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One-Bit Radar Processing With Time-Varying
Sampling Thresholds
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Abstract—Target parameter estimation in active sensing, and
particularly radar signal processing, is a long-standing problem
that has been studied extensively. In this paper, we propose a
novel approach for target parameter estimation in cases where
one-bit analog-to-digital-converters (ADCs), also known as sig-
nal comparators with time-varying thresholds, are employed to
sample the received radar signal instead of high-resolution ADCs.
The considered problem has potential applications in the design
of inexpensive radar and sensing devices in civilian applications,
and can likely pave the way for future radar systems employing
low-resolution ADCs for faster sampling and high-resolution target
determination. We formulate the target estimation as a multivariate
weighted-least-squares optimization problem that can be solved
in a cyclic manner. Numerical results are provided to exhibit the
effectiveness of the proposed algorithms.

Index Terms—Active sensing, array processing, one-bit
quantization, radar signal processing, time-varying thresholds.

1. INTRODUCTION

HE problem of target parameter estimation permeates the
field of active sensing and radar signal processing. Active
sensing systems aim to uncover the location and other useful
properties such as velocity information and reflectance proper-
ties of a target of interest by dispatching a transmit waveform
toward the target and studying the received echo reflected by
it. For example, the complete dynamics of a moving vehicle
including its location and velocity with respect to the observer,
can easily be found by simply measuring the difference between
the transmitted and received electromagnetic waves in time and
frequency domain. Further analysis of the received signal can
reveal more information about the target vehicle of interest.
Since the two world wars, radar systems have been developed,
improved, and have made their way into diverse applications
such as meteorology [2], [3], air traffic control [4], [5], structural
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health monitoring [6], [7], synthetic aperture radar applications
[8], [9], and underwater sensing [10], [11], among others. Two
major factors in radar signal processing are the design of the
transmit signals and receive filters for rejection of clutter and
interferences, on which there exists an extensive literature; e.g.,
see [12]-[20]. The unwanted echoes of the transmit signal that
are received as delayed and frequency shifted version of the
transmitted signal and are correlated with the main backscattered
signal from the target of interest, are generally referred to as
clutter. Furthermore, noise is the term usually used for signal-
independent interference such as effects of adverse jamming
signals [21] as well as thermal noise and atmospheric distur-
bances. Note that both clutter and noise degrade the accuracy
of target parameter estimation; thus, making the receive filter
heavily dependent not only on the transmit signal but interfer-
ence as well. A judicious design of both the transmit signal and
receive filter in a joint manner can consequently lead to a more
accurate estimation of the target parameters in a more tractable
computational cost for the radar system.

One immediate and well-known choice for the receive filter
would be the matched filter (MF) that maximizes the signal-to-
noise ratio (SNR) in the presence of additive white noise. The
MF multiplies the received signal with a mirrored and delayed
image of the transmitted signal [21]. By locating the peak of
the output signal, MF discovers the time delay of the received
signal, which facilitates the estimation of the distance of the
target from the radar, otherwise known as the range. On the
other hand, a relative difference in motion between the target
and the radar results in a Doppler frequency shift in the received
signal spectrum. In the case of a perceivable Doppler shift
in the received signal, a bank of MFs is adopted to estimate
the Doppler shift, each of which tuned to a different Doppler
frequency [22]. However, MF performs poorly in the presence of
interference with arbitrary covariance in the received signal [19].
It has been shown in the literature that the effects of the clutter
can be mitigated by minimizing the sidelobes of an ambiguity
function (AF) [23]-[25]. Another line of clutter suppression
research can be found in [26]-[28], where the autocorrelation
sidelobes of the transmit signal is minimized. In addition, the
negative effects of interference, especially due to jamming, can
be avoided by putting little energy of the transmit signal into
the frequency bands where presence of jamming is significant.
Furthermore, different hardware constraints such as maximum
clipping of power amplifiers and analog-to-digital converters
(ADC) decrease the performance of MF estimation.
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For a more efficient estimation of the target parameters, one
can aim to maximize the signal-to-clutter-plus-interference ratio
(SCIR) in lieu of SNR. Such a scenario arises when the target
detection performance of the radar is deteriorated by the clutter
or jamming. In such cases, one can use a mismatched filter
(MMF) instead of an MF [29]. In comparison with the MF,
an MMF allows more degrees of freedom by introducing a
receive filter and is not subject to various power constraints of the
transmit signal such as constant-modulus or low peak-to-average
ratio (PAR). Hence, a joint design of the transmit signal and the
MMEF receive filter can offer a more robust parameter estimation
framework [30].

It is important to note that sampling and quantization of the
signal of interest is the first step in digital signal processing. The
analog to digital conversion ideally requires an infinite number
of bits to identically represent the original analog signal, which
is not feasible in practice. In fact, the aforementioned techniques
assume that the received signal is available in full precision. The
resulting error of quantization can then be modeled as additive
noise that usually has little to no impact on algorithms that
assume the infinite precision case, provided that the sampling
resolution is high enough [31]. The signals of interest in many
modern applications, albeit, are extremely wide band and may
pass through several RF chains that require multitudinous uses
of ADCs. Such modern applications include spectral sensing for
cognitive radio [32], [33], cognitive radars [33], radio astronomy
[34], automotive short-range radars [35], driver assistant systems
[36], to name a few.

The assumption of high-precision data is, however, not appro-
priate when the measurements are extremely quantized to very
low bit-rates. Note that, the cost and the power consumption
of ADCs grow exponentially with their number of quantization
bits and sampling rate [37]. Such issues can be mitigated by
a reduction in the number of quantization bits. In the most
extreme case, the sampling process is carried out by utilizing
only one bit per sample. This can be achieved by repeatedly
comparing the signal of interest with a time-varying threshold
(reference) level. On the plus side, one-bit comparators can pro-
vide extremely high sampling rate and are very cheap and easy to
manufacture [37]. Moreover, the one-bit ADCs operate on very
low power and they can significantly reduce the data flow in the
system, which further reduces the overall energy consumption.
One-bit sampling has been studied from a classical statistical
signal processing viewpoint in [38]-[45], a compressive sensing
viewpoint in [46]-[50], a sampling and reconstruction viewpoint
in [51], [52]. It has been shown in [46]—-[49] that under certain
assumptions, with enough one-bit samples one can recover the
full-precision data with bounded error.

In this paper, we study the radar processing and parameter
estimation of both stationary and moving targets using one-bit
samplers with time-varying thresholds. For both cases of sta-
tionary and moving targets, we propose a novel approach that
is formulated as minimization of a multivariate weighted-least-
squares objective with linear constraints that can be solved in
an iterative manner. As stated before, the mentioned approach
is cost-effective and is computationally efficient. This paper
considers an extended problem formulation as compared to [1],
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in the sense that [1] only considers the one-bit radar signal
processing for stationary targets while this paper studies the
more sophisticated scenario of moving targets in addition to the
stationary case, among others. To the best of our knowledge, this
paper is the first comprehensive work introducing one-bit ADCs
and the associated data processing in the context of radar.

The rest of this paper is organized as follows. In Section II,
we discuss and formulate the estimation problem in the case
of a stationary target. Section III describes a state-of-the-art
approach to recover target parameters based on the Bussgang
theorem. The proposed algorithm to estimate the aforementioned
parameters is presented in Section IV for a stationary target.
In Section V, we extend the problem formulation, as well as
the estimation algorithm, for parameter estimation in moving
target scenarios. We further extend the parameter estimation
formulations for a stationary target scenario to more advanced
setups in Section VI. Numerical results that verify the validity of
claims and examine the performance of the proposed algorithms
are presented in Section VII. Finally, Section VIII concludes the
paper.

Notation: We use bold lowercase letters for vectors and bold
uppercase letter for matrices. x; denotes the ¢-th component
of the vector x. (-)7 and (-) denote the transpose and the
conjugate transpose of the vector or matrix argument, respec-
tively. (-)* denotes the complex conjugate of a complex matrix,
vector, or scalar. || - || denotes the lo norm of a vector, while
Il - || denotes the Frobenius norm of a matrix. (-) and ()
are the real and imaginary parts of a complex vector or scalar,
respectively. Furthermore, the sets of real, complex and natu-
ral numbers are denoted by R, C, and N respectively. sgn(-)
is the element-wise sign operator with an output of +1 for
non-negative numbers and —1 otherwise. Moreover, Diag(-)
and N (-) represent the diagonalization and the normalization
operator on a matrix argument. E{-} and Cov(-) denote the
expectation and the covariance operator, respectively. Finally,
The symbol © represents the Hadamard product of matrices.

II. SYSTEM MODEL
Let

T
s=|s; sy ... sy| eC¥N (1)
denote the complex-valued radar transmit sequence of length
N that will be used to modulate a train of subpulses [22]. The
energy of {sj }I_, is constrained to be N:

Is||* =N @)

without any loss of generality. We shall first adopt the discrete
data model described in [18], [53] in order to layout the prob-
lem formulation for the simpler case of non-moving targets.
Under the assumptions of negligible intrapulse Doppler shift,
and that the sampling is synchronized to the pulse rate, the
received discrete-time baseband signal after pulse compression
and proper alignment to the range cell of interest, will satisfy
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the following [29], [53]:

S1 0 0
: S1

Yy = g ’ + oy . +--+an-
SN-1 . 0
SN SN-1 51

52 SN

0

+o_q +otaoNyt +e (3
SN .
0 0

where g € C is the scattering coefficient of the current range
cell, {a } 2o are the scattering coefficients of the adjacent range
cells that contribute to the clutter in y, and € is the signal-
independent noise which comprises of measurement noise as
well as other disturbances such as jamming. By collecting all
the delayed samples of the transmitted signal into a matrix, the
data model in (3) can be simplified as

y=Aa+e 4)
where
[ sq 0 .. 0 sy Sn.1 ... s3]
So S1 0 SN
H
AT = 0 SN ’
SN SnN-1 ... s1 O 0 0
&)
and
T
a = I:Oé(),Oél,...,OéNfl,CY,(Nfl),...70471] (6)

is the corresponding scattering coefficient vector. In (5), the first
column of A represents the principal reflection from the target
after range cell alignment, and the second to the last column of
the same are in fact the different delayed echos of the transmit
signal s (see [53] for more details). Furthermore, if the Doppler
shifts are not negligible due to the relative difference in motion
between the target and the radar system, the data model in (4)
needs to be modified to accommodate the same, and has been
discussed in Section V.

By applying one-bit comparators at the receiver, the sampled
baseband signal can be written as:

v, =sgn (R{A" o+ e—A}),
v; =sgn (S{APa+e—A}),

1 .

where A is the tunable complex-valued threshold level vector
at the comparators, whose design is discussed in Section IV.
Note that in (7), we sample both real and imaginary parts of the
received signal in order to preserve the phase information. We
further assume that the clutter coefficients {cy }r2o are zero-
mean and their variance,

BEE{a|’},  k#0, (8)

5299

and the covariance matrix of e,
I £ Efee}, ©)

are known quantities. We further assume that {ay}rzo are
independent of each other and of € as well. Note that, in
radar applications, both I and /3 can be acquired using various
preprocessing techniques, e.g. by employing pre-scans, and
are typically assumed to be known a priori [18]. A detailed
discussion of the prescanning process can be found in [54].

As mentioned earlier, once the received signal y is available,
one can estimate the target backscattering coefficient o by
exploiting the signal model in (4) using a mismatched filter
(MMF). The MMF estimate of « has the following linear form
iny [19]:

. why

Qg = W HS (10)
where w € C* is the MMF vector of the receive filter. The mean
squared error (MSE) of the mentioned estimate can be derived

as
why 2 wHRw
MSE(4g) = E — = — 11
(éo) { whs |wHs|? (o
where
R =3 Z JpssfIH 41, (12)
0<|k|<(N-1)

is the covariance matrix of the interference terms in (4) and {J }
are the shift matrices formulated as

H
0 ... 0 1 ... 0
J,=J4 = 1 . (13)
0 ... 0
N————
k NxN

k=0,1,--- ,N —1.
Note that the denominator of the MSE in (11) is the power of
the signal at the receiver and its numerator is the power of the
interferences. Therefore, minimizing the MSE is identical to
maximizing the SCIR.

Note that one can exploit the relationship between the co-
variance matrices of the received signals before and after the
non-linear transformation of one-bit sampling in order to esti-
mate the target parameter ayy. This relationship is provided by the
Bussgang theorem in a normalized sense [55]. In the following
section, we briefly discuss a state-of-the-art Bussgang-theorem-
aided procedure to estimate a. Afterwards, in Section IV, we
propose an algorithm that, through minimizing the MSE, jointly
recovers the scattering coefficient of the current range cell, oy,
and the received signal, y, from the one-bit sampled received
data -y, as introduced in (7).

III. BUSSGANG-THEOREM-AIDED ESTIMATION

In this section, we describe a state-of-the-art Bussgang-
theorem-aided approach to estimate the target parameters [55].
Let Y(t) be a real-valued, scalar, and stationary Gaussian
process that undergoes the one-bit sampling process Z(t) =
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sgn(Y'(t)). The autocorrelation function of the process Z(t),
denoted by Rz(7), is given by

Ryz(t)=E{Z(t+71)Z(t)} = %sin’1 (Ry (7)) (14)
where Ry (7) = Ry (7)/Ry (0) is the normalized autocorrela-
tion function of the process Y (¢) [56]. The good news is that the
Bussgang theorem [55] states that the crosscorrelation function
of the processes Y (t) and Z(¢) is proportional to the autocor-
relation function of Y (), i.e. Rzy (1) = uRy (7), where the
factor 1 depends on the power of the process Y (¢).

The case of complex-valued vector processes, which was
studied in [57], can be extended in a similar manner. Let y be
the complex-valued vector whose one-bit samples are given by
v = % (sgn(R(y)) + jsgn(S(y))). as in (7). Then the normal-
ized autocorrelation of the vector y is given by

R, = N(Ry) £ D"'/?2R,D /2 (15)

where D = Ry © I is a diagonal matrix containing only the
diagonal entries of R,. It has been shown in [57] that the
following covariance equality holds:

Ry = sin (gR,7> ,
where R, is the autocorrelation matrix of the one-bit sampled
data, ~y.

In order to apply the above results to the one-bit radar pro-
cessing problem using a threshold level vector A € CV, we
can derive the covariance matrix of the difference between the
received signal and the time-varying threshold, viz.

Ry » = |ap*ss™ + AN + R — 2R(apsA?).  (17)
Therefore, one can compute the scattering coefficient oy, by
solving the following non-convex optimization problem:
min  ||Ry_x — NV(Jao*ss™ + AN + R — 2R(apsA™))|| .

[e14)
(18)

in which Ry_ is obtained via (16), and using only one obser-
vation or snapshot of ~y.

(16)

IV. THE PROPOSED APPROACH FOR STATIONARY TARGETS

In this section, we address the proposed approach to recover
both the received signal y and the scattering coefficient «y from
the one-bit sampled received signal ~y for a stationary target by
minimizing the aforementioned MSE in (11).

For a given transmit sequence s, the optimum receive filter w
can be simply given as closed form solution [18], [19]:

w=R"!s (19)

up to amultiplicative constant. Nevertheless, the MMF approach
to recover «y, discussed in (10), requires the availability of the
un-quantized (or high-resolution quantized) received signal y,
which is unfortunately not available directly due to the one-bit
sampling of the received signal. Therefore, we shall resort to an
alternative optimization approach that utilizes the one-bit sam-
pled data ~ in lieu of y in order to estimate the target parameter.
In pursuance of radar parameter recovery using one-bit sampled
data with time-varying thresholds, we analyze two matters of
major significance: (i) the recovery of y and estimation of o by
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employing the one-bit data procured at the receiver, and (ii) the
design of next set of thresholds to be used at the one-bit ADCs.

A. Estimation of Target Parameters

In order to efficiently estimate the received signal y and
target parameter ag, we consider minimizing of the following
weighted-least-squares (WLS) objective in a more generalized
sense:

Qy,a0) £ (y — aos) "R~ (y — aps). (20
It should be noted that the usage of the above criterion has
following advantages:

1) Unlike the MMF in (10), @ does not require a knowledge
of y.

2) It is a function of both y and «, laying the ground for
their respective joint recovery.

3) Itcaneasily be observed that, for any given y, the optimum
g in (20) is identical to that of MMF in (10) with the use
of (19)—thus making it a natural choice for parameter
recovery.

4) In effect, the minimization of (20) enforces the system
model introduced in (3). Note that the model mismatch
can be written as

2

where A and & are derived from A and « with their
first column and first entry dropped, respectively. It can
easily be established that the objective function in (20)
penalizes the model mismatch based on the second order
mismatch statistics derived as

E{(AHdJre) (AHMG)H}

=E {AHddHA} +E {eeH}

y—as=A"%a+e

=R. (22)
Hence, based on the property 3, and by substituting the

optimum «y, the objective function (20) can be reformulated
as

Q(y7 640) = Q(y)

H\ H H
. H SwW 1 SwW

Hence, the problem of jointly estimating ayg and y boils down
to:

H\ H H
: I SW 1 SW
rri}n y [(IWHS) R <IWHS>]Y

s.t. Q. (yr —A) >0,

Q; (yi — i) >0, (24)

where (y,,y;) and (X, A;) denote the real and imaginary parts
of y and A, respectively,and 2, £ Diag(~,), ; = Diag(v;).
One can easily verify that the optimization problem in (24) is
a convex quadratic program with linear constraints that can be
solved efficiently. Upon finding the optimal y, the optimal «
can be calculated using the MMF estimate in (10).
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Algorithm 1: One-Bit Radar Parameter Estimation for Sta-
tionary Targets.

Initialize: The transmit sequence s and set the threshold

vector Aarbitrarily, or generate according to (25)—(26).

1: Compute the optimal MMF vector w using (19).

2: Compute the optimal vector y by solving (24).

3: Estimate the target scattering coefficient ag using the
MMF estimator in (10).

4: In case of tracking, set A according to (25)—(26) and
go to Step 2.

B. Time-Varying Threshold Design

1) Sampling With a Single One-Bit ADC: From an informa-
tion theoretic viewpoint, in order to collect the most information
on y, one could expect A to be set in such a way that by
considering the a priori information, observing any of the two
outcomes in the set {—1, +1} at the output of the one-bit sampler
for a single sample has the same likelihood. In a general case,
A is expected to partition the set of likely events into subsets
with similar cardinality. When the probability density function
(pdf) of the received signal follows a Gaussian distribution, this
goal is achieved by setting A as close as possible to the expected
value of y. More precisely, we choose:

A=E{ag}s. (25)

In other words, the choice of A will be governed by our future
expectation of the value of ay. This is particularly pertinent to
target tracking scenarios.

2) Sampling With Multiple One-Bit ADCs: We note that our
estimation method can easily be extended to cases where the
signal is sampled by several ADCs in parallel. This only leads
to extra linear constraints in (24). Assuming that K number
of ADCs are used and the thresholds are set a priori, in the
single sample case, the thresholds are optimal if they partition the
set of likely events into K + 1 subsets with similar cardinality.
The determination of the thresholds will be even more difficult
when the number of samples or the number of ADCs grow large.
However, a close approximation of the optimal threshold vectors
{A& }<_| can be obtained by assuming {Ag }%X_; to be random
variables [37]. In other words, a good set of random sampling
threshold vectors {Ag} | should mimic the behavior of y.
In particular, we generate { A} 2, as a set of random vectors
similar to y that has the same (Gaussian) distribution:

E{A} =E{ao}s,
Cov(A) =E {|ag|?} ss” + R. (26)

The steps of the proposed approach are summarized in
Algorithm 1 for readers convenience.

V. PARAMETER ESTIMATION FOR MOVING TARGETS

In this section, we consider the moving targets scenario where
the Doppler effect can no longer be neglected. In order to perform
arecovery of radar parameters, i.e. the backscattering coefficient
and the Doppler shift of the target, we first update the system

5301
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Fig. 1. The setting for different range-azimuth cells. All the cell numbers are
shown in (range, azimuth) pairs.

model of (3) and then modify the proposed approach discussed
in Section IV to recover the normalized Doppler shift as well.

A. Modified Problem Formulation

Let s € C¥ denote the discrete-time transmit sequence of a
digital system, as in (1). After alignment to the range-azimuth
cell of interest, the new discrete-time complex-valued received
baseband data vector, which is backscattered from the moving
target in the corresponding range-azimuth cell, can be formu-
lated as (see [20], [S8]-[60])

y =ag(s ©p(v)) +c+n, (27)
where «p is the complex backscattering coefficient of
the target in the current range-azimuth cell and [p(v) =
e2mOw g2y i2n(N=1IT g the propagation
effect vector with v € [—.5,5) being the normalized Doppler
shift of the target. The N-dimentional vectors ¢ and n denote
the signal-dependent clutter and signal-independent noise, re-
spectively. The clutter vector c is comprised of returned echos
from uncorrelated scatterers at different range-azimuth cells [60]
(as depicted in Fig. 1), which are spread in Doppler frequency
due to the possible clutter motion and can be formulated as

N.—1L-1
c= Z Z oIk [s© PV )]

k=0 1=0
where N. < N is the number of range-rings, L is the number of
various azimuth sectors, and vy ;) and v, ,, are the scattering
coefficient and normalized Doppler shift of the (k,)-th range-
azimuth cell, interfering with the range-azimuth cell of interest.
The matrix J, is defined in the same way as in (13).

The covariance matrix of the clutter vector c can be written

(28)

as
No—1L-1

Be= > > ohnIn® (s, (k1) I]

k=0 =0
with 0(2,6, ) being the average scattering power of the scatterer in

(29)

(k,1)-th range-azimuth cell. The clutter patches in each range-
azimuth cell are assumed to have uniform Doppler shifts in
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€d €d
the interval Q. = (74, ,, — —%%, P, ,, + —5>) [59]. Note
that the assumption of having uniform Doppler shifts in each
range-azimuth cell, results from the fact that the clutter patches
in these cells can be any object in our environment, with some
of them moving. If such objects are moving, even slightly,
the echoes reflected from the corresponding cells will have a
Doppler shift associated with that movement. Examples of such
objects include vehicles, ocean waves, and trees with moving
leaves due to the wind [61], [62]. These contribute to a small
Doppler frequency shift in clutter input which is assumed to be
distributed uniformly.
Moreover, ® in (29) can be expressed as

® (s, (k.1)) = Diag(s)C, (k.|)Diag(s)",
where C,, (k, 1) is the covariance matrix of the propagation effect
vector of the (k, [)-th cell [60], defined as
1 k=1
Cy(k,l) = ej(kfl)’jd(k,w Sin(%ed(k,l)> k‘ 7& l
sin %Ed(k,l))
Similar to (9), we denote the covariance matrix of the signal-

independent interference by I', and redefine the covariance
matrix of the interference as follows:

R =Cov(c+n) =3, +T.

(30)

3D

B. Estimation of Target Parameters

When the received signal is available and the Doppler shift
is known, an estimation of the backscattering coefficient «y
with minimal MSE can be achieved by using a mismatched
filter, in a similar manner as in (10). The estimate of the target
backscattering coefficient given by MMF is

ap =

wily
wi (s ©p(v))
Additionally, it can be verified that the optimal w that minimizes
the MSE criterion is given by
w=R"(sOp(v)).
up to a multiplicative constant.

Note once again that, due to using one-bit ADCs, the access
to the received signal y is restricted to only its one-bit samples,
given by (7). In order to tackle the problem of estimating the
backscattering coefficient oy and the normalized Doppler shift
v, we form a modified version of the weighted-least-squares
objective function in (20), in compliance with the system model
defined in (27):

Qy,ao,v) £

[y —aos 0 p()[" R [y —ag(s © p(v))]  (34)
with R being the covariance matrix of the interference defined
in (31).

Similar to the stationary target case, the aforementioned ob-
jective function is chosen to have the following properties:
1) It does not rely on the knowledge of the received signal y
and yet enforces the system model in (27),
2) For given y and v, the optimal « of (34) is identical to
the MMF estimate of g in (32),

(32)

(33)
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3) It is a function of y, g, and v, which permits their joint
estimation, and last but not least,

4) The recovery of y using Q paves the way for usage of
other classical signal processing methods that rely on the
knowledge of y.

The problem of jointly estimating y, «g, and v for moving

target determination thus becomes
Jmin [y —ao(s ©p(v)]" R [y — ao(s © p(v))]

s.t. Q. (yr —Ar) >0,

Qi (yi — i) > 0. (35)

However, by substituting the optimal «g in (32) into the objective

function of (35), we achieve a more simplified optimization
[s©p()w! >

problem:
R /2 (I —~
H wH[s © p(v)]

st. Q. (yr—Ar) >0,

Q; (yi — i) > 0. (36)
In order to solve the above minimization problem, we resort to
cyclic optimization over w, y, and v, until convergence. The
optimal w for fixed y and v can be obtained using (33). Next,
for fixed w and v, it is easy to see that the above optimization
problem is a convex linearly-constrained quadratic program with
respect to y, which can be efficiently solved. Lastly, in order to
find the optimal normalized Doppler shift » when w and y are
fixed, we can rewrite the optimization problem (35) with respect
to v as:

2
min
WY,V

2

min  g(v)
v

S.t. p(V) = I:ejzﬂ(o)l’ €j27"(1)l/ ej2ﬂ(N*1)1/i|T

(37)
where

g(v) =

1 0 —(aos)To(y RN | 1
p(r)| [~(Gos) @R Yy) [ao]’R1O(ss™)" | [p(v)
and where ¢y is calculated using (32).

The optimization problem in (37) resembles that of estimating
the direction-of-arrival (DOA) in uniform linear arrays (ULAs)
and can be dealt with using one of the many algorithms for
estimating the DOA—see [63] for details. We repeat the cyclic
optimization procedure until a pre-defined convergence criterion
is satisfied. Once the w, y, and v are estimated, the backscatter-
ing coefficient g can be easily retrieved via (32).

As to the design of the threshold vector A, the same arguments
discussed in Section IV-B hold. However, the statistics of the
(Gaussian) randomly generated threshold vector A change as
follows:

E{A} =E{y} = E{ao} (s ©E{p(v)}),
Cov(A) = Cov (y)

=E {[aol’} (ss™) O E{p(v)p" ()} + R. (38)
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Algorithm 2: One-Bit Radar Parameter Estimation for
Moving Targets.

Initialize: The transmit sequence s and set the threshold
vector A arbitrarily or generate according to (39).

1: For fixed y, o, and v, compute the optimal MMF
vector w according to (33).

2: For fixed w and v, compute the optimal vector y by
solving the criterion in (35) with respect to y.

3: For fixed y and w, compute the optimal target
normalized Doppler shift ~ by minimizing the
criterion in (37).

4: If convergence is reached, go to Step 5; otherwise, go
to Step 1.

5: For fixed w, y, and v, estimate the target
backscattering coefficient o using (32).

6: In case of tracking, set A according to (39) and go to
Step 1.

For reader’s convenience, the steps of the proposed approach
for moving target radar parameter estimation are summarized in
Algorithm 2.

VI. EXTENSIONS TO ADVANCED CASES

In this section, we study the extensions of the proposed
method discussed in Section IV to different cases for the sta-
tionary target scenario. We further note that the same extensions
can be applied to the moving targets case as well.

A. Extension to Parallel One-Bit Comprators With Different
Time-Varying Thresholds

It can be noted that the problem formulation in (24) can be
extended to implementation of an array of X number of one-bit
comparators in parallel with different time-varying thresholds,
denoted by ARk =1,... K. In this way, the optimization
problem requires the recovered signal to comply with all the
comparison information that are produced by the one-bit com-
parators. Thus, the constraints in (24) can be updated as

20 (o= AP) >0, Vke{l,... K},

o (yi-aP) 20, vke{l.. K}, (9

where Q*) = Diag(A¥)) and ng) = Diag()\gk)).

B. Extension to p-Bit ADCs

Another alternative way to glean more information from
the received signal y is to use multi-bit ADCs. For a generic
p-bit ADC, we have (27 — 1) + 2 thresholds such that g <
M < A2 < -+ < Aap_1 < Aap, where we define \g = —oo and
Xop» £ 400 for ease of notation. Thus, each sample of the input
signal can fall into any of the 2P quantization regions, which fur-
ther indicates that each input sampled data has to lie in an interval
[Mis Apg1], forsome 0 < k < (2P — 1),k € N U {0}. Thus, if ¢
number of p-bit ADCs are used instead of one-bit comparators,
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Average normalized error for oy
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no w =~ [ [=2]

e
-

Fig. 2. Average normalized estimation error of stationary target scattering
coefficient g, defined by the ratio |ag — éol/|co|, for different transmit
sequence lengths NV € {10, 25,50, 100}.

each of the ADCs will have (27 — 1) + 2 thresholds—leading
to a total number of ¢(2P + 1) thresholds.

Observe that, the optimization problem in this case requires
enforcing the following constraints,

[yrln € [[)\r];’“n), [)\T];knﬂ)} 7

yilm € [AIS G 0]

for all n,m € {1,..., N} and for integers k,, and k,, pro-
vided by the p-bit ADCs, where [)\T]%k") and [)\i]g,]f’”) de-
note the k,-th and k,,-th components of [A,], and [N},
respectively. Let, Alower £ [[Ar]gkl), ce [AT]%N)]T, AUPPeT £
G I TI)T and define AL and AUPPET
in a similar manner. Then, the constraints of the optimization
problem in (24) can be updated, in this case, as

+1e (yr = X)) 2 0,
+1(yi = X)) > 0
=1 (yr = A) 2 0,
—1-(y; — A7) > 0.

(vi (40)

C. Transition to Non-Negative Least-Squares (NNLS)

It is worth noting that the optimization problem in (24) can
easily be translated into a NNLS optimization problem. This can
be achieved by changing variables such that ¥, £ €,.(y, — ;)
and y; £ Q;(y; — \;),addinguptoy £ ¥, + j¥,. As aresult,
fast NNLS approaches can be exploited to expedite the recovery
process [64].

VII. NUMERICAL RESULTS

In this section, we delve into examining the performance of the
proposed target parameter estimation methods. The estimation
error of our proposed approaches are compared with that of
the Bussgang-aided approach of Section III, and estimation
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Fig.3. Comparison of stationary target scattering coefficient («g) estimation performances for N € {50, 100, 1000}. The results of estimation using the proposed

algorithm, the Bussgang-aided approach, and the oo — precision case are shown on complex plane along with the true value of g = (0.5 + 50.5).

using un-quantized received signal, denoted by oo — precision.
We first consider the case of stationary target and employ the
approach discussed in Section IV and then move on to the case
of moving targets discussed in Section V.

A. Stationary Targets

For the simulations, we assume that the noise is additive,
white, and Gaussian with a variance of 0.1, the average clutter
power (3 is 0.1, and that the transmit sequence is generated using
the method in [19] with a peak-to-average power ratio of 1. The
results in all cases are averaged over 100 runs of the algorithms
unless mentioned otherwise.

Let &g denote the estimate of «, and further define the
normalized estimation error as |ag — &gl/|ap|. In Fig. 2, the
normalized estimation error obtained via a Monte-Carlo trial
with randomly generated ground truths for o is plotted against
the transmit sequence length NV for the proposed algorithm, the
Bussgang-aided approach of Section III, and the co — precision
case. In addition, for visualization purpose, Fig. 3 shows the
results of the estimations, in a Monte-Carlo trial for ag = (0.5 +
j0.5) for N € {50,100, 1000} on the complex plane. It can be
seen from the both figures that the estimate of the proposed
algorithm approaches that of the co — precision as N grows
large. This is expected because when N grows large, the number
of comparisons grows large at the same rate revealing the true
nature of the un-quantized data. From an information-theoretic
point of view, this translates to more available information on
the received signal through its one-bit samples that contribute
to amelioration of the scattering coefficient recovery. Conse-
quently, the estimation performance of all three approaches are
enhanced with an increase of IV, as is apparent in both figures.

Fig. 4 shows the performance of the proposed algorithm
in the presence of different noise power levels for the sta-
tionary target, and compares it with that of co — precision
case. For this experiment, we keep N = 25, and again assume
that the noise is additive, white, and Gaussian with variance
02 €{107°,107%,1073,1072,1071, 1, 10}. As, it can be seen

—

T T

—x— Proposed algorithm
—¥— oo — precision

Average Normalized Error of ay Estimation
e e = e e = e e

V) w = ot {=21 -~ o] ©

T

B
=

.
102 10! 10° 10!

.
10°%
Noise Variance (o?)

0-° 104

Fig. 4. Average normalized estimation error of stationary target scattering
coefficient avg, defined by the ratio |ag — é&ig|/| o], for different noise variances
02 €{107°,1074,1073,1072,107 1,1, 10}.

from Fig. 4, the average normalized error of estimating oy
remains very low for o2 < 0.1, however the performance of
the algorithm decreases rapidly after 02 = 1.

B. Moving Targets

Herein we present the simulation results for radar parameter
estimation in the case of moving targets. Similar to the stationary
target scenario, we assume that the noise is additive, white, and
Gaussian with a variance of 0.1, and that the transmit sequence
is generated using the method in [19] with a peak-to-average
power ratio of 1. The number of interfering range rings N, and
number of azimuth sectors L are set to 2 and 10, respectively.
Additionally, the normalized Doppler shifts of the adjacent
range-azimuth cells are assumed to be uniformly distributed over
the interval Q2. = [—.1, .1]; see [65] for further details.

The estimation performance of different approaches in mov-
ing target scenarios is examined via a Monte-Carlo trial with
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Performance comparison of moving target parameter estimation using the proposed algorithm, the Bussgang-aided approach, and the co — precision

case: (a) average normalized error of estimating the backscattering coefficient, (Jovg — éo|/|cvol). (b) average error of estimating the normalized Doppler shift v,
for different transmit sequence lengths N € {10, 20, 25, 50, 100}.
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Performance comparison of moving target parameter estimation using the proposed approach, the Bussgang-aided approach, and the co — preciston

case for N € {50, 100, 1000}. The upper plots show the results of estimating «cg on the complex plane, while the lower plots show the results of estimating v on
the polar plane, where different radii are used for different approaches for visual clarity.

randomly generated ground truths for target parameters and
presented in Fig. 5. More precisely, the normalized estimation
error of the proposed approach in estimating the backscattering
coefficient avg in case of a moving target, as well as the outcomes
of the Bussgang-aided approach (modified for moving targets),
and the oo — precision case are shown in Fig. 5(a) while the
errors for estimating the normalized Doppler shift v are depicted
in Fig. 5(b). Furthermore, as in the case of a stationary target,
Fig. 6 plots the radar parameter estimates for the case of amoving

target through a Monte-Carlo trial. The upper plots in Fig. 6 show
the results of estimating the backscattering coefficient g, along
with its true value, for N € {50,100, 1000} on the complex
plane. On the other hand, the lower plots in Fig. 6 show the
estimates of the normalized Doppler shift on the polar plane.
The result of estimation for different approaches are shown on
circles with slightly different radii for the sake of clarity.

As in the case of stationary targets, it can be observed from
the Fig. 5 that estimates g and v become more precise as [V
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error of estimating the backscattering coefficient, (|ovg — éo|/|avg|), (b) average error of estimating the normalized Doppler shift v, for different noise variances

o2 €{107°,107%,1073,1072,1071,1, 10}.

grows larger. In fact, as N increases, the estimates of radar
parameters obtained by the proposed approach get closer to that
of the oo — precision case. Further note that in order to have the
same performance in estimation of the parameters of a moving
target, the proposed algorithm requires more samples than the
stationary target case, as can be verified through Figs. 2 and 5
as anticipated.

Finally, Fig. 7 demonstrates the performance of the pro-
posed algorithm in the presence of different noise power
levels for the moving targets, and compares it with that of
oo — precision case. For this experiment, we again use the
same settings as used for stationary case., i.e. N = 25, and
the noise is additive, white, and Gaussian with variance o2 €
{107°,107%,1073,102,1071, 1, 10}. The average normalized
error of estimating oy is shown in Fig. 7(a) while the errors
for estimating the normalized Doppler shift v is depicted in
Fig. 7(b). Similar to the case of stationary targets, it can be seen
from Fig. 7 that the average error of estimating both « and v
stay very low for % < 0.1, however their performances degrade
after o = 1, even for co — precision case.

VIII. CONCLUDING REMARKS

High-resolution sampling with conventional analog-to-
digital-converters (ADCs) can be very costly and energy-
consuming for many modern applications. This is further ac-
centuated as recent applications, including those in sensing and
radar signal processing, show a growing appetite in even larger
than usual sampling rates— thus making the mainstream ADCs
a rather unsuitable choice. To overcome these shortcomings, it
was shown that in lieu of using the conventional ADCs in radar
parameters estimation, one can use inexpensive comparators
with time-varying thresholds and solve an optimization problem
to recover the target parameters with satisfactory performance.
This is very beneficial at high frequencies as it is both practical

and economical, while it can also pave the way for future applica-
tions to sample at much higher rates. Finally, simulation results
were presented that verified the efficiency of one-bit target
parameter estimation for both stationary and moving targets,
especially as the length of the transmit sequence /N grows large.
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