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Abstract—Target parameter estimation in active sensing, and
particularly radar signal processing, is a long-standing problem
that has been studied extensively. In this paper, we propose a
novel approach for target parameter estimation in cases where
one-bit analog-to-digital-converters (ADCs), also known as sig-
nal comparators with time-varying thresholds, are employed to
sample the received radar signal instead of high-resolution ADCs.
The considered problem has potential applications in the design
of inexpensive radar and sensing devices in civilian applications,
and can likely pave the way for future radar systems employing
low-resolution ADCs for faster sampling and high-resolution target
determination. We formulate the target estimation as a multivariate
weighted-least-squares optimization problem that can be solved
in a cyclic manner. Numerical results are provided to exhibit the
effectiveness of the proposed algorithms.

Index Terms—Active sensing, array processing, one-bit
quantization, radar signal processing, time-varying thresholds.

I. INTRODUCTION

T
HE problem of target parameter estimation permeates the

field of active sensing and radar signal processing. Active

sensing systems aim to uncover the location and other useful

properties such as velocity information and reflectance proper-

ties of a target of interest by dispatching a transmit waveform

toward the target and studying the received echo reflected by

it. For example, the complete dynamics of a moving vehicle

including its location and velocity with respect to the observer,

can easily be found by simply measuring the difference between

the transmitted and received electromagnetic waves in time and

frequency domain. Further analysis of the received signal can

reveal more information about the target vehicle of interest.

Since the two world wars, radar systems have been developed,

improved, and have made their way into diverse applications

such as meteorology [2], [3], air traffic control [4], [5], structural
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health monitoring [6], [7], synthetic aperture radar applications

[8], [9], and underwater sensing [10], [11], among others. Two

major factors in radar signal processing are the design of the

transmit signals and receive filters for rejection of clutter and

interferences, on which there exists an extensive literature; e.g.,

see [12]–[20]. The unwanted echoes of the transmit signal that

are received as delayed and frequency shifted version of the

transmitted signal and are correlated with the main backscattered

signal from the target of interest, are generally referred to as

clutter. Furthermore, noise is the term usually used for signal-

independent interference such as effects of adverse jamming

signals [21] as well as thermal noise and atmospheric distur-

bances. Note that both clutter and noise degrade the accuracy

of target parameter estimation; thus, making the receive filter

heavily dependent not only on the transmit signal but interfer-

ence as well. A judicious design of both the transmit signal and

receive filter in a joint manner can consequently lead to a more

accurate estimation of the target parameters in a more tractable

computational cost for the radar system.

One immediate and well-known choice for the receive filter

would be the matched filter (MF) that maximizes the signal-to-

noise ratio (SNR) in the presence of additive white noise. The

MF multiplies the received signal with a mirrored and delayed

image of the transmitted signal [21]. By locating the peak of

the output signal, MF discovers the time delay of the received

signal, which facilitates the estimation of the distance of the

target from the radar, otherwise known as the range. On the

other hand, a relative difference in motion between the target

and the radar results in a Doppler frequency shift in the received

signal spectrum. In the case of a perceivable Doppler shift

in the received signal, a bank of MFs is adopted to estimate

the Doppler shift, each of which tuned to a different Doppler

frequency [22]. However, MF performs poorly in the presence of

interference with arbitrary covariance in the received signal [19].

It has been shown in the literature that the effects of the clutter

can be mitigated by minimizing the sidelobes of an ambiguity

function (AF) [23]–[25]. Another line of clutter suppression

research can be found in [26]–[28], where the autocorrelation

sidelobes of the transmit signal is minimized. In addition, the

negative effects of interference, especially due to jamming, can

be avoided by putting little energy of the transmit signal into

the frequency bands where presence of jamming is significant.

Furthermore, different hardware constraints such as maximum

clipping of power amplifiers and analog-to-digital converters

(ADC) decrease the performance of MF estimation.
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For a more efficient estimation of the target parameters, one

can aim to maximize the signal-to-clutter-plus-interference ratio

(SCIR) in lieu of SNR. Such a scenario arises when the target

detection performance of the radar is deteriorated by the clutter

or jamming. In such cases, one can use a mismatched filter

(MMF) instead of an MF [29]. In comparison with the MF,

an MMF allows more degrees of freedom by introducing a

receive filter and is not subject to various power constraints of the

transmit signal such as constant-modulus or low peak-to-average

ratio (PAR). Hence, a joint design of the transmit signal and the

MMF receive filter can offer a more robust parameter estimation

framework [30].

It is important to note that sampling and quantization of the

signal of interest is the first step in digital signal processing. The

analog to digital conversion ideally requires an infinite number

of bits to identically represent the original analog signal, which

is not feasible in practice. In fact, the aforementioned techniques

assume that the received signal is available in full precision. The

resulting error of quantization can then be modeled as additive

noise that usually has little to no impact on algorithms that

assume the infinite precision case, provided that the sampling

resolution is high enough [31]. The signals of interest in many

modern applications, albeit, are extremely wide band and may

pass through several RF chains that require multitudinous uses

of ADCs. Such modern applications include spectral sensing for

cognitive radio [32], [33], cognitive radars [33], radio astronomy

[34], automotive short-range radars [35], driver assistant systems

[36], to name a few.

The assumption of high-precision data is, however, not appro-

priate when the measurements are extremely quantized to very

low bit-rates. Note that, the cost and the power consumption

of ADCs grow exponentially with their number of quantization

bits and sampling rate [37]. Such issues can be mitigated by

a reduction in the number of quantization bits. In the most

extreme case, the sampling process is carried out by utilizing

only one bit per sample. This can be achieved by repeatedly

comparing the signal of interest with a time-varying threshold

(reference) level. On the plus side, one-bit comparators can pro-

vide extremely high sampling rate and are very cheap and easy to

manufacture [37]. Moreover, the one-bit ADCs operate on very

low power and they can significantly reduce the data flow in the

system, which further reduces the overall energy consumption.

One-bit sampling has been studied from a classical statistical

signal processing viewpoint in [38]–[45], a compressive sensing

viewpoint in [46]–[50], a sampling and reconstruction viewpoint

in [51], [52]. It has been shown in [46]–[49] that under certain

assumptions, with enough one-bit samples one can recover the

full-precision data with bounded error.

In this paper, we study the radar processing and parameter

estimation of both stationary and moving targets using one-bit

samplers with time-varying thresholds. For both cases of sta-

tionary and moving targets, we propose a novel approach that

is formulated as minimization of a multivariate weighted-least-

squares objective with linear constraints that can be solved in

an iterative manner. As stated before, the mentioned approach

is cost-effective and is computationally efficient. This paper

considers an extended problem formulation as compared to [1],

in the sense that [1] only considers the one-bit radar signal

processing for stationary targets while this paper studies the

more sophisticated scenario of moving targets in addition to the

stationary case, among others. To the best of our knowledge, this

paper is the first comprehensive work introducing one-bit ADCs

and the associated data processing in the context of radar.

The rest of this paper is organized as follows. In Section II,

we discuss and formulate the estimation problem in the case

of a stationary target. Section III describes a state-of-the-art

approach to recover target parameters based on the Bussgang

theorem. The proposed algorithm to estimate the aforementioned

parameters is presented in Section IV for a stationary target.

In Section V, we extend the problem formulation, as well as

the estimation algorithm, for parameter estimation in moving

target scenarios. We further extend the parameter estimation

formulations for a stationary target scenario to more advanced

setups in Section VI. Numerical results that verify the validity of

claims and examine the performance of the proposed algorithms

are presented in Section VII. Finally, Section VIII concludes the

paper.

Notation: We use bold lowercase letters for vectors and bold

uppercase letter for matrices. xi denotes the i-th component

of the vector x. (·)T and (·)H denote the transpose and the

conjugate transpose of the vector or matrix argument, respec-

tively. (·)∗ denotes the complex conjugate of a complex matrix,

vector, or scalar. ‖ · ‖ denotes the l2 norm of a vector, while

‖ · ‖F denotes the Frobenius norm of a matrix. �(·) and �(·)
are the real and imaginary parts of a complex vector or scalar,

respectively. Furthermore, the sets of real, complex and natu-

ral numbers are denoted by R, C, and N respectively. sgn(·)
is the element-wise sign operator with an output of +1 for

non-negative numbers and −1 otherwise. Moreover, Diag(·)
and N (·) represent the diagonalization and the normalization

operator on a matrix argument. E{·} and Cov(·) denote the

expectation and the covariance operator, respectively. Finally,

The symbol � represents the Hadamard product of matrices.

II. SYSTEM MODEL

Let

s =
[

s1 s2 . . . sN

]T

∈ C
N (1)

denote the complex-valued radar transmit sequence of length

N that will be used to modulate a train of subpulses [22]. The

energy of {sk}Nk=1 is constrained to be N :

‖s‖2 = N (2)

without any loss of generality. We shall first adopt the discrete

data model described in [18], [53] in order to layout the prob-

lem formulation for the simpler case of non-moving targets.

Under the assumptions of negligible intrapulse Doppler shift,

and that the sampling is synchronized to the pulse rate, the

received discrete-time baseband signal after pulse compression

and proper alignment to the range cell of interest, will satisfy
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the following [29], [53]:

y = α0

⎡

⎢
⎢
⎢
⎢
⎣

s1
...

sN−1

sN

⎤

⎥
⎥
⎥
⎥
⎦

+ α1
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⎢
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⎣

0

s1
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⎥
⎥
⎥
⎥
⎦

+ · · ·+ αN−1

⎡

⎢
⎢
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⎢
⎣

0
...

0

s1

⎤

⎥
⎥
⎥
⎥
⎦

+α−1

⎡

⎢
⎢
⎢
⎢
⎣

s2
...

sN

0

⎤

⎥
⎥
⎥
⎥
⎦

+ · · ·+ α−N+1

⎡

⎢
⎢
⎢
⎢
⎣

sN

0
...

0

⎤

⎥
⎥
⎥
⎥
⎦

+ ε (3)

where α0 ∈ C is the scattering coefficient of the current range

cell,{αk}k �=0 are the scattering coefficients of the adjacent range

cells that contribute to the clutter in y, and ε is the signal-

independent noise which comprises of measurement noise as

well as other disturbances such as jamming. By collecting all

the delayed samples of the transmitted signal into a matrix, the

data model in (3) can be simplified as

y = AHα+ ε (4)

where

AH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1 0 . . . 0 sN sN−1 . . . s2

s2 s1 . . .
... 0 sN . . .

...

...
...

. . . 0
...

...
. . . sN

sN sN−1 . . . s1 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(5)

and

α =
[
α0, α1, . . . , αN−1, α−(N−1), . . . , α−1

]T
(6)

is the corresponding scattering coefficient vector. In (5), the first

column of AH represents the principal reflection from the target

after range cell alignment, and the second to the last column of

the same are in fact the different delayed echos of the transmit

signal s (see [53] for more details). Furthermore, if the Doppler

shifts are not negligible due to the relative difference in motion

between the target and the radar system, the data model in (4)

needs to be modified to accommodate the same, and has been

discussed in Section V.

By applying one-bit comparators at the receiver, the sampled

baseband signal can be written as:

γr = sgn
(
�{AHα+ ε− λ}

)
,

γi = sgn
(
�{AHα+ ε− λ}

)
,

γ =
1√
2
(γr + jγi), (7)

where λ is the tunable complex-valued threshold level vector

at the comparators, whose design is discussed in Section IV.

Note that in (7), we sample both real and imaginary parts of the

received signal in order to preserve the phase information. We

further assume that the clutter coefficients {αk}k �=0 are zero-

mean and their variance,

β � E{|αk|2}, k �= 0, (8)

and the covariance matrix of ε,

Γ � E{εεH}, (9)

are known quantities. We further assume that {αk}k �=0 are

independent of each other and of ε as well. Note that, in

radar applications, both Γ and β can be acquired using various

preprocessing techniques, e.g. by employing pre-scans, and

are typically assumed to be known a priori [18]. A detailed

discussion of the prescanning process can be found in [54].

As mentioned earlier, once the received signal y is available,

one can estimate the target backscattering coefficient α0 by

exploiting the signal model in (4) using a mismatched filter

(MMF). The MMF estimate of α0 has the following linear form

in y [19]:

α̂0 =
wHy

wHs
(10)

wherew ∈ C
N is the MMF vector of the receive filter. The mean

squared error (MSE) of the mentioned estimate can be derived

as

MSE(α̂0) = E

{∣
∣
∣
∣

wHy

wHs
− α0

∣
∣
∣
∣

2
}

=
wHRw

|wHs|2
(11)

where

R = β
∑

0<|k|≤(N−1)

Jkss
HJH

k + Γ, (12)

is the covariance matrix of the interference terms in (4) and {Jk}
are the shift matrices formulated as

Jk = JH
−k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 1 . . . 0
...

. . .

1

0 . . . 0 . . .
︸ ︷︷ ︸

k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

H

N×N

, (13)

k = 0, 1, · · · , N − 1.

Note that the denominator of the MSE in (11) is the power of

the signal at the receiver and its numerator is the power of the

interferences. Therefore, minimizing the MSE is identical to

maximizing the SCIR.

Note that one can exploit the relationship between the co-

variance matrices of the received signals before and after the

non-linear transformation of one-bit sampling in order to esti-

mate the target parameterα0. This relationship is provided by the

Bussgang theorem in a normalized sense [55]. In the following

section, we briefly discuss a state-of-the-art Bussgang-theorem-

aided procedure to estimate α0. Afterwards, in Section IV, we

propose an algorithm that, through minimizing the MSE, jointly

recovers the scattering coefficient of the current range cell, α0,

and the received signal, y, from the one-bit sampled received

data γ, as introduced in (7).

III. BUSSGANG-THEOREM-AIDED ESTIMATION

In this section, we describe a state-of-the-art Bussgang-

theorem-aided approach to estimate the target parameters [55].

Let Y (t) be a real-valued, scalar, and stationary Gaussian

process that undergoes the one-bit sampling process Z(t) =
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sgn(Y (t)). The autocorrelation function of the process Z(t),
denoted by RZ(τ), is given by

RZ(τ) = E{Z(t+ τ)Z(t)} =
2

π
sin−1

(
R̄Y (τ)

)
(14)

where R̄Y (τ) = RY (τ)/RY (0) is the normalized autocorrela-

tion function of the process Y (t) [56]. The good news is that the

Bussgang theorem [55] states that the crosscorrelation function

of the processes Y (t) and Z(t) is proportional to the autocor-

relation function of Y (t), i.e. RZY (τ) = µRY (τ), where the

factor µ depends on the power of the process Y (t).
The case of complex-valued vector processes, which was

studied in [57], can be extended in a similar manner. Let y be

the complex-valued vector whose one-bit samples are given by

γ = 1√
2
(sgn(�(y)) + jsgn(�(y))), as in (7). Then the normal-

ized autocorrelation of the vector y is given by

R̄y = N (Ry) � D−1/2RyD
−1/2 (15)

where D = Ry � I is a diagonal matrix containing only the

diagonal entries of Ry. It has been shown in [57] that the

following covariance equality holds:

R̄y = sin
(π

2
Rγ

)

, (16)

where Rγ is the autocorrelation matrix of the one-bit sampled

data, γ.

In order to apply the above results to the one-bit radar pro-

cessing problem using a threshold level vector λ ∈ C
N , we

can derive the covariance matrix of the difference between the

received signal and the time-varying threshold, viz.

Ry−λ = |α0|2ssH + λλH +R− 2�(α0sλ
H). (17)

Therefore, one can compute the scattering coefficient α0, by

solving the following non-convex optimization problem:

min
α0

∥
∥R̄y−λ −N (|α0|2ssH + λλH +R− 2�(α0sλ

H))
∥
∥
F

(18)

in which R̄y−λ is obtained via (16), and using only one obser-

vation or snapshot of γ.

IV. THE PROPOSED APPROACH FOR STATIONARY TARGETS

In this section, we address the proposed approach to recover

both the received signal y and the scattering coefficient α0 from

the one-bit sampled received signal γ for a stationary target by

minimizing the aforementioned MSE in (11).

For a given transmit sequence s, the optimum receive filter w

can be simply given as closed form solution [18], [19]:

w = R−1s (19)

up to a multiplicative constant. Nevertheless, the MMF approach

to recover α0, discussed in (10), requires the availability of the

un-quantized (or high-resolution quantized) received signal y,

which is unfortunately not available directly due to the one-bit

sampling of the received signal. Therefore, we shall resort to an

alternative optimization approach that utilizes the one-bit sam-

pled data γ in lieu of y in order to estimate the target parameter.

In pursuance of radar parameter recovery using one-bit sampled

data with time-varying thresholds, we analyze two matters of

major significance: (i) the recovery of y and estimation of α0 by

employing the one-bit data procured at the receiver, and (ii) the

design of next set of thresholds to be used at the one-bit ADCs.

A. Estimation of Target Parameters

In order to efficiently estimate the received signal y and

target parameter α0, we consider minimizing of the following

weighted-least-squares (WLS) objective in a more generalized

sense:

Q(y, α0) � (y − α0s)
HR−1(y − α0s). (20)

It should be noted that the usage of the above criterion has

following advantages:

1) Unlike the MMF in (10), Q does not require a knowledge

of y.

2) It is a function of both y and α0, laying the ground for

their respective joint recovery.

3) It can easily be observed that, for any giveny, the optimum

α0 in (20) is identical to that of MMF in (10) with the use

of (19)—thus making it a natural choice for parameter

recovery.

4) In effect, the minimization of (20) enforces the system

model introduced in (3). Note that the model mismatch

can be written as

y − α0s = ÃHα̃+ ε (21)

where ÃH and α̃ are derived from AH and α with their

first column and first entry dropped, respectively. It can

easily be established that the objective function in (20)

penalizes the model mismatch based on the second order

mismatch statistics derived as

E

{(

ÃHα̃+ ε
)(

ÃHα̃+ ε
)H
}

= E

{

ÃHα̃α̃HÃ
}

+ E
{
εεH

}

= R. (22)

Hence, based on the property 3, and by substituting the

optimum α0, the objective function (20) can be reformulated

as

Q(y, α̂0) � Q(y)

= yH

(

I− swH

wHs

)H

R−1

(

I− swH

wHs

)

y. (23)

Hence, the problem of jointly estimating α0 and y boils down

to:

min
y

yH

[(

I− swH

wHs

)H

R−1

(

I− swH

wHs

)]

y

s.t. Ωr (yr − λr) ≥ 0,

Ωi (yi − λi) ≥ 0, (24)

where (yr,yi) and (λr,λi) denote the real and imaginary parts

ofy andλ, respectively, andΩr � Diag(γr),Ωi � Diag(γi).
One can easily verify that the optimization problem in (24) is

a convex quadratic program with linear constraints that can be

solved efficiently. Upon finding the optimal y, the optimal α0

can be calculated using the MMF estimate in (10).
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Algorithm 1: One-Bit Radar Parameter Estimation for Sta-

tionary Targets.

Initialize: The transmit sequence s and set the threshold

vectorλarbitrarily, or generate according to (25)–(26).

1: Compute the optimal MMF vector w using (19).

2: Compute the optimal vector y by solving (24).

3: Estimate the target scattering coefficient α0 using the

MMF estimator in (10).

4: In case of tracking, set λ according to (25)–(26) and

go to Step 2.

B. Time-Varying Threshold Design

1) Sampling With a Single One-Bit ADC: From an informa-

tion theoretic viewpoint, in order to collect the most information

on y, one could expect λ to be set in such a way that by

considering the a priori information, observing any of the two

outcomes in the set {−1,+1} at the output of the one-bit sampler

for a single sample has the same likelihood. In a general case,

λ is expected to partition the set of likely events into subsets

with similar cardinality. When the probability density function

(pdf) of the received signal follows a Gaussian distribution, this

goal is achieved by setting λ as close as possible to the expected

value of y. More precisely, we choose:

λ = E {α0} s. (25)

In other words, the choice of λ will be governed by our future

expectation of the value of α0. This is particularly pertinent to

target tracking scenarios.

2) Sampling With Multiple One-Bit ADCs: We note that our

estimation method can easily be extended to cases where the

signal is sampled by several ADCs in parallel. This only leads

to extra linear constraints in (24). Assuming that K number

of ADCs are used and the thresholds are set a priori, in the

single sample case, the thresholds are optimal if they partition the

set of likely events into K + 1 subsets with similar cardinality.

The determination of the thresholds will be even more difficult

when the number of samples or the number of ADCs grow large.

However, a close approximation of the optimal threshold vectors

{λk}Kk=1 can be obtained by assuming {λk}Kk=1 to be random

variables [37]. In other words, a good set of random sampling

threshold vectors {λk}Kk=1 should mimic the behavior of y.

In particular, we generate {λk}Kk=1 as a set of random vectors

similar to y that has the same (Gaussian) distribution:

E {λ} = E {α0} s,

Cov(λ) = E
{
|α0|2

}
ssH +R. (26)

The steps of the proposed approach are summarized in

Algorithm 1 for readers convenience.

V. PARAMETER ESTIMATION FOR MOVING TARGETS

In this section, we consider the moving targets scenario where

the Doppler effect can no longer be neglected. In order to perform

a recovery of radar parameters, i.e. the backscattering coefficient

and the Doppler shift of the target, we first update the system

Fig. 1. The setting for different range-azimuth cells. All the cell numbers are
shown in (range, azimuth) pairs.

model of (3) and then modify the proposed approach discussed

in Section IV to recover the normalized Doppler shift as well.

A. Modified Problem Formulation

Let s ∈ C
N denote the discrete-time transmit sequence of a

digital system, as in (1). After alignment to the range-azimuth

cell of interest, the new discrete-time complex-valued received

baseband data vector, which is backscattered from the moving

target in the corresponding range-azimuth cell, can be formu-

lated as (see [20], [58]–[60])

y = α0(s� p(ν)) + c+ n, (27)

where α0 is the complex backscattering coefficient of

the target in the current range-azimuth cell and [p(ν) =
ej2π(0)ν , ej2π(1)ν , . . . , ej2π(N−1)ν ]T is the propagation

effect vector with ν ∈ [−.5, 5) being the normalized Doppler

shift of the target. The N -dimentional vectors c and n denote

the signal-dependent clutter and signal-independent noise, re-

spectively. The clutter vector c is comprised of returned echos

from uncorrelated scatterers at different range-azimuth cells [60]

(as depicted in Fig. 1), which are spread in Doppler frequency

due to the possible clutter motion and can be formulated as

c =

Nc−1∑

k=0

L−1∑

l=0

α(k,l)Jk

[
s� p(νd(k,l)

)
]
, (28)

where Nc ≤ N is the number of range-rings, L is the number of

various azimuth sectors, and α(k,l) and νd(k,l)
are the scattering

coefficient and normalized Doppler shift of the (k, l)-th range-

azimuth cell, interfering with the range-azimuth cell of interest.

The matrix Jk is defined in the same way as in (13).

The covariance matrix of the clutter vector c can be written

as

Σc =

Nc−1∑

k=0

L−1∑

l=0

σ2
(k,l)JkΦ (s, (k, l))JT

k (29)

with σ2
(k,l) being the average scattering power of the scatterer in

(k, l)-th range-azimuth cell. The clutter patches in each range-

azimuth cell are assumed to have uniform Doppler shifts in
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the interval Ωc = (ν̄d(k,l)
− εd(k,l)

2 , ν̄d(k,l)
+

εd(k,l)

2 ) [59]. Note

that the assumption of having uniform Doppler shifts in each

range-azimuth cell, results from the fact that the clutter patches

in these cells can be any object in our environment, with some

of them moving. If such objects are moving, even slightly,

the echoes reflected from the corresponding cells will have a

Doppler shift associated with that movement. Examples of such

objects include vehicles, ocean waves, and trees with moving

leaves due to the wind [61], [62]. These contribute to a small

Doppler frequency shift in clutter input which is assumed to be

distributed uniformly.

Moreover, Φ in (29) can be expressed as

Φ (s, (k, l)) = Diag(s)Cν(k, l)Diag(s)H ,

whereCν(k, l) is the covariance matrix of the propagation effect

vector of the (k, l)-th cell [60], defined as

Cν(k, l) =

⎧

⎪⎨

⎪⎩

1 k = l

e
j(k−l)ν̄d(k,l)

sin
(

k−l
2 εd(k,l)

)

sin
(

k−l
2 εd(k,l)

) k �= l
. (30)

Similar to (9), we denote the covariance matrix of the signal-

independent interference by Γ, and redefine the covariance

matrix of the interference as follows:

R = Cov(c+ n) = Σc + Γ. (31)

B. Estimation of Target Parameters

When the received signal is available and the Doppler shift

is known, an estimation of the backscattering coefficient α0

with minimal MSE can be achieved by using a mismatched

filter, in a similar manner as in (10). The estimate of the target

backscattering coefficient given by MMF is

α̂0 =
wHy

wH (s� p(ν))
. (32)

Additionally, it can be verified that the optimalw that minimizes

the MSE criterion is given by

w = R−1 (s� p(ν)) . (33)

up to a multiplicative constant.

Note once again that, due to using one-bit ADCs, the access

to the received signal y is restricted to only its one-bit samples,

given by (7). In order to tackle the problem of estimating the

backscattering coefficient α0 and the normalized Doppler shift

ν, we form a modified version of the weighted-least-squares

objective function in (20), in compliance with the system model

defined in (27):

Q̃(y, α0, ν) �

[y − α0(s� p(ν))]H R−1 [y − α0(s� p(ν))] (34)

with R being the covariance matrix of the interference defined

in (31).

Similar to the stationary target case, the aforementioned ob-

jective function is chosen to have the following properties:

1) It does not rely on the knowledge of the received signal y

and yet enforces the system model in (27),

2) For given y and ν, the optimal α0 of (34) is identical to

the MMF estimate of α0 in (32),

3) It is a function of y, α0, and ν, which permits their joint

estimation, and last but not least,

4) The recovery of y using Q̃ paves the way for usage of

other classical signal processing methods that rely on the

knowledge of y.

The problem of jointly estimating y, α0, and ν for moving

target determination thus becomes

min
y,α0,ν

[y − α0(s� p(ν))]H R−1 [y − α0(s� p(ν))]

s.t. Ωr (yr − λr) ≥ 0,

Ωi (yi − λi) ≥ 0. (35)

However, by substituting the optimalα0 in (32) into the objective

function of (35), we achieve a more simplified optimization

problem:

min
w,y,ν

∥
∥
∥
∥
R−1/2

(

I− [s� p(ν)]wH

wH [s� p(ν)]

)

y

∥
∥
∥
∥

2

2

s.t. Ωr (yr − λr) ≥ 0,

Ωi (yi − λi) ≥ 0. (36)

In order to solve the above minimization problem, we resort to

cyclic optimization over w, y, and ν, until convergence. The

optimal w for fixed y and ν can be obtained using (33). Next,

for fixed w and ν, it is easy to see that the above optimization

problem is a convex linearly-constrained quadratic program with

respect to y, which can be efficiently solved. Lastly, in order to

find the optimal normalized Doppler shift ν when w and y are

fixed, we can rewrite the optimization problem (35) with respect

to ν as:

min
ν

g(ν)

s.t. p(ν) =
[

ej2π(0)ν ej2π(1)ν . . . ej2π(N−1)ν
]T

(37)

where

g(ν) �

[

1

p(ν)

]H[

0 −(α̂0s)
T �(yHR−1)

−(α̂0s)
∗�(R−1y) |α̂0|2R−1�(ssH)∗

][

1

p(ν)

]

and where α̂0 is calculated using (32).

The optimization problem in (37) resembles that of estimating

the direction-of-arrival (DOA) in uniform linear arrays (ULAs)

and can be dealt with using one of the many algorithms for

estimating the DOA—see [63] for details. We repeat the cyclic

optimization procedure until a pre-defined convergence criterion

is satisfied. Once the w, y, and ν are estimated, the backscatter-

ing coefficient α0 can be easily retrieved via (32).

As to the design of the threshold vectorλ, the same arguments

discussed in Section IV-B hold. However, the statistics of the

(Gaussian) randomly generated threshold vector λ change as

follows:

E {λ} = E{y} = E {α0} (s� E{p(ν)}),
Cov(λ) = Cov (y)

= E
{
|α0|2

}
(ssH)� E{p(ν)pH(ν)}+R. (38)
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Algorithm 2: One-Bit Radar Parameter Estimation for

Moving Targets.

Initialize: The transmit sequence s and set the threshold

vector λ arbitrarily or generate according to (39).

1: For fixed y, α0, and ν, compute the optimal MMF

vector w according to (33).

2: For fixed w and ν, compute the optimal vector y by

solving the criterion in (35) with respect to y.

3: For fixed y and w, compute the optimal target

normalized Doppler shift ν by minimizing the

criterion in (37).

4: If convergence is reached, go to Step 5; otherwise, go

to Step 1.

5: For fixed w, y, and ν, estimate the target

backscattering coefficient α0 using (32).

6: In case of tracking, set λ according to (39) and go to

Step 1.

For reader’s convenience, the steps of the proposed approach

for moving target radar parameter estimation are summarized in

Algorithm 2.

VI. EXTENSIONS TO ADVANCED CASES

In this section, we study the extensions of the proposed

method discussed in Section IV to different cases for the sta-

tionary target scenario. We further note that the same extensions

can be applied to the moving targets case as well.

A. Extension to Parallel One-Bit Comprators With Different

Time-Varying Thresholds

It can be noted that the problem formulation in (24) can be

extended to implementation of an array of K number of one-bit

comparators in parallel with different time-varying thresholds,

denoted by λ(k), k = 1, . . . ,K. In this way, the optimization

problem requires the recovered signal to comply with all the

comparison information that are produced by the one-bit com-

parators. Thus, the constraints in (24) can be updated as

Ω(k)
r

(

yr − λ(k)
r

)

≥ 0, ∀ k ∈ {1, . . . ,K},

Ω
(k)
i

(

yi − λ
(k)
i

)

≥ 0, ∀ k ∈ {1, . . . ,K}, (39)

where Ω(k)
r = Diag(λ(k)

r ) and Ω
(k)
i = Diag(λ

(k)
i ).

B. Extension to p-Bit ADCs

Another alternative way to glean more information from

the received signal y is to use multi-bit ADCs. For a generic

p-bit ADC, we have (2p − 1) + 2 thresholds such that λ0 <
λ1 < λ2 < · · · < λ2p−1 < λ2p , where we define λ0 � −∞ and

λ2p � +∞ for ease of notation. Thus, each sample of the input

signal can fall into any of the 2p quantization regions, which fur-

ther indicates that each input sampled data has to lie in an interval

[λk, λk+1], for some 0 ≤ k ≤ (2p − 1), k ∈ N ∪ {0}. Thus, if q
number of p-bit ADCs are used instead of one-bit comparators,

Fig. 2. Average normalized estimation error of stationary target scattering
coefficient α0, defined by the ratio |α0 − α̂0|/|α0|, for different transmit
sequence lengths N ∈ {10, 25, 50, 100}.

each of the ADCs will have (2p − 1) + 2 thresholds—leading

to a total number of q(2p + 1) thresholds.

Observe that, the optimization problem in this case requires

enforcing the following constraints,

[yr]n ∈
[

[λr]
(kn)
n , [λr]

(kn+1)
n

]

,

[yi]m ∈
[

[λi]
(km)
m , [λi]

(km+1)
m

]

,

for all n,m ∈ {1, . . . , N} and for integers kn and km pro-

vided by the p-bit ADCs, where [λr]
(kn)
n and [λi]

(km)
m de-

note the kn-th and km-th components of [λr]n and [λi]m,

respectively. Let,λlower
r � [[λr]

(k1)
1 , . . . , [λr]

(kN )
N ]T ,λupper

r �

[[λr]
(k1+1)
1 , . . . , [λr]

(kN+1)
N ]T , and define λlower

i and λ
upper
i

in a similar manner. Then, the constraints of the optimization

problem in (24) can be updated, in this case, as

+1 · (yr − λlower
r ) ≥ 0,

+1 · (yi − λlower
i ) ≥ 0,

−1 · (yr − λupper
r ) ≥ 0,

−1 · (yi − λ
upper
i ) ≥ 0. (40)

C. Transition to Non-Negative Least-Squares (NNLS)

It is worth noting that the optimization problem in (24) can

easily be translated into a NNLS optimization problem. This can

be achieved by changing variables such that ỹr � Ωr(yr − λr)
and ỹi � Ωi(yi − λi), adding up to ỹ � ỹr + jỹi. As a result,

fast NNLS approaches can be exploited to expedite the recovery

process [64].

VII. NUMERICAL RESULTS

In this section, we delve into examining the performance of the

proposed target parameter estimation methods. The estimation

error of our proposed approaches are compared with that of

the Bussgang-aided approach of Section III, and estimation
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Fig. 3. Comparison of stationary target scattering coefficient (α0) estimation performances forN ∈ {50, 100, 1000}. The results of estimation using the proposed
algorithm, the Bussgang-aided approach, and the ∞− precision case are shown on complex plane along with the true value of α0 = (0.5 + j0.5).

using un-quantized received signal, denoted by∞− precision.

We first consider the case of stationary target and employ the

approach discussed in Section IV and then move on to the case

of moving targets discussed in Section V.

A. Stationary Targets

For the simulations, we assume that the noise is additive,

white, and Gaussian with a variance of 0.1, the average clutter

power β is 0.1, and that the transmit sequence is generated using

the method in [19] with a peak-to-average power ratio of 1. The

results in all cases are averaged over 100 runs of the algorithms

unless mentioned otherwise.

Let α̂0 denote the estimate of α0, and further define the

normalized estimation error as |α0 − α̂0|/|α0|. In Fig. 2, the

normalized estimation error obtained via a Monte-Carlo trial

with randomly generated ground truths for α0 is plotted against

the transmit sequence length N for the proposed algorithm, the

Bussgang-aided approach of Section III, and the∞− precision
case. In addition, for visualization purpose, Fig. 3 shows the

results of the estimations, in a Monte-Carlo trial forα0 = (0.5 +
j0.5) for N ∈ {50, 100, 1000} on the complex plane. It can be

seen from the both figures that the estimate of the proposed

algorithm approaches that of the ∞− precision as N grows

large. This is expected because whenN grows large, the number

of comparisons grows large at the same rate revealing the true

nature of the un-quantized data. From an information-theoretic

point of view, this translates to more available information on

the received signal through its one-bit samples that contribute

to amelioration of the scattering coefficient recovery. Conse-

quently, the estimation performance of all three approaches are

enhanced with an increase of N , as is apparent in both figures.

Fig. 4 shows the performance of the proposed algorithm

in the presence of different noise power levels for the sta-

tionary target, and compares it with that of ∞− precision
case. For this experiment, we keep N = 25, and again assume

that the noise is additive, white, and Gaussian with variance

σ2 ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. As, it can be seen

Fig. 4. Average normalized estimation error of stationary target scattering
coefficientα0, defined by the ratio |α0 − α̂0|/|α0|, for different noise variances
σ2 ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}.

from Fig. 4, the average normalized error of estimating α0

remains very low for σ2 < 0.1, however the performance of

the algorithm decreases rapidly after σ2 = 1.

B. Moving Targets

Herein we present the simulation results for radar parameter

estimation in the case of moving targets. Similar to the stationary

target scenario, we assume that the noise is additive, white, and

Gaussian with a variance of 0.1, and that the transmit sequence

is generated using the method in [19] with a peak-to-average

power ratio of 1. The number of interfering range rings Nc and

number of azimuth sectors L are set to 2 and 10, respectively.

Additionally, the normalized Doppler shifts of the adjacent

range-azimuth cells are assumed to be uniformly distributed over

the interval Ωc = [−.1, .1]; see [65] for further details.

The estimation performance of different approaches in mov-

ing target scenarios is examined via a Monte-Carlo trial with
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Fig. 5. Performance comparison of moving target parameter estimation using the proposed algorithm, the Bussgang-aided approach, and the ∞− precision
case: (a) average normalized error of estimating the backscattering coefficient, (|α0 − α̂0|/|α0|), (b) average error of estimating the normalized Doppler shift ν,
for different transmit sequence lengths N ∈ {10, 20, 25, 50, 100}.

Fig. 6. Performance comparison of moving target parameter estimation using the proposed approach, the Bussgang-aided approach, and the ∞− precision
case for N ∈ {50, 100, 1000}. The upper plots show the results of estimating α0 on the complex plane, while the lower plots show the results of estimating ν on
the polar plane, where different radii are used for different approaches for visual clarity.

randomly generated ground truths for target parameters and

presented in Fig. 5. More precisely, the normalized estimation

error of the proposed approach in estimating the backscattering

coefficientα0 in case of a moving target, as well as the outcomes

of the Bussgang-aided approach (modified for moving targets),

and the ∞− precision case are shown in Fig. 5(a) while the

errors for estimating the normalized Doppler shift ν are depicted

in Fig. 5(b). Furthermore, as in the case of a stationary target,

Fig. 6 plots the radar parameter estimates for the case of a moving

target through a Monte-Carlo trial. The upper plots in Fig. 6 show

the results of estimating the backscattering coefficient α0, along

with its true value, for N ∈ {50, 100, 1000} on the complex

plane. On the other hand, the lower plots in Fig. 6 show the

estimates of the normalized Doppler shift on the polar plane.

The result of estimation for different approaches are shown on

circles with slightly different radii for the sake of clarity.

As in the case of stationary targets, it can be observed from

the Fig. 5 that estimates α0 and ν become more precise as N
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Fig. 7. Performance comparison of moving target parameter estimation using the proposed algorithm, and the ∞− precision case: (a) average normalized
error of estimating the backscattering coefficient, (|α0 − α̂0|/|α0|), (b) average error of estimating the normalized Doppler shift ν, for different noise variances
σ2 ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}.

grows larger. In fact, as N increases, the estimates of radar

parameters obtained by the proposed approach get closer to that

of the∞− precision case. Further note that in order to have the

same performance in estimation of the parameters of a moving

target, the proposed algorithm requires more samples than the

stationary target case, as can be verified through Figs. 2 and 5

as anticipated.

Finally, Fig. 7 demonstrates the performance of the pro-

posed algorithm in the presence of different noise power

levels for the moving targets, and compares it with that of

∞− precision case. For this experiment, we again use the

same settings as used for stationary case., i.e. N = 25, and

the noise is additive, white, and Gaussian with variance σ2 ∈
{10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. The average normalized

error of estimating α0 is shown in Fig. 7(a) while the errors

for estimating the normalized Doppler shift ν is depicted in

Fig. 7(b). Similar to the case of stationary targets, it can be seen

from Fig. 7 that the average error of estimating both α0 and ν
stay very low for σ2 < 0.1, however their performances degrade

after σ2 = 1, even for ∞− precision case.

VIII. CONCLUDING REMARKS

High-resolution sampling with conventional analog-to-

digital-converters (ADCs) can be very costly and energy-

consuming for many modern applications. This is further ac-

centuated as recent applications, including those in sensing and

radar signal processing, show a growing appetite in even larger

than usual sampling rates— thus making the mainstream ADCs

a rather unsuitable choice. To overcome these shortcomings, it

was shown that in lieu of using the conventional ADCs in radar

parameters estimation, one can use inexpensive comparators

with time-varying thresholds and solve an optimization problem

to recover the target parameters with satisfactory performance.

This is very beneficial at high frequencies as it is both practical

and economical, while it can also pave the way for future applica-

tions to sample at much higher rates. Finally, simulation results

were presented that verified the efficiency of one-bit target

parameter estimation for both stationary and moving targets,

especially as the length of the transmit sequence N grows large.
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