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Abstract— Radio frequency interference (RFI) causes serious
problems to ultrawideband (UWB) radar operations due to
severely degrading radar imaging capability and target detection
performance. This paper formulates proper data models and pro-
poses novel methods for effective RFI mitigation. We first apply
the single-snapshot Sparse Iterative Covariance-based Estima-
tion (SPICE) algorithm to data from each pulse repetition inter-
val for RFI mitigation and discuss the connection of SPICE to the
l1-penalized least absolute deviation (l1-PLAD) approach. Then,
we devise a modified group SPICE algorithm and we prove
that it is equivalent to a special case of the l1,2-PLAD method.
The modified group SPICE algorithm can be applied to data
from a coherent processing interval for effective RFI mitigation.
Both the single-snapshot SPICE and the modified group SPICE
methods simultaneously exploit the sparsity properties of both
RFI spectrum and UWB radar target echoes. Unlike the existing
sparsity-based RFI suppression methods, such as the robust
principal component analysis algorithm, the proposed methods
are hyperparameter-free and therefore easier to use in practical
applications. Furthermore, the fast implementation of the SPICE
methods is considered by exploiting the special structures of
both single-snapshot and multiple-snapshot covariance matrices.
Finally, the results obtained from applying the SPICE methods
to simulated data as well as measured data collected by the
U.S. Army Research Laboratory synthetic aperture radar system
are presented to demonstrate the effectiveness of the proposed
methods.

Index Terms— Radio frequency interference (RFI) mitigation,
ultrawideband synthetic aperture radar (UWB SAR), Sparse
Iterative Covariance-based Estimation (SPICE), l1,q-penalized
least absolute deviation (l1,q-PLAD).

I. INTRODUCTION

ULTRAWIDEBAND (UWB) radar operating at frequen-
cies from under 100 MHz to several gigahertz has been

used in a wide range of applications, such as for ground pene-
tration and through-the-wall sensing, because of its penetration
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and high range resolution capabilities [1]–[5]. In recent years,
as the radio frequency spectrum becomes highly congested,
the received radar signals are increasingly corrupted by radio
frequency interferences (RFIs). Typical RFI sources include
the AM/FM radios, TV stations, cellular phones, and other
radiation devices whose operating frequency bands overlap
with the UWB radar signal spectrum [6]. These RFI signals
pose a significant hindrance to UWB radar operations causing
reduced signal-to-noise ratio (SNR) and degraded radar imag-
ing quality. Therefore, it is necessary to effectively suppress
the RFI signals from the observed UWB radar data before
imaging and target detection.
RFI mitigation in UWB radar systems is a challenging

problem since the RFI signals are difficult to predict and
hard to model accurately due to their dynamic range and
diverse modulation schemes. Several methods have been
developed for RFI mitigation, including RFI suppression
via filtering techniques [6]–[11] and RFI extraction based
on interference estimation [12]–[16]. The former suppres-
sion approaches, such as notch filtering, subband filtering,
and adaptive filtering, although popular due to their sim-
plicity, usually suffer from high sidelobe levels and target
energy loss problems [6]–[11]. The latter class of RFI extrac-
tion methods consists of techniques based on, for example,
parametric modeling [12], spectral decomposition [13], eigen-
subspace decompositions [14], [16], and independent compo-
nent analysis (ICA) [15], [16]. They are known to provide
satisfactory performance under certain assumptions. How-
ever, in the case of severe RFI, the required assumptions
are no longer valid, leading to inaccurate RFI estimation
and insufficient RFI extraction. For instance, eigensubspace
decomposition [14], [16] and ICA [15], [16] have difficulties
in distinguishing between RFI sources and UWB radar echoes
when they have similar power levels within the same subspace.
Recently, RFI mitigation methods based on sparse or

low-rank recovery methodologies have been introduced
in [17]–[24]. The sparse recovery approach solves the RFI
problem by modeling both the desired UWB radar echo signal
and the RFI sources as sparse with respect to well-designed
dictionaries [17]–[19]. This approach works well if the data
model is accurate but suffers from the drawback that an
additional step of dictionary learning is required. In [20]
and [21], a joint sparse and low-rank model for RFI mitigation
is exploited. Compared to the original approach in [17]–[19],
this improved method eliminates the need for any specific prior
knowledge about the interference through taking advantage of
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the low-rank property of RFI. The latest algorithms mitigate
the RFI problem by using the robust principal component
analysis (RPCA) approach that exploits the low-rank struc-
ture of the RFI spectrum and the sparsity properties of the
UWB radar echoes. These algorithms can be used to blindly
separate the RFI signals and UWB radar echo signals from
the observed data without needing any prior information
on the RFI [22]–[24]. However, all these sparse and low-
rank-based algorithms require a fine-tuning of one or more
hyperparameters, and this parameter tuning is not a simple
task in practical applications due to lack of prior information
on the RFI and radar signals.
The SParse Iterative Covariance-based Estimation (SPICE)

algorithm is a sparse semiparametric technique proposed
for spectral analysis and array processing using one or
more snapshots [25], [26]. Unlike the parametric methods,
SPICE circumvents the requirement of model order deter-
mination via exploiting a nonparametric data model as well
as the sparsity property of the solution. SPICE is based
on a covariance fitting criterion and does not require the
selection of any user parameters. In [27]–[30], the single-
snapshot SPICE algorithm is shown to be equivalent to the
l1-penalized least absolute deviation (l1-PLAD) approach [31]
and the square-root least absolute shrinkage and selection
operator (SR-LASSO) method [32] (for a particular choice of
the hyperparameter) under the assumption of heteroscedastic
noise and homoscedastic noise, respectively. In particular,
this means that the single-snapshot SPICE algorithm pro-
vides an appropriate choice of the hyperparameter for l1-
PLAD and SR-LASSO. In [26], a multiple-snapshot SPICE
is obtained by extending the single-snapshot SPICE algorithm
and the extended method is shown to be related to a weighted
l1,2-norm minimization problem. In [33], the group version of
SPICE, referred to as group SPICE, is proposed via relaxing
the covariance fitting criterion for the group-sparse estimation
problem. The group SPICE algorithm can be regarded as a
special case of the group variants of l1-PLAD (i.e., l1,q -PLAD
(1 ≤ q ≤ 2)) or SR-LASSO for two different noise cases.
In sum, we have a host of SPICE algorithms, but it is not
clear how they can be used for enhanced RFI mitigation in
UWB radar systems.
This paper proposes a novel framework for

hyperparameter-free RFI mitigation based on the SPICE
approaches [25]–[29], [33]. Our main contributions can be
summarized as follows.
1) For RFI mitigation based on a single-pulse repetition

interval (PRI), we formulate a proper data model to exploit
the sparsity properties of the fast-time RFI spectrum as well
as the UWB radar echo signals in the fast-time domain. The
single-snapshot SPICE algorithm [25], which is equivalent to
a special case of l1-PLAD, is shown to be a good choice,
based on this data model, for extracting the RFI sources from
the observed RFI-contaminated signal without the need for
selecting any user parameter.
2) For improved RFI mitigation, we formulate a proper

data model across multiple PRIs that belong to a coherent
processing interval (CPI), to exploit the row-sparsity structure
of the RFI spectrum and model the UWB radar echo signals

as sparse impulses in the fast-time domain of each PRI. Then,
based on this data model, we devise a modified group SPICE
algorithm for multiple-PRI-based RFI mitigation, which is
shown to be equivalent to a special case of l1,2-PLAD under
the heteroscedastic noise condition.
3) We propose fast implementations of the SPICE

algorithms by using the conjugate gradient least
squares (CGLS) approach [34], [35] and the fast Fourier
transform (FFT) to reduce the computational burden of the
proposed RFI mitigation procedure. We also provide a fast
computation method for the group SPICE algorithms.
4) Both simulated and experimental results are presented

to confirm the effectiveness of the proposed RFI mitigation
methods under various operating conditions including the
presence of strong RFI sources.
5) We demonstrate, using both simulated and experimen-

tally measured data, that the proposed methods outperform
existing UWB radar RFI mitigation methods. Our techniques
are applicable directly in the raw sample domain and do not
require any restrictive prior information and assumptions, nor
the selection of any user parameters. Hence, the proposed
methods can be utilized in a preprocessing and denoising step
for raw radar signals to effectively suppress RFI signals, prior
to other signal processing and imaging steps.
The rest of this paper is organized as follows. In Section II,

we formulate the single-PRI-based RFI mitigation prob-
lem and discuss how to solve this problem by using
the single-snapshot SPICE algorithm. Next, in Section III,
we formulate the multiple-PRI-based RFI mitigation problem
and derive the proposed modified group SPICE algorithm.
In Section IV, we consider fast implementations of the afore-
mentioned SPICE methods. Finally, in Section V, we provide
simulated and experimental results that confirm the validity of
the proposed RFI mitigation methods for UWB radar systems.
Notation: We denote the vectors and matrices by boldface

lowercase and uppercase letters, respectively. (·)T denotes
the transpose operation, (·)∗ denotes the conjugate transpose
operation, vec(·) denotes the vectorization operation, diag(·)
denotes the diagonalization operation, and

⊗
denotes the

Kronecker product. xk· and x·k refer to the kth row and kth
column of matrix X, respectively, and xi, j refers to the (i, j)th
element of X. R ∈ CN×M denotes a complex-valued N × M
matrix. | · | denotes the magnitude of a scalar. ‖ · ‖p is the
symbol used for the l p-norm of a vector or the entrywise
l p-norm of a matrix, ‖ · ‖F is the Frobenius norm of a matrix,
and ‖ · ‖1,q , which is defined as ‖X‖1,q = ∑K

k=1 ‖xk·‖q ,
denotes the l1,q norm of a matrix. IN denotes the N ×
N identity matrix. If P = diag([p1, . . . , pK ]) is a diag-
onal matrix, the square root of P is defined as P1/2 =
diag([p1/21 , . . . , p1/2K ]). Finally, x � 0 means that every
element of x is greater than or equal to 0.
Reproducibility: The MATLAB codes used to produce the

numerical illustrations of this paper can be downloaded from
http://www.sal.ufl.edu/code.html.

II. SINGLE-PRI-BASED RFI MITIGATION

In this section, we show how the single-snapshot SPICE
algorithm [25] can be used to separate and extract the RFI
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signals from the RFI-contaminated data within a single PRI.
We first formulate a single-PRI data model for the UWB
radar system. Then, we show that an l1-PLAD optimization
metric is an appropriate semiparametric choice to mitigate
the RFI problem by exploiting the sparsity property of the
fast-time RFI spectrum as well as the desired UWB radar
echo signals in the fast-time domain. Finally, we consider
the single-snapshot SPICE algorithm, which provides a useful
selection of the user parameter for l1-PLAD [25], and show
how the hyperparameter-free single-snapshot SPICE algorithm
can be utilized to solve the RFI mitigation problem effectively.

A. Problem Statement

Consider a data vector from an impulse UWB radar system
consisting of N samples per PRI, referred to as the N fast-time
samples, which are contaminated by RFI and noise. We model
the observed complex-valued radar data vector, y ∈ CN ,
as follows:

y = [
a1 · · · aK

]⎡⎢⎣ x1
...
xK

⎤⎥⎦ + s + γ = Bx + s + γ (1)

with Bx denoting the RFI sources, s is the desired UWB radar
echoes, and γ is the disturbance. Furthermore, {ak}Kk=1 is a set
of Fourier vectors:

ak = [
1 · · · ej2π fk(N−1)

]T
(2)

corresponding to the normalized frequencies { fk}Kk=1, which
form a grid covering the interval [−0.5, 0.5]. We assume that
this grid is fine enough and that the frequencies (normalized
by the sampling frequency) corresponding to the RFI sources
are on this grid (or practically, close to points on the grid).
Thus, x can be interpreted as the unknown fast-time spectrum
of the RFI sources. In case of severe RFI contaminations, Bx
can be much stronger than s. Our goal is to estimate s from the
observed data y to achieve RFI mitigation. Note that the actual
number of the frequency components in the RFI is unknown,
and usually is much smaller than the number of grid points K .
We will exploit this sparsity property of x below for effective
RFI mitigation.
There are two main observations that we can use for RFI

removal: 1) the desired UWB radar echo signal vector s is
sparse in the fast-time domain and 2) the RFI spectrum x is
sparse in the frequency domain. The sparse nature of the UWB
radar echoes has been observed and utilized by the proposers
of recent RFI mitigation algorithms [22]–[24]. Fig. 1 presents
a typical example showing that the UWB impulse radar
echoes within a PRI, which were measured by the U.S. Army
Research Laboratory (ARL) radar in the absence of RFI, are
quite sparse. Note that this sparsity property is also valid
for UWB stepped-frequency or chirp radar systems since the
echoes received by these radar systems can be easily converted
into narrow sparse pulses through pulse compression. The
sparsity of the RFI spectrum x is illustrated in Fig. 2, where the
fast-time RFI spectrum from a single PRI, also measured by
the ARL radar, is depicted. RFI sources, such as the AM/FM
radios, digital TV, and cellular phones, tend to have their

Fig. 1. Example of measured ARL UWB impulse radar echo signal in the
fast-time domain, within a single PRI.

Fig. 2. Example of the fast-time RFI spectrum within one PRI for the
measured data collected by the experimental ARL radar receiver.

power concentrated in a small number of narrow frequency
bands resulting in a sparse spectrum in the fast-time frequency
domain, whereas the full frequency band of the UWB radar
system is occupied by the radar echoes.

B. l1-PLAD Formulation

To utilize the sparsity properties of the RFI spectrum and the
UWB radar echoes in the fast-time domain for RFI mitigation
from receiver measurements, we propose the following l1-
PLAD approach:

min
x

‖y − Bx‖1 + λ‖x‖1 (3)

where e = y − Bx comprises the sparse UWB radar signal
vector s and noise vector γ . ‖·‖1 represents the l1-norm, which
is a sparsity-enforcing metric, and λ is a hyperparameter used
to balance the two objectives of enforcing sparsity on both e
and x. The tuning of λ is required to achieve a satisfactory
performance in practice. However, the selection of λ is by no
means a simple task in practical applications due to lack of
prior information on s and x.

C. Single-Snapshot SPICE

To deal with the hyperparameter selection problem
of l1-PLAD, we consider the single-snapshot SPICE
algorithm [25], which is shown to be equivalent to the
l1-PLAD approach (for a particular choice of the hyperparame-
ter) under the assumption of heteroscedastic noise [27], [28].
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Single-snapshot SPICE is a data-adaptive and user-parameter-
free approach first proposed for single-snapshot spectral analy-
sis and array processing [25]. The main idea of this algorithm
is to iteratively minimize a covariance fitting criterion [25],
as briefly explained below. SPICE postulates the following
covariance matrix model for y :

R = E(yy∗) = APA∗ (4)

where

A �= [B IN ] = [a1 · · · aKaK+1 · · · aK+N ] (5)

P �= diag([p1 · · · pK+N ]) (6)

with aK+i denoting the i th column of IN , and {pk}Kk=1 and
{pk}K+N

k=K+1 denoting the unknown powers of x and unknown
noise powers, respectively. It is worth mentioning that this
covariance matrix model holds under the assumption that
the RFI amplitudes {xi }Ki=1 as well as the elements of e
are uncorrelated. However, it has been shown in the lit-
erature that the SPICE algorithms are insensitive to this
assumption [25], [26], [33], which can, in fact, be viewed as
a prior model for R rather than a real assumption. Note that
the elements of e, which is regarded as the noise vector in the
SPICE algorithm, are allowed to have different powers, and
hence, we consider the heteroscedastic noise case here.
The SPICE estimate of {pk}K+N

k=1 is obtained by minimizing
the covariance fitting criterion [25]

‖R−1/2(yy∗ − R)‖2F (7)

or equivalently

min{pk≥0} y∗R−1y +
K+N∑
k=1

wk pk (8)

where wk = (‖ak‖22/‖y‖22). Because the above-mentioned
optimization problem is convex, the global estimate of
{pk}K+N

k=1 can be obtained, for instance, by the iterative algo-
rithm of [25] and [27]

p̂ j+1
k = p̂ j

k

∣∣a∗
k R̂−1

j y
∣∣/√wk (9)

where j denotes the iteration index, k = 1, . . . , K + N , and
R̂ j = AP̂ jA∗. In addition, the linear minimum mean-squared
estimate (LMMSE) {x̂k}Kk=1 of {xk}Kk=1, based on { p̂k}Kk=1,
is given by [27]

x̂k = p̂ka∗
k R̂−1y, for k = 1, · · · , K (10)

where R̂ = AP̂A∗.
The single-snapshot SPICE algorithm together with the

LMMSE estimator is a special case of the l1-PLAD in (3) with
λ = √

N [27], [28]. Therefore, the single-snapshot SPICE
algorithm provides not only a useful choice of λ in (3) but
also an efficient implementation of the l1-PLAD. We ini-
tialize the single-snapshot SPICE algorithm with the power
estimates obtained using the periodogram method (see [36]).
We obtain an estimate x̂ of the RFI spectrum x by using (9)
and (10). Finally, the recovered radar echo signal ŝ is given by
ŝ = y − Bx̂.

Fig. 3. Example of the measured ARL UWB impulse radar signal within a
CPI.

Fig. 4. Example of fast-time RFI spectrum versus PRI (or slow-time index)
for the RFI data measured by the ARL radar receiver.

III. MULTIPLE-PRI-BASED RFI MITIGATION

In this section, we consider RFI mitigation using data
within a CPI consisting of M PRIs. The PRI index is
also referred to as the slow-time index. We first for-
mulate a multiple-PRI-based RFI mitigation data model.
We then show how an l1,2-PLAD approach can be used
to exploit the row-sparsity of the RFI spectrum matrix and
the element-sparsity of the UWB radar echo matrix. Then,
we review the multiple-snapshot SPICE algorithm [26] and
explore its relationship with l1,2-PLAD. Then, we present a
sparse-plus-group-sparse data model for the RFI-contaminated
signal and consider using the group SPICE algorithm [33] for
RFI mitigation. Finally, we devise a modified group SPICE
algorithm, which is equivalent to a special case of l1,2-PLAD,
to achieve hyperparameter-free RFI mitigation in the multiple
PRIs case. When the frequencies of the RFI sources change
only slightly over the CPI, multiple-PRI-based RFI mitigation
may yield improved performance compared to its single-PRI-
based counterpart.

A. Problem Statement and l1,2-PLAD Formulation

The M RFI-contaminated UWB radar data vectors within a
CPI are collected into a matrix as follows:

Y = BX + S + �. (11)
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The column y·m of Y ∈ CN×M denotes the mth PRI data
vector of the N received fast-time samples consisting of
the RFI Bx·m , the desired UWB radar signal s·m , and the
disturbances γ·m , m = 1, . . . , M . As discussed in Section II,
each column of X is referred to as the unknown fast-time
spectrum of the RFI for the corresponding PRI.
We model the desired UWB radar signal S as element-

sparse [22]–[24] and the RFI spectrum matrix X as row-sparse.
Fig. 3 demonstrates the element-sparsity of a typical UWB
radar echo matrix S collected by the ARL radar in the absence
of RFI. Fig. 4 shows that the RFI spectrum matrix X collected
by the ARL radar receiver indeed exhibits row-sparsity within
the CPI. Our goal is to separate the UWB radar signal S
from the RFI BX by exploiting the aforementioned sparsity
properties of S and X.
A natural choice for extracting BX from the collected data

matrix Y is the following l1,2-PLAD approach:
min

X
‖Y − BX‖1 + λ‖X‖1,2. (12)

As before, E = Y−BX is composed of the desired UWB radar
signal and noise, and λ is a user parameter that balances the
tradeoff between the two components of the criterion in (12).
Similar to the l1-PLAD optimization problem, the selection of
λ in (12) is a difficult task in practical applications. In order to
circumvent this selection problem, we will analyze and exploit
the relationships between the l1,2-PLAD metric and various
versions of the SPICE metric, as explained in the following
sections.

B. Multiple-Snapshot SPICE

Inspired by the relationship between single-snapshot SPICE
and l1-PLAD [27], [28], we consider below the connection
between multiple-snapshot SPICE [26] and l1,2-PLAD. Let R̂
denote the sample covariance matrix for the multiple-snapshot
case

R̂ = YY∗

M
. (13)

The multiple-snapshot SPICE algorithm minimizes the fol-
lowing covariance fitting criterion [25], [26]

‖R−1/2(R̂ − R)‖2F (14)

or equivalently

min{pk≥0} tr(R̂R−1R̂) +
K+N∑
k=1

wk pk (15)

where wk = ‖ak‖22. Let A = [B IN ], as before. The
multiple-snapshot SPICE problem can be reformulated as
the following weighted l1,2-norm minimization problem with
respect to a matrix C ∈ C(K+N)×N

min
C

K+N∑
k=1

wk
1/2‖ck·‖2, s.t. AC = R̂. (16)

Once the optimal solution C to the above-mentioned problem
is obtained, {pk}K+N

k=1 can be retrieved from C [26].

It is proven in Appendix B that, for M ≥ N and full-rank R̂,
any matrix C that satisfies the constraint in (16) must have the
following general form:

C =
[

X
Y − BX

]
Y∗

M
. (17)

Inserting (17) into (16) yields an equivalent optimization
problem to the multiple-snapshot SPICE

min
X

‖(Y − BX)Y∗‖1,2 + √
N‖XY∗‖1,2. (18)

Since (18) is quite different from the proposed l1,2-PLAD
in (12), the multiple-snapshot SPICE is not considered to be
a good candidate for RFI mitigation.

C. Group SPICE

Next, the group SPICE algorithm [33] is considered, which
is a generalization of SPICE for enforcing the group sparsity.
The connection between group SPICE and group variants of
l1-PLAD, i.e., l1,q-PLAD, (1 ≤ q ≤ 2), has been established
in [33]. To apply group SPICE to RFI mitigation, we first
rewrite the signal model (11) into a sparse-plus-group-sparse
version

ỹ = B̃x̃ + ẽ (19)

where

ỹ = vec(Y) = [y·1T · · · y·MT ]T ∈ C
NM (20)

ẽ = vec(E) = [e·1T · · · e·MT ]T ∈ C
NM (21)

x̃ = [ x1· · · · xK · ]T ∈ C
KM (22)

and B̃ ∈ CNM×KM can be expressed as

B̃ =

⎡⎢⎢⎢⎣
a1 0 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · a1

· · ·
aK 0 · · · 0
0 aK · · · 0
...

...
. . .

...
0 0 · · · aK

⎤⎥⎥⎥⎦
= [

ã11 ã12 · · · ã1M · · · ãK1 ãK2 · · · ãKM
]
.

(23)

To verify (23), note that vec(BX) = vec(
∑K

k=1 akxk·) =∑K
k=1(IM

⊗
ak)xTk· = B̃x̃.

Since x̃ is composed of K groups and the group xk·
corresponds to the kth row of X, the use of x̃ makes a
group sparsity formulation of the RFI spectrum X possible.
In addition, it is clear that ẽ can be regarded as a sparse noise
vector. Hence, group SPICE can be used to obtain ̂̃x from the
vectorized observations ỹ via minimizing a special covariance
fitting criterion [33].
The covariance matrix of ỹ is defined similar to (4)

Rg = E(ỹỹ∗) = ÃP̃Ã∗ (24)

where

Ã =
[
B̃ INM

]
= [

A1 · · · AK ãK+1 · · · ãK+NM
]

(25)

P̃ = diag
([

p̃T
1 p̃T

2 · · · p̃T
K p̃K+1 · · · p̃K+NM

])
(26)

with Ak = [ãk1 · · · ãkM ], p̃k = [ p̃k1 · · · p̃kM ]T , k = 1, . . . , K ,
and ãK+i denoting the i th column of INM , i = 1, . . . , NM .
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The first KM diagonal elements of P̃ (which are divided into
K groups denoted {p̃k}Kk=1) represent the unknown powers of
the grouped vector x, and the last NM elements (which can
be regarded as NM independent groups of size one) denote
the unknown noise powers. Thus, the vector composed of the
diagonal elements in P̃ denoted by p̃ ∈ CKM+NM is a group
vector with K + NM groups and the size of each group is
equal to Lk , where

Lk =
{
M k = 1, · · · , K ,

1 k = K + 1, · · · , K + NM .
(27)

Different from the single-snapshot SPICE algorithm [25],
the following relaxed covariance fitting criterion is consid-
ered in the group SPICE approach to obtain a group sparse
solution [33]:

min
p̃�0

ỹ∗R−1
g ỹ +

K+NM∑
k=1

vk‖p̃k‖r (28)

where r ≥ 1, s ≥ 1, r−1 + s−1 = 1, vk = ‖wk‖s ,
and wk = [‖ãk1‖22 · · · ‖ãkLk‖22]. It can be shown that under
the assumption of heteroscedastic noise, the group SPICE
problem in (28) is equivalent to the following optimization
problem [33]:

min
x̃

‖ỹ − B̃x̃‖1 +
√

NM1/s
K∑

k=1

‖xk·‖ 2r
r+1

(29)

which is a special case of the l1,2r/r+1-PLAD below for
λ = √

NM1/s

min
X

‖Y − BX‖1 + λ‖X‖1, 2r
r+1

. (30)

As r → ∞, (29) becomes the l1,2-PLAD approach in (11).
Therefore, we can obtain X from the observed data matrix
Y by approximately solving the l1,2-PLAD problem (11) via
the group SPICE algorithm with r � 1. The group SPICE
algorithm is a good candidate for multiple-PRI-based RFI
mitigation, but there still is a user parameter r to choose.
The detailed steps of group SPICE are provided in [33].
In Section V, we will compare the group SPICE algorithm
with the proposed version, which is presented in the following.

D. Modified Group SPICE

We now propose a modified group SPICE algorithm that,
unlike group SPICE, is exactly equivalent to l1,2-PLAD and
does not require the selection of any user parameter. The
modified group SPICE algorithm is obtained by assuming that
each of the RFI sources has constant power within the CPI

p̃k = p̃k1 = p̃k2 = · · · = p̃kM (31)

for k = 1, . . . , K . By substituting (31) into the relaxed
covariance fitting criterion (28), we obtain the modified group
SPICE criterion

min{ p̃k≥0} ỹ∗R−1
g ỹ +

K+NM∑
k=1

‖ãk‖22Lk p̃k (32)

where ‖ãk‖22 = ‖ãk1‖22 = · · · = ‖ãkLk‖22 and we used the
fact that vk Lk

1/r = ‖ãk‖22Lk
1/r+1/s = ‖ãk‖22 Lk . As it can

be seen, the user parameter r has vanished from the criterion
in (32).
Let the auxiliary variable β ∈ CKM+NM be such that

Ãβ = ỹ. Then, consider the optimization problem

min{ p̃k≥0},β β∗P̃−1β +
K+NM∑
k=1

‖ãk‖22Lk p̃k s.t. Ãβ = ỹ. (33)

The minimization of (33) with respect to β for fixed P̃ yields

β = P̃Ã∗R−1
g ỹ. (34)

Note that by inserting (34) into (33), we obtain (32), which
shows that (32) and (33) have the same solution P̃.
Through using a cyclic minimization approach similar to

that in [25], [26], and [33], the problem (33) can be con-
veniently solved by iteratively alternating between minimiz-
ing (33) with respect to β for fixed P̃ and minimizing (33) with
respect to P̃ for given β. The solution to the first step has been
presented in (34). For completeness, we show below how to
find a closed-form solution to the step of minimizing (32) with
respect to P̃ for given β. Let (33) be expressed as a separable
optimization problem in the K + NM groups as follows (for
given β):

min{ p̃k }≥0

K+NM∑
k=1

‖βk‖22
p̃k

+ ‖ãk‖22Lk p̃k (35)

where β = [βT
1 βT

2 · · · βT
K βK+1 · · · βK+NM ]T , and βk

denotes the kth group of β.
Applying the arithmetic–geometric mean inequality yields

‖βk‖22
p̃k

+ ‖ãk‖22Lk p̃k ≥ 2
√

‖ãk‖22Lk‖βk‖2. (36)

Making use of (36), we obtain the solution to (35) as follows:

p̃k = ‖βk‖2√
‖ãk‖22Lk

(37)

and the corresponding minimum value of the objective is

K+NM∑
k=1

2
√

‖ãk‖22Lk‖βk‖2. (38)

Combining (34) and (37), the iterative steps of the
hyperparameter-free modified group SPICE algorithm can be
summarized as follows:

̂̃p j+1
k =

∥∥̂̃P j

kA∗
kR̂−1

g j ỹ
∥∥
2√

‖ãk‖22Lk

(39)

where ̂̃P j

k = diag(̂̃p j
k ) for k = 1, . . . , K + NM , and Ak = ãk

for k = K + 1, . . . , K + NM .
Next, we will establish the relationship between the modi-

fied group SPICE criterion and the l1,2-PLAD metric in (12).
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Using (37), we can rewrite (33) as an objective function of β

only [also see (38)]

min
β

K+NM∑
k=1

√
‖ãk‖22Lk‖βk‖2 s.t. Ãβ = ỹ. (40)

Since the last NM groups of β are of size one, (40) can be
rewritten as

min
β

K∑
k=1

√
‖ãk‖22Lk‖βk‖2 +

K+NM∑
k=K+1

√
‖ãk‖22Lk |βk |

s.t. Ãβ = ỹ. (41)

In Appendix C, we show that the vector β that satisfies the
constraint Ãβ = ỹ in (41) has the following general form:

β =
[

x̃
ỹ − B̃x̃

]
. (42)

Hence, the following optimization problem is equivalent to the
one in (41):

min
x̃

‖ỹ − B̃x̃‖1 + √
MN

K∑
k=1

‖xk·‖2. (43)

Note that this equivalence can also be proved in a different
way as shown in Appendix D. The first term in (43) is
‖ẽ‖1, which is equivalent to the first term in (12), and
the second term in (43) is

√
NM‖X‖1,2, which is equivalent to

the second term in (12) with λ = √
NM . Therefore, the mod-

ified group SPICE algorithm is equivalent to l1,2-PLAD with
λ = √

MN .
To use the modified group SPICE algorithm for

hyperparameter-free RFI mitigation in the multiple PRIs case,
we initialize the algorithm with the power estimates obtained
using the periodogram method (see [36]). We then iteratively
update {̂̃pk}K+NM

k=1 using (39) and estimate the RFI spectrum

as {x̂k· = (
̂̃PkA∗

kR̂−1
g ỹ)T }Kk=1 [see (34) and (42)]. Finally,

the vectorized radar echo signal is obtained via ̂̃s = ỹ − B̃̂̃x.
As a final remark in this section, note that the RPCA

algorithm [22] exploits a low-rank property of the RFI data
matrix, whereas the group SPICE algorithms exploit its row-
sparsity. While row-sparsity of a matrix implies low-rank,
the converse is not necessarily true; therefore, row sparsity
is a stricter and, thus, a more useful property for estimation
purposes.

IV. FAST IMPLEMENTATIONS

In this section, we propose fast implementations of the
proposed SPICE methods. We first present a fast imple-
mentation scheme for the single-snapshot SPICE using the
CGLS approach [34], [35] and an FFT-based procedure to
compute R̂−1y. Then, we present a computationally efficient
computation of R̂−1

g ỹ for the group SPICE algorithms and
explain how to compute the group SPICE estimates via the
fast scheme proposed for the single-snapshot SPICE.

A. Fast Computation of R̂−1y in the Single-PRI Case

In the iterative framework of the single-snapshot SPICE,
we need to recompute the covariance matrix R̂ and its inverse
at the current iteration from the power estimate P̂ obtained in
the previous iteration. The direct implementation of this step
requires O(N2K ) flops, which signifies a high computational
complexity, especially because the number of grid points K is
usually much larger than N . Inspired by the fast implementa-
tion idea in [34], we can save computations by exploiting the
CGLS approach [35] to calculate R̂−1y without the formation
of either R̂ or R̂−1.
Define

D =
[

�
1/2
1 B∗
�

1/2
2

]
and z =

[
0

�
−1/2
2 y

]
with

�1 = diag([p1 · · · pK ]) (44)

and

�2 = diag([pK+1 · · · pK+N ]). (45)

We have

R̂−1y = (B�1B∗ + �2)
−1y = (D∗D)−1D∗z. (46)

It follows from (46) that u = R̂−1y is also the solution of the
following least squares problem [34]:

min
u

‖Du − z‖22 (47)

which can be efficiently solved by the CGLS algorithm [35].
Let u0 = 0, s0 = z, r0 = D∗s0 = y and g0 = r0. The

lth iteration of the CGLS algorithm [35] can be expressed as
follows.

1) hl = D∗Dgl = B�1B∗gl + �2gl .
2) αl = (r∗

l rl/g∗
l hl).

3) ul+1 = ul + αlgl .
4) rl+1 = rl − αlhl .
5) βl = (r∗

l+1rl+1/r∗
l rl).

6) gl+1 = rl+1 + βlgl .

Since B is a Fourier transform matrix, Bx and B∗x can be
calculated by means of inverse FFT and FFT operations in
O(K log2K ) flops, respectively (here x is an arbitrary vector
whose length is smaller than K ). Moreover, we can compute
�1x and �2x in O(K ) and O(N) flops, respectively, because
�1 and �2 are both diagonal matrices. Therefore, the first
step of the CGLS iteration, which is the main computational
step, has a reasonable computation complexity of O(K log2K ).
Assuming that C̃ is the number of iterations needed by CGLS,
which is related to the signal-to-interference ratio (SIR) of the
observed RFI-contaminated signal rather than the size of the
data [35], we can obtain R̂−1y using the CGLS and FFT in
O(C̃ K log2K ) flops. Compared to the O(N2K ) flops required
by the direct implementation of the single-snapshot SPICE
algorithm, the proposed fast method has a significantly lower
computational complexity. Note that the proposed fast imple-
mentation is also much faster than the direct minimization
of the convex l1-PLAD metric [31] using the interior point
methods.
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B. Fast Computation of R̂−1
g ỹ in the Multiple PRIs Case

In the multiple PRIs case, the size of the covariance matrix
R̂g ∈ CNM×NM is quite large even for the moderate values
of N and M . Therefore, the huge memory requirements alone
can prevent the formation of the matrices R̂g and B̃. Moreover,
even with sufficient memory, the direct calculation of R̂−1

g ỹ
has a computational complexity of O(N2M3K ), resulting in
a heavy computational burden. Fortunately, we can efficiently
compute R̂−1

g ỹ by exploiting the special structure of R̂g.

Using (23) and (25) in (24), the covariance matrix R̂g for
the vectorized data ỹ can be rewritten as

R̂g =

⎡⎢⎢⎢⎢⎢⎣
ẪP1A∗ 0 · · · 0

0 ẪP2A∗ · · · 0
...

...
. . .

...

0 0 · · · ẪPMA∗

⎤⎥⎥⎥⎥⎥⎦ (48)

where ̂̃Pm = diag([̂̃p1m · · · ̂̃pKm
̂̃pK+(m−1)N+1 · · · ̂̃pK+mN]) for

m = 1, . . . , M , and A is defined in (5). Apparently, R̂g is a
block diagonal matrix whose mth diagonal block is equivalent
to the covariance matrix of the data vector for the mth PRI.
Let R̂m = ẪPmA∗. Then,

R̂−1
g ỹ =

⎡⎢⎢⎢⎣
R̂−1
1 0 · · · 0
0 R̂−1

2 · · · 0
...

...
. . .

...

0 0 · · · R̂−1
M

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

y·1
y·2
...

y·M

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
R̂−1
1 y·1

R̂−1
2 y·2
...

R̂−1
M y·M

⎤⎥⎥⎥⎦ . (49)

Therefore, we can obtain R̂−1
g ỹ simply by computing

{R̂−1
m y·m}Mm=1 via the fast implementation scheme proposed for

the single-snapshot SPICE. The required computational cost is
O
(
C̃MK log2K

)
, where C̃ is the number of iterations needed

by the CGLS algorithm (as in the Section IV-A).

V. SIMULATED EXAMPLES AND EXPERIMENTAL RESULTS

In this section, we evaluate the RFI mitigation performance
of the SPICE algorithms and compare it with that of RPCA
approach using both simulated and experimentally measured
data. Specifically, our experiments are conducted using a
measured RFI-free synthetic aperture radar (SAR) data set and
two different RFI data sets: simulated RFI data and measured
RFI data. The measured UWB SAR data set is collected
by the ARL using the impulse-based low-frequency UWB
BoomSAR system, with its transmitted signal frequency band
from approximately 50 to 1150 MHz. The simulated RFI data
set has the RFI sources generated as a sum of 10 sinusoidal
signals, whereas the measured RFI data set is collected by
the ARL radar receiver with the antenna pointing toward
Washington, DC, USA (See [18], [19] for more details about
the data collection using the ARL radar.) We first focus on

Fig. 5. Original RFI-free SAR image obtained by using the measured
RFI-free UWB radar signal.

Fig. 6. RFI mitigation performance when the measured RFI-free UWB radar
signal is contaminated by the simulated RFI. SIR = −10 dB. (a) Spectrum of
RFI-contaminated data. (b) SAR image with RFI. (c) Recovered SAR image
obtained by using the RPCA. (d) Recovered SAR image obtained by using
the single-snapshot SPICE. (e) Recovered SAR image obtained by using the
original group SPICE with r = 25. (f) Recovered SAR image obtained by
using the modified group SPICE.

the simulated RFI data set and then shift our attention to the
measured RFI data set. The user parameter required by RPCA
is set as recommended in [22] and its references. The size
of the data set is N = 2048, M = 1892 and the number
of grid points is K = 20480. The SAR images, denoted
below using the symbol Z, are obtained by applying the
back-projection algorithm to the radar data both before and
after RFI mitigation. Fig. 5 shows the original RFI-free SAR
image. All the examples were run on a PC with 2.83-GHz
CPU and 8.00-GB RAM.
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Fig. 7. RFI mitigation performance when the measured RFI-free UWB radar
signal is contaminated by the simulated RFI. SIR = −20 dB. (a) Spectrum of
RFI-contaminated data. (b) SAR image with RFI. (c) Recovered SAR image
obtained by using the RPCA. (d) Recovered SAR image obtained by using
the single-snapshot SPICE. (e) Recovered SAR image obtained by using the
original group SPICE with r = 25. (f) Recovered SAR image obtained by
using the modified group SPICE.

A. Evaluation Metric

To evaluate the intensity of the interference signal before
RFI mitigation, the SIR is defined as

SIR = 20log10
‖S‖F

‖BX‖F
. (50)

The received RFI-contaminated radar data are obtained
by adjusting the RFI data power based on the desired SIR
and then adding it to the RFI-free UWB radar signal. Note
that both the measured RFI-free UWB radar signal and the
measured RFI data set inevitably contain noise caused by
the experimental ARL radar system. Hence, as we lower the
SIR value, we are lowering the SNR value of the received
radar data as well. Similar to [22]–[24], we utilize the SNR
of the recovered SAR image to benchmark the RFI mitigation
performance

SNRZ = 20log10
‖Z̃0‖F

‖Z̃0 − ̂̃Z‖F
(51)

where Z̃0 and ̂̃Z are the original RFI-free SAR image and
recovered SAR image, which are normalized to have the same
‖ · ‖F = 1, respectively.

B. Results for Simulated RFI

In this section, the measured RFI-free UWB radar signal
is contaminated by the simulated RFI data to obtain the

Fig. 8. RFI mitigation performance when the measured RFI-free UWB radar
signal is contaminated by the simulated RFI. SIR = −30 dB. (a) Spectrum of
RFI-contaminated data. (b) SAR image with RFI. (c) Recovered SAR image
obtained by using the RPCA. (d) Recovered SAR image obtained by using
the single-snapshot SPICE. (e) Recovered SAR image obtained by using the
original group SPICE with r = 25. (f) Recovered SAR image obtained by
using the modified group SPICE.

Fig. 9. RFI mitigation performance of the single-snapshot SPICE, the original
group SPICE with r = 25, the modified group SPICE, and the RPCA,
for various SIR values, when the measured RFI-free UWB radar signal is
contaminated by the simulated RFI.

RFI-contaminated radar data set. The parameter r needed by
the original group SPICE is set to 25. The SIR values in the
three cases of this experiment are −10, −20, and −30 dB,
respectively, and Figs. 6–8 show the corresponding results.
Figs. 6–8(b) show the RFI-contaminated SAR images. It is
obvious that the presence of strong RFI sources can bury the
targets of interest and severely degrade the quality of the SAR
images. Fig. 6(c)–(f), Fig. 7(c)–(f), and Fig. 8(c)–(f), respec-
tively, show the recovered SAR images after RFI mitigation
using the RPCA, the single-snapshot SPICE, the original group
SPICE with r = 25, and the modified group SPICE. Note that
the single-snapshot SPICE is applied to each column of Y.
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Fig. 10. RFI mitigation performance of the original group SPICE for various
SIR values and r values when the measured RFI-free UWB radar signal is
contaminated by the simulated RFI.

Fig. 11. RFI mitigation performance when the measured RFI-free UWB radar
signal is contaminated by the measured RFI. SIR = −10 dB. (a) Spectrum of
RFI-contaminated data. (b) SAR image with RFI. (c) Recovered SAR image
obtained by using the RPCA. (d) Recovered SAR image obtained by using
the single-snapshot SPICE. (e) Recovered SAR image obtained by using the
riginal group SPICE with r = 25. (f) Recovered SAR image obtained by
using the modified group SPICE.

Visually, the recovered SAR images obtained by using the
RPCA algorithm are much sparser than the original RFI-free
SAR image, and some weak targets are lost. All SPICE algo-
rithms significantly outperform the RPCA approach. In addi-
tion, due to utilizing the row-sparsity within the CPI, the group
SPICE algorithms outperform the single-snapshot SPICE, with
many weak targets still being visually detectable after RFI
mitigation using the group SPICE algorithms. The recovered
SAR images obtained by using the modified group SPICE are
visually similar to those obtained by using the original group
SPICE with r = 25, as might have been expected.

Fig. 12. RFI mitigation performance when the measured RFI-free UWB radar
signal is contaminated by the measured RFI. SIR = −20 dB. (a) Spectrum of
RFI-contaminated data. (b) SAR image with RFI. (c) Recovered SAR image
obtained by using the RPCA. (d) Recovered SAR image obtained by using
the single-snapshot SPICE. (e) Recovered SAR image obtained by using the
original group SPICE with r = 25. (f) Recovered SAR image obtained by
using the modified group SPICE.

Figs. 9 and 10 compare the RFI mitigation performance
using the SNRZ metric in (48) for the aforementioned four
methods over a large range of SIR. The parameter r needed
by the original group SPICE is set to 1, 5, and 25. The SNR
curves in Figs. 9 and 10 show that in the case of simulated RFI,
the recovered SAR images of all four algorithms appear to
be affected insignificantly by the SIR values, which indicates
excellent RFI mitigation performance. In addition, in terms of
the SNRZ values of the recovered SAR images, the original
group SPICE appears to perform worse as r decreased. The
modified group SPICE algorithm and the original group SPICE
algorithm with a large r (for example r = 25) outperform the
single-snapshot SPICE and the RPCA by about 3 dB in terms
of the SNRZ values. The single-snapshot SPICE algorithm
outperforms the RPCA for low SIR values.

C. Results for Measured RFI

Figs. 11–13 present the RFI mitigation results using the
measured RFI data set and the measured RFI-free UWB radar
signal. The parameter r needed by the original group SPICE
is set to 25 as before. The SIR values are also −10, −20, and
−30 dB, respectively. As shown in Figs. 11–13(a), the spectra
of the measured RFI-contaminated data are relatively similar
to the spectra of their simulated counterparts in Figs. 6–8(a).
For an SIR value of −10 or −20 dB, all details in the
original SAR image are discernable in the images obtained
using the group SPICE algorithms, while some weak targets
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Fig. 13. RFI mitigation performance when the measured RFI-free UWB radar
signal is contaminated by the measured RFI. SIR = −30 dB. (a) Spectrum of
RFI-contaminated data. (b) SAR image with RFI. (c) Recovered SAR image
obtained by using the RPCA. (d) Recovered SAR image obtained by using
the single-snapshot SPICE. (e) Recovered SAR image obtained by using the
original group SPICE with r = 25. (f) Recovered SAR image obtained by
using the modified group SPICE.

Fig. 14. RFI mitigation performance of the single-snapshot SPICE, the orig-
inal group SPICE with r = 25, the modified group SPICE and the RPCA,
for various SIR values, when the measured RFI-free UWB radar signal is
contaminated by the measured RFI.

are missing in the recovered SAR images obtained using the
single-snapshot SPICE and RPCA. For the more challenging
case of SIR = −30 dB, most of the features are retained
in the resulting SAR images obtained by the group SPICE
algorithms, although obviously their noise levels are now
higher. As already mentioned, this is due to the fact that the
measured RFI data set contains noise, and lowering the SIR
value increases the noise power. In addition, compared with
the image obtained by the RPCA algorithm, in which some
weak targets are missing and the high noise level is fairly high,
the SAR image obtained using the single-snapshot SPICE,
though with some details missing, has a lower noise level.

Fig. 15. RFI mitigation performance of the original group SPICE for various
SIR values and r values when the measured RFI-free UWB radar signal is
contaminated by the measured RFI.

Figs. 14 and 15 compare the SNRZ metrics in (51) associ-
ated with the recovered SAR images, for various SIR values.
The parameter r needed by the original group SPICE is set
to 1, 5, and 25. The SNRZ values of the recovered SAR
images are affected by the SIR values due to the presence
of noise in the measured RFI data set. The results obtained
by the original group SPICE are affected by the choice of r .
The original group SPICE provides a worse RFI mitigation
performance as r decreases. The modified group SPICE algo-
rithm and the original group SPICE algorithm with a large r
(for example, r = 25) outperform their single-snapshot SPICE
and RPCA counterparts as SIR varies from −30 to 0 dB. The
single-snapshot SPICE algorithm performs slightly better than
RPCA for low SNR values.

D. Computational Time

For the data vector from a single PRI, i.e., one column of
the RFI-contaminated data matrix, with an SIR = −30 dB,
the computational times required by the fast and direct
implementations of the single-snapshot SPICE are about 6
and 2719 s, respectively. Hence, the proposed fast imple-
mentation scheme results in a considerable reduction in the
computational complexity of the single-snapshot SPICE. For
the RFI-contaminated data matrix collected over multiple
PRIs with the size N = 2048 and M = 1892, the covari-
ance matrix has very large dimensions and the resulting
3874816×3874816 array exceeds the maximum size limit
of MATLAB, making the direct implementation impossible.
In contrast with this, using the fast computation proposed
for group SPICE, the creation of the covariance matrix and
other large matrices is avoided and the required computational
time of group SPICE is only about M times larger than
when applying the single-snapshot SPICE to a single-PRI data
vector.

VI. CONCLUSION

In this paper, we have presented a novel framework, based
on proper data models, for hyperparameter-free RFI mitigation
in either single PRI or multiple PRIs (within a CPI) cases.
In the single PRI case, we have used the single-snapshot
SPICE algorithm, which is a special case of the l1-PLAD
approach, for RFI mitigation. In the multiple PRIs case,
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we have introduced a modified group SPICE algorithm for
effective RFI mitigation, which was proven to be a special case
of the l1,2-PLAD approach. These methods simultaneously
enforce the sparsity properties of UWB radar echoes and RFI
spectrum. In addition, the proposed methods do not require the
tuning of any user parameter nor the collection of any prior
information on the RFI. We have also presented fast implemen-
tations of the SPICE algorithms. Experiments based on both
simulated and measured data have been used to demonstrate
the effectiveness of our methods. The proposed modified group
SPICE algorithm has been shown to outperform both the
single-snapshot SPICE algorithm and the RPCA approach for
a wide range of SIR values.

APPENDIX A
NULL SPACE OF A

From Equation (5), we have that A is of dimension N×(N+
K ) since B is of dimension N × K . Clearly, rank(A) = N .
Therefore, the dimension of the null space of A is K . The
(N + K ) × K matrix [

IK
−B

]
(52)

is in the null space of A and its rank is K . Thus, the columns
of the matrix in (52) form a basis for the null space of A.

APPENDIX B
PROOF OF EQUATION (17)

Consider the N×M matrix Y, N×K matrix B, and K ×M
matrix X. We have K > N (usually K � N), but M may or
may not be larger than N . By using (13) in the linear constraint
in (16), we obtain

AC = YY∗

M
(53)

where C is a (K + N) × N matrix and A is defined in (5).
A particular solution to (53) is

C =
[

0
YY∗
M

]
(54)

and therefore a general solution to (53) is (using the result in
Appendix A on the null space of A)

C =
[

0
YY∗
M

]
+
[

IK
−B

]
Z (55)

where Z is an arbitrarily K × N matrix. Assume that M ≥ N
and that the determinant of R̂ is nonzero. Let the K × M
matrix X be

X = Z
(

YY∗

M

)−1

Y. (56)

Clearly X(Y∗/M) = Z, and therefore, we can overparameter-
ize (55) via X

C =
[

0
YY∗
M

]
+

[
IK
−B

]
X

Y∗

M
=

[
X

Y − BX

]
Y∗

M
(57)

which proves (17).

APPENDIX C
PROOF OF EQUATION (42)

Consider the constraint in (41)

Ãβ = ỹ. (58)

We want to find the solution β to (58).
We have

Ã = [B̃ INM ] (59)

where B̃ is an (NM) × (KM) matrix and hence Ã is an
(NM) × (NM + KM) matrix. Clearly, rank

(
Ã
)

= NM .
Then, using the discussion in Appendix A, we have that the
columns of [

IKM

−B̃

]
(60)

form a basis for the null space of Ã. This observation implies
that the general solution of (58) can be written as

β =
[

0
ỹ

]
+
[

IKM

−B̃

]
x̃ =

[
x̃

ỹ − B̃x̃

]
(61)

where x̃ is an arbitrary KM-dimensional vector. This con-
cludes the proof of (42).

APPENDIX D
ANOTHER PROOF OF EQUATION (43)

To prove the connection between the modified group SPICE
and l1,2-PLAD from another perspective, we first recall the
following lemma (see [27], [30]).
Lemma 1: Let

�1 = diag
([

p̃T
1 p̃T

2 · · · p̃T
K

])
(62)

and

�2 = diag
([

p̃TK+1 p̃TK+2 · · · p̃TK+NM

])
. (63)

Then,

ỹ∗R−1
g ỹ = min

x̃
(ỹ − B̃x̃)∗�−1

2 (ỹ − B̃x̃) +
K∑

k=1

‖xk·‖22/ p̃k
(64)

and the minimum value occurs at̂̃x = �1B̃∗R−1
g ỹ. (65)

Making use of this lemma, we can rewrite (32) as

min{ p̃k≥0},̃x

NM∑
l=1

| ỹl − B̃l·x̃ |2 / p̃K+l +
K∑

k=1

‖xk·‖22/ p̃k

+
K+NM∑
k=1

‖ãk‖22Lk p̃k (66)

where ỹl denotes the lth element of ỹ, and B̃l· is the lth row of
B̃. The minimization of (66) with respect to {pk}K+NM

k=1 yields

p̃k = ‖xk·‖2√
‖ãk‖22Lk

for k = 1, . . . , K (67)
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and

p̃K+l = | ỹl − B̃l·x̃ |√
‖ãK+l‖22LK+l

for l = 1, . . . , NM. (68)

Inserting (67), (68), (27), and the value of {‖ãk‖2}K+NM
k=1

into (66), we conclude that the modified group SPICE metric
is equivalent to (43), which is shown to be the vector form of
l1,2-PLAD. Therefore, the modified group SPICE is equivalent
to the l1,2-PLAD optimization metric with a particular choice
of the hyperparameter.
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