[j, 0]2 is of particular interest. Observe that since

Jfilt is symmetric and circulant, Jfilt[j, 0]2 = Jfilt[j, 0]Jfilt[0, j] =

Jfilt[j, 0]Jfilt[−j, 0]. Thus,

σ̄ 2
=

σ 2

N

N−1∑
k=0

|g̃[k]|2 , (A.5)

equivalent to attenuating the variance by the inner product of the
filter, up to a factor of N .

A.2. Effects on the signal

The effects of the filters on the signal is determined in the
continuum limit. The frequency filter g̃(ω) on a signal f (t) is given
by

ffilt(t) =
{
F−1

C {g̃ · FCf }
}
(t) , (A.6)

where g(−ω) = g∗(ω) similar to the discrete case. Expanding this
equation,

ffilt(t) =
1
π

∫
∞

0
dω Re

(
g̃(ω){FCf }(ω)eiωt) ,

where {FCf }(−ω) = {FCf }∗(ω) since f ∈ R.
For this study, it is useful to consider the case where the signal

is Lorentzian,

f (t) =
A

1 +

(
t

1
2 Γ

)2 , so {FCf }(ω) = πA
Γ

2
e−

Γ
2 |ω| . (A.7)

Also, a rolling average with binning time Tavg is accomplished
with the frequency filter,

g̃avg(ω) =
2

ωTavg
sin

(
ωTavg
2

)
.

Likewise, a simple high-pass filter is given by
g̃hp(ω) = Θ (|ω| − ωL).

First, consider applying both a rolling average and a high-pass
filter. The resulting signal will be

ffilt(t) =
AΓ

2Tavg
Im

[∫
∞

1

dν
ν

e−ωL

(
Γ
2 −i

Tavg
2 −it

)
ν

+

∫
∞

1

dν
ν

e−ωL

(
Γ
2 +i

Tavg
2 −it

)
ν

]
.

If a frequency filter is applied without averaging,

ffilt(t) =
AΓ

2

Γ
2 cos(ωLt) − t sin(ωLt)

t2 + (Γ /2)2
.

Finally, consider averaging without a high-pass filter:

ffilt(t) =
AΓ

2Tavg

[
arctan

(
t + Tavg/2

Γ /2

)
− arctan

(
t − Tavg/2

Γ /2

)]
.

In practice, the data are binned, meaning that instead of sim-
ply using the rolling average, only one point per bin width is used.
Optimistically, the maximum observed value will be ffilt(0). In the
worst case, the maximum observed value is generally6 ffilt(Tavg/2).

6 Strong filters can cause oscillatory effects in the signal. This means that the
largest observed value may not be around the peak, depending on the signal
width. For simplicity, signals with widths beyond which this effect occurs can
be considered unobservable.



12 H. Masia-Roig, J.A. Smiga, D. Budker et al. / Physics of the Dark Universe 28 (2020) 100494

If, instead, two sets of bins offset by half a bin width are used, this
worst-case-scenario improves to ffilt(Tavg/4).
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