
RFI Mitigation for One-Bit UWB Radar Systems
Tianyi Zhang, Jiaying Ren, Christopher Gianelli, Jian Li

Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611
{tianyi.zhang, jiaying.ren, gianelli04}@ufl.edu, li@dsp.ufl.edu

Abstract—Radio frequency interference (RFI) mitigation is
critical to the proper operation of ultra-wideband (UWB) radar
systems. This paper considers RFI mitigation for a one-bit UWB
radar system, with its measurements obtained via a low-cost and
high-rate sampling strategy using a known threshold varying with
slow-time. We first establish a data model for the RFI sources.
Then we present a relaxation based algorithm to estimate the
parameters of the RFI sources from the signed measurements and
thresholds. Next, a sparse method is introduced to recover the
desired UWB radar echoes using the estimated RFI parameters.
Finally, numerical examples are presented to demonstrate the
effectiveness of the proposed method.

Index Terms—Signed measurements, one-bit sampling, slow-
time-varying thresholds, UWB radar, RFI mitigation

I. INTRODUCTION

Ultra-wideband (UWB) radar has been used in a wide
range of applications including sleep monitoring, contact-less
vital sign measurements, through-wall imaging and landmine
detection. Due to the large bandwidth, for example, of over
10 GHz, of an impulse UWB radar system, the conventional
analog-to-digital converter (ADC) at its receiver can signifi-
cantly increase its cost and power consumption. For the UWB
application, low resolution quantization is attractive due to its
low cost, low power consumption and its ability to achieve
ultra-high sampling rates. For instance, the NVA6100 impulse
radar system [1], a low-cost single-chip UWB radar from
Novelda, adopts the so-called Continuous Time Binary Value
(CTBV) technology [1], [2] to achieve a very high sampling
rate of 39 GHz and a 13-bit quantization resolution with a
simple circuit design and a low power consumption. CTBV is
a one-bit sampling strategy that obtains signed measurements
with one-bit ADC and a known threshold varying with slow-
time, i.e., from one pulse repetition interval (PRI) to another.
High-precision samples can be acquired from these signed
measurements via a simple digital integration (DI) procedure
[2]. The procedure of CTBV sampling is shown in Figure 1.
We refer to the CTBV based system as the one-bit UWB radar
system.

One significant challenge for the proper operations of a
UWB radar system is the radio frequency interference (RFI)
mitigation since there are many competing users within the
ultra-wideband frequency range they operate in. RFI can cause
severe reduction of the signal-to-noise ratio (SNR), resulting
in the degradation of the target detection and parameter
estimation performance. Therefore, effective RFI mitigation is
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Fig. 1: The procedure of CTBV sampling.

critically important for the proper functioning of a UWB radar
system. Many RFI mitigation methods have been developed
for radar systems using high-resolution ADCs [3]–[6]. How-
ever, it appears that RFI mitigation for one-bit UWB radar
systems has not been addressed before in the literature and
the existing high resolution sampling based methods are not
directly applicable.

We introduce in this paper an RFI mitigation method for
one-bit UWB systems, in particular the NVA6100 impulse
radar system. We first establish a proper data model for the RFI
sources and assume that the frequency components of the RFI
sources remain the same within a coherent processing interval
(CPI). Then we present a relaxation based algorithm to find
the maximum likelihood (ML) estimates of the parameters of
the RFI sources from the signed measurements. Next, a sparse
method is introduced to recover the desired UWB radar echoes
based on the estimated RFI parameters. Finally, numerical
examples are presented to demonstrate the effectiveness of the
proposed method.

Notation: We denote vectors and matrices by boldface
lower-case and upper-case letters respectively. (·)T denotes
the transpose operation. (̂·) denotes the estimated result of
the related value. X ∈ RN×M denotes a real-valued N ×M
matrix and x ∈ RN denotes a real-valued vector with N
elements. X[n,m] denotes the (n,m)th element of matrix
X. X[n, :] and X[:,m] denote the nth row and mth col-
umn of the matrix X, respectively. x[n] denotes the nth
element of vector x. For a matrix or a vector, || · ||p
means the ℓp element-wise norm of this matrix or vector,
i.e., ||X||p = (

∑M
m=1

∑N
n=1 |X[n,m]|p)1/p and ||x||p =

(
∑N

n=1 |x[n]|p)1/p. ||X||1,2 =
∑N

n=1 ||X[n, :]||2 denotes the
ℓ1,2 norm of the matrix X.

1545978-1-7281-4300-2/19/$31.00 ©2019 IEEE Asilomar 2019



II. PROBLEM FORMULATION

Consider a one-bit impulse UWB radar system with its
signed measurement matrix Y ∈ RN×M obtained via com-
paring the signal from different PRIs with different thresholds
as follows:

Y = sign(Rθ + S+E−H) ∈ RN×M , (1)

where N denotes the number of fast-time samples per PRI, M
denotes the number of PRIs or slow-time samples within the
CPI, E denotes the noise and other disturbances, S denotes
the desired radar echo signal, which is assumed invariant for
all the PRIs within the CPI, i.e., S[:, 1] = S[:, 2] = · · · = S[:
,M ] = s, and H denotes the threshold matrix, which varies
with slow-time, i.e., H[n,m] = −h+2(m−1)h/(M−1), h >
0, n = 1, 2, · · · , N,m = 1, 2, · · · ,M , with h denoting the
maximum threshold among all PRIs, Rθ denotes the RFI
matrix, and sign(·) is the element-wise sign operator defined
as:

sign(x) =

{
1, x ≥ 0

−1, x < 0
. (2)

It has been shown in [6] that a sum of sinusoids can be used to
model the RFI sources in the fast-time with their frequencies
fixed over the slow-time within the CPI. Thus, each element
of Rθ can be expressed as follows:

Rθ[n,m] =
K∑

k=1

Ak,m sin(ωk(n− 1) + ϕk,m)

=

K∑
k=1

ak,m cos(ωk(n− 1)) + bk,m sin(ωk(n− 1))

n = 1, · · · , N,m = 1, · · · ,M,
(3)

where K denotes the number of sinusoids or RFI sources,
ωk ∈ [0, π) denotes the frequency of the kth RFI source,
Ak,m ∈ R+ and ϕk,m ∈ [0, 2π) denote the amplitude and
phase of the kth RFI source during the mth PRI, respectively.
The unknown parameter vector of the RFI is denoted by θ =
[a1,1, b1,1, . . . , a1,M , b1,M , ω1, . . . , aK,1, bK,1, . . . , aK,M ,
bK,M , ωK ]T ∈ R(2M+1)K with ak,m = Ak,m sinϕk,m ∈ R
and bk,m = Ak,m cosϕk,m ∈ R. Our goal is to recover the
desired radar echo vector s from the signed measurement
matrix Y while mitigating the impact of the RFI.

III. MAXIMUM LIKELIHOOD APPROACH FOR RFI
PARAMETER ESTIMATION

A. Maximum likelihood estimation

We first assume that S+E obeys i.i.d Gaussian distribution
with zero-mean and unknown variance σ2. The numerical
examples in Section V show that the proposed algorithm
is insensitive to this assumption. Because of the desirable
properties like consistency and asymptotic efficiency, the es-
timator is a theoretically appealing approach to solving the
RFI parameter estimation problem. The ML estimate of the

parameter vector [θT , σ]T can be obtained by minimizing the
negative log-likelihood function as follows:

ˆ̃
β = argmin

β̃
l(β̃)

= argmin
β̃

M∑
m=1

N∑
n=1

− log

[
Φ

(
Y[n,m]

(
K∑

k=1

ãk,m cos(ωk(n−1))

+b̃k,m sin(ωk(n−1))−λH[n,m]

))]
,

(4)

where Φ(x) denotes the cumulative distribution func-
tion of the standard normal distribution, λ = 1

σ ,
ãk,m =

ak,m

σ , b̃k,m =
bk,m

σ , and β̃ = [θ̃T , λ]T

is the modified unknown parameter vector with θ̃ =
[ã1,1, b̃1,1, . . . , ã1,M , b̃1,M , ω1, . . . , ãK,1, b̃K,1, . . . , ãK,M ,
b̃K,M , ωK ]T .
To obtain the ML estimate, we could perform a K-

dimensional search of ω = [ω1, · · · , ωK ]T over the space
of angular frequencies [0, π)K . At each search point, we
could compute {ˆ̃ak,m}K,M

k=1,m=1, {ˆ̃bk,m}K,M
k=1,m=1 and λ̂ by

the Newton’s method [7], [8]. Finally, the parameter vector
corresponding to the minimum negative log-likelihood cost
value could be selected as the ML estimate. This ML esti-
mation requires a K-dimensional search on [0, π)K , which is
extremely time-consuming, especially as the number of RFI
sources K and the number of PRIs M increase. More efficient
algorithms similar to those in [7]–[9] can be considered.

B. 1bMMRELAX

1bMMRELAX is a majorization-minimization (MM) [10]
based algorithm proposed for sinusoidal parameter estimation
from a time sequence of signed measurements. Similar to the
relaxation-based algorithm in [11], 1bMMRELAX maximizes
the likelihood function iteratively by estimating the parameters
of one sinusoid at a time. Moreover, by using the compu-
tationally efficient MM technique, 1bMMRELAX transforms
the original problem into a sequence of simple infinite preci-
sion sinusoidal parameter estimation problems, which can be
efficiently solved via FFTs. To estimate the RFI parameters
for our problem, we modify the 1bMMRELAX algorithm and
refer to the modified algorithm still as 1bMMRELAX for
simplicity.
We start by applying the MM-based method to minimizing

the negative log-likelihood function l(β̃) in (4). The majoriz-
ing function can be easily obtained by using Lemma 1 in
[7]. In the following, two iteration procedures will be used,
an MM algorithm and a cyclic minimization (CM) algorithm
[12]. Let the iteration counter of the MM algorithm be i and
let the iteration counter of the CM algorithm be j. After some
calculations [7], [9], the updating formula at the (i+1)th MM
iteration, i.e., the minimization of the majorizing function at

1546



β̃i, the estimated parameter vector obtained at the ith MM
iteration, can be simplified as:

min
θ̃,λ

G̃
(
θ̃, λ|β̃i

)
=

M∑
m=1

N∑
n=1

[
Rθ̃[n,m]−λH[n,m]−Z̃β̃i [n,m]

]2
(5)

where Z̃β̃[n,m] = Y[n,m]
(
Xβ̃[n,m]−f ′(Xβ̃[n,m])

)
are

elements of an auxiliary matrix, with f(x)=− log Φ(x), and
Xβ̃[n,m] = Y[n,m]

(
Rθ̃[n,m]−λH[n,m]

)
, n = 1, · · · , N ,

m = 1, · · · ,M . At each MM iteration, the optimization of
the problem in (5) can be solved by the cyclic algorithm [12],
which minimizes G̃

(
θ̃, λ|β̃i

)
with respect to λ for given θ̃

and minimizes G̃
(
θ̃, λ|β̃i

)
with respect to θ̃ for given λ

cyclically. The first step of the (j + 1)th CM iteration within
the (i+1)th MM iteration can be easily solved in the following
closed form:

λi+1
j+1=max

0,∑M
m=1

∑N
n=1H[n,m]

[
Rβ̃i+1

j
[n,m]−Z̃β̃i [n,m]

]
∑M

m=1

∑N
n=1 H

2[n,m]

 .

(6)

Assuming that the frequency components of the RFI sources
are fixed within a CPI, the second step of the cyclic
minimization algorithm can be interpreted as the infinite-
precision direction-of-arrival estimation (DOA) problem. With
{Vβ̃i,λ[n,m] = λH[n,m] + Z̃β̃i [n,m]}N,M

n=1,m=1 as the input
data, {{ãi+1

k,m,j+1, b̃
i+1
k,m,j+1}Mm=1, ω

i+1
k,j+1} can be solved effi-

ciently by using a well-known DOA estimation method, such
as the RootMusic algorithm [13]. It is worth mentioning that
a function of RootMusic is provided by Matlab.

Then, the 1bMMRELAX algorithm can be summarized as
follows:

Step 1: Assume K = 1. Obtain {{ˆ̃a1,m,
ˆ̃
b1,m}Mm=1, ω̂1} and

λ̂ by solving (4) via the exhaustive search over the frequency
domain followed by the MM procedure.

Step 2: Assume K = 2. Obtain {{ˆ̃a2,m,
ˆ̃
b2,m}Mm=1, ω̂2}

by solving (4) via the exhaustive search over the fre-
quency domain followed by the MM procedure with
{{ã1,m, b̃1,m}Mm=1, ω1} and λ replaced by their most recent
estimates {{ˆ̃a1,m,

ˆ̃
b1,m}Mm=1, ω̂1} and λ̂.

Next, redetermine {{ˆ̃a1,m,
ˆ̃
b1,m}Mm=1, ω̂1} and λ̂ by solving

(4) via the MM procedure with {{ã2,m, b̃2,m}Mm=1, ω2} re-
placed by their most recent estimates {{ˆ̃a2,m,

ˆ̃
b2,m}Mm=1, ω̂2}.

Iterate the previous two MM procedures until practical
convergence, i.e. the relative change of cost function is small
enough.

Remaining steps: Continue until the desired or estimated
model order is reached.

As mentioned above, when initializing the MM approach via
exhaustive search, a 2M -dimensional convex problem needs
to be solved L times if L grid points are used over [0, π). For
large M , this step is rather computationally expensive and a
faster initialization algorithm is desired.

C. Fast frequency initialization

To improve the efficiency of 1bMMRELAX, we propose
a fast initialization algorithm to estimate the frequencies of
the RFI sources by exploiting the sparsity property of the RFI
spectrum. This method allows us to avoid the exhaustive search
across the frequency domain. The initialization method for the
Kth step of 1bMMRELAX is presented below.
Let {wq = qπ

N }N−1
q=1 denote a grid that covers [0, π).

Assuming that the grid is fine enough such that the frequencies
(normalized by the sampling frequency) corresponding to the
RFI sources are on this grid (or practically, close to the grid),
the data model (1) can be rewritten as:

Y ≈ sign(FAK + R̂K−1 −H), (7)

where R̂K−1 corresponds to the (K−1) estimated RFI sources
from Step (K−1), and FAK denotes the Kth RFI source with
F ∈ RN×2(N−1) expressed as follows:

F =
1 . . . 1 0 . . . 0

cos(w1) . . . cos(wN−1) sin(ω1) . . . sin(wN−1)
...

...
...

...
...

...
cos(w1(N−1)) . . .cos(wN−1(N−1))sin(w1(N−1)) . . .sin(wN−1(N−1))

 .

(8)

The location of the dominant peak in each column of AK ∈
R2(N−1)×M provides the frequency estimate of the Kth RFI
source within each PRI.
By making use of the group sparsity of the RFI in

the frequency domain and the sign agreements between the
signed measurements Y and infinite-precision signal (FAK +
R̂K−1 −H) [14], we can establish an optimization problem
as follows:

min
AK

ρ1||AK ||1,2 + ||g1(Y ⊙ (FAK + R̂K−1 −H)||1 (9)

where ⊙ denotes the element-wise matrix product, ρ1 is a
user parameter controlling the balance between the two penalty
terms. To penalize the sign disagreements between the signed
measurements Y and the estimate of (FAK + R̂K−1 − H),
we can choose the element-wise function g1(x) as:

g1(x) =

{
x2

2 , x < 0,

0, x ≥ 0.
(10)

Since (9) is a convex minimization problem, it can be eas-
ily solved by using the subgradient descent method [15].
Denoting the result of (9) as ÂK , we define ÃK =√
ÂK [1:N − 1, :]2+ÂK [N:2(N − 1), :]2 ∈ R(N−1)×M . The

square and square root here are both element-wise operations.
Since in the practical applications, the frequencies of RFI
sources are usually not close to zero, we assume that the RFI
frequency is not on or close to the grid point of π/N . Thus,
the frequency of the Kth RFI source corresponds to the row
index of ÃK [2 : (N − 1), :] with the largest ℓ1 norm.
The objective function (9) tends to find RFI frequencies

close to zero especially when the absolute value of the
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threshold is large relative to the RFI. To avoid this, we can use
PRIs with thresholds close to zero, instead of all PRIs within
the CPI, to estimate the frequency of the Kth RFI source.

IV. RADAR ECHO SIGNAL RECOVERY

The desired UWB radar echo vector s can be recovered by
exploiting its sparsity, based on the estimated RFI sources and
enforcing the sign agreement between Y and the correspond-
ing signal model. Since the signal is invariant over all PRIs
within the CPI, (1) can be rewritten as follows:

Y[:,m] ≈ sign(Dγ −U[:,m]),m = 1, . . . ,M

U = H− R̂θ̂ ∈ RN×M ,
(11)

where R̂θ̂ is the RFI estimate, D ∈ RN×N denotes the
dictionary whose columns are time-shifted digitized versions
of the transmitted impulse and γ ∈ RN is a sparse vector
containing information of the magnitudes and positions of the
radar echoes. To recover γ, we solve the following convex
optimization problem [14]:

min
γ

ρ2||γ||1 +
M∑

m=1

||g2(Y[:,m]⊙ (Dγ −U[:,m]))||1 (12)

where ρ2 is a user-parameter and similar to (9), g2(x) =
max{−x, 0}, which is used to penalize the sign disagreement.

The convex objective function (12) can be minimized effi-
ciently by using the subgradient descent method [15]. With γ
estimated as γ̂, the estimated UWB radar echo signal vector
is ŝ = Dγ̂.

Note that for radar echo signal recovery, linear penalties on
both the signal amplitude (to promote sparsity) and the sign
agreement constraint (to promote data-model fitting) are used.
This is different from (9), where a linear sparse penalty is used
with a quadratic sign disagreement penalty g1(x). In (9), we
focus on finding an initial estimate of RFI frequency, and the
smooth quadratic penalty g1(x) offers computational advan-
tages due to its continuous derivative and faster convergence.
In (12), the linear penalty g2(x) makes the selection of ρ2
invariant with the data scaling.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to illustrate
the performance of our proposed algorithm for RFI mitigation
and radar signal recovery for the Novelda one-bit impulse
UWB radar system, as compared to the DI method [2]. The DI
method is used as a benchmark, which obtains ŝ as follows:

ŝDI[n] =

[
∆h

M∑
m=1

1

2
(Y[n,m] + 1)

]
− h−∆h,

∆h = 2h/(M − 1), n = 1, . . . , N.

(13)

The simulated dataset contains 8192 PRIs with 512 fast-time
samples per PRI, i.e., M = 8192, N = 512. The transmitted
impulse is the first order derivative of a Gaussian pulse with
length 21, and the assumed UWB radar echoes are shown in
Figure 2. The signal-to-noise ratio (SNR) of the UWB radar
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Fig. 2: Simulated radar echoes for one PRI.

echo matrix is expressed as follows:

SNR = 20 log10
||S||2
||E||2

(dB). (14)

We add Gaussian white noise with SNR = 10 dB to the UWB
radar echo matrix. The signal-to-interference ratio (SIR) is
expressed as follows:

SIR = 20 log10
||S||2
||Rθ||2

(dB). (15)

We fix the magnitude of the desired radar signal and add
simulated RFI with different magnitudes to obtain contami-
nated data with different SIRs. The thresholds used for one-
bit sampling change under different SIR conditions. Within
the CPI, the magnitudes of the RFI sources usually do not
change greatly with the slow-time. Hence, in the numerical
examples, we simulate the RFI sources as a sum of sinusoids
with amplitudes and frequencies fixed from one PRI to another
within the CPI and the phases varying randomly with slow-
time.
When solving (12), we set ρ2 = 192. When solving (9),

we set ρ1 = 1. To reduce the effect of the threshold and the
computational cost, only 4096 PRIs with thresholds close to
zero are used to obtain the initial frequency estimate in each
step of 1bMMRELAX. The radar signal recovery performance
can be measured by the normalized recovery error (NRE) of
the recovered radar signal vector:

NRE = 20 log10
||s− ŝ||2
||s||2

(dB), (16)

where ŝ is the recovered UWB radar signal. The detailed
parameter settings of the experiment and the radar echo
recovery results of the proposed algorithm and the DI method
are shown in Table I. The original and the estimated radar echo
signals obtained by using the proposed method and the DI
method are shown in Figure 3. From Table I and Figure 3, we
can see that the proposed algorithm significantly outperforms
the DI method. Also, the user-parameters ρ1 and ρ2 work well
for all the SIR values ranging from −20 dB to −40 dB.
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TABLE I: Dataset Parameters and Radar Echo Recovery
Results.

SIR (dB) -20 -25 -30 -35 -40

RFI Frequencies [0.18, 0.35]× 2π

RFI Amplitudes Ratio 9/10

Maximum Absolute Value of RFI max |Rθ | 1050 1867 3320 5905 10500

Maximum Absolute Value of Thresholds (h) 400 700 1300 2400 4000

Output NRE (dB) of Proposed Algorithm -25.68 -22.94 -18.99 -18.46 -16.49

Output NRE (dB) of DI 0.81 5.07 10.15 15.36 19.85
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Fig. 3: Radar echo recovery results obtained for SIR = −40
dB by using a) the proposed method and b) the DI method.

VI. CONCLUSIONS

We have considered the problem of RFI mitigation for
a one-bit impulse UWB radar system. We have presented
a relaxation based algorithm to efficiently estimate the RFI
parameters by modeling the RFI sources within each PRI as
a sum of sinusoids and assuming their frequencies fixed from
one PRI to another within the CPI. Then, by exploiting the s-
parsity property of the UWB radar echoes, we have introduced
a sparse signal recovery method to estimate the desired UWB
radar echoes based on the estimated RFI sources. Finally,
numerical examples have been provided to demonstrate that

our proposed method significantly outperforms the DI method
for RFI mitigation and radar echo recovery.
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