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ABSTRACT: The most critical bottleneck in CO, photoreduction lies
in the activation of CO, to form an anion radical, CO3~, or other
intermediates by the photoexcited electrons, because CO, has a high-
energy lowest unoccupied molecular orbital (LUMO). Taking rutile
TiO,(110) as a prototypical surface, we use time-dependent ab initio
nonadiabatic molecular dynamics simulations to reveal that the
excitation of bending and antisymmetric stretching vibrations of CO,
can sufficiently stabilize the CO, LUMO below the conduction band

minimum, allowing it to trap photoexcited hot electrons and get

reduced. Such vibrational excitations occur by formation of a transient CO3~ adsorbed in an oxygen vacancy. CO, can trap the hot
electrons for nearly 100 fs and dissociate to form CO within 30—40 fs after the trapping. We propose that the activation of the CO,
bending and antisymmetric stretching vibrations driven by hot electrons applies to other CO, reduction photocatalysts and can be

realized by different techniques and material design.

1. INTRODUCTION

Motivated by the constant depletion of finite fossil resources
and visible global warming induced by CO,, the discovery of
renewable energy alternatives has become one of the most
important scientific challenges in recent decades.'™* This has
prompted the development of sustainable processes to
generate fuels and chemical feedstock from water and CO,
using solar energy, which is analogous to photosynthesis in
plants and also known as “artificial photosynthesis”. Compared
with H,, which is generated from H,O splitting, carbon-based
fuels allow for better integration into the existing energy
infrastructure. These fuels can be accessed by the photo-
reduction of CO,.

Compared with H,O splitting, the photoreduction of CO, is
more complex and challenging.s_9 Photoreduction of CO,
mainly encompasses the following elementary steps: (i)
photon absorption and excited carrier generation; (ii)
activation of CO, to form an anion radical, CO3~, or other
intermediates by the photoexcited electrons; (iii) dissociation
of the C—O bond, involving the participation of protons and
electron transfer, generating different products; and (iv)
desorption of reduced products from the active sites.””
Among these four steps, the most critical bottleneck lies in
the activation of CO,.”*'*™'* CO, is a stable and chemically
inert molecule with a closed-shell electronic configuration and
linear geometry. The addition of a single electron induces a
bending of the molecule because of the repulsion between the
added electron and the free electron pairs on the oxygen
atoms. The bending geometry increases the repulsion between
these free electron pairs, which contributes to a high energy of
the lowest unoccupied molecular orbital (LUMO) of CO,.
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Therefore, the single-electron reduction of CO, has a strongly
negative electrochemical potential of —1.9 V versus the normal
hydrogen electrode.”® Consequently, almost no semiconductor
can provide a sufficiently high energy to transfer a single
photoexcited electron to a free CO,. This remains the most
important obstacle to the photoreduction of CO,. To
understand how to decrease the negative electrochemical
potential, i.e,, to stabilize the LUMO of CO, close to or lower
than the conduction band minimum (CBM) of the semi-
conductor, is the critical step to break through the bottleneck
of CO, photoreduction.

In this report, taking the rutile TiO,(110) surface as a
prototypical system, we have studied photoexcited electron-
induced CO, reduction on a metal oxide surface by using time-
dependent ab initio nonadiabatic molecular dynamics
(NAMD) simulations. We have found that the excitation of
two specific vibrations, ie., the bending and antisymmetric
stretching modes of the CO, molecule, can sufficiently
decrease the energy of the CO, LUMO, making it lower
than the CBM of TiO, and enabling it to trap the photoexcited
hot electrons. The process can be realized by the formation of
a transient CO3;~ with bent geometry through the photo-
excitation of one electron to the LUMO of CO, (as
schematically shown in Figure la, step 1). If the lifetime of
CO3™ is longer than 12 fs, with the help of oxygen vacancy

Received: December 10, 2019
Published: January 22, 2020

https://dx.doi.org/10.1021/jacs.9b13280
J. Am. Chem. Soc. 2020, 142, 3214-3221


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weibin+Chu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qijing+Zheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleg+V.+Prezhdo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.9b13280&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b13280?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b13280?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b13280?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b13280?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b13280?fig=tgr1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/jacs.9b13280?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf

B

Journal of the American Chemical Society pubs.acs.org/JACS
a b c d
cB CB cB
@ 0
o o®
e e
v °@-
v oo s‘.':‘
o (2)\ 4 R
‘ hv ; I
;?' 9=Q®_ ov
e C——
CBM CBM
VBM

VBM
VB VB

@ Photo excitation generates a transient CO5~

onon-bridge Ti obridge Coz

@ Transient CO5~ (t > 12 fs) excites the bending and antisymmetric stretching vibrations which

induce CO, LUMO stabilization (10 fs)

@ Hot electron trapped by CO, and form a new CO5™ (<80 fs)

@ CO35 dissociates in Ov (30-40 fs)

Figure 1. Diagram of CO, photoreduction on the TiO, surface. The four steps of CO, photoreduction and the corresponding time scales are
schematically indicated in (a)—(c). (d) Schematic showing the CO, molecule adsorbed in the Oy and Tic sites on the TiO,(110) surface.

(Oy), the excitation of the bending and antisymmetric
stretching modes will stabilize the LUMO of CO, below the
CBM within 10 fs, and such electronic state alignment can be
kept for longer than 100 fs (step 2 in Figure 1b). Within this
time period, CO, can trap the hot electrons on a surface with a
time scale of 80 fs (step 3 in Figure 1b) and dissociate to form
CO within 30—40 fs after trapping the hot electron (step 4 as
indicated schematically in Figure 1c). Our results suggest that
the excitation of the bending and antisymmetric stretching
vibrations can adequately stabilize the LUMO of CO,, and
thus, it plays a vital role in the photoreduction of CO, on
TiO,. We propose that the conclusion in this report is widely
applied to metal oxides in general, as well as to other
semiconductors, which provides important guidance to design
photocatalysts with high efficiency for CO, reduction.

2. SIMULATION METHODOLOGY

The ab initio NAMD study uses density functional theory (DFT) as
implemented in the Vienna ab initio simulation package (VASP) to
carry out the static and ab initio molecular dynamics (MD)
calculations.'*™'® The DFT calculations employ the projector
augmented wave (PAW) method'”'® and the Perdew—Burke—
Ernzerhof (PBE) exchange-correlation functional," and account for
van der Waals (vdW) interactions using DFT-D3.*° Additionally, we
use the VDW-DF correction to verify our results, observing no
obvious differences from results obtained with DFT-D3 (Figure S1).
An energy cutoff of 450 eV is used for the plane-wave basis sets. A
2X1 supercell with five layers of TiO, describes the CO,/TiO,
system. To assess the finite size effects, we further used a larger
3%2 supercell to simulate the photoreduction process, and we found
no distinct differences (Figure S2a). The bottom layer Ti and O
dangling bonds are saturated with pseudo-hydrogens with nuclear
charges of +1.25 and +0.75 e, similar to the protocol of Kowalski and
co-workers.”' Due to the self-interaction error in DFT, the electronic
bandgap is usually underestimated in metal oxides. However, our
previous studies on TiO, indicate that alignment of the relevant
energy levels at the molecule/TiO, interface are affected much less.”*
To confirm this point, we have compared the density of states of CO,
adsorbed in Oy on the TiO,(110) surface using DFT and DFT+U (U
= 4.5 eV) and have observed only minor differences (Figure S3). A
good description for the electronic structure of the system is obtained
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by sampling the Brillouin zone only at the gamma point.** After the
geometry optimization, we used velocity rescaling to bring the
system’s temperature to 100 K; next, initial structures were randomly
sampled at 100 K followed by a 2 ps microcanonical ab initio MD. A
time step of 0.5 fs was used for all the MD.

As we discussed in the Introduction, the addition of a single
electron induces bending of the CO, molecule. However, bending
geometry is not the ground state for neutral CO,, nor it is the ground
state of the CO,/TiO, system. Thus, ground-state MD is not
sufficient to study the photoreduction of CO,. We use the impulsive
two-state (12S) model*>~2° implemented in the MD calculations (see
Supplemental Methods for details) to simulate the electron-induced
dissociation of CO,. To account for the excited state, the CO3™ is
modeled by the anionic pseudopotential method,”” in which one 1s
electron is excited from the core part and placed in the LUMO of
CO, (see Supplemental Methods for details). To simulate the
transient CO3~, the MD trajectory is obtained by evolving the system
on the CO3™/TiO, potential energy surface for a short period of time
(7) and, afterward, with the retention of positions and momenta, back
to the ground state of CO,/TiO,. The pseudopotential approach to
simulate the anionic state in this study has led to many successes in
previous works on chemical kinetics.>*~>%**

To investigate the excited carriers’ dynamics, which govern the
lifetime of CO3~, we use the ab initio NAMD simulations performed
using the Hefei-NAMD code®”*”*° within the time-dependent
Kohn—Sham (TDKS) framework.”® It is a mixed quantum-classical
method, in which the nuclei are treated as classical particles based on
ab initio MD and the electrons are simulated within the quantum
framework using the TDKS equation and surface hopping. Thus, the
electronic—vibrational coupling can be considered in a time-
dependent manner. Using the I12S MD trajectory, the NAMD results
are based on averaging over 10 different initial configurations. For
each chosen structure, we sample 10* trajectories for 100 fs. Along
with the reduction process, the weakly coupled adiabatic states would
suffer strong state crossing problems, which may lead to artificial long-
range charge or energy transfer. To avoid this trivial crossing, we
apply a method similar to that proposed by Linjun Wang and co-
authors®™*> (see Supplemental Methods for details). The electronic
wave function is propagated in the diabatic representation, and then
the hopping probability is corrected with accurate wave function
coefficients in the adiabatic representation obtained through the
representation transformation technique. In order to avoid the
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Figure 2. Specific vibrational mode excitations by the formation of transient CO3~ with the adsorption in O, on the TiO,(110) surface. (a) O=
C=0 bond angle and bond length evolution with different CO3™ lifetimes. Two different C=0 bonds (C=01 and C=02) are indicated with
the red and blue lines, respectively. (b, c) Snapshots of the atomic structures during the MD trajectory for CO3~ with different 7. Only one specific
trajectory is shown here; more trajectories and the average time scale are offered in Table S1.
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Figure 3. Specific vibrational mode excitations by the formation of transient CO3~ with the adsorption on Tisc on the TiO,(110) surface. (a) O=
C=0 bond angle and bond length evolution with different CO3~ lifetimes. Two different C=0 bonds (C=0, and C=0,) are indicated with
the red and blue lines, respectively. (b, c) Snapshots of the atomic structures during the MD trajectory for CO3~ with different 7.

arbitrary phase in the adiabatic wave functions, we aplnly a phase higher than the CBM, it is strongly hybridized with the TiO,
correction similar to the method introduced by Akimov.” conduction band states, and the electron attached to CO, will
transfer back to the conduction band of TiO, easily. Therefore,
3. RESULTS a stable CO3™ is difficult to form. Yet, a transient CO5™ can
3.1. Vibrational Excitations Induced by the Transient still be generated by photoexcitation, and it can exist within a
CO3". The static electronic structure of CO, on TiO, has been certain lifetime (represented by 7).
investigated in previous theoretical and experimental stud- First, we study how the transient CO3~ induces the specific
ies.** ™ The LUMO of CO, is around 2.2 and 4.0 eV above vibrational excitations. We begin with the CO, adsorption in
the CBM, when it adsorbs in Oy or on the five-coordinated Ti Oy on the TiO,(110) surface. In this case, one of the oxygen
(Tisc) atom. The electronic structures of CO, in Oy and on atoms in CO, will occupy the Oy site, as shown in Figure 2b,c.

Tisc are shown in Figure S4. Since the LUMO of CO, is As we discussed in the Methodology part, during the MD, the
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lifetime of CO3~, 7, can be controlled using the I2S
method.”*™*° Figure 2a shows the O=C=0 bond angle
and the C=0 distance for 7 = §, 10, 15, and 20 fs. One can see
that for 7 = 10 and 1S fs, the bending mode is excited. We
propose that the bending mode excitation is due to the
repulsion between the free electron pairs on the O atoms of
CO37, and the O=C=0 bending angle during the vibration
depends significantly on the CO3™ lifetime. For 7 = § fs, the
bending mode is hardly excited. When 7 is increased to 10 fs,
the bending mode is clearly excited, and the angle changes in
the range of [140, 180]°. If 7 is further extended to 15 fs, the
bending angle in the first two periods (the first 115 fs) varies in
the range of [115, 160]°. After that, it slowly damps to the
range of [135, 180]° within the first 250 fs. The bending mode
excitation can be clearly seen from the snapshots in the MD
trajectory in Figure 2b. In addition to the bending mode, the
antisymmetric stretching mode, which is induced by the
interaction of CO;~ with the Oy, is also excited when 7 reaches
15 fs, which can be seen from the plotted two C=O bond
lengths in Figure 2a. Interestingly, when 7 reaches 20 fs, as
shown in Figure 2a,c, enough energy is obtained from the
transient CO3~ for the CO, to dissociate to form a CO on the
surface within 30—40 fs, leaving an oxygen to fill the Oy. Our
simulation successfully reproduces the electron-injection-
induced CO, dissociation in Oy on the rutile TiO,(110)
surface observed in previous experiments.”>*°

Comparing with Oy, if CO, is adsorbed on Tisc, the
formation of transient CO3™ can also excite the bending mode,
as shown in Figure 3a. However, without the Oy, the
antisymmetric stretching mode is difficult to excite. In this
case, CO, will not dissociate on the Tic site even when 7 is
increased to 2 ps, as shown by the MD snapshots in Figure 3b.
Only if there is a bridging hydroxyl, as shown in Figure 3¢, the
HCOO intermediate can be formed on a 1 ps time scale. Our
results suggest that excitation of the antisymmetric stretching
mode is required for the CO, dissociation. It is difficult to
excite on the Tisc site, because the interaction of CO, with
Tisc is much weaker than with Oy. (The adsorption energies of
CO, on Tisc and Oy by the PBE functional with the vdW
correction are 0.35 and 0.54 eV, respectively.) The analysis
supports the conclusion that Oy is the active site on the rutile
TiO,(110) surface.>*™*

3.2. CO, LUMO Stabilization Induced by the Vibra-
tional Excitations. Excitation of the CO, vibrations can affect
the CO, electronic levels and the molecule/solid level
alignment through the electronic—vibrational coupling. Figure
4 shows the time-dependent energy level alignment of CO, on
the TiO,(110) surface when transient CO3" is generated with
different lifetimes 7. At the beginning of the MD trajectory, the
LUMO of CO, locates around 2.0 eV above the CBM, which
is in line with the static electronic structure. For the case of 7 =
10 fs, the LUMO of CO, vibrates along with the bending
mode (Figure 4a) within the energy range of [0.5, 2.2] eV.
Then, if 7 is increased to 15 fs, with a larger bending angle in
the vibration, the LUMO is stabilized below the CBM within
the first 10 fs, and it can be kept there in the first 150 fs.
(Figure 4b) After that, along with the damping of the bending
mode, the LUMO will move above the CBM again (Figure
S5). When 7 reaches 20 fs, similar to 7 = 15 fs, the LUMO will
decrease below the CBM in the first 10 fs. The dissociation
happens around 30—40 fs. After the dissociation, the curve
shown in Figure 4c indicates the position of the energy level
due to the O atom that fills Oy,
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Figure 4. Evolution of the LUMO energy (red line) of CO,
adsorption in O, (a—c) and on Tisc (d—f) with different CO3~
lifetimes. The conduction and valence bands are indicated by the light
blue and red shades, respectively. The zero of energy is set at the
CBM.

For the case of CO, adsorption on Tisc, the bending of CO,
can also stabilize the CO, LUMO. For 7 = 50 fs and 2 ps, the
LUMO of CO, can be stabilized below the CBM temporarily;
however, without the antisymmetric vibrational mode ex-
citation, the LUMO cannot be kept below the CBM for more
than 20 fs, and CO, cannot dissociate.

3.3. Hot Electron Trapping by the Stabilized CO,
LUMO. If the LUMO of CO, can be stabilized below the
CBM, it will have a chance to trap the excited hot electrons
and form a CO3™ again. In addition, since the LUMO is now
below the CBM of TiO,, the lifetime of the newly formed
CO3™ will be much longer. Namely, the CO, can be activated
in this case. We have used the NAMD simulation to check the
efficiency of electron trapping by the stabilized CO, LUMO.
The hot electron trapping dynamics with different initial
energies for CO, in Oy are shown in Figure S. For the case of
= 15 fs, the population of the CO, LUMO on TiO, increases
from zero to 50% within 75 fs. After trapping the photoexcited
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Figure S. Hot electron trapping by stabilized CO, LUMO with
transient CO3" lifetime 7 = 15 fs. The blue and orange lines represent
hot electrons with different initial energies. The zero of energy is set at
the CBM.
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electron, a CO3™ will be formed again. As we have discussed
above, it will dissociate into CO and O to fill Oy after 30—40
fs. The hot electron trapping is difficult for CO, adsorbed on
Tisc, since the CO, LUMO does not remain below the TiO,
CBM for a sufficiently long time, as shown in Figure 4d—f.
3.4. Lifetime of the Transient CO3". The discussion
above leads one to conclude that the lifetime 7 of the transient
CO3™ is the critical factor governing the stabilization of the
CO, LUMO. To understand this point better, we have
performed more MD simulations using different lifetimes with
7=5-30 fs (Table S1). We find that 12 fs is the shortest 7 that
can activate CO,. Using ab initioco NAMD, we have also
investigated the CO3™ lifetime on Oy. The results in Figure 6
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Figure 6. Lifetime of transient CO3™. The blue line shows the time-
dependent electron population on CO, after a transient CO3~ is
formed.

show that the CO3™ lifetime is just within 10—15 fs, which is
very similar to the lifetime of the wet electron states of H,O on
TiO,." Such lifetime is just around the threshold to stabilize
the CO, LUMO. Therefore, we propose that there exist a
certain probability for the CO, activation through the transient
CO;5™ formation with adsorption in Oy on the TiO, surface.

4. DISCUSSION

The CO, photoreduction process induced by the transient
CO3~ formation in Oy on the TiO,(110) surface is
summarized in Figure 7. Our results show that the bending
and asymmetric stretching modes’ excitations are the key
factors for the CO, activation and reduction on TiO,. With the
adsorption in Oy and the transient CO3;” formation, the
bending and asymmetric vibrational modes can be successfully
excited, followed by the stabilization of the CO, LUMO, hot
electron trapping, and finally the dissociation of CO,. In this
process, there are two bottlenecks: (i) The transient CO3 is
difficult to generate through photoexcitation. As has been
discussed above, for the static CO,, without bending mode
excitation, the LUMO locates at 2.2 eV above the CBM.
Therefore, to excite one electron from the valence band
maximum (VBM) to the CO, LUMO, a photon with an
energy higher than ~5.5 eV is needed, as indicated in Figure la
and Figure S4. Yet, if TiO, is n-type doped, there is an electron
occupation close to the CBM.*” ~>”**~*" In this case, transient
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CO3™ can be generated by photoexcitation from the CBM,
with a photon energy larger than 2.2 eV. The n-type doping
can be realized easily by introducing more Ti interstitials and
Oy.77?7"7% In fact, many experimental studies show that
excitation can be generated through the defect states by Oy or
Ti interstitials in Ti0,.***' ™7 (ii) The lifetime of the transient
COS™ is short. As we have discussed, the lifetime of the
transient CO3~ is within 10—15 fs, which is just at the
threshold of the CO, LUMO stabilization requirement. The
short CO;~ lifetime limits the efficiency of the CO,
photoreduction on the rutile TiO,(110) surface. Such short
lifetime is due to the strong hybridization of the CO, orbitals
with the TiO, electronic bands. Our results are based on the
TiO, rutile (110) surface. We propose that, for different oxide
surfaces, the CO;~ lifetime can be different due to varying
interactions. It is also possible to tune the CO,—oxide
interaction by coadsorption of other molecules. For example,
it will be very interesting to see what occurs if there is a H,O
adsorption besides CO,.”® Actually, Wu et al. showed recently
that CO, and H,O coadsorption will stimulate CO, photo-
reduction on Cu,0.*’

Besides the transient CO3;~, we propose that the bending
and antisymmetric stretching vibrations can be excited by
other procedures. For example, if there are metal atoms or
clusters on the surface, there m'éght be charge transfer and
orbital hybridization with C0O,.°"*" In some cases, CO, with a
bent geometry can even be formed.” Thus, the bending
vibrations can be easily excited. In addition, the metal atoms
can provide stronger interactions with CO,, which is helpful
for the antisymmetric stretching excitation. Changing the oxide
surfaces may also play a role. Defects such as Oy on an oxide
surface seem to be especially important for CO, to adsorb with
a bent structure. For example, it was reported that CO,
adsorbed in Oy on the anatase TiO, (101) surface with a
bent geometry.”> Chen et al. showed that CO, adsorbs with a
bent geometry on a Bi,O; nanosheet in an oxygen vacancy.
Both these help the single electron transfer to form CO3;™ and
prompt the photoreduction.” Similar properties were also
reported on the Co;0, surface.” It has also been reported that
functional ligands can facilitate bending of the CO,
molecule.®*”®® This is an important alternative to overcome
the highly unfavorable potential of the reduction of CO, by the

single electron to form CO;”. The functional ligands have
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multiple and accessible redox states that have been shown to
promote the electron transfer to the CO,. These electron
transfer dynamics can be studied precisely on the ultrafast
regime, and the insights provided by our work assist in
rationalizing the results of these references as well. Finally,
recently developed experimental techniques, such as THz
photoexcitation, can excite the vibrational modes selectively.
We propose that these techniques can also be used to excite
the bending and antisymmetric stretching vibrations of CO, to
improve the CO, photoreduction efficiency on oxides.

5. CONCLUSION

To summarize, we have investigated the CO, photoreduction
mechanism on the TiO, surface using the state-of-the-art time-
dependent ab initio NAMD simulation. We found that
excitation of the CO, bending and antisymmetric stretching
vibrational modes can sufficiently stabilize the CO, LUMO
that it is capable of trapping hot electrons and being reduced to
CO35™. Such specific vibrational excitations are realized by
transient CO3™~ formation with a lifetime longer than 12 fs. The
transiently trapped hot electrons can live for nearly 100 fs and
allow CO, to dissociate to form CO within 30—40 fs after the
trapping. Our results pave a way to understand the mechanism
of the CO, photoreduction on oxide surfaces and provide
valuable insights into the design of photocatalysts with high
efficiencies.
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