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I. INTRODUCTION

Signal quantization is a key task in digital signal pro-
cessing applications. The most ideal case of quantization in
terms of signal amplitude resolution is to have infinite pre-
cision samples. In practice, however, the amplitude quanti-
zation precision (or equivalently the quantization bit-depth)
is in tradeoff with the sampling rate, cost, and energy con-
sumption.

From the bit-depth point of view, the most extreme form
of quantization is to reduce the signal to one bit per sample,
which can be performed simply by comparing the signal
to a known reference level. This way, one-bit sampling is
in fact to treat the quantized measurements as sign values
instead of their true values. The main advantage of one-bit
quantization is that it allows for very high sampling rates,
at low cost and with low energy consumption. In some ap-
plications, the power consumption of one-bit sampling at
a rate of 240 gigasamples/s is only about 10 mW, which
is much less than the power that a conventional analog-to-
digital converter (ADC) typically consumes [1], [2]. This
is of great importance not only in portable battery-enabled
technologies, but even in cases where a power supply ex-
ists, considering the green communication perspective. This
energy efficiency is one of the motivating factors for us-
ing one-bit sampling in millimeter wave communications
and massive multiple-input multiple-output communica-
tion/radar systems [4]. Moreover, the conventional ADC
is rather expensive;1 this is in contrast with the one-bit
sampling, which is extremely inexpensive, allowing for a
totally affordable system.

One-bit sampling has so far been studied in the literature
from different perspectives. Some papers have looked into
the topic in a classical statistical framework [5]–[9]. The
topic has also been studied from a sampling/reconstruction
viewpoint in works such as [10] and more recently in [11].
One-bit processing has also been used in radar signal coding
in earlier works such as [12] and [13], and later in [14].

Most of the recent works on one-bit sampling, how-
ever, study the problem from a compressive sensing (CS)
viewpoint [15]–[27]. It has been shown that sparse signals
can be recovered with high accuracy from a sufficiently
large record of one-bit measurements [18]. The early works
in compressive one-bit sampling share a common limiting
feature, which is considering a fixed quantization threshold
(usually zero). Indeed, as argued in [25], with this limita-
tion, it is not possible to determine the actual energy of
the unknown signal. Some of the recent papers, in contrast,
have considered random time-varying thresholds [25]–[27].
Specifically in [27], the problem of estimating signal param-
eters after quantization to single bit samples is considered
where the one-bit samples are captured by comparing the
signal to a time-varying reference level.

The authors of the present paper have recently proposed
the idea of radar sensing via one-bit compressive sampling
in [28] and [29]. In [28], it was shown that by quantiz-
ing the received noisy signal to one bit (using time-varying

1Conventional ADCs can typically cost thousands of dollars, even at sam-
pling rates of 2 or 3 gigasamples/s [3].
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thresholds), it is possible to perform the radar sensing for
stationary targets. In [29], the case of radar sensing for mov-
ing targets (i.e., adding the Doppler effect to the scenario)
was studied.

In this paper, we expand the problem in [29] to a more
general and more practical framework, in which the clutter
effect is taken into account as well. Specifically, we first
propose a compressive pulse-Doppler radar that works in
a clutter-free environment, through one-bit quantization of
the received noisy signal, which is performed by comparing
the signal with a time-varying threshold.2 Since the targets
are sparse in the range-Doppler domain, by using a sparse
recovery method, the radar sensing objective is expressed
as an optimization problem that can be tackled numerically.
Then, we show how the sparse method can be modified in
order to address the problem in the presence of clutter, and
especially the case of strong clutter. The novelty of this
paper is therefore, in 1) how the radar sensing problem in
the general framework is formulated to employ a method
of one-bit sparse estimation with time-varying thresholds
and 2) how the method is generalized (and customized) to
overcome the disturbing effects such as the strong clutter
or the off-grid targets. Simulation results illustrate that the
proposed method and its modified version have promising
performance in the sensing of the targets, in both clutter-
free and clutter-present environments. It is further seen that
at low signal-to-noise ratio (SNR), increasing the sampling
rate at the receiver compensates for the SNR, and hence
improves the performance. Moreover, it is observed that in
the case of multiple targets, increasing the sampling rate
improves the sensing performance, from target resolution
point of view.

The remainder of the paper is organized as follows. In
Section II, we derive our model for the one-bit compres-
sive pulse-Doppler radar and the relevant sensing problem
is formulated. Then, we propose a solution, which em-
ploys a norm-based sparse framework. Then, in Section III,
the problem is revisited considering the presence of a
strong clutter. Numerical examples are then presented in
Section IV to show the accuracy of the proposed method
in both the absence and presence of the clutter. Finally,
Section V concludes the paper.

Throughout the paper, we use the following notations:

2This part of the paper was partially presented in [29].

Fig. 1. Transmitted multipulse intracoded signal.

II. CLUTTER-FREE SCENARIO

A. Problem Formulation

Consider a pulse-Doppler radar under a single-input
single-output setup. Then, the transmitted multipulse intra-
coded signal (shown in Fig. 1) is given by

sT (t) =
L−1∑

�=0

N−1∑

n=0

cnp(t − nτ0 − �Tp) (1)

where p(·) is the basic subpulse with width τ0, N is the
number of subpulses in each pulse, L is the number of
pulses, and {cn}N−1

n=0 is the code sequence for all pulses, i.e.,

∀� = 0, . . . , L − 1, cn,� = cn. (2)

Now suppose that the range and Doppler domains of the
radar are grided into Kr and Kd bins, respectively. Then, at
the receiver, we have

sRec (t) =
Kr∑

kr=1

Kd∑

kd=1

αkrkdsT (t − τkr )e
jωkd t + ε(t)

=
∑

kr,kd

∑

�,n

αkrkdcnp(t − nτ0 − �Tp − τkr )e
jωkd t +ε(t)

(3)

where τkr , ωkd , and αkrkd are the time delay, Doppler fre-
quency, and the (complex-valued) gain associated with the
target with the index pair (kr, kd) in the range/Doppler do-
main, respectively, and ε(t) is the additive noise. Define the
gain matrix

α �

⎡

⎢⎢⎣

α11 · · · α1Kd

...
. . .

...

αKr1 · · · αKrKd

⎤

⎥⎥⎦ (4)

and let

f(t) �

⎡

⎢⎢⎣

∑L−1
�=0

∑N−1
n=0 cnp(t − nτ0 − �Tp − τ1)

...
∑L−1

�=0

∑N−1
n=0 cnp(t − nτ0 − �Tp − τKr )

⎤

⎥⎥⎦ (5)

where Tp = Krτ0. Defining

φ(t) � [ejω1t , . . . , ejωKd t ]T (6)

the received signal can be rewritten as follows:

sRec (t) = fT (t)αφ(t) + ε(t) (7)

where (·)T denotes the transpose.
In order to quantize the received signal, it is compared

to a time-varying threshold h(t) � hR (t) + ihI (t) ∈ C, and
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the sign of the resulting difference is observed for the real
and imaginary parts. Let y(t) � yR (t) + iyI (t) denote the
observed data at time t , i.e.,

yR (t) = sgn(Re
[
sRec (t)

] − hR (t))

= sgn
(
Re

[
fT (t)αφ(t) + ε(t)

] − hR (t)
)

(8)

and

yI (t) = sgn(Im
[
sRec (t)

] − hI (t))

= sgn
(
Im

[
fT (t)αφ(t) + ε(t)

] − hI (t)
)

(9)

in which Re[·] and Im[·] denote the real and imaginary
parts, respectively, and

sgn(x) =
{

1 x ≥ 0

−1 x < 0
. (10)

Next, assume that M samples are captured at times
t1, . . . , tM , with a rate of r/τ0 (r ∈ Z

+) samples-per-second
according to

tm = m
τ0

r
, m = 1, . . . , M (11)

where τ0 is the basic subpulse duration as depicted in Fig. 1.
In the above sampling scheme, r = 1 corresponds to the
Nyquist sampling, and r ≥ 2 therefore denotes the over-
sampling rate. Let h � hR + ihI , ε, and y � yR + iyI , re-
spectively, denote the vector of the thresholds, the vector of
the additive noise samples, and the vector of the quantized
observed data, i.e.,

⎧
⎪⎨

⎪⎩

h � [h(t1), . . . , h(tM )]T

ε � [ε(t1), . . . , ε(tM )]T

y � [y(t1), . . . , y(tM )]T
. (12)

Defining

F �
[
f(t1)

∣∣f(t2)
∣∣ · · · ∣∣f(tM )

]T
(13)

and

� � [φ(t1)|φ(t2)| · · · |φ(tM )] (14)

the observed data can be expressed compactly as follows:

{
yR = sgn(Re

[
diag{Fα�} + ε

] − hR )

yI = sgn(Im
[
diag{Fα�} + ε

] − hI )
(15)

where diag{·} gives the diagonal elements of a matrix.

Now, the problem is to estimate the matrix α from the
quantized observed data, i.e., y.

B. Proposed Solution

To deal with the aforementioned problem, we begin by
vectorizing the matrix α as follows:

α̃ � vec(α)

= [α11, . . . , αKr1, . . . α1Kd, . . . αKrKd ]T . (16)

It is verified that diag{Fα�} can be recast as

diag{Fα�}

=

⎡

⎢⎢⎢⎢⎢⎣

ejω1t1 fT (t1) · · · ejωKd t1 fT (t1)

ejω1t2 fT (t2) · · · ejωKd t2 fT (t2)

...
...

...

ejω1tM fT (tM ) · · · ejωKd tM fT (tM )

⎤

⎥⎥⎥⎥⎥⎦
α̃

= (11×Kd ⊗ F) � (�T ⊗ 11×Kr )̃α (17)

where ⊗ and � are the Kronecker and Hadamard products,
respectively, and 1 is a matrix of all ones.

Thus, the observed quantized data can be expressed as
{

yR = sgn
(
Re[̃Fα̃ + ε] − hR

)

yI = sgn
(
Im[̃Fα̃ + ε] − hI

) (18)

in which

F̃ � (11×Kd ⊗ F) � (�T ⊗ 11×Kr ) (19)

and α̃ has been defined in (16). Noting the sparsity of the
targets in the range and Doppler domains, we expect that
many of the components of the vector α̃ will be zero. Thus,
the problem is to find a sparse vector α̃, consistent with
the measurement with small fitting error. The problem is
therefore expressed in a form similar to the one in [27]
and [28], and it thus leads to the following optimization
problem:

min
α̃,z

‖z‖2 + λ‖α̃‖0

s.t.
yR � (Re[̃Fα̃ + z] − hR) ≥ 0

yI � (Im[̃Fα̃ + z] − hI ) ≥ 0
(20)

where ‖ · ‖0 is the zero norm, z is the fitting error, and λ is a
parameter, which adjusts the sparsity of the result. Note that
the zero norm (with which the problem is hard to solve) can
be well approximated by the �1-Norm (‖ · ‖1) that makes
the problem convex and tractable [34].

In the sequel, without loss of generality, we assume that
the Doppler grids are equally spaced, i.e.,

ωkd = −ωD + (kd − 1)�, for kd = 1, . . . , Kd (21)

where ωD is the maximum possible Doppler frequency

of a potential target, and � = 2ωD
Kd−1 . In this way,
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we have

φ(t) = [e−jωD t , e−j (ωD −�)t , . . . , ej (ωD −�)t , ejωD t ]T . (22)

Then, from (22) and (11), it can be seen that � is a Vander-
monde matrix given by

� = [
φ
∣∣φ(2)

∣∣· · · ∣∣φ(M)] (23)

with φ(i) denoting the i’th Hadamard-power of the
vector φ

φ =
[
e−jωD

τ0
r , e−j (ωD−�) τ0

r , . . . , ejωD
τ0
r

]T

. (24)

Similarly, we assume that the range grids are also equally
spaced such that they represent delay steps equal to
τ0/r , i.e.,

τkr = kr
τ0

r
, kr = 1, . . . , Kr. (25)

Before we proceed, let us look into the structure of the
matrix F. According to the following lemma, each element
in F is either zero or cn, for some n = 0, . . . , N − 1.

LEMMA 1 Let F[m, kr] denote the element in the m’th row
and kr’th column of F, and assume that Kr > N . Then, for
all m = 1, . . . , M , and all kr = 1, . . . , Kr, we have

F[m, kr] ∈ {c0, c1, . . . , cN−1, 0}.

PROOF See Appendix A for the proof. �

Based on the above lemma, it is not hard to characterize
the structure of F according to the following proposition.

PROPOSITION 1 Consider the element in the m’th row and
kr’th column of F, denoted by F[m, kr]. Then, we have

F[m, kr] = cn, n ∈ {0, . . . , N − 1}

if and only if the following equation is satisfied for some
value of x ∈ {0, 1, . . . , r − 1}:

(m mod rKr) − kr = rn + x

where (m mod rKr) denotes the remainder of m divided by
rKr.

PROOF According to Lemma 1, and following the
lines of its proof given in Appendix A, the proof is
immediate. �

For n = 0, . . . , N − 1, defining cn � cn1r×1, and as-
suming reasonably that Kr > rN , from (2), (5), (11), (13),
and (25), it can be seen that with M = (L − 1)rKr + rN +

Kr − 1, the matrix F is an M × Kr matrix given by

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

...
. . .

cN−1
. . .

. . .

. . .
. . . c0

. . .
...

cN−1

c0

...
. . .

cN−1
. . .

. . .

. . .
. . . c0

. . .
...

cN−1

...

...

c0

...
. . .

cN−1
. . .

. . .

. . .
. . . c0

. . .
...

cN−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

r(N − 1) + 1

Kr

Kr + rN − r

rKr + 1

(L − 1)rKr + 1

(26)

in which the entries outside the shown repetitive diagonal
boxes are all zero, and the column on the right-hand side of
the matrix is the starting row index for the relevant inline
entry.3

Having characterized F and �, we are now ready to
evaluate the performance of the proposed method, by nu-
merically solving the minimization problem in (20).

III. PRESENCE OF CLUTTER

Adding the clutter effect to the same setup considered in
the previous section, the received signal can be represented

3Considering Kr > rN , the only case in which the diagonal boxes overlap
is with r = 1 for which rKr + 1 < Kr + rN .
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by

sRec (t)

=
Kr∑

kr=1

Kd∑

kd=1

(αkrkd + βkrkd )sT (t − τkr )e
jωkd t + ε(t)

=
∑

kr,kd

∑

�,n

(αkrkd + βkrkd )cnp(t − nτ0 − �Tp − τkr )e
jωkd t

+ ε(t) (27)

where αkrkd is the complex-valued gain corresponding to the
target with the index pair (kr, kd) in the range/Doppler do-
main, and the newly added term βkrkd is the complex-valued
clutter component associated with the range-Doppler index-
pair (kr, kd). Therefore, similar to (7), the received signal is
given compactly as follows:

sRec (t) = fT (t)(α + β)φ(t) + ε(t) (28)

in which fT (t) and φ(t) are previously defined in (5) and
(6), and

β �

⎡

⎢⎢⎣

β11 · · · β1Kd

...
. . .

...

βKr1 · · · βKrKd

⎤

⎥⎥⎦ . (29)

In what follows, we first discuss the case of weak clutter;
then we move on to the case of strong clutter which is the
main focus of this section.

A. Weak Clutter

In the case of weak clutter, the clutter can be treated as an
additive noise. Specifically, the received signal is rewritten
as

sRec (t) = fT (t)αφ(t) + σ (t) (30)

in which σ (t) = fT (t)βφ(t) + ε(t) can be considered as
an additive colored noise. Note that in the formulation of
(20), the variable z represents the fitting error, which is a
result of both the additive noise and the signal-dependent
quantization noise, which is in fact colored. Therefore, it
is expected that by merging the weak clutter effect into
the fitting error, the same formulation and approach can
be effectively used. Indeed, the simulation results confirm
this fact. Therefore, the case of weak clutter shall not be
a major concern in our proposed method, and therefore, in
the remainder of this section, we focus on the case of strong
clutter.

B. Strong Clutter

We begin by reformulating the received signal in (28).
Let ξ � α + β. Then, similar to the clutter-free scenario,
the observed quantized data can be stated as

{
yR = sgn(Re

[
diag{Fξ�} + ε

] − hR )

yI = sgn(Im
[
diag{Fξ�} + ε

] − hI )
(31)

or equivalently by
{

yR = sgn
(
Re[̃F̃ξ + ε] − hR

)

yI = sgn
(
Im[̃F̃ξ + ε] − hI

) (32)

where F̃ is defined in (19), and ξ̃ = vec(ξ ). Without loss
of generality suppose that Kd is an odd number given by
2c + 1. Then, the matrix ξ can be rewritten as shown at the
bottom of this page in (33), where 0 ≤ δ < c is selected ac-
cording to the clutter spectral spread in a way that the major
components of the clutter fall in ξ 0. This is because, in the
representation of the strong clutter effect, the matrix β has
its significant components within the central columns, i.e.,
about the zero Doppler frequency. This will be further ex-
plained below in Remark 2. The matrix F̃ has Kd = 2c + 1
columns; let F̃−, F̃0, and F̃+ denote the first c − δ columns,
the central 2δ + 1 columns, and the last c − δ columns of
F̃, respectively. Then, we can write

F̃̃ξ = [̃
F−

∣∣ F̃0

∣∣ F̃+
]

⎡

⎢⎢⎢⎢⎢⎢⎣

ξ̃−
− − −

ξ̃ 0

− − −
ξ̃+

⎤

⎥⎥⎥⎥⎥⎥⎦
(34)

where ξ̃− = vec(ξ−), ξ̃ 0 = vec(ξ 0), and ξ̃+ = vec(ξ+).
Defining

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F̃cf �
[̃
F−

∣∣ F̃+
]

ξ̃ cf �

⎡

⎢⎣
ξ̃−
− −
ξ̃+

⎤

⎥⎦
(35)

where the subscript “cf” stands for clutter-free, it can be
verified that the observed quantized data can be restated as
follows:

{
yR = sgn

(
Re

[̃
Fcf ξ̃ cf + F̃0̃ξ 0 + ε

] − hR

)

yI = sgn
(
Im

[̃
Fcf ξ̃ cf + F̃0̃ξ 0 + ε

] − hI

) . (36)

ξ �
[
ξ−

∣∣ ξ 0

∣∣ ξ+
] =

⎡

⎢⎢⎣

ξ1,1 · · · ξ1,c−δ−1

...
...

...

ξKr,1 · · · ξKr,c−δ−1

∣∣∣∣∣∣∣∣

strong clutter-affected︷ ︸︸ ︷
ξ1,c−δ · · · ξ1,c · · · ξ1,c+δ

...
...

...
...

...

ξKr,c−δ · · · ξKr,c · · · ξKr,c+δ

∣∣∣∣∣∣∣∣

ξ1,c+δ+1 · · · ξ1,Kd

...
...

...

ξKr,c+δ+1 · · · ξKr,Kd

⎤

⎥⎥⎦ (33)
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REMARK 1 In our formulation, the column indices of ξ
represent the Doppler frequency shift ωd . According to (21),
the matrix ξ 0 corresponds to Doppler frequencies within the
interval

−ωD

2c
δ ≤ ωd ≤ ωD

2c
δ

where ωD is the maximum Doppler frequency shift of a
potential target. �
REMARK 2 Frequently in practice, clutter strength decays
as the Doppler frequency increases [33]. Therefore, we can
assume that the significant components of the clutter ef-
fect are confined to a maximum Doppler frequency ω


d
,

beyond which the clutter is weak and can thus be treated as
mentioned in Section III-A. In the above formulation, the
parameter δ is set such that4

ωD

2c
δ ≥ ω


d
. �

REMARK 3 According to the above two remarks, the vector
ξ̃ has at most (2δ + 1)Kr + Nt nonzero elements (out of
KrKd total elements), where Nt is the number of targets.
Therefore, by choosing Kd large enough, at a fixed Doppler
resolution �, the ratio

(2δ + 1)Kr + Nt

KrKd

 2δ + 1

Kd

can be kept small enough, leading to a relatively sparse
vector. This paves the way to dealing with the strong
clutter. �
DISCUSSION 1 The restricted isometry property (RIP) of
the measurement matrix serves as a guarantee for universal
recovery of sparse signals in traditional CS, where the focus
is on undersampling (with or without quantization). In our
scenario however, the term compressive relates to reducing
the bit-depth of the samples, and not the number of the sam-
ples. This is the source of a distinction in the theory of the
two. One example of such difference is the concern on the
mutual coherence of the measurement vectors (columns of
the measurement matrix). Indeed, in traditional CS where
the focus is on the minimum number of samples for perfect
recovery of the sparse signal, the coherence parameter is
a major concern because the minimum required samples
for perfect recovery is linearly proportional to the coher-
ence parameter [35]. In our study however, having reduced
the bit-depth to one, we worry less about the number of
samples, and thus the coherence parameter, as long as the
system works efficiently.

From the literature on RIP, we know the following the-
orem, which states a necessary condition for the RIP [35].

THEOREM Let A be an M × D matrix that satisfies the RIP
of order 2K with a constant δ ∈ (0, 1

2 ], then

M > CK log

(
D

K

)
(37)

where C ≈ 0.28.

4In practice, δ and Kd = 2c + 1 are codesigned to meet the practical
requirements.

However, we must note that as stated in [35] and [36],
the RIP itself is merely a sufficient but not necessary condi-
tion for CS. Indeed, the RIP does not hold in many applica-
tions where CS is successfully used. This includes some of
the flagships of CS like magnetic resonance imaging. The
RIP guarantees the ability to recover all K-sparse vectors
x using the values of �x, which is commonly known as
uniform recovery or universality. Expecting uniform recov-
ery (universality) is unrealistic in a variety of situations,
where we might only care about particular realizations of
the sparse signal.

In our formulation, the matrix F̃ is an M × KrKd ma-
trix, where M = (L − 1)rKr + rN + Kr − 1. Moreover,
the support of the signal-and-clutter vector is given by (2δ +
1)Kr. Therefore, the condition in (37) can be rephrased as
follows:

[(L − 1)r+1]Kr + rN − 1 > C(2δ + 1)Kr log

(
Kd

2δ + 1

)
.

(38)
Thus, despite the above explanations, in order to satisfy
(38), it suffices that (L − 1)r > log

(
Kd

2δ+1

)
, which will be

the case, in all the examples studied in Section IV-B.
Finally, note that as explicitly stated in Remark 3, Kd

is to be chosen large enough, which does not imply un-
thoughtful increase in Kd, especially that the choice of Kd
affects L and consequently M in our study. Therefore, it is
a matter of tradeoff, which adds to the beauty and delicacy
of the concept in this problem. �

Remark 3 is our key to tackling the problem under
strong clutter effect. Accordingly, one way for dealing with
the clutter-affected scenario is to perform a sparse esti-

mation of signal-and-clutter (i.e., to obtain ̂̃ξ ), discard the
estimated (clutter) components within the clutter Doppler

zone −ω∗
d

≤ ωd ≤ ω∗
d (i.e., to obtain ̂̃ξ → ̂̃ξ s , where ̂̃ξ s is

the clutter-discarded version of ̂̃ξ ), and finally locate any
targets in the detectable Doppler zone (i.e., to convert the
vectorized estimation to the matrix of Doppler-Range pairs
ξ̂ ). This can be performed by considering the following
optimization problem:

min
ξ̃ cf ,̃ξ 0,z

‖z‖2 + λcf

∥∥̃ξ cf

∥∥
0 + λ0

∥∥ξ̃ 0

∥∥
0

s.t.
yR � (Re[̃Fcf ξ̃ cf + F̃0̃ξ 0 + z] − hR ) ≥ 0

yI � (Im[̃Fcf ξ̃ cf + F̃0̃ξ 0 + z] − hI ) ≥ 0
(39)

where the parameters λcf , λ0 should be adjusted such that
λcf > λ0 > 0. This is because the signal components (̃ξ cf)
are sparser than the clutter components (̃ξ 0).

IV. NUMERICAL EXAMPLES AND SIMULATION
RESULTS

In this section, we provide numerical examples to eval-
uate the performance of the proposed method. In all ex-
amples, the CAN algorithm [37] is used to produce the
complex code c0, . . . , cN−1. Using �1-norm approximation
in (20) and (39), we use MATLAB’s CVX toolbox [38] to
find α̃ and ξ̃ , respectively. We begin with the clutter-free
setup.
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TABLE I
Parameters in Example 1

Fig. 2. Sensing performance of the proposed radar system for
Example 1. (a) Estimated vectorized target indices ̂̃α.

(b) Range-Doppler representation of the targets.

A. Clutter-Free Scenario

We consider hR and hI as independent vectors of
i.i.d. random variables uniformly distributed over [−1, 1]
(which is the range for the normalized amplitude of the
reflected signals) and we set λ = 1.

In the first two examples, the targets are randomly lo-
cated by producing random i.i.d. delay and Doppler fre-
quency indices. In Example 3, however, we have used the
same target indices as those in Example 2, for comparison
purposes.

EXAMPLE 1 Consider the scenario with parameters set ac-
cording to Table I, in which Nt is the number of targets
and the SNR is measured with respect to the weakest tar-
get. The actual range-Doppler indices of the four targets in
this example are (7,18), (15,125), (13,120), and (18, 39).
The vectorized indices of the assumed targets are 1218,
2520, 2925, and 3439, respectively. As it can be seen in
Fig. 2, the proposed method is able to detect all four targets
accurately. �

EXAMPLE 2 Consider the same setup of Example 1 with
a lower SNR of 2 dB, and suppose that the actual range-
Doppler indices of the targets are randomly set as (16,18),
(15,65), (13,83), and (17, 173). As it can be seen in Fig. 3, by
decreasing the SNR, an error has occurred in the estimation
of the Doppler index for one of the targets. As shown by
the red-dashed boxes, the Doppler index of the third target
has been estimated incorrectly as 18, instead of the actual
index 13. �

EXAMPLE 3 Consider the same scenario in Example 2, but
with a higher sampling rate of r = 3. As it can be seen in
Fig. 4, increasing the sampling rate compensates for the

Fig. 3. Performance of the proposed method for Example 2. The
erroneous estimated target is shown in dashed box.

Fig. 4. Sensing performance of the proposed method for Example 3.

TABLE II
Parameters in Example 4

low SNR and improves the sensing performance, such that
all four targets are identified accurately. �

The phenomenon observed in Example 3 is similar to
the well-known results mentioned in the context of over-
sampling ADCs (e.g., [30]–[32]).

EXAMPLE 4 In this example, we look into the dynamic
range of the targets. Specifically, consider a scenario with
parameters set according to Table II and 40 dB difference
in the power of the two targets. As it can be seen in Fig. 5(a)
and (b), the proposed method is able to resolve the targets
even at such high dynamic range. Next, in order to eval-
uate the average performance of the method, we run 100
independent trials in this setup to calculate the probability
of perfect estimation, i.e., the probability that both targets
are estimated accurately.5 The procedure is then repeated
for r = 8 and 16, the result of which is shown in Fig. 5(c),
where Astrong, and Aweak denote the amplitude of the strong
and weak targets, respectively. As it can be observed, by
increasing the sampling rate, the method is able to esti-
mate the targets accurately with a high probability, even at
dynamic ranges of up to 40 dB. �

B. Presence of Clutter

In this section, we provide numerical examples to evalu-
ate the performance of the proposed method in the presence
of a strong clutter.

5Here in this example, it is assumed that the number of targets are known.
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Fig. 5. Sensing performance of the proposed radar sensing in Example 4. (a) Estimated vectorized target indices ̂̃α. (b) Range-Doppler representation
of the targets. (c) Probability of perfect estimation versus the dynamic range of the targets, for different values of r = 4, 8, and 16 at 0 dB SNR.

TABLE III
Parameters in Example 5

EXAMPLE 5 Suppose that we are faced with a strong clutter,
with a clutter-to-signal ratio (CSR) of 20 dB (measured with
respect to the weakest signal) at the zero-Doppler frequency,
and a decay rate of 0.25 dB/Hz, confined to ±40 Hz. Now
consider a scenario with parameters given in Table III, in
which Nt is the number of targets and the SNR is measured
with respect to the weakest reflected signal. With Kd set
equal to 41, and ωD equal to 1600π , the strong clutter
is confined to the three central columns of ξ , i.e., δ = 1,
as shown in Fig. 6. Fig. 7(a)–(d) depicts the performance
of the proposed method for the considered scenario with a
target randomly located at the range-Doppler index (18, 10)
(which is index 350 in the vectorized form). As it can be
seen, the target has been detected accurately.

EXAMPLE 6 Consider the scenario of the previous example
at a lower SNR of 0 dB. As it can be seen in Fig. 8(a)–(d),

Fig. 6. CSR in Example 5.

reducing the SNR has led to an error in the range of the
estimated target. One way to overcome this problem is to
increase the sampling rate. As it can be seen in Fig. 8(d), by
increasing r to 3, the proposed method is able to estimate
the target accurately. �
EXAMPLE 7 Consider the scenario in Example 6, but with
Nt = 2, i.e., with two targets located at range-Doppler in-
dices (5, 16) and (18, 10) (i.e., vectorized indices 96 and
350, respectively). As it can be seen in Fig. 9(a)–(d), the
proposed method is able to estimate both targets accu-
rately. Now let us consider a case where the two targets
have closer indices. For example, suppose that both targets
have the same Doppler index of kd = 18, and range indices
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Fig. 7. Performance of the proposed sensing method in Example 5. (a) Actual vectorized target-and-clutter indices ξ̃ . (b) Estimated vectorized

target-and-clutter indices ̂̃ξ . (c) Estimated vectorized target index. (d) Range-Doppler representation of the estimated target.

Fig. 8. Performance of the proposed sensing method in Example 6. (a) Actual vectorized target-and-clutter indices ξ̃ . (b) Estimated vectorized

target-and-clutter indices ̂̃ξ for r = 2. (c) Erroneous estimated vectorized target index for r = 2. (d) Range-Doppler representation of
the estimated target for r = 2, and r = 3.
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Fig. 9. Performance of the proposed sensing method in Example 7. (a) Actual vectorized target-and-clutter indices ξ̃ . (b) Estimated vectorized

target-and-clutter indices ̂̃ξ . (c) Estimated vectorized target indices. (d) Range-Doppler representation of the estimated targets.
(e) Range-Doppler representation of the estimated indices in the case of close targets.

kr = 10, 16. Indeed, this case demands for a higher sens-
ing resolution. As it can be seen in Fig. 9(e), with r = 3,
the proposed method has failed to identify the targets accu-
rately. We will see in the next example that increasing the
sampling rate improves sensing resolution of the proposed
method. �

EXAMPLE 8 Consider the case of close targets in the pre-
vious example, i.e., with two targets located at (kd, kr) =
(18, 10), and (kd, kr) = (18, 16) (i.e., vectorized target in-
dices 350 and 356). This time, let the sampling rate be
increased by setting r = 4. As it can be seen in Fig. 10,
the proposed method is now able to estimate both targets
accurately. �

The computational complexity of the proposed method
is demonstrated by the computation time in Appendix B.

DISCUSSION 2 Let us look into the sensing parameters in the
aforementioned examples, from a practical point of view.
With ωD = 1600π , and Kd = 41, the bins for the Doppler
frequency shift in our hypothetical radar are as follows:

fd = 0, ±40, ±80, . . . , ±800

where fd is the Doppler frequency in Hz. Suppose that the
radar is working in the L-band with a carrier frequency of
fc = 1.5 GHz. Then, assuming a fixed (stationary) radar,
according to

fd = 2v

λc

the Doppler bins correspond to target velocities v = 0, ±4,

±8, . . . , ±80 m/s, or equivalently, v = 0, ±14, . . . ,

±280 km/h. Based on the assumed clutter spectral distri-
bution, the clutter is spread over the central Doppler bins,
which correspond to velocities in the range |v| ≤ 4 m/s,

and according to the numerical results, the minimum de-
tectable target speed, which is associated with the 19th (or
equivalently the 23rd) Doppler bin equals to 8 m/s (i.e.,
28.8 km/h or equivalently 15.5 kn). This can be a typical
practical scenario in seaborne target detection, in terms of
both the clutter spread, and the detectable target speeds
(see Appendix C for more details). Specifically, the sea-
clutter in some typical situations is confined to low target
speeds of less than 4 m/s [33]. Moreover, typical seaborne
targets have a speed in the range of 18 to 58 kn, which
is indeed the detectable range of the proposed hypotheti-
cal scenario.6 With Tp = Krτ0 = 0.6 ms, the radar pulse
repetition frequency (PRF) is fp = 5

3 kHz, and thus, the
unambiguous range of the radar, i.e., Run can be obtained
according to Run = C

2fp
, where c denotes the velocity of

light. This leads to an unambiguous range of 90 km for the
proposed hypothetical radar. Note that this range can be
simply increased by considering more range bins, i.e., by
increasing Kr , which has no adverse effect on the perfor-
mance of the sensing method. Therefore, assuming enough
computational capacity, the unambiguous range here is not
a major limitation. Finally, with L = 41, the coherent pro-
cessing interval, at each direction, is equal to LTp = 24.6
ms.

All of the above highlighted numbers and descriptions
can be in agreement with the requirements of a typical
seaborne target detection scenario. �

To further evaluate the overall performance of the pro-
posed method, we look into the probability of perfect de-
tection/estimation, i.e., the probability that the number of

6Even slow-motion targets that move with a speed of about 16 to 18 kn
would thus be detectable.
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Fig. 10. Proposed sensing method for the higher target resolution
scenario in Example 8. (a) Actual vectorized target-and-clutter indices ξ̃ .

(b) Estimated vectorized target-and-clutter indices ̂̃ξ . (c) Estimated
vectorized target indices. (d) Range-Doppler representation of the

estimated targets.

the targets are detected correctly, and their corresponding
range-Doppler indices are estimated accurately. This is in
fact a metric that combines the estimation and detection
performances.7 To do so, we consider the case of a single
target in the presence of the clutter considered in Fig. 5,
in an SNR of 0 dB. Fig. 11 depicts the perfect detec-

7Note that this metric for performance is much more strict than just the
probability of detection.

Fig. 11. Overall performance of the proposed sensing method in the
presence of strong clutter. (a) SNR = 0 dB, and SCR= −20 dB (at zero
Doppler frequency) for different values of r . (b) SNR = 0 dB, r = 16,

for different values of SCR.

tion/estimation performance of the proposed method with
a sampling frequency of r/τ0, for r = 2, 3, and 4 (for ex-
ample, with r = 3, the sampling frequency is 0.1 MHz).8

Fig. 11(a) is obtained by running 500 independent trials
with random range indices at each chosen Doppler fre-
quency. As it can be seen, increasing the sampling rate has
effectively improved the performance. Fig. 11(b) shows the
perfect detection/estimation performance of the proposed
method over 500 independent trials, for different values of
the signal-to-clutter ratio (SCR), at a fixed sampling fre-
quency 16/τ0 (i.e., with r = 16). As it can be seen, the
performance of the method improves as the SCR increases.

8For a fixed (desired) value of PRF. i.e., fp (which equivalently leads
to a fixed value of the unambiguous range), the sampling frequency can
be restated as fs = rKrfp . Therefore, technically, for any given PRF,
the sampling frequency can be set within different ranges by appropriately
choosing the values of r and Kr . However, increasing r and/or Kr increases
the required computations in the proposed method. Thus, in most of the
setups considered in the examples and scenarios in this paper, without
loss of generality, low-to-moderate values have been considered for r and
Kr, for computational convenience of the numerical evaluations. This is
while for cases with higher values of r and Kr, such as those considered in
Table VII and VIII in Appendix B, the sampling frequency covers a range
of up to 4.8 MHz.
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Fig. 12. Performance comparison between the proposed one-bit method
and the sparse M-bit method.

Next, we will compare the performance of the proposed
method, with an M-bit sparse recovery, which works as
follows.

Suppose that the received signal is quantized uniformly
by an M-bit quantizer. Then, similar to (40), the observed
quantized signal is given by

{
yR = QM

(
Re

[̃
Fcf ξ̃ cf + F̃0̃ξ 0 + ε

])

yI = QM

(
Im

[̃
Fcf ξ̃ cf + F̃0̃ξ 0 + ε

]) (40)

where QM (·) denotes the M-bit quantization operator.
Then, with the same notations defined in the previous sec-
tion, the sparse vector of the targets and the clutter can
be estimated by the following unconstrained optimization
problem:

min
ξ̃ cf ,̃ξ 0

∥∥yR − Re
[
F̃cf ξ̃ cf

]∥∥
2 + ∥∥yI − Im

[
F̃cf ξ̃ cf

]∥∥
2

+ λcf

∥∥̃ξ cf

∥∥
0 + λ0

∥∥ξ̃ 0

∥∥
0 (41)

in which the zero-norm can be approximated by the �1-
norm. Fig. 12 compares the performance of the proposed
1-bit method with that of the M-bit sparse method obtained
by MATLAB’s CVX toolbox according to (41).

It can be seen in Fig. 12 that the one-bit method with
r = 8 and 16 performs almost like the sparse method with
a 4 and 5 bit ADC and a Nyquist sampling (r = 1), re-
spectively. Therefore, by accepting an increase in the pro-
cessing bits (with respect to the sparse method that works
with multibit quantized data) the proposed method provides
favorable features of the one-bit method, especially the in-
expensiveness of its hardware and its extremely low power
consumption. We must note that the mentioned increase in
the processing bits is at the software side of the receiver
and is therefore not a burden in terms of hardware imple-
mentation. Moreover, the considered setup for realizing the
proposed one-bit method in this paper has no optimality in
terms of the setting of parameters such as λcf and λ0, and
also in terms of selecting the time-varying threshold, h(t),
which has significant effect on the performance. It is thus
possible to further improve the performance of the proposed
method and therefore reduce the processing bit overhead
with respect to the optimal multibit sparse method. This
invites for further study of the proposed 1-bit method from
an optimal design perspective.

Fig. 13. Off-grid target in the range-Doppler domain.

C. Off-Grid Analysis and Clutter Doppler Resolution

In order to investigate the off-grid effect on the perfor-
mance of our method, we must first update the received
signal in our model for off-grid target and clutter. To begin,
we consider the clutter-free scenario first, and then we add
the clutter effect as well.

Consider an off-grid target with a time delay τog and the
Doppler frequency of ωog. Let kr and kd denote the closest
range and Doppler indices to the off-grid target, i.e.,
{

τog = kr
τ0
r

+ �τog

ωog = ωkd + �ωog = −ωD + (kd − 1)� + �ωog

(42)

where � = 2ωD

Kd−1 , |�τog | < τ0
2 , |�ωog | < �

2 . Let
{

�kr � r�τog

τ0

�kd � �ωog

�

. (43)

It is clear that |�kd | ≤ 1
2 , and |�kr | ≤ 1

2 . Replacing (43) in
(42), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τog = (kr + �kr︸ ︷︷ ︸
�k

og
r

)τ0/r

ωog = −ωD + (kd + �kd︸ ︷︷ ︸
�k

og
d

−1)� (44)

which is illustrated in the range-Doppler domain in Fig. 13.
We can now modify the received signal in our model. As
for the Doppler frequency, φ and �, in (23) and (24) are
updated by substituting ωkd with ωog, in their kd’th row, as
follows:

φog =
[
e−jωD

τ0
r , . . . , e−jωog

τ0
r

↑
, . . . , ejωD

τ0
r

]T

(45)

and

�og =
[
φog

∣∣∣φ(2)
og

∣∣∣· · ·
∣∣∣φ(M)

og

]
. (46)

As for the range, the kr’th column of F has to be modified.
Having understood the required modifications for the range
and Doppler off-grid, we may now check the performance
of the proposed method for off-grid targets, in the following
examples and simulations.
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TABLE IV
Parameters in Example 9

Fig. 14. Performance of the proposed method with off-grid targets in
Example 9.

EXAMPLE 9 Consider the scenario with parameters set
according to Table IV, in which Nt is the number of
targets and the SNR is measured with respect to the
weakest target. The actual off-grid range-Doppler in-
dices (kog

d , k
og
r ) of the four targets in this example are

(10.6932, 7.8844), (21.5524, 8.6783), (12.4308, 19.4482),
and (18.2383, 2.6026). Fig. 14 shows the actual range-
Doppler indices of the four off-grid targets and their on-grid
recovery by the proposed method. As it can be seen, all four
targets have been detected in their nearest range-Doppler
grids. �

EXAMPLE 10 In order to see the overall performance of
the proposed method at the presence of off-grid targets,
we consider an experiment with 100 independent trials
of detecting a single target with off-grid indices k

og
r and

k
og
d uniformly distributed over [0.5, kr + 0.5] ∈ R, and

[0.5, kd + 0.5] ∈ R, respectively. We look into the average
index error. Specifically, consider a scenario with param-
eters set according to Table IV, but with Nt = 1. Fig. 15
shows the off-grid targets within the 100 trials in the range-
Doppler domain, where the green dots show the targets,
which have been detected at their nearest range-Doppler
grids (i.e., optimal w.r.t. the on-grid recovery limitation),
whereas the red dots show the targets, which have been
detected suboptimally with either their estimated range or
Doppler index being different than the nearest ones.

In this experiment, 52% of the off-grid targets have been
detected optimally at the nearest range and Doppler grids.
For each off-grid target, let Or and Od, respectively, denote
the range-index offset and the Doppler-index offset defined
as

⎧
⎨

⎩
Or � |kog

r −k̂r|
k

og
r

Od � |kog
d −k̂d|
k

og
d

(47)

Fig. 15. Overall performance of the proposed method at the presence of
off-grid targets in Example 10: Optimal and suboptimal estimation of the

off-grid targets.

TABLE V
Summary of the Results for Example 10 and 11

where k̂r is the on-grid estimation of k
og
r , and k̂d is the

on-grid estimation of k
og
d .

Now, let O r (resp. Od) denote the average range-index
(resp. Doppler-index) offset over the 100 independent trials
in our experiment. It is seen that Or = 0.0920, and Od =
0.06, which shows the overall suboptimal performance of
the proposed method at the presence of off-grid targets. �

EXAMPLE 11 In this example, we want to investigate the
effect of increasing r at the presence of off-grid targets.
Consider the same scenario and parameters of Example 10,
with r increased to 3 and 4. The results show an improve-
ment in the performance. Specifically, by increasing r to
3, the percentage of optimal target recovery is increased to
0.62, and the average range and Doppler index offsets are
decreased to Od = 0.0428, and Or = 0.0705. Now further
increasing r to 4, 0.68% of the trials have shown opti-
mal recovery and the following results have been made:
Od = 0.0376 and Or = 0.0545. Table V summarizes the
results of Examples 10 and 11, which shows the role of r

in the performance of the proposed method at the presence
of off-grid targets. �

Now that we have looked into the off-grid effect in
the clutter-free scenario, we move on to the case of off-
grid clutter, which can be addressed in a similar fashion
by similarly modifying φ and � for the Doppler index and
the columns of F for the range index, which updates F̃0 in
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Fig. 16. Performance of the proposed method at the presence of
off-grid clutter in Example 12. (a) Representation of the off-grid clutter.
(b)-(c) On-grid recovery of the off-grid target at the presence of strong

off-grid clutter.

the formulation of the received signal in the clutter-affected
scenario.9

EXAMPLE 12 Consider the scenario of Example 5, i.e., the
case with the parameters given in Table III. In order to
include the off-grid clutter effect into this example, we
suppose that the side-clutter components (the ones with
nonzero Doppler frequencies) are located at two random
frequencies f −

c , and f +
c (in Hz), uniformly distributed

over [− 3�
2π

, − �
2π

] = [−60, −20], and [ �
2π

, 3�
2π

] = [20, 60],
respectively. As for the CSR, we similarly assume that the
CSR is 20 dB at the zero-Doppler frequency, and decays at a
rate of 0.25 dB/Hz, confined to ±60 Hz.10 Fig. 16(a) shows
one such realization of such off-grid clutter. Now consider
an off-grid target located at (kog

d , k
og
r ) = (16.7325, 16.2124)

for example. Fig. 16(b) and (c), respectively, shows the es-
timated target-and-clutter, and the estimated target. As it

9We have assumed that within the clutter Doppler spread, the clutter exists
in all the range grids. Therefore, the modifications addressing the range
off-grid have to be performed over all the columns of F.
10In Example 5, the on-grid clutter was confined to ±40 Hz.

TABLE VI
Parameters in Example 13

Fig. 17. Performance of the proposed method at the presence of strong
clutter in Example 13. (a) Doppler spectral representation of the clutter.

(b) Accurate recovery of the target.

can be seen, the proposed method has performed optimal
w.r.t. the on-grid recovery limitations at the presence of the
off-grid clutter shown in Fig. 16(a). �

As for the second part of this section, in the following
example, we look into the resolution of the Doppler cells,
and the number of Doppler cells that clutter occupies.

EXAMPLE 13 Consider a scenario with parameters set ac-
cording to Table VI. With these parameters, the resolution
of the Doppler frequency cells is now 10 Hz, and the clut-
ter is assumed to be spread over 2δ + 1 = 9 Doppler cells.
Fig. 17 shows the performance of the proposed method for
a randomly located target under this setup. As it can be seen
the target has been accurately identified. �

D. Note on the Realization of the Time-Varying
Thresholds

Before concluding the paper, we shall further remark
on the time-varying thresholds in the proposed method.

As mentioned previously, in the numerical examples
and the simulations carried out in this paper, the thresh-
olds have been modeled by independent realizations of a
continuous random variable uniformly distributed over the
normalized amplitude of the reflected signals. In practice,
however, the quantizing threshold itself has a finite resolu-
tion, i.e., it takes values from discrete levels. The finer these
levels are, the more hardware requirement we will face in
the realization of hR (t) and hI (t) (e.g., by using a digital to
analog converter). On the other hand, throughout the paper,
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Fig. 18. (a) Comparison between the performance of the proposed
one-bit method in quantized versus non-quantized thresholds for r = 8.
(b) The performance of the proposed method with r = 8, at the Doppler
frequency of 280 Hz, with different changing-rates for the time-varying

thresholds.

the thresholds were changed sample by sample, that is with
a rate of r/τ0. This also affects the realization cost of the
time-varying thresholds.

Therefore, in order to maintain the discussed advantages
of the 1-bit ADC used in the proposed method, we must
keep the time-varying thresholds as simple as possible, from
the resolution and the changing-rate perspective.

Here, we will thus examine the performance of the pro-
posed method for simplified threshold sequences. Specifi-
cally, we first repeat the simulation of Fig. 11(a) with hR (t)
and hI (t) chosen from 32 and 8 uniformly spaced levels (i.e.,
in 5 and 3 b, respectively). As it can be seen in Fig. 18(a),
the quantized realization of the thresholds does not consid-
erably affect the performance of the proposed method, even
with a low resolution of 3 bits.

Next, we will repeat the simulation by considering
different changing-rates for h(t) at a given Doppler fre-
quency. Fig. 18(b) depicts the probability of perfect de-
tection/estimation at the Doppler frequency of 280 Hz, for
different changing-rates of h(t). Considering the param-
eter setup for this simulation, and specifically, the PRF,
we can see from Fig. 18(b) that instead of sample by

sample, the time-varying threshold can change with a rate
as low as a fraction of the PRF, without much performance
degradation. This means that the thresholds can be fixed
over multiple pulse repetition intervals, which can further
simplify the realization of the time-varying thresholds in
practice.

V. CONCLUSION

A compressive pulse-Doppler radar based on one-bit
quantization of the received noisy signal was proposed. The
problem was first considered in a clutter-free framework.
Because of the sparsity of the targets in the range-Doppler
domain, the problem was approached by a sparse recovery
method, which leads to an optimization problem that could
be tackled numerically. Numerical examples showed that
the proposed sensing method has a promising performance
in this case. It was further seen that increasing the sampling
rate at the receiver can compensate for the performance loss
of low SNR. This feature makes the proposed method even
more favorable, knowing that one-bit quantization allows
for high sampling rates at a low cost. The performance of
the proposed method was then further evaluated in terms of
the dynamic range of the targets. It was seen that in the case
of high dynamic range, by increasing the sampling rate,
the method is able to estimate the targets accurately with a
high probability. The problem was then further considered
in a clutter-affected framework. It was shown how the pro-
posed method can be modified to work in the presence of
strong clutter. Various numerical examples and simulation
results were then provided to evaluate the performance of
the proposed method. It was seen that the proposed method
has good sensing performance even when strong clutter is
around. It was further observed that increasing the sam-
pling rate at the receiver compensates for the performance
loss caused by strong clutter. The performance of the pro-
posed method was further compared to a multibit sparse
method. The comparison suggests that the favorable hard-
ware features of the proposed method, such as low power
consumption and inexpensiveness, comes only at the price
of possibly increasing the processing bits at the software
side. It was further seen that the method performs well at
the presence of off-grid target and clutter. Finally, it was
seen that the realization of the time-varying thresholds can
be simplified by choosing the thresholds from a small num-
ber of discrete levels, and by changing the thresholds as
slowly as possible.

APPENDIX A

Proof of Lemma 1: Considering the formula for the
received signal in (3), for a given (kr, kd), we focus on

∑

�,n

cnp(t − nτ0 − �Tp − τkr )e
jωkd t . (48)

Knowing that p(t) is nonzero only for 0 ≤ t < τ0, in order
to identify the nonzero elements of F, we must consider the
following constraint:

0 ≤ t − nτ0 − �Tp − τkr < τ0 (49)
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TABLE VII
Elapsed Time (in seconds) for the Clutter-Free Scenario

where t = mτ0/r , for m = 1, . . . , M , and Tp = Krτ0.
Starting with � = 0, the above constraint thus leads to

0 ≤ m − rn − kr < r (50)

which can be equivalently stated as follows:

rn ≤ m − kr < r + rn. (51)

Knowing that m and k are integers, the above constraint
expands as the union of the following set of r equality
constraints:

m − kr = rn

m − kr = rn + 1

...

m − kr = rn + r − 1 (52)

which serve as the connection between the rows and
columns of F for m ≤ rKr (the range of rows corresponding
to � = 0). The equations in (52) are the reason behind the r

repetitions of cn (denoted by cn), in r consecutive rows of F.
The rows with m > rKr are related to � = 1, . . . , L −

1. Assuming that Kr > N (which usually holds in practice),
for � = 1, (52) is modified as follows:

(m − rKr) − kr = rn

(m − rKr) − kr = rn + 1

...

(m − rKr) − kr = rn + r − 1 (53)

which governs the next rKr rows, i.e., for rKr + 1 ≤ m <

2Kr. Comparing (52) and (53), it is clear that (53) is simply
a shifted version of (52) with respect to m and thus, in every
column, the second rKr entries are repetitions of the first
rKr entries. It is not hard to check that this is also the case

for � = 2, . . . , L − 1, with the following set of inequalities:

(m − r�Kr) − kr = rn

(m − r�Kr) − kr = rn + 1

... � = 2, . . . , L − 1

(m − r�Kr) − kr = rn + r − 1 (54)

which correspond to the remaining rows of F. Consider the
set of all equations given in (52), (53), and (54), i.e.,

(m − r�Kr) − kr = rn + x, x = 0, 1, . . . , r

� = 0, 1, . . . , L − 1. (55)

The proof is then straightforward by showing that for any
given values of m and kr(> N), only one of the rL equations
in (55) may be satisfied at most. �

APPENDIX B

Regarding the computational complexity of the pro-
posed sensing, method, here we provide various time-tables
(Tables VII and VIII) that summarize the Elapsed time for
running the proposed method via MATLAB on a 2.6 GHz
Core i7-6700HQ CPU. For each instance, the elapsed time
has been averaged over 100 similar independent trials. In the
first two subtables, the elapsed time has been put in perspec-
tive with that of the traditional pulse-Doppler radar. Specifi-
cally, we look into a lower approximate for the computation
time of the traditional pulse-Doppler radar, by considering
its total required fast Fourier transforms (FFT). This in-
cludes the FFTs in the implementation of the matched-filter
for the range compression [33], [39], and an FFT of size
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TABLE VIII
Elapsed Time (in seconds) for the Clutter-Affected Scenario

TABLE IX
The Average Wind Speed in Eleven

States of the US

2L (per range bin) for Doppler processing.11 To interpret
this comparison in a fair manner, we must note that the FFT
considered in the traditional method is an efficient imple-
mentation of the discrete Fourier transform. This is while
the numerical studies carried out for the proposed method
in this paper, utilize the CVX optimization toolbox in its
default settings, which is not necessarily computationally
efficient. Indeed, one may be able to alter the CVX algo-
rithmic settings in a way that reduces the computational
time, without affecting the optimization performance by
much, or may replace the CVX algorithms with a more
efficient method. Moreover, the main incentive behind the
studied approach was to reduce the hardware cost and en-
ergy consumption, rather than the computational cost. We
believe that the goal has been achieved at the price of a
computational cost, which is tolerable, especially now that
cloud-computation has become more promising for radar
processing such as those in vehicular technologies.

APPENDIX C

In Table IX, the average wind speed is given in 11 states
in the US, which have a coastline.

11The requirement for FFTs of size 2L in Doppler processing in the tradi-
tional method are imposed by the effects of Straddle loss [39]. Moreover,
the choice of L has to take into account the Doppler cell resolution of our
proposed method which depends on Kd.

TABLE X
Relevance Between the Wind Speed and

the Sea Waves

The major source of sea clutter are the waves whose
speed depends very much on the wind speed. In Table X,
typical ranges of the sea wave speed is given based on their
relevant wind speed.

Having such typical information, one can grasp a priori
knowledge of the maximum clutter spread. If we model
the wind speed as a random variable, knowing the average
would result in designs that work well on average. However,
depending on how critical the application is, one may be
interested in the worst case (least favorable) scenarios. In
such cases, the maximum measured wind speed can be the
design reference.
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