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Abstract 3 

Vision-based techniques are being used to inspect structures such as buildings and 4 

infrastructure. Due to various backgrounds in the acquired images, conventional vision-based 5 

techniques rely heavily on manual processing to extract relevant structures of interest for 6 

subsequent analysis in many applications, such as distress detection. This practice is laborious, 7 

time-consuming, and error-prone. To address the challenge, this study proposes a new method 8 

that automatically matches a georeferenced real-life photo with a building information model-9 

rendered synthetic image to allow the extraction of relevant structures of interest. Field 10 

experiments were conducted to validate and evaluate the proposed method. The average 11 

accuracy of this method is 79.21% and the processing speed is 140 seconds per image. The 12 

proposed method has the potential to reduce the workload of image processing for vision-based 13 

structure inspection. 14 

 15 

Keywords: Vision-based inspection; Condition assessment; Region of interest; Building 16 
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1 Introduction 19 

Vision-based structural inspection (VBSI) has been used to detect defects such as cracks, 20 

fractures, and spalling for building and infrastructure condition assessments. Over the past 21 

decades, many algorithms have been proposed for VBSI facilitated by the advancement of 22 

sensing and deep learning techniques. Existing studies achieved good performance on 23 

structured and ordered images that only contain the targeted structures to be inspected. These 24 

images are typically captured by a customized inspection device from certain designated view 25 

angles and distances set to control the influence of irrelevant background. However, the 26 

emerging inspection platforms provided by unmanned aerial vehicles (UAVs) [1–3] and 27 

unmanned ground vehicles (UGVs) [4] have provided a massive amount of unordered visual 28 

assets that are taken from various viewpoints and comprise both the structure of interest (SOI) 29 

and the surrounding background, i.e., sky, vegetation, and pedestrians. Directly identifying 30 

defects from such unordered images is a challenging task [5, 6] because the background 31 

information in an image undermines detection performance [7] from two aspects. First, it might 32 

increase the probability of false positives. For example, cracks are typically identified as 33 

continual-distributed pixels with a strip shape in a binary image. Similar patterns detected in 34 

the background can lead to undesirable false positives, as shown in Fig. 1. Second, processing 35 

irrelevant areas in the photos will bring in extra computation consumption. As a result, 36 

preprocessing is performed to extract the relevant SOI to overcome the influence of an 37 

irrelevant background before an unordered image can be used for further defect detection [8, 38 

9].  39 

 40 
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Traditional SOI extraction techniques rely on prior knowledge [10-12], which either extracts 41 

the SOI or removes the background based on specific patterns, such as “a building generally 42 

has a straight contour” or “vegetation has a green color.” However, different structures may 43 

have very different shapes and appearances, and their surrounding environments vary as the 44 

seasons alternate and the geographical location changes. Hence, it is very difficult to find a 45 

determined pattern for accurately extracting the SOI from the space-time varying background. 46 

This variation in the image features means that extra effort is needed to manually determine 47 

the pattern for extraction. The inefficient process causes an unnecessary waste of labor and 48 

may delay the detection of safety issues, as well as subsequent restoration work. Research 49 

efforts that aim to automate the extraction of machinery or workers from jobsite images are 50 

difficult to be generalized to SOI extraction, because these methods require the visual assets to 51 

be consecutively captured from a fixed position [13, 14]. The studies on highway asset 52 

segmentations rely on manually labeling datasets for training [15, 16]; hence they are not fully 53 

automated. Current labor-intensive practices call for an automatic and robust SOI extraction 54 

method.  55 

 56 

This study proposes a structure of interest (SOI) extraction algorithm to automate the image 57 

preprocessing process for defect detection from unordered photos. This method extracts the 58 

structure of interest from a georeferenced photo by registering it to the corresponding building 59 

information model (BIM) [17, 18]. The georeferenced photos can be provided by a data 60 

collecting device such as an unmanned aerial vehicle (UAV) and smart phone, which is 61 

equipped with global positioning system (GPS) and inertial measurement unit (IMU). Since a 62 
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BIM model is a simulated virtual scene of its real-world counterpart and has a single-color 63 

background, it is straightforward to segment a BIM-rendered image into a region of interest 64 

that contains the target structure and a background region. If an image is rendered in BIM using 65 

the same position and posture information provided by the real photo, the segmented BIM-66 

rendered image is a useful reference for extracting the SOI from its counterpart. 67 

 68 

The contribution is threefold. First, the process of SOI extraction is automated with the 69 

proposed method, which has the potential to reduce the workload of image preprocessing and 70 

shorten the data analysis cycle for defect detection based on unordered visual assets. Second, 71 

the proposed method provides a special solution for extracting different structures of interest 72 

from different backgrounds. Using a segmented BIM-rendered image to guide the SOI 73 

extraction from the corresponding photo is robust to the influence of the varied background. 74 

This strength implies that the proposed method is able to extract SOI from georeferenced 75 

photos composed of various types of civil structures with space-time varying backgrounds. 76 

Third, a location-based image-to-BIM registration method is proposed, which uses 77 

georeferenced information for coarse alignment and realizes precise alignment by image 78 

registration. The method does not require a pre-aligned camera [20] at a fixed location and 79 

improves the automation level by avoiding human intervention for initial registration [19]. 80 

 81 

2 Literature review 82 

2.1 Vision-based structural inspection 83 
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Stimulated by the emerging techniques in robotics, innovative devices and equipment for 84 

vision-based structural inspection have been devised. Many studies have focused on utilizing 85 

UAV to perform exterior inspections for detecting structural distress, such as Kim et al. [21], 86 

Choi and Kim [2], Morgenthal and Hallermann [3], Eschmann et al. [22], and Kang and Cha 87 

[1]. Maeda et al. [23] integrated the smartphone and automobile for road damage detection. 88 

Torok et al. [4] presented a robotic platform to collect post-disaster images for damage 89 

assessment. These newly-developed platforms are characterized by high mobility and usually 90 

have a flexible inspection route. Because of the variations in camera viewpoints and the 91 

accompanying uncertainty of illumination status, such platforms generate a massive amount of 92 

unordered and unstructured inspection photos that are taken from different view angles and 93 

contain both the structure of interest and the irrelevant background.  94 

 95 

With the explosion of these unordered inspection photos, processing such visual assets for 96 

efficient defect detection has become a demand issue. In conventional practice, engineers are 97 

asked to manually identify the structural defects from the captured photos [2, 3, 22]. Such 98 

practice is considered time-consuming and labor-intensive, since the amount of data is huge. 99 

Therefore, researchers seek to automate the defect detection process by using computer vision 100 

and machine learning techniques. One line of work tries to detect damage by analyzing the 101 

appearance feature or the image pattern of the defects. Subirats et al. [24] used wavelet 102 

transforms for damage detection, while Gavilán et al. [25] used Hough transform to find the 103 

damage. Abdel-Qader et al. [8] found the fast Haar transform method to be the most reliable 104 

of the four investigated crack-detection techniques. The other line of work leverages deep 105 
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learning techniques to directly detect structural defects without manual features selection , and 106 

these techniques have been well documented by Kang and Cha [1], Maeda et al. [23], and Cha 107 

and Choi [26]. Despite the advancement made in these studies, the irrelevant background pixels 108 

in unordered visual assets significantly undermine the algorithm performance. As pointed out 109 

by [7], the irrelevant image regions increase the computational complexity and induce extra 110 

workload in training the network model. The probability of false positives may also increase, 111 

since similar features, which can be mistaken for structural defects (e.g. cracks) can be found 112 

in background pixels, as was reported in [23, 26]. As a result, structures of interest need to be 113 

extracted from the unordered images to enable a more efficient and accurate detection.  114 

 115 

2.2 Image segmentation for ROI extraction 116 

Traditional methods for region of interest (ROI) extraction rely on human prior knowledge. 117 

Based on the fact that most artificial landscape, e.g., streets and houses, has straight regions 118 

and edges, Mueller et al. [11] developed a segmentation technique for man-made object 119 

extraction. Sidike et al. [12] employed a combination of convex hull and morphological 120 

operations to yield an accurate building segmentation. These methods take advantage of the 121 

explicit appearance features of the objects of interest. However, a certain pattern used for ROI 122 

extraction in a specific case might not fit another situation where the target object has a different 123 

shape or the background environment changes. These variations in image patterns can cause 124 

extra labor requiring manually selecting the extraction features. To automate the workflow, 125 

some research efforts have sought to directly segment an image into blocks based on color and 126 

texture. As one of the most classical algorithms, JSEG was proposed by Deng and Manjunath 127 
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[27] in 2001, which includes two steps, i.e. color quantization and spatial segmentation. Jing 128 

et al. [28] and Wang et al. [29], respectively, improved the JSEG algorithm by applying 129 

homogeneity analysis and combining directional operators. These methods have avoided 130 

human intervention for feature selection, but they often lead to over-segmentation, and fail to 131 

provide semantic information to the extracted ROI. As a result, these color and texture-based 132 

methods cannot be directly applied to SOI extraction task, which requires explicitly segmenting 133 

an image into the background and region of interest. 134 

 135 

In the area of civil engineering, image segmentation has been used to extract ROI from the 136 

visual assets for assisting construction management and facility maintenance. Chi and Caldas 137 

[13] presented a pipeline for extracting heavy equipment from the video captured by jobsite 138 

cameras. Azar and McCabe [14] investigated the automatic segmentation and identification of 139 

dump trucks from a surveillance video. These studies improved the efficiency of construction 140 

management by automating the ROI extraction process. As for facility maintenance, efforts 141 

have been made to facilitate the efficient and smart management of highway assets [15, 16, 30]. 142 

Golparvar-Fard et al. [15] trained a semantic segmentation model based on semantic texton 143 

forests to categorize image pixels into different types of highway assets. Balali and Golparvar-144 

Fard [16] improved the time performance and reduced the labeling efforts required for the 145 

segmentation and recognition of highway assets by leveraging a lazy scheme for model training. 146 

The aforementioned studies mainly focused on some specific areas in civil engineering, such 147 

as construction site or highway management. They either manually relied on labeled datasets 148 

for training [15, 16] or consecutive video frames for segmenting moving objects from a static 149 
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background [13, 14]; thus, they are difficult to generalize when extracting civil structures with 150 

various shapes and appearances from unordered static images that have been captured from 151 

different viewpoints.  152 

 153 

2.3 Registering 2D images to a 3D digital model 154 

Researchers have been exploring the registration of 2D images (static or dynamic) to a 3D 155 

model (e.g. BIM models, CAD) for many years. Using the information retrieved from a 3D 156 

model to augment the real-life image innovates the traditional way of progress monitoring and 157 

quality assurance. Golparvar-Fard et al. [31] registered time-lapsed photographs collected by a 158 

fixed camera to a 4D CAD; then, they superimposed the as-planned model images onto as-built 159 

photos to visualize the construction progress. The registration was realized by geometric 160 

camera calibration, which calculated the camera intrinsic and extrinsic parameters based on 161 

selected feature correspondence between a 2D image and a 3D model. Since the proposed 162 

method requires the photo-captured device to be installed at a fixed point with a fixed posture, 163 

it falls short of handling the unordered photos collected from different viewpoints and view 164 

angles. Karsch et al. [32]and Forsyth et al. [33] investigated the unordered photo registration 165 

problem by implementing a user-assisted structure-from-motion (SfM) operation. The method 166 

utilized the correspondence points from the 3D mesh model and the initial image (denoted by 167 

an anchor image) designated by the user to calculate the camera extrinsic parameters. With the 168 

help of the anchor image, the rest of the images that contain common scale-invariant feature 169 

points can be aligned with the 3D model. However, this method still requires the unordered 170 

photos to have common matched feature points. Based on this content-based image retrieval, 171 
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Park et al. [34] proposed a photo registration method that has no limitation on the camera 172 

viewpoints; instead, their method relies on a pre-generated dataset of BIM images. However, 173 

this image retrieval process is time-consuming. 174 

 175 

In general, current practice in 2D-to-3D registration mainly focuses on progress monitoring of 176 

construction site, where the collected photos are typically object/building-centric and captured 177 

from certain specific points of view. This is not the case for structural inspection using 178 

UAV/UGV, since the inspection photos are taken from uncertain locations with various 179 

postures. Such inspection practice determines that existing methods are not applicable and calls 180 

for a new 2D-to-3D image registration method that can automatically and effectively align the 181 

unordered inspection photos with 3D models. 182 

 183 

3 Methodology 184 

Fig. 2 illustrates the overall procedure of the proposed SOI extraction algorithm. A real-world 185 

photo, along with its georeferenced information (e.g. position, posture, focal length, aspect), is 186 

input for the registration operation. Thereafter, a BIM-rendered image aligned with the input 187 

photo is obtained. This registered BIM image is then further processed to generate a binary 188 

mask. As the final step, the generated mask is used to extract the region of interest from the 189 

background. 190 

 191 

The reasons for using a BIM model, instead of a plain 3D model, are as follows. First, due to 192 

the prevalence of BIM, it is easier to integrate our method with the existing facility management 193 
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workflow by using BIM as a reference. Second, the visibility of constituent elements can be 194 

controlled in a BIM model, which allows only rendering a part of the scenario (i.e., SOI) by 195 

hiding irrelevant elements. By contrast, a plain 3D model can only render the entire scene as a 196 

whole. Since the registration relies on detecting the feature correspondence from the two types 197 

of images (i.e., real-life and BIM-rendered), the BIM model geometry should be as similar as 198 

possible to its real-world counterpart; hence, a 350-level of development (LOD) is required. 199 

 200 

3.1 Location-based image registration to BIM 201 

Fig. 3 shows our proposed method for aligning real photos and BIM-rendered images. This 202 

method consists of two main steps: (1) generating a virtual counterpart based on the photo-203 

captured position, posture and optical parameters and (2) image registration with a real-world 204 

photo for precise alignment.  205 

 206 

3.1.1 Rendering BIM correspondence for coarse alignment 207 

A BIM image similar to the real one is rendered and generated by using georeferenced 208 

parameters provided by a real-world photo. The parameters include two aspects: (1) physical 209 

parameters that describe the position and posture information of the real camera (coordinates, 210 

yaw, pitch, and roll) and (2) optical parameters that describe the camera lens and the projection 211 

system (field of view, geometry of imaging plane, and resolution). Since the virtual camera in 212 

the BIM engine uses different parameters (as shown in Fig. 4), a matching algorithm is devised 213 

to translate the real camera parameters to its counterpart. 214 

 215 
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A BIM project usually uses a local coordinate system, while the real camera position is 216 

usually recorded in an 84-format WGS (World Geodetic System) [35]. Therefore, the 217 

coordinates of the real one is transformed before being used as the virtual camera position, as 218 

Eq. (1). 219 

84( )p p=BIM trans WGSf  220 

where 84pWGS  and pBIM  are respectively camera coordinates in theWGS-84 system and BIM 221 

system, i.e.  
T

lon lat alt  and  
T

x y z . Then, ( )xtransf  is the transformation function. 222 

The transformation process typically involves four steps. 223 

 224 

The first step is to transform the WGS-84 coordinates to country/region coordinates, which is 225 

actually a geometric transformation between two 3D Cartesian coordinate systems. Eq. (2) is 226 

the transformation formula.  227 

1

1 84 1

1

1

(1 ) 1

1

p p

 

 

 

−    
   

= + − + 
   
   −    

Z Y

cou Z X WGS

Y X

X

m Y

Z

 228 

where 84pWGS  and pcou  are the coordinates in the WGS-84 system and country/region system, 229 

respectively.  
T

1 1 1  X Y Z  is the translation vector ; X , Y , and Z  are the rotation angle 230 

around X axis, Y axis, and Z axis, and 1m  is a scale factor. The value of these parameters can 231 

be directly obtained from survey departments. 232 

 233 

The next step is to project the 3D country/region coordinates to 2D plane coordinates (as 234 

shown in Eq. (3)), which is usually performed with a GIS (geographic information system) 235 

software.  236 

(1) 

(2) 
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( )p p=proj proj couf  237 

Here, pproj
 is the coordinates after projection, and ( )projf x  represents the projection function. 238 

 239 

In the third step, the projection coordinates are converted to a local coordinate system, which 240 

can be expressed as: 241 

3

3 3

3

cos sin 0

(1 ) sin cos 0

1
0 0

1

p p

 

 



 
 −  
   

= + +    
   −  

+  

loc proj

X

m Y

m

 242 

where ploc  represent the coordinates under the local coordinate system; 3m  is the scale 243 

factor;   is the rotation angle; 3X  and 3Y  are the translation values, and   is the height 244 

anomaly between the quasigeoid and the reference ellipsoid. These parameters can be 245 

obtained from local survey departments. 246 

 247 

A BIM project often sets one of the control points in the local coordinate system as its project 248 

survey point. Eq. (5) shows how to convert the local coordinates to the BIM coordinates. 249 

4

4

4

p p

 
 
= +

 
  

BIM loc

X

Y

H

 250 

where, 4X , 4Y , and 4H  are the translation values, which are the opposite of the 251 

coordinates of the selected control point. 252 

 253 

(3) 

(5) 

(4) 
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The camera orientation in BIM is represented by a vector that describes the observing 254 

direction and a vector that describes the camera up direction, which can be obtained by Eq. 255 

(6) and Eq. (7), respectively. 256 

T(cos cos( - ),cos sin( - ),sin )
2 2

eye

 
    =v  257 

sin( )sin cos( )sin cos
2 2

cos( )sin sin( )sin cos
2 2

cos cos

up

 
    

 
    

 

 
− − − 

 
=  − − − −
 
 
 

v  258 

where 
eyev  is a normalized vector of the observing direction; 

upv  is a normalized vector 259 

orthogonal to the camera rigid body, which reflects the rotation of the camera around the 260 

observing direction; finally,  ,  , and   are yaw, pitch, and roll angle, respectively. 261 

 262 

As illustrated by Fig. 4, the virtual camera uses a perspective projection system, which is 263 

defined by four parameters, i.e., fovV, aspect, near, and far. These parameters are matched to 264 

the real camera according to Eq. (8). 265 

/

  
  
   =
  
  
+   

RV

R R

fovfov

w haspect

near m

far

 266 

where  fovV stipulates the virtual camera field of view, while Rfov  is the correspondence of the 267 

real camera; aspect is a width-to-height ratio of the projection plane; Rw  and Rh  are 268 

respectively the width and the height of the imaging plane of the real camera; near and far 269 

represent the distance from the origin to the near clipping plane and the far clipping plane, 270 

which is equal to a minimal constant m and infinity, respectively. Using the above calculated 271 

(8) 

(6) 

(7) 
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physical and optical parameters, a BIM image that is coarsely aligned with its real-world 272 

counterpart can be generated. 273 

 274 

3.1.2 Image registration for precise alignment 275 

The BIM-rendered image needs to be registered for a precise alignment with its real-world 276 

counterpart, because the image pairs are usually not consistent with each other due to inaccurate 277 

georeferenced information, imaging distortion, and data noise. It should be noted that although 278 

the BIM image is rendered with an aspect determined by the resolution of the photo (i.e., 279 

/R Rw h ), it usually has a different size than its counterpart, e.g., the virtual one is 800*600 280 

while the real one is 4032*3016. Therefore, the BIM-rendered image is scaled to the same 281 

resolution as its counterpart before precise alignment is performed. An affine transform is 282 

adopted for image registration, which is illustrated as: 283 

1 0 cos sin 0 0 0 0 0

0 1 sin cos 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 1

x x xBIMt BIM

BIMt y y y BIM

x xt s h

y t s h y

 

 

−          
          

=
          
                    

 284 

where,  1
T

BIM BIMx y and  1
T

BIMt BIMtx y  are respectively the homogeneous coordinates 285 

of image pixels before and after transformation. Moreover, 

1 0
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 
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0 0

0 0

0 0 1

x

y

h

h

 
 
 
  

 are transformation matrices, i.e., translation matrix, rotation 287 

matrix, scale matrix, and shear matrix, respectively. 288 

 289 

(9) 
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The purpose of image registration is to find the optimal transformation matrices for a BIM 290 

image to maximize the cost function illustrated by Eq. (10), which, as denoted by mutual 291 

information [36], measures the similarity between a BIM image and a real photo. 292 

,

( , )
( ; ) ( , ) log

( ) ( )

RB
RB

r b R B

P r b
I R B P r b

P r P b
=  293 

where ( ; )I R B  is the mutual information between a real image with intensity r and a BIM 294 

image with intensity b; ( )RP r  and ( )BP b  are the marginal distributions of the real and BIM 295 

image intensity. ( , )RBP r b  is the joint distribution. 296 

 297 

The evolutionary algorithm is used to optimize the mutual information with respect to the 298 

transformation matrices. The optimization process is inspired by the notion of “survival of the 299 

fittest” from Darwinian evolution, and comprises four typical steps, i.e., initialization, 300 

evaluation, selection, and variation. In the initialization phase, the initial solutions (denoted by 301 

the initial population of individuals) for the transformation matrices are randomly generated. 302 

The fitness scores of the individuals in maximizing the mutual information ( ; )I R B  are then 303 

evaluated, and the most suitable ones are selected for reproduction of the next generation. At 304 

the variation stage, new individuals are bred through crossover and mutation operations for 305 

evaluation in the next cycle . The circle of “evaluation-selection-variation” continues until 306 

certain termination criteria (e.g., maximum iteration number, or converge) are satisfied. More 307 

information on image registration based on mutual information can be found in [36]. 308 

 309 

3.2 SOI extraction with BIM image mask 310 

(10) 
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The registered BIM image aligned with its counterpart is further processed to generate a mask 311 

(as shown in Fig. 5(a)). First, the RGB image is converted to a grayscale format. Since a BIM 312 

image background is single colored (e.g., plain white), it is straightforward to turn the grayscale 313 

image to a binary image by setting the grayscale of the background pixels at zero, while the 314 

others are set at one. The morphology-based dilation method is used to fill in the holes in the 315 

region of interest.  316 

 317 

The generated mask is leveraged to extract the structure of interest. As illustrated by Fig. 5(b), 318 

the extraction is realized by the operation of two image matrices. After image registration, the 319 

pixels with the value of one (white color) in the binary mask image constitute an estimated 320 

region of interest (denoted by roi  in Fig. 5(b)). Conversely, the pixels with the value of zero 321 

(black color) represent the estimated background. The matrix of the mask image is denoted by 322 

ijM , which represents the value of the pixel at the i row and j column. The matrix of the original 323 

real-world photo is denoted by ijO , which represents the intensity of the pixel at the i row and 324 

j column. The extracted image ijE  can be obtained by multiplying the corresponding elements 325 

in ijM  and ijO . This operation maintains the estimated ROI as the original intensity while 326 

turning the background into a universal black color. 327 

 328 

4 Experiment validation 329 

4.1 Experiment scheme 330 

Two experiments were performed to testify the effectiveness and precision of the proposed 331 

algorithm. The target structures of interest are, respectively, the John D. Tickle (JDT) building, 332 
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and the Student Union at the University of Tennessee, Knoxville. A smartphone, Xiaomi MI 6, 333 

was used as the photo-capture device, which has an equivalent focal length of 27 mm, and an 334 

image resolution (width*height) of 4032*3016 pixels. The proposed algorithm was run on a 335 

laptop, ASUS VivoBook S15, with an Intel Core i7-8550U processor, and Nvidia GeForce 336 

MX150 GPU. The BIM image was rendered by a web-based BIM model viewer — the 337 

Autodesk Forge Viewer, which provides a flexible programming interface to customize the 338 

rendering view angle, viewpoint, aspect, field of view, etc. The image registration was 339 

performed by the MATLAB image processing toolbox. 340 

 341 

4.2 Experiment results 342 

4.2.1 Assessment metric 343 

To quantitatively evaluate the experiment results, an index called Intersection over Union (IoU) 344 

is used to determine the alignment precision between the extracted SOI and the ground truth 345 

SOI. The ground truth SOI is denoted by 
groS , while the SOI extracted by the proposed method 346 

is denoted by extS . The IoU is defined as a ratio of the area of 𝑆𝑔𝑟𝑜 ∩ 𝑆𝑒𝑥𝑡 to the area of 𝑆𝑔𝑟𝑜 ∪347 

𝑆𝑒𝑥𝑡  (as shown in Eq. (11)). 348 

𝐼𝑜𝑈 =
𝐴(𝑆𝑔𝑟𝑜∩𝑆𝑒𝑥𝑡)

𝐴(𝑆𝑔𝑟𝑜∪𝑆𝑒𝑥𝑡)
 349 

where, A(x) is the area of region x, which can be reflected by the quantity of pixels in the region. 350 

The larger the IoU is, the better the extraction result is in accordance with the ground truth. 351 

When IoU equals to one, a complete overlap is achieved, which indicates a 100% precision. 352 

 353 

4.2.2 Case one — JDT building 354 

(11) 
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Fig. 6 shows the layout of the experiment site at the JDT building and the corresponding BIM 355 

model. Six locations were specified to take photographs containing both the structure of interest 356 

and the background, i.e., from Loc #1-1 to Loc #1-6 in Fig. 6 (a). At each location, multiple 357 

photos were captured at different camera angles. Twenty-three photos were collected in this 358 

experiment. 359 

 360 

Fig. 7 shows the results for registering the captured real-world photos to the BIM model, where 361 

a BIM-rendered image is overlaid onto its counterpart. The difference between the image pairs 362 

is represented by different false colors. The region where the superimposed image is bright and 363 

the underlying one is dark will look green, while the region with the opposite pattern will look 364 

magenta. If both images are dark, the region will be dark. if both images are bright, the region 365 

will be bright. The code number at the top of each group describes the photo-captured location 366 

and the sequence number. For example, code number “#1-1-1” represents the 1st photo captured 367 

at Location #1-1. The row “coarse alignment” presents the alignment level of the raw BIM 368 

images that are generated based on georeferenced information, while the row “precise 369 

alignment” shows the results of further image registration operation. The IoU value is labeled 370 

at each image to indicate its quantitative alignment level. As can be seen from the figure, the 371 

BIM images at the coarse alignment stage align well in general with the corresponding real-372 

world photos (with an average IoU of 78.6%). After the precise alignment (image registration) 373 

operation, the alignment level is further improved, wherein significant improvement is 374 

observed at image #1-2-1, #1-2-5, and #1-4-1. The average IoU of precise alignment is 82.2%. 375 

 376 
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The SOIs are extracted based on the precise alignment results, as shown in Fig. 8–Fig. 11. The 377 

first row of these figures show the captured photos with ground-truth SOIs traced by red lines. 378 

The second row and the third row respectively show the segmentation and SOI extraction 379 

results. The results exhibit a good performance in general, with the exceptions of # 1-4-3 and 380 

# 1-4-4, which show significant deviations from the ground truth. 381 

 382 

4.2.3 Case two — Student Union 383 

Fig. 12 show four locations (#2-1, #2-2, #2-3, and #2-4) designated for capturing photos of the 384 

Student Union from different view angles. Twenty-one photos were collected.  385 

 386 

Similar to case one, Fig. 13 shows the results for registering real-world photos to the BIM 387 

model. As can be seen from the figure, most of the BIM images at the coarse alignment stage 388 

align well with their corresponding real-world counterparts, except for images #2-2-4, #2-2-5, 389 

and #2-2-6. The average IoU at this stage is 74.8%. After the precise alignment (image 390 

registration) operation, the alignment level is improved, and the average IoU increased to 391 

75.9%. Images #2-4-1, #2-3-3, and #2-3-6 witnessed significant improvement in their 392 

alignment level, while no obvious change was observed in #2-1-1–#2-1-3, and #2-2-1–#2-2-3. 393 

The ground truth (1st row) and the extracted SOI (2nd and 3rd row) based on the results of precise 394 

alignments are presented from Fig. 14 to Fig. 17. These alignments exhibit a good performance 395 

in general, with the exceptions of images #2-2-4, #2-2-5, and #2-2-6. 396 

 397 

4.3 Performance assessment of the proposed method 398 
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The IoU value is used as a metric to evaluate SOI extraction accuracy. The frequency 399 

distribution histogram of the IoU values of all 44 groups of images collected from the two 400 

experiments is shown in Fig. 18. The average IoU value is 79.21%, and a total of 36 images 401 

attained an IoU value of over 70%, accounting for 81.8%. By comparison, the OASGR [7], a 402 

state-of-the-art ROI extraction algorithm, achieved an average IoU value of 68.9% on the 403 

Pascal VOC Challenge 2007 dataset [37]. In [38], an extraction with an IoU value larger than 404 

50% is regarded as a correct result. The average IoU value of our method is higher than the 405 

OASGR IoU value and above the criteria set by [38], which demonstrates a quite promising 406 

performance. In terms of efficiency, the average running time of our method for processing 407 

each image was about 140 s, which can be further improved by using parallel computation or 408 

a high-performance workstation.  409 

 410 

4.4 Discussion 411 

The proposed structure of interest extraction algorithm is validated by the experiment results. 412 

Among all 44 testing photos, the average IoU value is 79.2%, and those with an attained IoU 413 

value of over 70% account for 81.8%. The proposed method can achieve an accuracy that is 414 

better than the state of the art, and does not require model training or human intervention.  415 

 416 

The efficacy of the proposed method in automating the SOI extraction process is verified. Both 417 

experiments achieved an IoU value of over 75%, which demonstrates the proposed method can 418 

work properly with no dependence on the appearance and style of the target structure. 419 

Equivalent high performance has been attained on images with different illumination (e.g., 420 

http://www.baidu.com/link?url=2YWY-rsk01tZqxBWb_-A07NCFY3ptqC1wnLzMkFdR_1GTuigzwwq-_U1bzUf3SB7yOMQ0zUB0lSG7ZEiNyQ5R6DC9XkmoBMi6sNs7u2a1iwTlu0zWyk-nvW3rikFGvzBOgd-7fmIJ9Fnv0dqNh_vzK
http://www.baidu.com/link?url=2YWY-rsk01tZqxBWb_-A07NCFY3ptqC1wnLzMkFdR_1GTuigzwwq-_U1bzUf3SB7yOMQ0zUB0lSG7ZEiNyQ5R6DC9XkmoBMi6sNs7u2a1iwTlu0zWyk-nvW3rikFGvzBOgd-7fmIJ9Fnv0dqNh_vzK
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strong light in #1-4-1 and overcast in #1-3-5), and different types of elements in the background 421 

(e.g., trees in #1-2-5, irrelevant buildings in #1-1-1, and a complex environment in #2-1-2). 422 

The results indicate the robustness of the proposed method for dealing with complex and varied 423 

backgrounds. In other words, the proposed method is not designated for a specific type of target 424 

structure with a specific surrounding environment but provides a generic algorithm suitable for 425 

georeferenced photos once the corresponding BIM model is accessible. As a result, the 426 

execution of the algorithm is automated without involving any human intervention or prior 427 

knowledge for feature selection.  428 

 429 

The image registration can compensate for the deviation between the real-world photo and 430 

BIM-rendered image caused by inaccurate georeferenced information and imaging distortion, 431 

thereby improving the alignment accuracy (with an average 3.6% and 1.1% of improvement 432 

for case one and case two, respectively). The increase of IoU value after image registration can 433 

go up 10% to 20%, as shown in images #1-2-1, #1-4-1, #2-3-2, and #2-4-1. However, one 434 

observation in the experiments is that under certain circumstances when the angle between the 435 

line-of-sight and the structure of interest is small, the alignment accuracy did  not increase 436 

significantly, as shown in images #1-5-1, #2-1-1, and #2-2-1 in Fig. 7 and 13. Some photos 437 

witnessed a decrease of IoU value after registration, e.g., Images #1-3-3, and #1-3-4 in Fig. 7, 438 

and images #2-3-3 and #2-4-3 in Fig.13. In the case of images #1-3-3 and #1-3-4, the deviation 439 

between the real building and the BIM model (see Fig. 19(a)) induced a registration failure, 440 

which then reduced the IoU value. In terms of images #2-3-3 and #2-4-3, the image registration 441 

actually improves the alignment level of the exterior contour of the building, as can be seen 442 
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from Fig. 19(b). However, the transformation of the BIM image for achieving this alignment 443 

induced a deviation of other parts in the images, which reduced the intersection between the 444 

ground truth and extracted result (shaded part in Fig. 19(b)), and then led to the decrease of the 445 

IoU value. 446 

 447 

The experiments show several undesirable extraction results (as shown in images #1-4-3, #1-448 

4-4 and #2-2-4 to #2-2-6), which have IoU values of less than 40%. These extraction failures 449 

are due to the imprecise georeferenced information provided by the real-world photos. For 450 

example, with interferences from magnetic disturbances, the detected yaw value deviated 451 

considerably when photo # 2-2-4 was taken. As a result, the generated BIM image with the 452 

inaccurate yaw value shows great deviation from the real-world photo (see Fig. 19(c)), which 453 

is difficult to compensate by subsequent image registration. 454 

 455 

5. Conclusions 456 

Structure of interest (SOI) extraction is a critical preprocessing step for improving the 457 

performance of computer vision-based structural inspection. As an attempt to automate the 458 

process, this study proposes to extract SOI by registering a georeferenced photo to a 459 

corresponding building information model. The method for aligning real photos and BIM-460 

rendered images is explored based on georeferenced information and image registration. The 461 

SOI in a real-world photo is subsequently extracted by converting the registered BIM image 462 

into a binary mask. The experiments carried out at the John D. Tickle building and the Student 463 

Union at the University of Tennessee, demonstrated the potential performance of the proposed 464 
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method in extracting SOI from images with a complex and varied background. Since no manual 465 

efforts are needed for finding suitable patterns, the SOI extraction process is automated with 466 

the proposed method. 467 

 468 

Further research efforts are needed to address the following limitations. First, the received GPS 469 

signal and IMU data can yield unreliable georeferenced information, due to occlusion or 470 

electromagnetic interference. In this case, the deviation would be too huge to be compensated 471 

by image registration. As a result, measures should be taken to guarantee the robustness and 472 

performance of the GPS localization and IMU measurement. Second, although the proposed 473 

method exhibits high performance in removing the irrelevant background, it falls short of 474 

processing a foreground. In fact, the vision-based defect detection result would also be affected 475 

by the foreground pixels overlaid on the region of interest. One possible solution is to combine 476 

the proposed method with color-and-texture-based segmentation. After the background is 477 

subtracted using our proposed method, the foreground pixels can be removed based on texture 478 

or color heterogenicity between the foreground and target structure. 479 

 480 
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Figures 563 

 564 

Fig. 1. Unordered images with a background that has similar patterns which can be mistook 565 

for structural cracks: (a) RGB images of building exterior wall and bridge pier and (b 566 

corresponding binary image with cable that could be considered as a crack as well as stains 567 

caused from water dripping out of cracks. 568 

 569 

 570 

Fig. 2. Overall procedure of the proposed method. 571 

 572 
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 573 

Fig. 3. Location-based image registration to BIM model. 574 

 575 

 576 

Fig. 4. Different physical and optical parameters used by real and virtual camera. 577 
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 578 
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RGB image

Grayscale 

image

Binary image 

before dilation

Binary image 
after dilation

 579 

Fig. 5. (a) Turning a BIM-rendered image into a mask and (b) ROI extraction with mask 580 

operation. 581 

 582 

 583 

Fig. 6. Layout of experiment site at JDT building: (a) 3D simulation model from Google 584 

Earth and (b) 3D BIM model. 585 

 586 
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 587 

Fig. 7. Results for registering the captured photos to the BIM model of JDT building. 588 

 589 
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 590 

Fig. 8. SOI extraction results for location #1-1. 591 

 592 

 593 

Fig. 9. SOI extraction results for location #1-2. 594 

 595 

 596 

Fig. 10. SOI extraction results for location #1-3. 597 

 598 
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 599 

Fig. 11. SOI extraction results for location #1-4– #1-6. 600 

 601 

 602 

Fig. 12. Layout of experiment site at Student Union: (a) 3D BIM model and (b) street map of 603 

plan view. 604 
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 605 

 606 

Fig. 13. Registration results of the captured photos to the BIM model of the student union. 607 

 608 
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 609 

Fig. 14. SOI extraction results for Location #2-1. 610 

 611 

 612 

Fig. 15. SOI extraction results for Location #2-2. 613 

 614 

 615 

Fig. 16. SOI extraction results for Location #2-3. 616 

 617 
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 618 

Fig. 17. SOI extraction results for Location #2-4. 619 

 620 

 621 

Fig. 18. Frequency distribution histogram of the experiment results. 622 

 623 
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 624 

Fig. 19. (a) Real-world photo and BIM image at Location #1-3, where the real building has a 625 

terrace connecting the exit of the second floor, while the BIM model does not; (b) partial 626 

alignment reduces the intersection between the ground truth and the extracted result, and (c) 627 

real-world photo at Location #2-2 and its counterpart generated with inaccurate yaw value. 628 


