

1 **Registering Georeferenced Photos to a Building Information**
2 **Model to Extract Structures of Interest**

3 **Abstract**

4 Vision-based techniques are being used to inspect structures such as buildings and
5 infrastructure. Due to various backgrounds in the acquired images, conventional vision-based
6 techniques rely heavily on manual processing to extract relevant structures of interest for
7 subsequent analysis in many applications, such as distress detection. This practice is laborious,
8 time-consuming, and error-prone. To address the challenge, this study proposes a new method
9 that automatically matches a georeferenced real-life photo with a building information model-
10 rendered synthetic image to allow the extraction of relevant structures of interest. Field
11 experiments were conducted to validate and evaluate the proposed method. The average
12 accuracy of this method is 79.21% and the processing speed is 140 seconds per image. The
13 proposed method has the potential to reduce the workload of image processing for vision-based
14 structure inspection.

15
16 **Keywords:** Vision-based inspection; Condition assessment; Region of interest; Building
17 information model (BIM); Image processing; image-to-BIM registration.

19 **1 Introduction**

20 Vision-based structural inspection (VBSI) has been used to detect defects such as cracks,
21 fractures, and spalling for building and infrastructure condition assessments. Over the past
22 decades, many algorithms have been proposed for VBSI facilitated by the advancement of
23 sensing and deep learning techniques. Existing studies achieved good performance on
24 structured and ordered images that only contain the targeted structures to be inspected. These
25 images are typically captured by a customized inspection device from certain designated view
26 angles and distances set to control the influence of irrelevant background. However, the
27 emerging inspection platforms provided by unmanned aerial vehicles (UAVs) [1–3] and
28 unmanned ground vehicles (UGVs) [4] have provided a massive amount of unordered visual
29 assets that are taken from various viewpoints and comprise both the structure of interest (SOI)
30 and the surrounding background, i.e., sky, vegetation, and pedestrians. Directly identifying
31 defects from such unordered images is a challenging task [5, 6] because the background
32 information in an image undermines detection performance [7] from two aspects. First, it might
33 increase the probability of false positives. For example, cracks are typically identified as
34 continual-distributed pixels with a strip shape in a binary image. Similar patterns detected in
35 the background can lead to undesirable false positives, as shown in Fig. 1. Second, processing
36 irrelevant areas in the photos will bring in extra computation consumption. As a result,
37 preprocessing is performed to extract the relevant SOI to overcome the influence of an
38 irrelevant background before an unordered image can be used for further defect detection [8,
39 9].

41 Traditional SOI extraction techniques rely on prior knowledge [10-12], which either extracts
42 the SOI or removes the background based on specific patterns, such as “a building generally
43 has a straight contour” or “vegetation has a green color.” However, different structures may
44 have very different shapes and appearances, and their surrounding environments vary as the
45 seasons alternate and the geographical location changes. Hence, it is very difficult to find a
46 determined pattern for accurately extracting the SOI from the space-time varying background.
47 This variation in the image features means that extra effort is needed to manually determine
48 the pattern for extraction. The inefficient process causes an unnecessary waste of labor and
49 may delay the detection of safety issues, as well as subsequent restoration work. Research
50 efforts that aim to automate the extraction of machinery or workers from jobsite images are
51 difficult to be generalized to SOI extraction, because these methods require the visual assets to
52 be consecutively captured from a fixed position [13, 14]. The studies on highway asset
53 segmentations rely on manually labeling datasets for training [15, 16]; hence they are not fully
54 automated. Current labor-intensive practices call for an automatic and robust SOI extraction
55 method.

56

57 This study proposes a structure of interest (SOI) extraction algorithm to automate the image
58 preprocessing process for defect detection from unordered photos. This method extracts the
59 structure of interest from a georeferenced photo by registering it to the corresponding building
60 information model (BIM) [17, 18]. The georeferenced photos can be provided by a data
61 collecting device such as an unmanned aerial vehicle (UAV) and smart phone, which is
62 equipped with global positioning system (GPS) and inertial measurement unit (IMU). Since a

63 BIM model is a simulated virtual scene of its real-world counterpart and has a single-color
64 background, it is straightforward to segment a BIM-rendered image into a region of interest
65 that contains the target structure and a background region. If an image is rendered in BIM using
66 the same position and posture information provided by the real photo, the segmented BIM-
67 rendered image is a useful reference for extracting the SOI from its counterpart.

68

69 The contribution is threefold. First, the process of SOI extraction is automated with the
70 proposed method, which has the potential to reduce the workload of image preprocessing and
71 shorten the data analysis cycle for defect detection based on unordered visual assets. Second,
72 the proposed method provides a special solution for extracting different structures of interest
73 from different backgrounds. Using a segmented BIM-rendered image to guide the SOI
74 extraction from the corresponding photo is robust to the influence of the varied background.
75 This strength implies that the proposed method is able to extract SOI from georeferenced
76 photos composed of various types of civil structures with space-time varying backgrounds.
77 Third, a location-based image-to-BIM registration method is proposed, which uses
78 georeferenced information for coarse alignment and realizes precise alignment by image
79 registration. The method does not require a pre-aligned camera [20] at a fixed location and
80 improves the automation level by avoiding human intervention for initial registration [19].

81

82 **2 Literature review**

83 **2.1 Vision-based structural inspection**

84 Stimulated by the emerging techniques in robotics, innovative devices and equipment for
85 vision-based structural inspection have been devised. Many studies have focused on utilizing
86 UAV to perform exterior inspections for detecting structural distress, such as Kim et al. [21],
87 Choi and Kim [2], Morgenthal and Hallermann [3], Eschmann et al. [22], and Kang and Cha
88 [1]. Maeda et al. [23] integrated the smartphone and automobile for road damage detection.
89 Torok et al. [4] presented a robotic platform to collect post-disaster images for damage
90 assessment. These newly-developed platforms are characterized by high mobility and usually
91 have a flexible inspection route. Because of the variations in camera viewpoints and the
92 accompanying uncertainty of illumination status, such platforms generate a massive amount of
93 unordered and unstructured inspection photos that are taken from different view angles and
94 contain both the structure of interest and the irrelevant background.

95

96 With the explosion of these unordered inspection photos, processing such visual assets for
97 efficient defect detection has become a demand issue. In conventional practice, engineers are
98 asked to manually identify the structural defects from the captured photos [2, 3, 22]. Such
99 practice is considered time-consuming and labor-intensive, since the amount of data is huge.
100 Therefore, researchers seek to automate the defect detection process by using computer vision
101 and machine learning techniques. One line of work tries to detect damage by analyzing the
102 appearance feature or the image pattern of the defects. Subirats et al. [24] used wavelet
103 transforms for damage detection, while Gavilán et al. [25] used Hough transform to find the
104 damage. Abdel-Qader et al. [8] found the fast Haar transform method to be the most reliable
105 of the four investigated crack-detection techniques. The other line of work leverages deep

106 learning techniques to directly detect structural defects without manual features selection , and
107 these techniques have been well documented by Kang and Cha [1], Maeda et al. [23], and Cha
108 and Choi [26]. Despite the advancement made in these studies, the irrelevant background pixels
109 in unordered visual assets significantly undermine the algorithm performance. As pointed out
110 by [7], the irrelevant image regions increase the computational complexity and induce extra
111 workload in training the network model. The probability of false positives may also increase,
112 since similar features, which can be mistaken for structural defects (e.g. cracks) can be found
113 in background pixels, as was reported in [23, 26]. As a result, structures of interest need to be
114 extracted from the unordered images to enable a more efficient and accurate detection.

115

116 **2.2 Image segmentation for ROI extraction**

117 Traditional methods for region of interest (ROI) extraction rely on human prior knowledge.
118 Based on the fact that most artificial landscape, e.g., streets and houses, has straight regions
119 and edges, Mueller et al. [11] developed a segmentation technique for man-made object
120 extraction. Sidike et al. [12] employed a combination of convex hull and morphological
121 operations to yield an accurate building segmentation. These methods take advantage of the
122 explicit appearance features of the objects of interest. However, a certain pattern used for ROI
123 extraction in a specific case might not fit another situation where the target object has a different
124 shape or the background environment changes. These variations in image patterns can cause
125 extra labor requiring manually selecting the extraction features. To automate the workflow,
126 some research efforts have sought to directly segment an image into blocks based on color and
127 texture. As one of the most classical algorithms, JSEG was proposed by Deng and Manjunath

128 [27] in 2001, which includes two steps, i.e. color quantization and spatial segmentation. Jing
129 et al. [28] and Wang et al. [29], respectively, improved the JSEG algorithm by applying
130 homogeneity analysis and combining directional operators. These methods have avoided
131 human intervention for feature selection, but they often lead to over-segmentation, and fail to
132 provide semantic information to the extracted ROI. As a result, these color and texture-based
133 methods cannot be directly applied to SOI extraction task, which requires explicitly segmenting
134 an image into the background and region of interest.

135

136 In the area of civil engineering, image segmentation has been used to extract ROI from the
137 visual assets for assisting construction management and facility maintenance. Chi and Caldas
138 [13] presented a pipeline for extracting heavy equipment from the video captured by jobsite
139 cameras. Azar and McCabe [14] investigated the automatic segmentation and identification of
140 dump trucks from a surveillance video. These studies improved the efficiency of construction
141 management by automating the ROI extraction process. As for facility maintenance, efforts
142 have been made to facilitate the efficient and smart management of highway assets [15, 16, 30].
143 Golparvar-Fard et al. [15] trained a semantic segmentation model based on semantic texton
144 forests to categorize image pixels into different types of highway assets. Balali and Golparvar-
145 Fard [16] improved the time performance and reduced the labeling efforts required for the
146 segmentation and recognition of highway assets by leveraging a lazy scheme for model training.
147 The aforementioned studies mainly focused on some specific areas in civil engineering, such
148 as construction site or highway management. They either manually relied on labeled datasets
149 for training [15, 16] or consecutive video frames for segmenting moving objects from a static

150 background [13, 14]; thus, they are difficult to generalize when extracting civil structures with
151 various shapes and appearances from unordered static images that have been captured from
152 different viewpoints.

153

154 **2.3 Registering 2D images to a 3D digital model**

155 Researchers have been exploring the registration of 2D images (static or dynamic) to a 3D
156 model (e.g. BIM models, CAD) for many years. Using the information retrieved from a 3D
157 model to augment the real-life image innovates the traditional way of progress monitoring and
158 quality assurance. Golparvar-Fard et al. [31] registered time-lapsed photographs collected by a
159 fixed camera to a 4D CAD; then, they superimposed the as-planned model images onto as-built
160 photos to visualize the construction progress. The registration was realized by geometric
161 camera calibration, which calculated the camera intrinsic and extrinsic parameters based on
162 selected feature correspondence between a 2D image and a 3D model. Since the proposed
163 method requires the photo-captured device to be installed at a fixed point with a fixed posture,
164 it falls short of handling the unordered photos collected from different viewpoints and view
165 angles. Karsch et al. [32] and Forsyth et al. [33] investigated the unordered photo registration
166 problem by implementing a user-assisted structure-from-motion (SfM) operation. The method
167 utilized the correspondence points from the 3D mesh model and the initial image (denoted by
168 an anchor image) designated by the user to calculate the camera extrinsic parameters. With the
169 help of the anchor image, the rest of the images that contain common scale-invariant feature
170 points can be aligned with the 3D model. However, this method still requires the unordered
171 photos to have common matched feature points. Based on this content-based image retrieval,

172 Park et al. [34] proposed a photo registration method that has no limitation on the camera
173 viewpoints; instead, their method relies on a pre-generated dataset of BIM images. However,
174 this image retrieval process is time-consuming.

175

176 In general, current practice in 2D-to-3D registration mainly focuses on progress monitoring of
177 construction site, where the collected photos are typically object/building-centric and captured
178 from certain specific points of view. This is not the case for structural inspection using
179 UAV/UGV, since the inspection photos are taken from uncertain locations with various
180 postures. Such inspection practice determines that existing methods are not applicable and calls
181 for a new 2D-to-3D image registration method that can automatically and effectively align the
182 unordered inspection photos with 3D models.

183

184 **3 Methodology**

185 Fig. 2 illustrates the overall procedure of the proposed SOI extraction algorithm. A real-world
186 photo, along with its georeferenced information (e.g. position, posture, focal length, aspect), is
187 input for the registration operation. Thereafter, a BIM-rendered image aligned with the input
188 photo is obtained. This registered BIM image is then further processed to generate a binary
189 mask. As the final step, the generated mask is used to extract the region of interest from the
190 background.

191

192 The reasons for using a BIM model, instead of a plain 3D model, are as follows. First, due to
193 the prevalence of BIM, it is easier to integrate our method with the existing facility management

194 workflow by using BIM as a reference. Second, the visibility of constituent elements can be
195 controlled in a BIM model, which allows only rendering a part of the scenario (i.e., SOI) by
196 hiding irrelevant elements. By contrast, a plain 3D model can only render the entire scene as a
197 whole. Since the registration relies on detecting the feature correspondence from the two types
198 of images (i.e., real-life and BIM-rendered), the BIM model geometry should be as similar as
199 possible to its real-world counterpart; hence, a 350-level of development (LOD) is required.

200

201 **3.1 Location-based image registration to BIM**

202 Fig. 3 shows our proposed method for aligning real photos and BIM-rendered images. This
203 method consists of two main steps: (1) generating a virtual counterpart based on the photo-
204 captured position, posture and optical parameters and (2) image registration with a real-world
205 photo for precise alignment.

206

207 *3.1.1 Rendering BIM correspondence for coarse alignment*

208 A BIM image similar to the real one is rendered and generated by using georeferenced
209 parameters provided by a real-world photo. The parameters include two aspects: (1) physical
210 parameters that describe the position and posture information of the real camera (coordinates,
211 yaw, pitch, and roll) and (2) optical parameters that describe the camera lens and the projection
212 system (field of view, geometry of imaging plane, and resolution). Since the virtual camera in
213 the BIM engine uses different parameters (as shown in Fig. 4), a matching algorithm is devised
214 to translate the real camera parameters to its counterpart.

215

216 A BIM project usually uses a local coordinate system, while the real camera position is
 217 usually recorded in an 84-format WGS (World Geodetic System) [35]. Therefore, the
 218 coordinates of the real one is transformed before being used as the virtual camera position, as
 219 Eq. (1).

220
$$\mathbf{p}_{BIM} = f_{trans}(\mathbf{p}_{WGS84}) \quad (1)$$

221 where \mathbf{p}_{WGS84} and \mathbf{p}_{BIM} are respectively camera coordinates in the WGS-84 system and BIM
 222 system, i.e. $[lon \ lat \ alt]^T$ and $[x \ y \ z]^T$. Then, $f_{trans}(\mathbf{x})$ is the transformation function.
 223 The transformation process typically involves four steps.

224

225 The first step is to transform the WGS-84 coordinates to country/region coordinates, which is
 226 actually a geometric transformation between two 3D Cartesian coordinate systems. Eq. (2) is
 227 the transformation formula.

228
$$\mathbf{p}_{cou} = (1+m_1) \begin{bmatrix} 1 & \varepsilon_z & -\varepsilon_y \\ -\varepsilon_z & 1 & \varepsilon_x \\ \varepsilon_y & -\varepsilon_x & 1 \end{bmatrix} \mathbf{p}_{WGS84} + \begin{bmatrix} \Delta X_1 \\ \Delta Y_1 \\ \Delta Z_1 \end{bmatrix} \quad (2)$$

229 where \mathbf{p}_{WGS84} and \mathbf{p}_{cou} are the coordinates in the WGS-84 system and country/region system,
 230 respectively. $[\Delta X_1 \ \Delta Y_1 \ \Delta Z_1]^T$ is the translation vector; ε_x , ε_y , and ε_z are the rotation angle
 231 around X axis, Y axis, and Z axis, and m_1 is a scale factor. The value of these parameters can
 232 be directly obtained from survey departments.

233

234 The next step is to project the 3D country/region coordinates to 2D plane coordinates (as
 235 shown in Eq. (3)), which is usually performed with a GIS (geographic information system)
 236 software.

237
$$\mathbf{p}_{proj} = f_{proj}(\mathbf{p}_{cou}) \quad (3)$$

238 Here, \mathbf{p}_{proj} is the coordinates after projection, and $f_{proj}(x)$ represents the projection function.

239

240 In the third step, the projection coordinates are converted to a local coordinate system, which
241 can be expressed as:

242
$$\mathbf{p}_{loc} = (1 + m_3) \begin{bmatrix} \cos \omega & -\sin \omega & 0 \\ \sin \omega & \cos \omega & 0 \\ 0 & 0 & \frac{1}{1 + m_3} \end{bmatrix} \mathbf{p}_{proj} + \begin{bmatrix} \Delta X_3 \\ \Delta Y_3 \\ -\zeta \end{bmatrix} \quad (4)$$

243 where \mathbf{p}_{loc} represent the coordinates under the local coordinate system; m_3 is the scale
244 factor; ω is the rotation angle; ΔX_3 and ΔY_3 are the translation values, and ζ is the height
245 anomaly between the quasigeoid and the reference ellipsoid. These parameters can be
246 obtained from local survey departments.

247

248 A BIM project often sets one of the control points in the local coordinate system as its project
249 survey point. Eq. (5) shows how to convert the local coordinates to the BIM coordinates.

250
$$\mathbf{p}_{BIM} = \mathbf{p}_{loc} + \begin{bmatrix} \Delta X_4 \\ \Delta Y_4 \\ \Delta H_4 \end{bmatrix} \quad (5)$$

251 where, ΔX_4 , ΔY_4 , and ΔH_4 are the translation values, which are the opposite of the
252 coordinates of the selected control point.

253

254 The camera orientation in BIM is represented by a vector that describes the observing
 255 direction and a vector that describes the camera up direction, which can be obtained by Eq.
 256 (6) and Eq. (7), respectively.

$$257 \quad \mathbf{v}_{eye} = (\cos \beta \cos(\frac{\pi}{2} - \alpha), \cos \beta \sin(\frac{\pi}{2} - \alpha), \sin \beta)^T \quad (6)$$

$$258 \quad \mathbf{v}_{up} = \begin{bmatrix} \sin(\frac{\pi}{2} - \alpha) \sin \varphi - \cos(\frac{\pi}{2} - \alpha) \sin \beta \cos \varphi \\ -\cos(\frac{\pi}{2} - \alpha) \sin \varphi - \sin(\frac{\pi}{2} - \alpha) \sin \beta \cos \varphi \\ \cos \beta \cos \varphi \end{bmatrix} \quad (7)$$

259 where \mathbf{v}_{eye} is a normalized vector of the observing direction; \mathbf{v}_{up} is a normalized vector
 260 orthogonal to the camera rigid body, which reflects the rotation of the camera around the
 261 observing direction; finally, α , β , and φ are yaw, pitch, and roll angle, respectively.

262

263 As illustrated by Fig. 4, the virtual camera uses a perspective projection system, which is
 264 defined by four parameters, i.e., *fovv*, *aspect*, *near*, and *far*. These parameters are matched to
 265 the real camera according to Eq. (8).

$$266 \quad \begin{bmatrix} fovv \\ aspect \\ near \\ far \end{bmatrix} = \begin{bmatrix} fov_R \\ w_R / h_R \\ m \\ +\infty \end{bmatrix} \quad (8)$$

267 where *fovv* stipulates the virtual camera field of view, while fov_R is the correspondence of the
 268 real camera; *aspect* is a width-to-height ratio of the projection plane; w_R and h_R are
 269 respectively the width and the height of the imaging plane of the real camera; *near* and *far*
 270 represent the distance from the origin to the near clipping plane and the far clipping plane,
 271 which is equal to a minimal constant m and infinity, respectively. Using the above calculated

272 physical and optical parameters, a BIM image that is coarsely aligned with its real-world
 273 counterpart can be generated.

274

275 *3.1.2 Image registration for precise alignment*

276 The BIM-rendered image needs to be registered for a precise alignment with its real-world
 277 counterpart, because the image pairs are usually not consistent with each other due to inaccurate
 278 georeferenced information, imaging distortion, and data noise. It should be noted that although
 279 the BIM image is rendered with an aspect determined by the resolution of the photo (i.e.,
 280 w_R / h_R), it usually has a different size than its counterpart, e.g., the virtual one is 800*600
 281 while the real one is 4032*3016. Therefore, the BIM-rendered image is scaled to the same
 282 resolution as its counterpart before precise alignment is performed. An affine transform is
 283 adopted for image registration, which is illustrated as:

$$284 \begin{bmatrix} x_{BIMt} \\ y_{BIMt} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & h_x & 0 \\ h_y & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{BIM} \\ y_{BIM} \\ 1 \end{bmatrix} \quad (9)$$

285 where, $\begin{bmatrix} x_{BIM} & y_{BIM} & 1 \end{bmatrix}^T$ and $\begin{bmatrix} x_{BIMt} & y_{BIMt} & 1 \end{bmatrix}^T$ are respectively the homogeneous coordinates

286 of image pixels before and after transformation. Moreover, $\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

287 $\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & h_x & 0 \\ h_y & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ are transformation matrices, i.e., translation matrix, rotation

288 matrix, scale matrix, and shear matrix, respectively.

289

290 The purpose of image registration is to find the optimal transformation matrices for a BIM
291 image to maximize the cost function illustrated by Eq. (10), which, as denoted by mutual
292 information [36], measures the similarity between a BIM image and a real photo.

293

$$I(R; B) = \sum_{r,b} P_{RB}(r,b) \log \frac{P_{RB}(r,b)}{P_R(r)P_B(b)} \quad (10)$$

294 where $I(R; B)$ is the mutual information between a real image with intensity r and a BIM
295 image with intensity b ; $P_R(r)$ and $P_B(b)$ are the marginal distributions of the real and BIM
296 image intensity. $P_{RB}(r,b)$ is the joint distribution.

297

298 The evolutionary algorithm is used to optimize the mutual information with respect to the
299 transformation matrices. The optimization process is inspired by the notion of “survival of the
300 fittest” from Darwinian evolution, and comprises four typical steps, i.e., initialization,
301 evaluation, selection, and variation. In the initialization phase, the initial solutions (denoted by
302 the initial population of individuals) for the transformation matrices are randomly generated.

303 The fitness scores of the individuals in maximizing the mutual information $I(R; B)$ are then
304 evaluated, and the most suitable ones are selected for reproduction of the next generation. At
305 the variation stage, new individuals are bred through crossover and mutation operations for
306 evaluation in the next cycle. The circle of “evaluation-selection-variation” continues until
307 certain termination criteria (e.g., maximum iteration number, or converge) are satisfied. More
308 information on image registration based on mutual information can be found in [36].

309

310 **3.2 SOI extraction with BIM image mask**

311 The registered BIM image aligned with its counterpart is further processed to generate a mask
312 (as shown in Fig. 5(a)). First, the RGB image is converted to a grayscale format. Since a BIM
313 image background is single colored (e.g., plain white), it is straightforward to turn the grayscale
314 image to a binary image by setting the grayscale of the background pixels at zero, while the
315 others are set at one. The morphology-based dilation method is used to fill in the holes in the
316 region of interest.

317

318 The generated mask is leveraged to extract the structure of interest. As illustrated by Fig. 5(b),
319 the extraction is realized by the operation of two image matrices. After image registration, the
320 pixels with the value of one (white color) in the binary mask image constitute an estimated
321 region of interest (denoted by Ω_{roi} in Fig. 5(b)). Conversely, the pixels with the value of zero
322 (black color) represent the estimated background. The matrix of the mask image is denoted by
323 M_{ij} , which represents the value of the pixel at the i row and j column. The matrix of the original
324 real-world photo is denoted by O_{ij} , which represents the intensity of the pixel at the i row and
325 j column. The extracted image E_{ij} can be obtained by multiplying the corresponding elements
326 in M_{ij} and O_{ij} . This operation maintains the estimated ROI as the original intensity while
327 turning the background into a universal black color.

328

329 **4 Experiment validation**

330 **4.1 Experiment scheme**

331 Two experiments were performed to testify the effectiveness and precision of the proposed
332 algorithm. The target structures of interest are, respectively, the John D. Tickle (JDT) building,

333 and the Student Union at the University of Tennessee, Knoxville. A smartphone, Xiaomi MI 6,
334 was used as the photo-capture device, which has an equivalent focal length of 27 mm, and an
335 image resolution (width*height) of 4032*3016 pixels. The proposed algorithm was run on a
336 laptop, ASUS VivoBook S15, with an Intel Core i7-8550U processor, and Nvidia GeForce
337 MX150 GPU. The BIM image was rendered by a web-based BIM model viewer — the
338 Autodesk Forge Viewer, which provides a flexible programming interface to customize the
339 rendering view angle, viewpoint, aspect, field of view, etc. The image registration was
340 performed by the MATLAB image processing toolbox.

341

342 **4.2 Experiment results**

343 *4.2.1 Assessment metric*

344 To quantitatively evaluate the experiment results, an index called Intersection over Union (*IoU*)
345 is used to determine the alignment precision between the extracted SOI and the ground truth
346 SOI. The ground truth SOI is denoted by S_{gro} , while the SOI extracted by the proposed method
347 is denoted by S_{ext} . The *IoU* is defined as a ratio of the area of $S_{gro} \cap S_{ext}$ to the area of $S_{gro} \cup$
348 S_{ext} (as shown in Eq. (11)).

349
$$IoU = \frac{A(S_{gro} \cap S_{ext})}{A(S_{gro} \cup S_{ext})} \quad (11)$$

350 where, $A(x)$ is the area of region x , which can be reflected by the quantity of pixels in the region.
351 The larger the *IoU* is, the better the extraction result is in accordance with the ground truth.
352 When *IoU* equals to one, a complete overlap is achieved, which indicates a 100% precision.

353

354 *4.2.2 Case one — JDT building*

355 Fig. 6 shows the layout of the experiment site at the JDT building and the corresponding BIM
356 model. Six locations were specified to take photographs containing both the structure of interest
357 and the background, i.e., from Loc #1-1 to Loc #1-6 in Fig. 6 (a). At each location, multiple
358 photos were captured at different camera angles. Twenty-three photos were collected in this
359 experiment.

360

361 Fig. 7 shows the results for registering the captured real-world photos to the BIM model, where
362 a BIM-rendered image is overlaid onto its counterpart. The difference between the image pairs
363 is represented by different false colors. The region where the superimposed image is bright and
364 the underlying one is dark will look green, while the region with the opposite pattern will look
365 magenta. If both images are dark, the region will be dark. If both images are bright, the region
366 will be bright. The code number at the top of each group describes the photo-captured location
367 and the sequence number. For example, code number “#1-1-1” represents the 1st photo captured
368 at Location #1-1. The row “coarse alignment” presents the alignment level of the raw BIM
369 images that are generated based on georeferenced information, while the row “precise
370 alignment” shows the results of further image registration operation. The *IoU* value is labeled
371 at each image to indicate its quantitative alignment level. As can be seen from the figure, the
372 BIM images at the coarse alignment stage align well in general with the corresponding real-
373 world photos (with an average *IoU* of 78.6%). After the precise alignment (image registration)
374 operation, the alignment level is further improved, wherein significant improvement is
375 observed at image #1-2-1, #1-2-5, and #1-4-1. The average *IoU* of precise alignment is 82.2%.

376

377 The SOIs are extracted based on the precise alignment results, as shown in Fig. 8–Fig. 11. The
378 first row of these figures show the captured photos with ground-truth SOIs traced by red lines.
379 The second row and the third row respectively show the segmentation and SOI extraction
380 results. The results exhibit a good performance in general, with the exceptions of # 1-4-3 and
381 # 1-4-4, which show significant deviations from the ground truth.

382

383 *4.2.3 Case two — Student Union*

384 Fig. 12 show four locations (#2-1, #2-2, #2-3, and #2-4) designated for capturing photos of the
385 Student Union from different view angles. Twenty-one photos were collected.

386

387 Similar to case one, Fig. 13 shows the results for registering real-world photos to the BIM
388 model. As can be seen from the figure, most of the BIM images at the coarse alignment stage
389 align well with their corresponding real-world counterparts, except for images #2-2-4, #2-2-5,
390 and #2-2-6. The average *IoU* at this stage is 74.8%. After the precise alignment (image
391 registration) operation, the alignment level is improved, and the average *IoU* increased to
392 75.9%. Images #2-4-1, #2-3-3, and #2-3-6 witnessed significant improvement in their
393 alignment level, while no obvious change was observed in #2-1-1–#2-1-3, and #2-2-1–#2-2-3.
394 The ground truth (1st row) and the extracted SOI (2nd and 3rd row) based on the results of precise
395 alignments are presented from Fig. 14 to Fig. 17. These alignments exhibit a good performance
396 in general, with the exceptions of images #2-2-4, #2-2-5, and #2-2-6.

397

398 **4.3 Performance assessment of the proposed method**

399 The *IoU* value is used as a metric to evaluate SOI extraction accuracy. The frequency
400 distribution histogram of the *IoU* values of all 44 groups of images collected from the two
401 experiments is shown in Fig. 18. The average *IoU* value is 79.21%, and a total of 36 images
402 attained an *IoU* value of over 70%, accounting for 81.8%. By comparison, the OASGR [7], a
403 state-of-the-art ROI extraction algorithm, achieved an average *IoU* value of 68.9% on the
404 Pascal VOC Challenge 2007 dataset [37]. In [38], an extraction with an *IoU* value larger than
405 50% is regarded as a correct result. The average *IoU* value of our method is higher than the
406 OASGR *IoU* value and above the criteria set by [38], which demonstrates a quite promising
407 performance. In terms of efficiency, the average running time of our method for processing
408 each image was about 140 s, which can be further improved by using parallel computation or
409 a high-performance workstation.

410

411 **4.4 Discussion**

412 The proposed structure of interest extraction algorithm is validated by the experiment results.
413 Among all 44 testing photos, the average *IoU* value is 79.2%, and those with an attained *IoU*
414 value of over 70% account for 81.8%. The proposed method can achieve an accuracy that is
415 better than the state of the art, and does not require model training or human intervention.

416

417 The efficacy of the proposed method in automating the SOI extraction process is verified. Both
418 experiments achieved an *IoU* value of over 75%, which demonstrates the proposed method can
419 work properly with no dependence on the appearance and style of the target structure.
420 Equivalent high performance has been attained on images with different illumination (e.g.,

421 strong light in #1-4-1 and overcast in #1-3-5), and different types of elements in the background
422 (e.g., trees in #1-2-5, irrelevant buildings in #1-1-1, and a complex environment in #2-1-2).
423 The results indicate the robustness of the proposed method for dealing with complex and varied
424 backgrounds. In other words, the proposed method is not designated for a specific type of target
425 structure with a specific surrounding environment but provides a generic algorithm suitable for
426 georeferenced photos once the corresponding BIM model is accessible. As a result, the
427 execution of the algorithm is automated without involving any human intervention or prior
428 knowledge for feature selection.

429

430 The image registration can compensate for the deviation between the real-world photo and
431 BIM-rendered image caused by inaccurate georeferenced information and imaging distortion,
432 thereby improving the alignment accuracy (with an average 3.6% and 1.1% of improvement
433 for case one and case two, respectively). The increase of *IoU* value after image registration can
434 go up 10% to 20%, as shown in images #1-2-1, #1-4-1, #2-3-2, and #2-4-1. However, one
435 observation in the experiments is that under certain circumstances when the angle between the
436 line-of-sight and the structure of interest is small, the alignment accuracy did not increase
437 significantly, as shown in images #1-5-1, #2-1-1, and #2-2-1 in Fig. 7 and 13. Some photos
438 witnessed a decrease of *IoU* value after registration, e.g., Images #1-3-3, and #1-3-4 in Fig. 7,
439 and images #2-3-3 and #2-4-3 in Fig. 13. In the case of images #1-3-3 and #1-3-4, the deviation
440 between the real building and the BIM model (see Fig. 19(a)) induced a registration failure,
441 which then reduced the *IoU* value. In terms of images #2-3-3 and #2-4-3, the image registration
442 actually improves the alignment level of the exterior contour of the building, as can be seen

443 from Fig. 19(b). However, the transformation of the BIM image for achieving this alignment
444 induced a deviation of other parts in the images, which reduced the intersection between the
445 ground truth and extracted result (shaded part in Fig. 19(b)), and then led to the decrease of the
446 *IoU* value.

447

448 The experiments show several undesirable extraction results (as shown in images #1-4-3, #1-
449 4-4 and #2-2-4 to #2-2-6), which have *IoU* values of less than 40%. These extraction failures
450 are due to the imprecise georeferenced information provided by the real-world photos. For
451 example, with interferences from magnetic disturbances, the detected yaw value deviated
452 considerably when photo # 2-2-4 was taken. As a result, the generated BIM image with the
453 inaccurate yaw value shows great deviation from the real-world photo (see Fig. 19(c)), which
454 is difficult to compensate by subsequent image registration.

455

456 **5. Conclusions**

457 Structure of interest (SOI) extraction is a critical preprocessing step for improving the
458 performance of computer vision-based structural inspection. As an attempt to automate the
459 process, this study proposes to extract SOI by registering a georeferenced photo to a
460 corresponding building information model. The method for aligning real photos and BIM-
461 rendered images is explored based on georeferenced information and image registration. The
462 SOI in a real-world photo is subsequently extracted by converting the registered BIM image
463 into a binary mask. The experiments carried out at the John D. Tickle building and the Student
464 Union at the University of Tennessee, demonstrated the potential performance of the proposed

465 method in extracting SOI from images with a complex and varied background. Since no manual
466 efforts are needed for finding suitable patterns, the SOI extraction process is automated with
467 the proposed method.

468

469 Further research efforts are needed to address the following limitations. First, the received GPS
470 signal and IMU data can yield unreliable georeferenced information, due to occlusion or
471 electromagnetic interference. In this case, the deviation would be too huge to be compensated
472 by image registration. As a result, measures should be taken to guarantee the robustness and
473 performance of the GPS localization and IMU measurement. Second, although the proposed
474 method exhibits high performance in removing the irrelevant background, it falls short of
475 processing a foreground. In fact, the vision-based defect detection result would also be affected
476 by the foreground pixels overlaid on the region of interest. One possible solution is to combine
477 the proposed method with color-and-texture-based segmentation. After the background is
478 subtracted using our proposed method, the foreground pixels can be removed based on texture
479 or color heterogeneity between the foreground and target structure.

480

481 **References**

482 [1] D. Kang, Y.-J. Cha, Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an Ultrasonic
483 Beacon System with Geo-Tagging, *Computer-Aided Civil and Infrastructure Engineering*, 33 (2018) 885-902.
484 [2] S.-s. Choi, E.-k. Kim, *IEEE, Building Crack Inspection using Small UAV*, 2015 17th International Conference on
485 Advanced Communication Technology2015, pp. 235-238.
486 [3] G. Morgenthal, N. Hallermann, Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection
487 of Structures, *Advances in Structural Engineering*, 17 (2014) 289-302.
488 [4] M.M. Torok, M. Golparvar-Fard, K.B. Kochersberger, Image-Based Automated 3D Crack Detection for Post-
489 disaster Building Assessment, *J Comput Civil Eng*, 28 (2014).
490 [5] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, P.J.A.E.I. Fieguth, A review on computer vision based defect
491 detection and condition assessment of concrete and asphalt civil infrastructure, 29 (2015) 196-210.

492 [6] C.M. Yeum, Computer vision-based structural assessment exploiting large volumes of images, (2016).
493 [7] Q. Li, Z. Wei, C. Zhao, Optimized Automatic Seeded Region Growing Algorithm with Application to ROI
494 Extraction, International Journal of Image and Graphics, 17 (2017).
495 [8] L. Abdel-Qader, O. Abudayyeh, M.E. Kelly, Analysis of edge-detection techniques for crack identification in
496 bridges, J Comput Civil Eng, 17 (2003) 255-263.
497 [9] C.M. Yeum, J. Choi, S.J. Dyke, Autonomous image localization for visual inspection of civil infrastructure, Smart
498 Mater Struct, 26 (2017).
499 [10] R. Huang, B. Yang, F. Liang, W. Dai, J. Li, M. Tian, W. Xu, A top-down strategy for buildings extraction from
500 complex urban scenes using airborne LiDAR point clouds, Infrared Phys Techn, 92 (2018) 203-218.
501 [11] M. Mueller, K. Segl, H. Kaufmann, Edge- and region-based segmentation technique for the extraction of large,
502 man-made objects in high-resolution satellite imagery, Pattern Recogn, 37 (2004) 1619-1628.
503 [12] P. Sidike, D. Prince, A. Essa, V.K. Asari, Ieee, AUTOMATIC BUILDING CHANGE DETECTION THROUGH ADAPTIVE
504 LOCAL TEXTURAL FEATURES AND SEQUENTIAL BACKGROUND REMOVAL, 2016 Ieee International Geoscience
505 and Remote Sensing Symposium2016, pp. 2857-2860.
506 [13] S. Chi, C.H. Caldas, Automated Object Identification Using Optical Video Cameras on Construction Sites,
507 Computer-Aided Civil and Infrastructure Engineering, 26 (2011) 368-380.
508 [14] E.R. Azar, B. McCabe, Automated Visual Recognition of Dump Trucks in Construction Videos, J Comput Civil
509 Eng, 26 (2012) 769-781.
510 [15] M. Golparvar-Fard, V. Balali, J.M. de la Garza, Segmentation and Recognition of Highway Assets Using Image-
511 Based 3D Point Clouds and Semantic Texton Forests, J Comput Civil Eng, 29 (2015).
512 [16] V. Balali, M. Golparvar-Fard, Segmentation and recognition of roadway assets from car-mounted camera
513 video streams using a scalable non-parametric image parsing method, Automat Constr, 49 (2015) 27-39.
514 [17] Q. Lu, S. Lee, Development of a Semi-Automatic Image-based Object Recognition System for Reconstructing
515 As-is BIM Objects based on Fuzzy Multi-Attribute Utility Theory, CIB W78 2016 Conference, 2016.
516 [18] Q. Lu, S.J.J.o.C.i.C.E. Lee, Image-based technologies for constructing as-is building information models for
517 existing buildings, 31 (2017) 04017005.
518 [19] C. Kropp, C. Koch, M.J.A.i.C. König, Interior construction state recognition with 4D BIM registered image
519 sequences, 86 (2018) 11-32.
520 [20] Y. Ibrahim, T.C. Lukins, X. Zhang, E. Trucco, A.J.A.E.I. Kaka, Towards automated progress assessment of
521 workpackage components in construction projects using computer vision, 23 (2009) 93-103.
522 [21] I.-H. Kim, H. Jeon, S.-C. Baek, W.-H. Hong, H.-J. Jung, Application of Crack Identification Techniques for an
523 Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle, Sensors-Basel, 18 (2018).
524 [22] C. Eschmann, C.M. Kuo, C.H. Kuo, C. Boller, Unmanned aircraft systems for remote building inspection and
525 monitoring, 6th European Workshop on Structural Health Monitoring 2012, EWSHM 2012, July 3, 2012 - July 6,
526 2012, German Society for Non-Destructive Testing eV, DGZfP e.V., Dresden, Germany, 2012, pp. 1179-1186.
527 [23] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road Damage Detection and Classification Using
528 Deep Neural Networks with Smartphone Images, Computer-Aided Civil and Infrastructure Engineering, 33 (2018)
529 1127-1141.
530 [24] P. Subirats, J. Dumoulin, V. Legeay, D. Barba, Ieee, Automation of pavement surface crack detection using
531 the continuous wavelet transform, 2006 Ieee International Conference on Image Processing, Icip 2006,
532 Proceedings2006, pp. 3037-+.
533 [25] M. Gavilán, D. Balcones, O. Marcos, D.F. Llorca, M.A. Sotelo, I. Parra, M. Ocaña, P. Aliseda, P. Yarza, A.J.S.
534 Amírola, Adaptive road crack detection system by pavement classification, Sensors-Basel, 11 (2011) 9628-9657.
535 [26] Y.-J. Cha, W. Choi, O. Buyukozturk, Deep Learning-Based Crack Damage Detection Using Convolutional Neural

536 Networks, Computer-Aided Civil and Infrastructure Engineering, 32 (2017) 361-378.

537 [27] Y.N. Deng, B.S. Manjunath, Unsupervised segmentation of color-texture regions in images and video, Ieee T
538 Pattern Anal, 23 (2001) 800-810.

539 [28] F. Jing, M.J. Li, H.J. Zhang, B. Zhang, I. Ieee, Unsupervised image segmentation using local homogeneity
540 analysis, 2003.

541 [29] Y.-G. Wang, J. Yang, Y.-C. Chang, Color-texture image segmentation by integrating directional operators into
542 JSEG method, Pattern Recogn Lett, 27 (2006) 1983-1990.

543 [30] J.P. Wu, Y. Tsai, Enhanced roadway inventory using a 2-D sign video image recognition algorithm, Computer-
544 Aided Civil and Infrastructure Engineering, 21 (2006) 369-382.

545 [31] M. Golparvar-Fard, F. Pena-Mora, C.A. Arboleda, S. Lee, Visualization of Construction Progress Monitoring
546 with 4D Simulation Model Overlaid on Time-Lapsed Photographs, J Comput Civil Eng, 23 (2009) 391-404.

547 [32] K. Karsch, M. Golparvar-Fard, D. Forsyth, ConstructAide: Analyzing and Visualizing Construction Sites through
548 Photographs and Building Models, Acm T Graphic, 33 (2014).

549 [33] D.A.K. Forsyth, Kevin; Golparvar-Fard, Mani 4D VIZUALIZATION OF BUILDING DESIGN AND CONSTRUCTION
550 MODELING WITH PHOTOGRAPHS, United States, 2015.

551 [34] J. Park, H.B. Cai, D. Perissin, Bringing Information to the Field: Automated Photo Registration and 4D BIM, J
552 Comput Civil Eng, 32 (2018).

553 [35] D. Liu, J. Chen, D. Hu, Z. Zhang, Dynamic BIM-augmented UAV safety inspection for water diversion project,
554 Computers in Industry, 108 (2019) 163-177.

555 [36] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, Multimodality image registration by
556 maximization of mutual information, IEEE transactions on medical imaging, 16 (1997) 187-198.

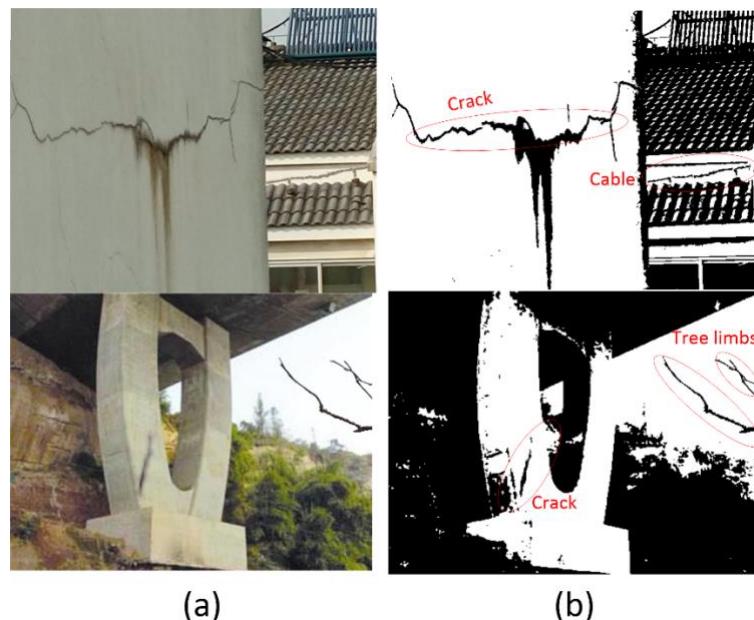
557 [37] T.P.V.O.C. Homepage, The PASCAL Visual Object Classes Homepage.

558 [38] M.J. Ferguson, Seongwoon; Law, Kincho H, Worksite Object Characterization for Automatically Updating
559 Building Information Models, The 2019 ASCE International Conference on Computing in Civil EngineeringGeorgia
560 Institute of Technology, Atlanta, Georgia, United States, 2019.

561

562

563

Figures

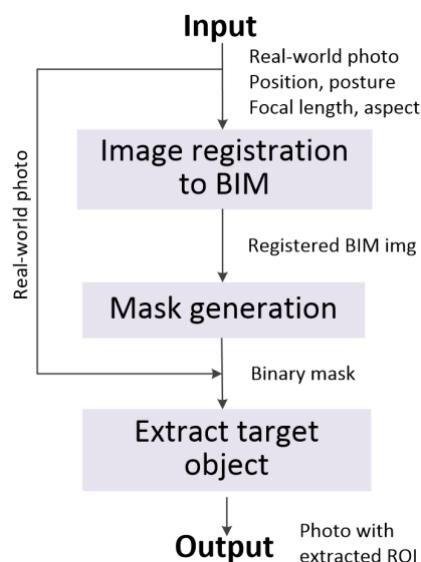
564

(a)

(b)

565 **Fig. 1.** Unordered images with a background that has similar patterns which can be mistook
 566 for structural cracks: (a) RGB images of building exterior wall and bridge pier and (b)
 567 corresponding binary image with cable that could be considered as a crack as well as stains
 568 caused from water dripping out of cracks.

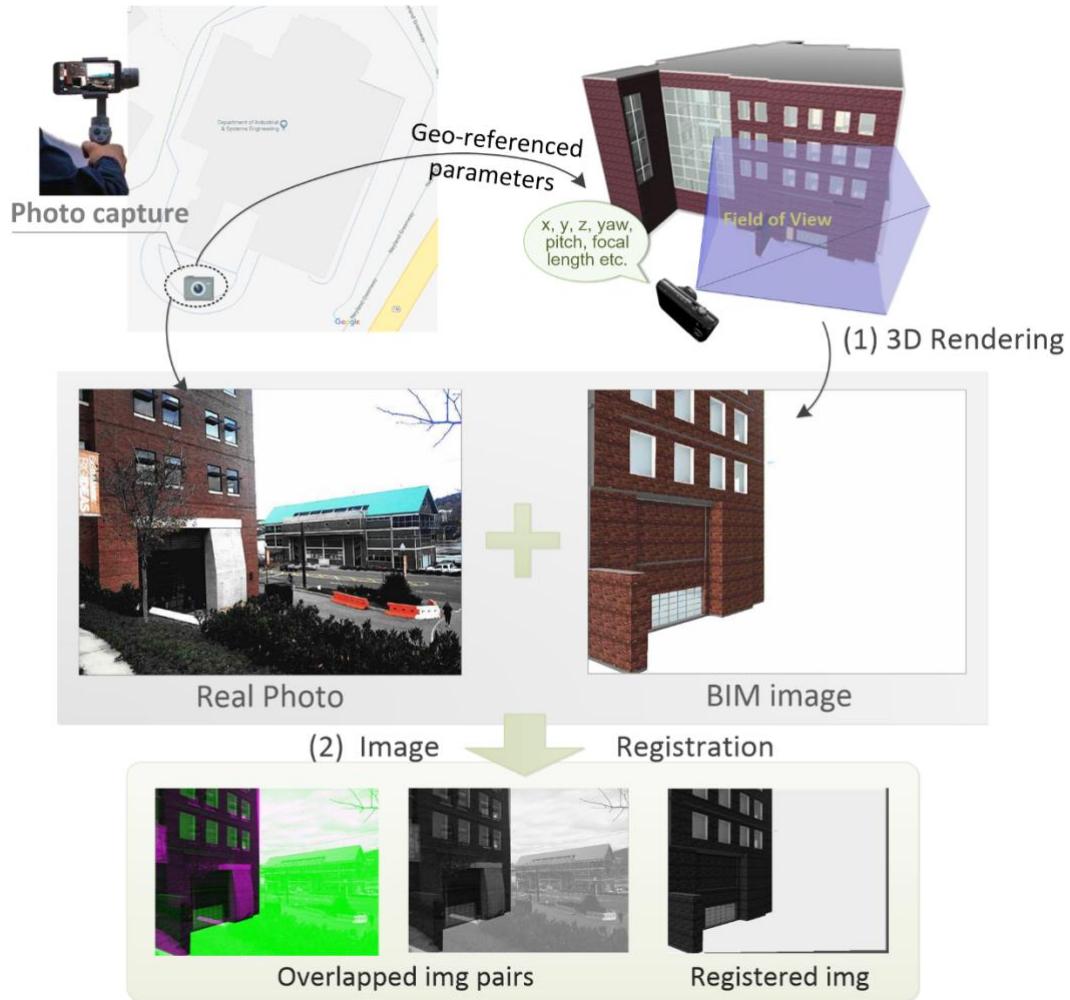
569



570

571 **Fig. 2.** Overall procedure of the proposed method.

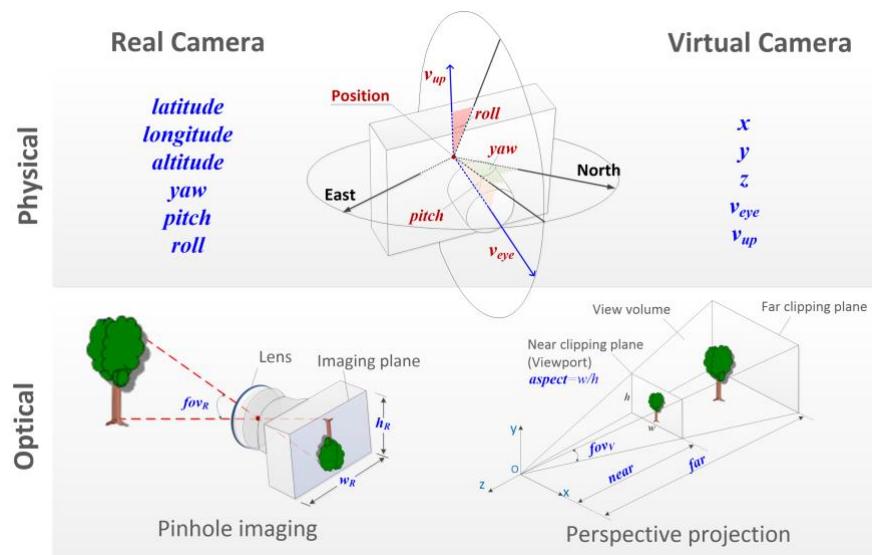
572



573

574 **Fig. 3.** Location-based image registration to BIM model.

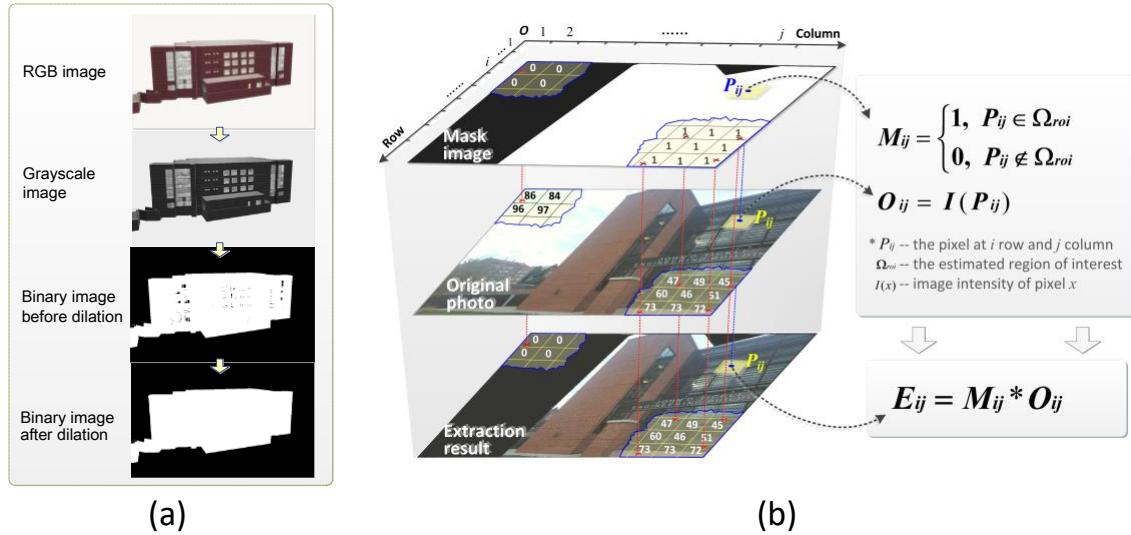
575



576

577 **Fig. 4.** Different physical and optical parameters used by real and virtual camera.

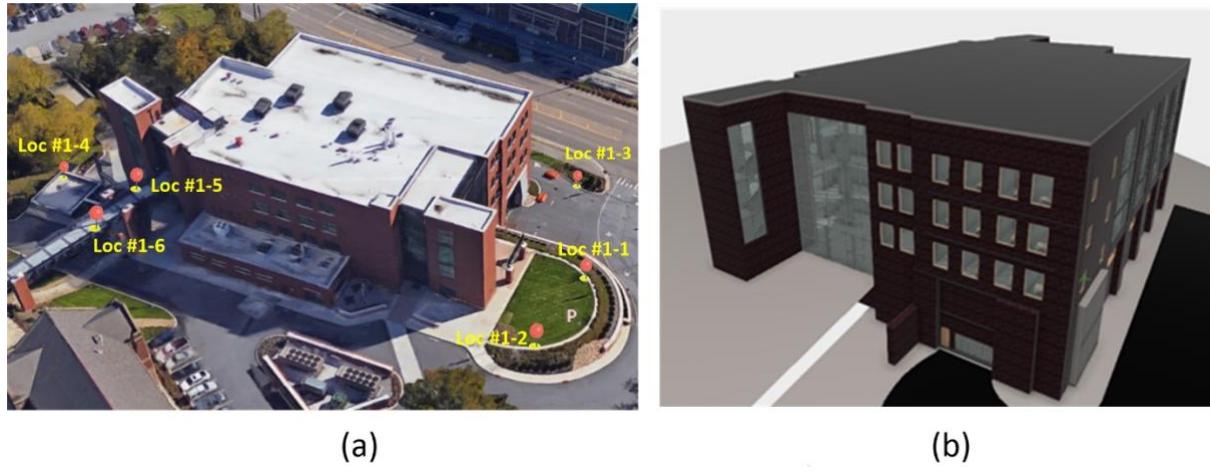
578



579

580 **Fig. 5.** (a) Turning a BIM-rendered image into a mask and (b) ROI extraction with mask
581 operation.

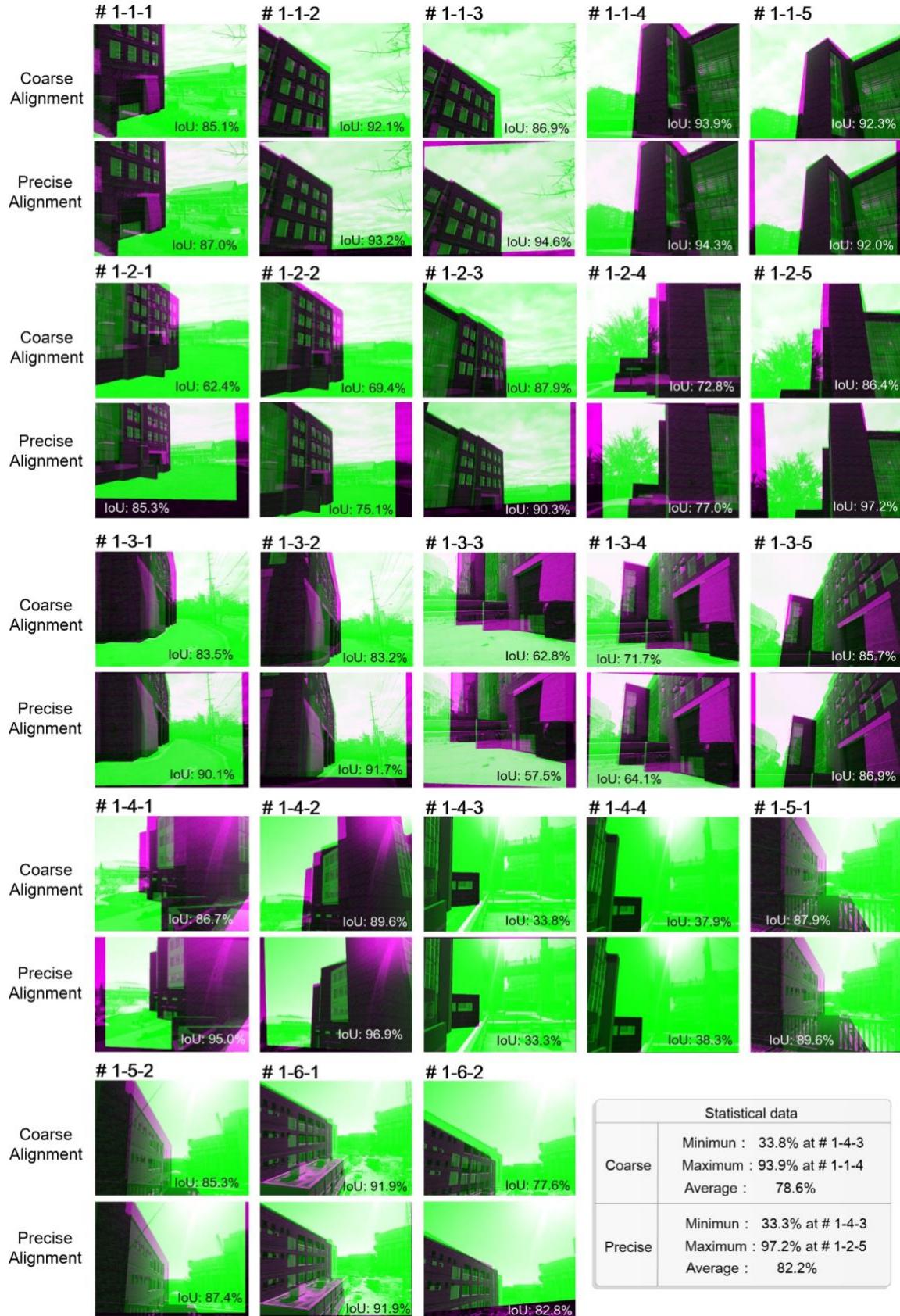
582

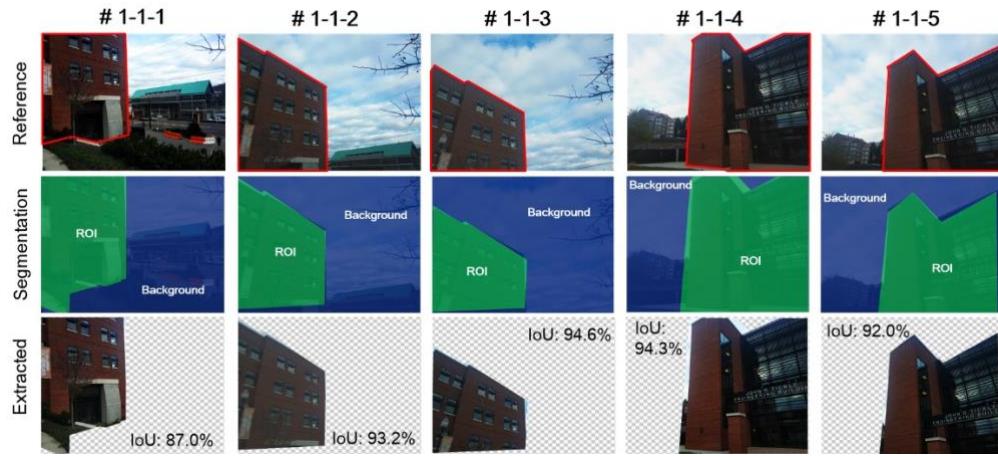


583

584 **Fig. 6.** Layout of experiment site at JDT building: (a) 3D simulation model from Google
585 Earth and (b) 3D BIM model.

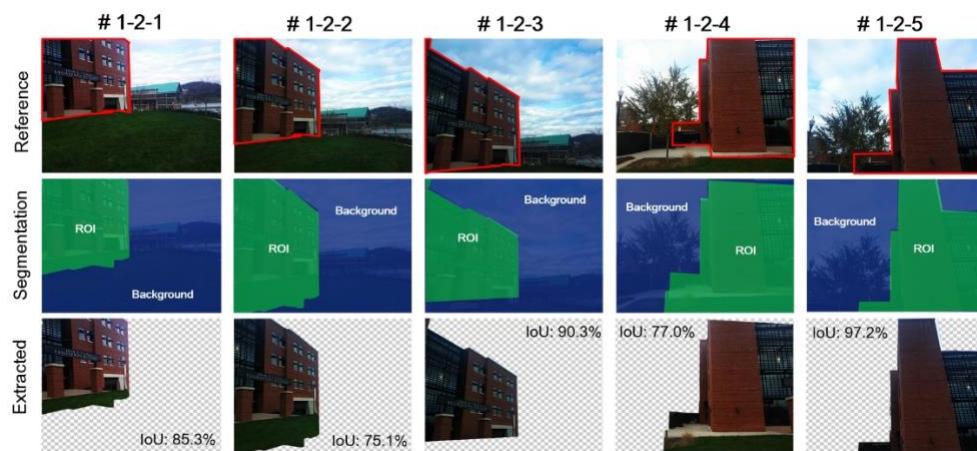
586

**Fig. 7.** Results for registering the captured photos to the BIM model of JDT building.



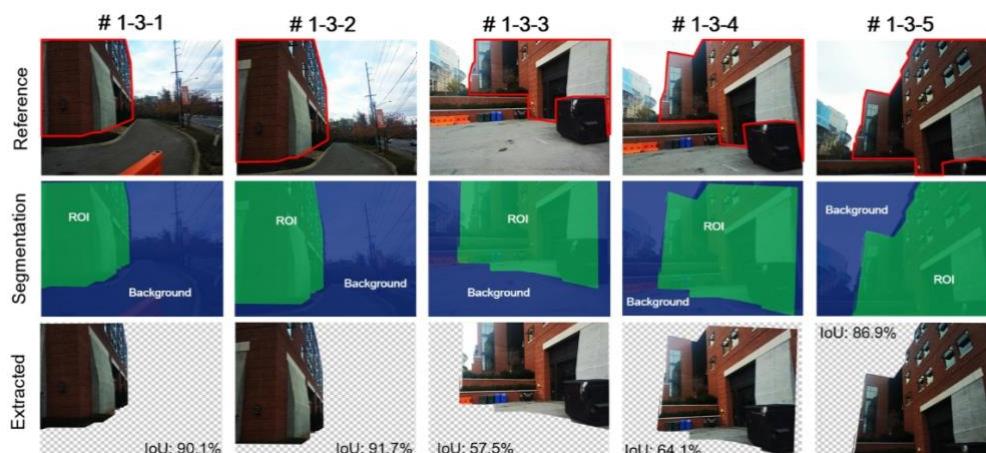
591 **Fig. 8.** SOI extraction results for location #1-1.

592



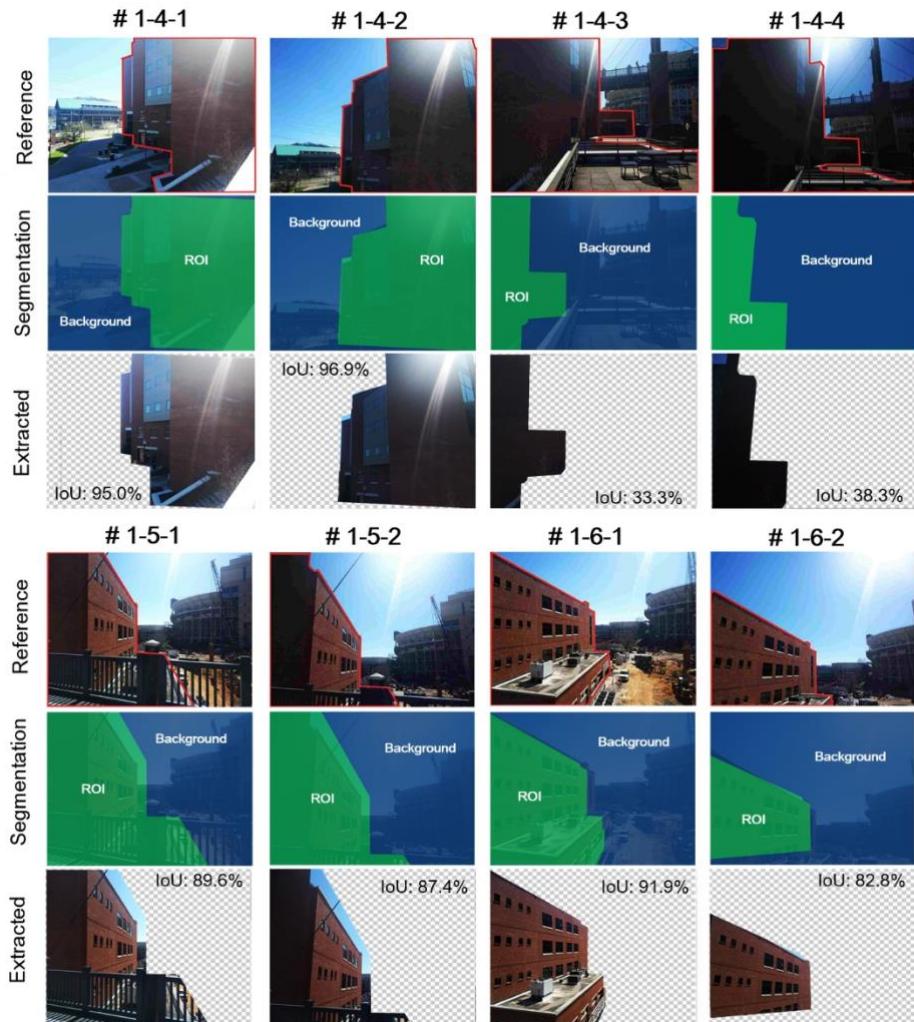
594 **Fig. 9.** SOI extraction results for location #1-2.

595



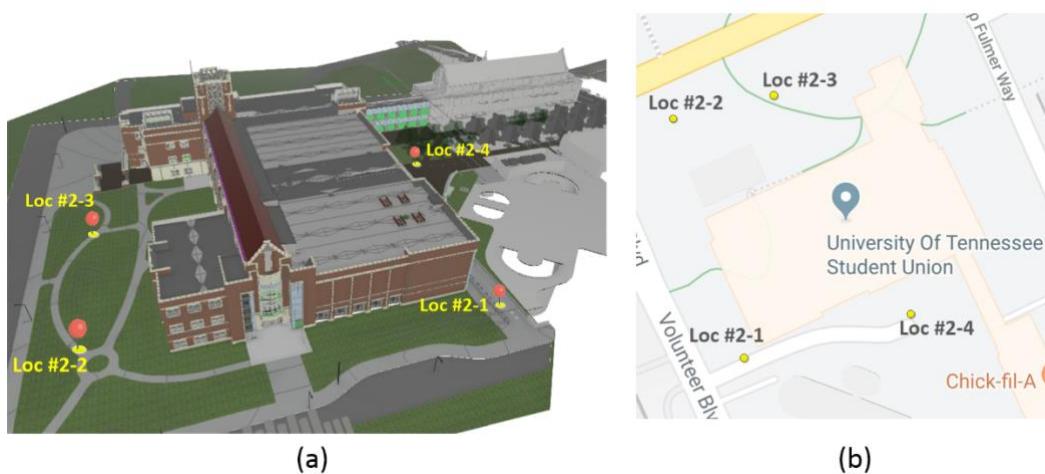
597 **Fig. 10.** SOI extraction results for location #1-3.

598



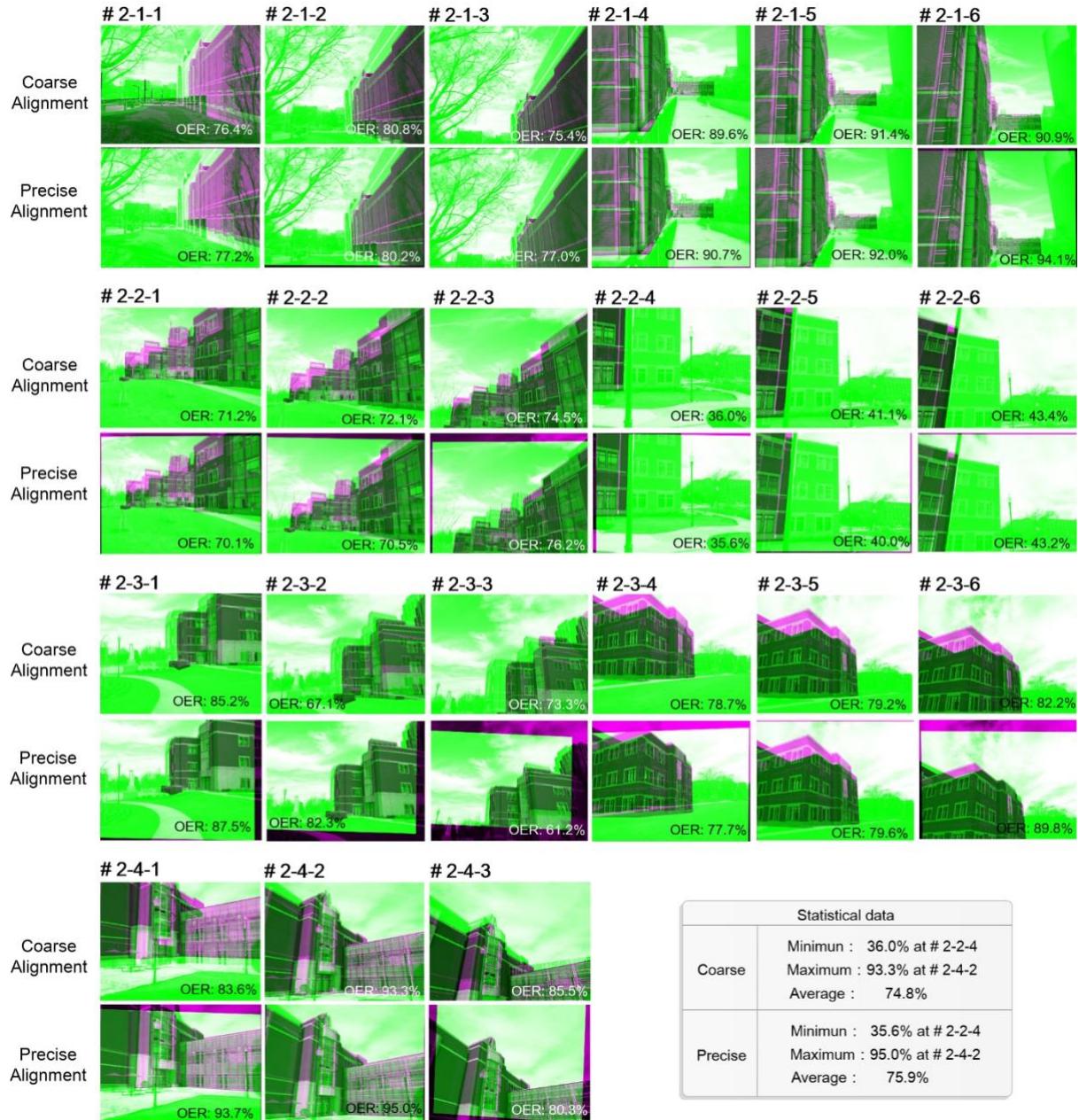
600 **Fig. 11.** SOI extraction results for location #1-4–#1-6.

601



603 **Fig. 12.** Layout of experiment site at Student Union: (a) 3D BIM model and (b) street map of
604 plan view.

605



606

607 **Fig. 13.** Registration results of the captured photos to the BIM model of the student union.

608

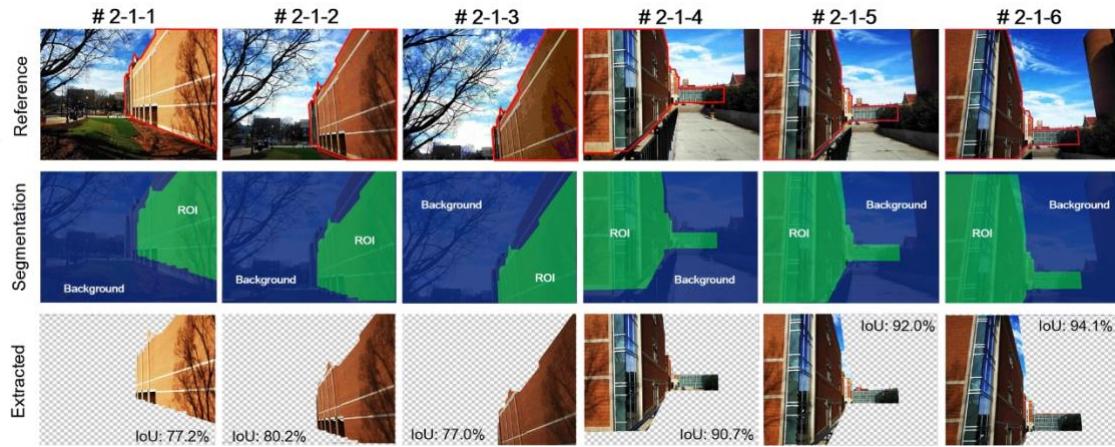


Fig. 14. SOI extraction results for Location #2-1.

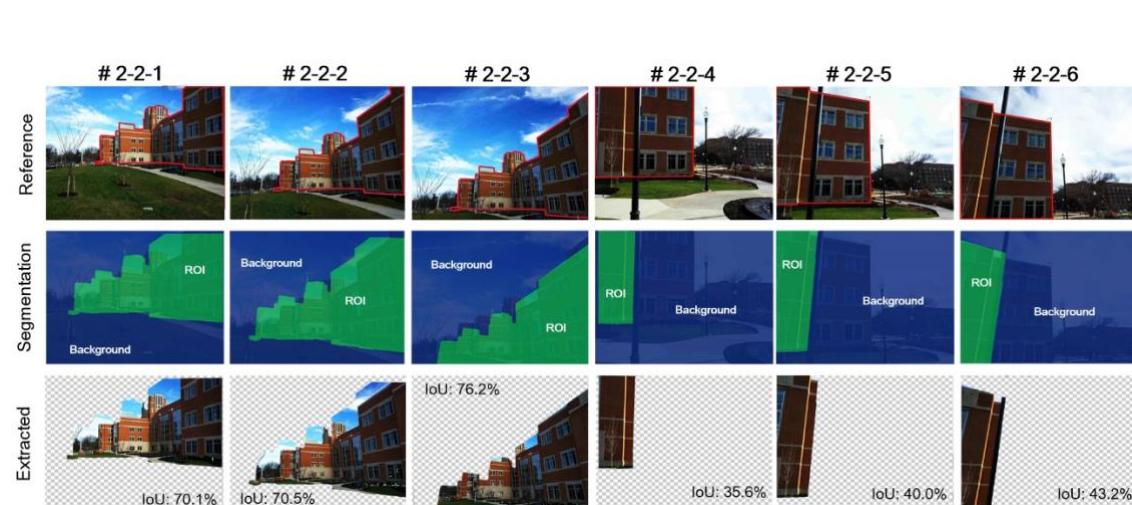


Fig. 15. SOI extraction results for Location #2-2.

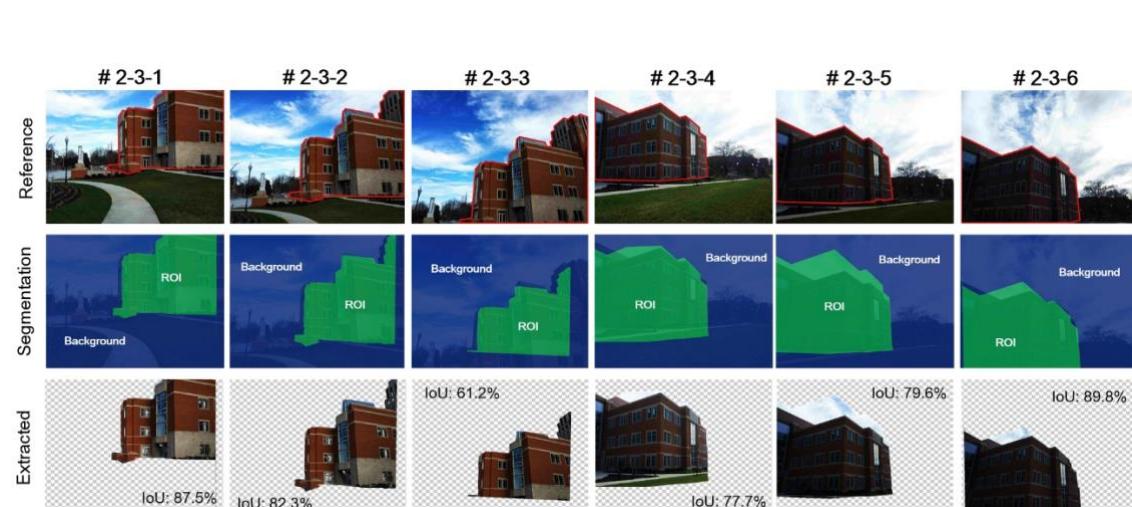


Fig. 16. SOI extraction results for Location #2-3.

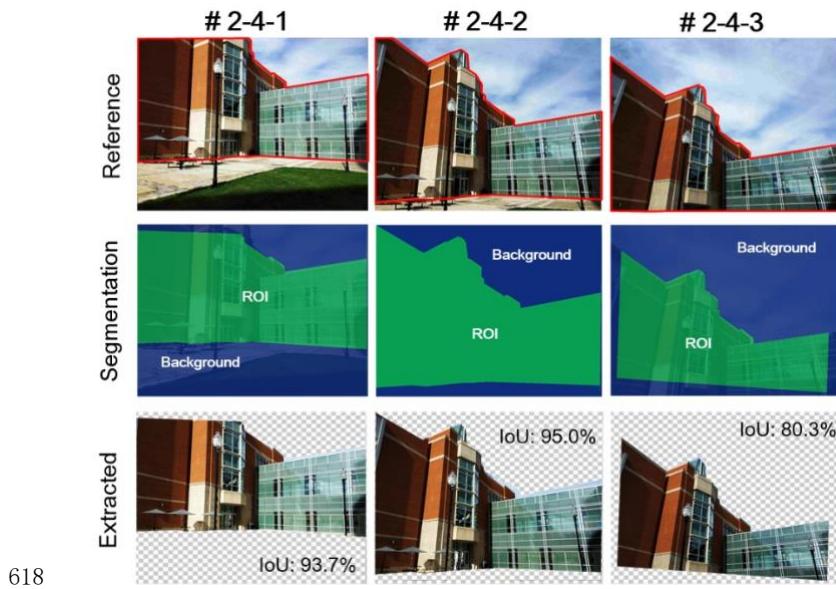
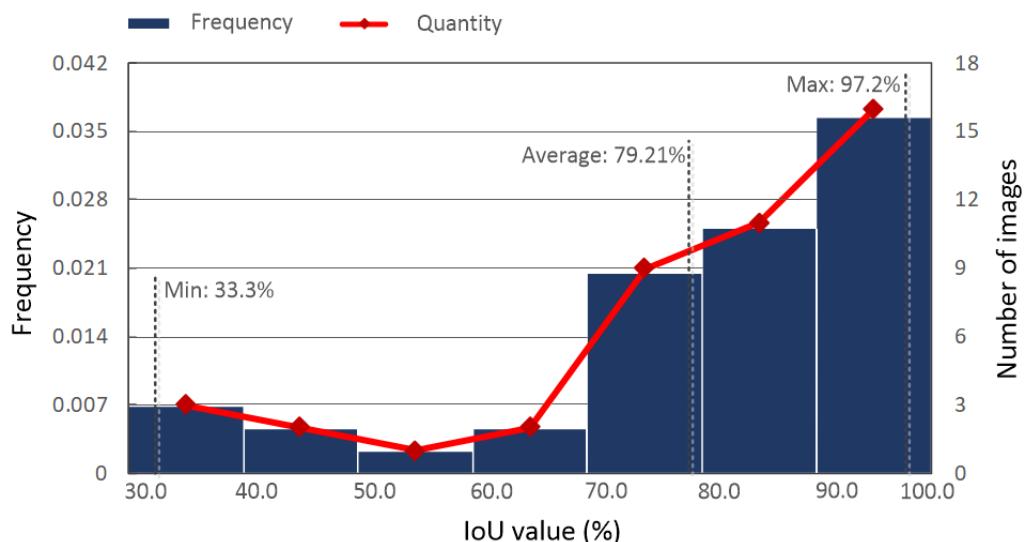


Fig. 17. SOI extraction results for Location #2-4.

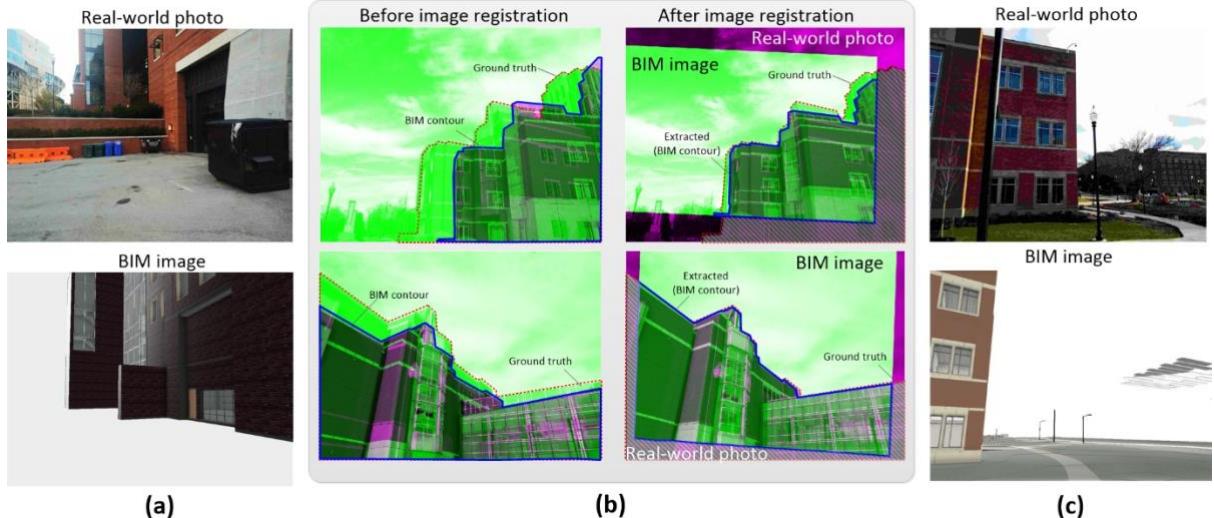
620



621

Fig. 18. Frequency distribution histogram of the experiment results.

622



624

625 **Fig. 19.** (a) Real-world photo and BIM image at Location #1-3, where the real building has a
 626 terrace connecting the exit of the second floor, while the BIM model does not; (b) partial
 627 alignment reduces the intersection between the ground truth and the extracted result, and (c)
 628 real-world photo at Location #2-2 and its counterpart generated with inaccurate yaw value.