
Calculation of Molecular Vibrational Spectra on a Quantum
Annealer

Alexander Teplukhin,† Brian K. Kendrick,*,† and Dmitri Babikov‡

†Theoretical Division (T-1, MS B221), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
‡Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53021, United States

*S Supporting Information

ABSTRACT: Until recently molecular energy calculations using quantum
computing hardware have been limited to gate-based quantum computers. In
this paper, a new methodology is presented to calculate the vibrational spectrum
of a molecule on a quantum annealer. The key idea of the method is a mapping of
the ground state variational problem onto an Ising or quadratic unconstrained
binary optimization (QUBO) problem by expressing the expansion coefficients
using spins or qubits. The algorithm is general and represents a new revolutionary
approach for solving the real symmetric eigenvalue problem on a quantum
annealer. The method is applied to two chemically important molecules: O2

(oxygen) and O3 (ozone). The lowest two vibrational states of these molecules
are computed using both a hardware quantum annealer and a software based
classical annealer. Extension of the algorithm to higher dimensions is explicitly
demonstrated for an N-dimensional harmonic oscillator (N ≤ 5). The algorithm
scales exponentially with dimensionality if a direct product basis is used but will
exhibit polynomial scaling for a nondirect product basis.

1. INTRODUCTION

Quantum computers are seen by many as a future alternative
to classical computers. Although quantum supremacy has not
yet been achieved, the field is advancing quite rapidly. There
are two major types of quantum computing devices available
today:1 quantum annealer2 and universal quantum computer
based on quantum gates.3−5 The first type is an example of
adiabatic quantum computing6 and is used to solve
optimization problems, which at first glance appears to be
quite restrictive. The second type is based on quantum gates,
which appears to have a wider applicability and therefore may
be able to simulate a larger variety of problems. However,
adiabatic and gate-based quantum computing were proven to
be formally equivalent.7 Thus, the practical application space is
most likely limited by the hardware realization and not
necessarily by the type of approach. In either approach, the
current generation of quantum computing devices has
significant noise and supports a small number of fully coupled
qubits (<100). Hence, they are often referred to collectively as
NISQ (Noisy Intermediate Scale Quantum) devices, and their
accuracy and problem size is limited.
Coming from the physical chemistry community, we asked

ourselves if it would be possible to program an important
fundamental problem on a quantum annealer such as the
commercially available D-Wave machine.8 Typically, people
who work with such devices go in the opposite direction:
knowing hardware capabilities they come up with a suitable
optimization problem. As a fundamental problem we chose to
calculate the vibrational ground state and possibly excited

states of a molecule. This problem is very important in
chemistry, for example: Hn

+ ions,9−12 CH5
+ and isotopo-

logues,13,14 H3O
+, H5O2

+, and deuterated analogues,15,16

hydrogen clusters,17−19 their isotopologues,20,21 hydrogen
bonded systems,22 and Lennard-Jones clusters.23,24 The
common method to study these molecular systems is a
Monte Carlo (MC) method in its various flavors: variational
MC, time-dependent variational MC, diffusion MC, and path
integral MC.
Recently, a ground state problem in electronic structure

theory was implemented on both types of quantum computing
devices: a quantum annealer25,26 and a gate-based quantum
computer.27−29 In the first study, the mapping of electronic
Hamiltonian to quantum annealer Hamiltonian is achieved by
means of creation and annihilation Fermionic operators
followed by transformation to spin operators and reduction
to the form that includes pairwise interactions between qubits.
An iterative algorithm is used to find the lowest ground state
energy. In the second work, to approach the same problem on
a gate-based quantum computer, an expectation value of each
term in the electronic Hamiltonian is evaluated on a trial wave
function using a quantum device, and the resultant total energy
serves as a guide for generating the next trial wave function.
The optimization step of this Variational Quantum Eigensolver
(VQE), namely the trial generation, is performed on a classical
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computer. The iterative nature of these algorithms makes them
both hybrid.
In contrast to the electronic structure algorithms discussed

above, the new algorithm presented in this work is general and
solves any real symmetric eigenvalue problem. To our
knowledge, this is the first general quantum annealer based
eigenvalue solver and will be referred to below as the Quantum
Annealer Eigensolver (QAE). As discussed in more detail
below, our QAE algorithm is also hybrid since the variational
eigenvalue problem is solved via a sequence of many quantum
annealer optimizations performed with varying weights on the
constraint equations (i.e., Lagrange multipliers). The scanning
and optimization of the weights is done on a classical
computer. Mapping the eigenvalue problem to a quantum
annealer hardware is nontrivial, because the annealer solves a
minimization problem defined by an Ising functional of the
form H(s) = ∑ihisi + ∑i<jJijsisj, where the spin variables si
accept discrete values {−1,1}. Alternatively, the functional can
be converted to quadratic unconstrained binary optimization
(QUBO) form using discrete variables xi ∈ {0,1}, called qubits,
giving H(x) = ∑iQiixi + ∑i<jQijxixj.

30 The problem is how to
write down a ground state or eigenvalue problem in QUBO
form and explicitly construct the matrix Q.
Thus, the primary goal of this paper is to demonstrate a

mapping of the eigenvalue problem to the QUBO problem,
including the treatment of exited states and multiple
dimensions. For simplicity, we use a direct product basis set
for problems with more than one dimension. As a
consequence, this choice of basis set causes QAE to scale
exponentially with system size. However, choosing a nondirect
product basis set (for example, a MC-sampled set of grid
points) will give polynomial scaling. Since the D-Wave
machine has to be queried multiple times to accumulate
enough statistics, MC sampling could be interleaved with the
hardware sampling (this approach was not examined in the
present study).
The outline of the paper is as follows: First, we present our

solution to this problem, including the extension to the excited
state calculations and multiple dimensions. Second, we apply
our algorithm to two chemically important species, O2

(oxygen) and O3 (ozone). For the ozone calculation, a
reduction in the number of qubits was required in order to fit
the problem on the D-wave machine. Third, the introduction
of weighted constraints is presented following a technique used
to overcome the connectivity issue in the quantum annealer
hardware (i.e., D-Wave machine). Noise is also modeled in the
algorithm which is shown to reproduce the results from the D-
Wave machine. In the final discussion section, we consider
possible improvements of the algorithm and sources of error.

2. QUANTUM ANNEALER EIGENSOLVER ALGORITHM

2.1. Mapping of a Ground State Problem to a QUBO
Problem. The method is inspired by the variational principle.
Suppose we are interested in a ground state of a one-
dimensional system and its wave function Ψ is expanded using
an orthonormal basis φα and unknown expansion coefficients

aα: φΨ = ∑
α α α=

a
B

1
. Then, the ground state energy can be

expressed as a double sum over the Hamiltonian matrix

elements = ⟨Ψ| ̂ |Ψ⟩=E H φ φ∑ ⟨ | ̂ | ⟩
α β α β α β

a a H
B B

,

,
=∑

α β α β αβa a H
B B

,

,
.

It is easy to see that the functional form for the energy E is
similar to the QUBO form H(s), except that the coefficients aα
are continuous and aα ∈ [−1;1] (since from the normalization

condition ⟨Ψ|Ψ⟩ = 1 we know ∑ =
α α=

a 1
B

1
2 ). In contrast, the

QUBO variables xi are discrete.
The key idea in mapping the eigenvalue problem with

Hamiltonian matrix H to the QUBO optimization problem
with matrix Q is to express each expansion coefficient aα using
K qubits qk

α ∈ {0,1}. This approximation can be done in
multiple ways. The approach we followed in this work is a
fixed-point representation that is used to represent real
numbers in a classical computer. Since the magnitude of the
coefficients aα never exceeds unity, only the fractional part of
the coefficient has to be stored. The last qubit qK

α stores the
sign of aα. The complete expression for the coefficient is aα =

∑ α

=
− − q2

k

K k K

k1

1
− ∈ [−αq 1; 1)

K
. Now, the functional E can be

expressed explicitly in terms of the qubits qk
α. The powers of

two are combined with the matrix elements Hαβ giving the
matrix elements Qij. The qubits qk

α are mapped to the qubits xi
via the relation i = K(α − 1) + k, where i ∈ [1,B × K]. Since in
the QUBO (or Ising) model the ordering of qubits within the
pair does not matter (i.e., the interaction between i and j is the
same as j and i), the summation is restricted to i < j, and the
nondiagonal elements Qij are multiplied by two.
Unfortunately, the minimum of the functional E is a trivial

solution Ψ = 0, which is due to the lack of the normalization
constraint ||Ψ|| = 1. The workaround is to add that constraint
right into the functional with a strength λ, giving I = ⟨Ψ|Ĥ|Ψ⟩
+ λ(1 − ⟨Ψ|Ψ⟩)2. Essentially, the parameter λ penalizes any
deviation of the norm from unity, and it helps to guide the
optimization away from the trivial solution. One can think of λ
as a Lagrange multiplier and the functionals E and I as
objective functions. The problem with the functional I is that it
is no more a QUBO functional, rather it is biquadratic in x.
The trick is to lower the power of the constraint, giving G =
⟨Ψ|Ĥ|Ψ⟩ + λ(1 − ⟨Ψ|Ψ⟩). Dropping the constant shift λ,
which has no effect on the optimization, one obtains the final
expression for the functional form used in present study: F =
⟨Ψ|Ĥ|Ψ⟩ − λ⟨Ψ|Ψ⟩. The main consequence of the decreased
power is that the normalization condition is broken per se (but
this can be fixed by rescaling the final solution |Ψ⟩ → |Ψ⟩/

Ψ ). However, the primary role of the penalty is to avoid
the trivial solution, and the functional F serves that purpose.
Another issue with the functional F is that it encourages a
nonphysical norm Ψ > 1. This limits the number of
techniques to find a good parameter λ. Ideally, λ should be
large enough to kick the optimization away from the trivial
solution minimum but yet small enough to stay away from the
large norm limit. To find an optimal value for λ, we scan in λ

and pick the solution with the lowest energy E = ⟨Ψ|Ĥ|Ψ⟩
(where here Ψ has been rescaled: ⟨Ψ|Ψ⟩ = 1). The overhead
associated with scanning in λ is negligible since querying the
quantum annealer takes essentially all of the computational
time. The scanning in λ can be considered as part of the overall
sampling procedure and is done simultaneously while
accumulating statistics. Also, the dimensionality of the problem
has no effect on the scanning.
We would like to stress that the operator Ĥ is a problem-

dependent physical operator and can be of any kind and
structure. The matrix elements Hαβ are evaluated on a classical
computer using a convenient problem-dependent basis set. For
example, to calculate the vibrational spectrum of a diatomic
molecule with reduced mass μ, internuclear distance r, and
potential energy surface V(r), we have Ĥ = (−ℏ2/2μ)∇2 +
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V(r) and use a finite Fourier basis set φα(r) to derive matrix
elements Hαβ. The dimensionality of the Hilbert space spanned
by the Fourier basis and the number of eigenpairs is simply the
number of basis functions B. Once we add the normalization
term and convert the expansion coefficients to qubits, the
problem is described by the QUBO functional FQ, which can
be associated with an operator in a Hilbert space spanned by
qubit configurations |q1

1...qk
α...qK

B⟩, i.e., a tensor product of
individual qubits. The dimensionality of the latter space is 2KB.
Thus, we are dealing with two Hamiltonians: the initial
problem Hamiltonian H and the final QUBO Hamiltonian FQ.
The explicit expression of matrix elements of the latter in terms
of matrix elements of the former is given in the Supporting
Information.
Since the functional F contains all possible products aαaβ of

the expansion coefficients, the QUBO functional FQ contains
all possible products qn

αqm
β of qubits, where n and m label qubits

for each individual expansion coefficient. This means that all
qubits are interacting with each other and require an all-to-all
pairwise connectivity.
To extract the physical wave function (eigenvector), one

reconstructs the expansion coefficients aα from the qubits qk
α

using a fixed-point representation: the first K qubits are used to
construct a1, the next K qubits are used to construct a2, and so
on. Then, the constructed coefficients are rescaled to satisfy
the normalization condition, ∑αaα

2 = 1, and the energy
(eigenvalue) is obtained by evaluating the expectation value of
the problem Hamiltonian Ĥ on the computed state ⟨ψ|Ĥ|ψ⟩ =
E. One has to repeat this procedure for multiple values of λ and
pick the one which gives the lowest energy.
2.2. Calculation of Excited States. The QAE algorithm

described above can be easily applied to the calculation of
excited states by modifying the initial problem Hamiltonian H.
Specifically, for the first excited state, an outer product matrix
of the previously computed ground state wave function is
added: H′ = H + S0|Ψ0⟩⟨Ψ0|. The parameter S0 is an arbitrary
user specified energy shift to move the ground state higher in
the spectrum. The only requirement on S0 is that it should be
larger than the energy of the first excited state, otherwise the
algorithm will keep converging to the ground state. To
compute the i-th excited state, similar terms for the states 0,
1,...,(i − 1) should be added to the Hamiltonian. In principle,
this iterative procedure allows one to compute the whole
spectrum of a molecule. To compute the first M excited states,
M × Nλ optimization problems have to be solved with properly
modified problem Hamiltonians Ĥ′. Obviously, for a fixed
basis size B and qubit expansion K, the higher states will not be
described as accurately as the lower ones.
2.3. Multiple Dimensions. The generalization of the QAE

method to multiple dimensions is straightforward. For a direct
product basis, the one-dimensional expansion is replaced with
an n-dimensional expansion, but the way to code each
expansion coefficient using K qubits remains the same. For
example, for a two-dimensional system with the same number
of basis functions B for each dimension, the expansion is

φ θΨ = ∑
α β αβ α βa
B B

,

,
, where φα and θβ are the basis functions in

each dimension. The qubits qk
αβ are now mapped to the

variables xi as follows: i = KB(α − 1) + K(β − 1) + k, where i
∈ [1,K × B2]. Thus, one needs KBd qubits to describe the d-
dimensional problem. This brings the number of explored

configurations to 2KB
d

.

The QAE method can also be applied to a nondirect product
basis. For example, one can implement a Sequential
Diagonalization Truncation (SDT)31−33 which drastically
reduces the size of the Hamiltonian matrix and ultimately
results in a much smaller total number of qubits than in a
direct product treatment. We use the direct product basis set
for a multidimensional harmonic oscillator problem and use
the SDT approach for ozone. Further details of applying the
SDT method to that molecule can be found elsewhere.34

3. RESULTS

3.1. Application to O2 and O3. We applied our algorithm
to the calculation of the ground and first excited states of the
oxygen and ozone molecules. For both, we used an accurate
potential energy surface of ozone.35 The one-dimensional O2

potential V(r) was generated from the full three-dimensional
ozone potential by moving one of the oxygen atoms far away
from the other two (i.e., RO−O2

= 60a0). The two lowest wave

functions for both molecules are shown in Figure 1. The

software based classical QUBO solver reproduces the wave
functions computed with a standard classical numerical
eigensolver (LAPACK36), whereas the output of the hardware
quantum annealer (D-Wave machine) is less accurate. The
sharp edges (low resolution) of the wave functions are due to
the small size of the basis set. For oxygen molecule, a Fourier
basis (eimr) was chosen small enough to give the known ground
state energy of 791.64 cm−1 within an error of 0.01 cm−1 using

Figure 1. Computed wave functions of the ground and first excited
states. The molecules are (A) O2 and (B) O3, and the wave function
is squared for ozone. Red and green bold curves are the results of a
classical numerical eigensolver (LAPACK). Solid thin black curves
were obtained using QAE with a software classical QUBO solver
(they lie on top of the LAPACK curves). Dashed black curves are the
results obtained using QAE with a hardware quantum annealer (D-
Wave machine). The blue curve is (A) oxygen potential V(r) and (B)
the minimum energy path V(ρ) for ozone.
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a standard classical numerical eigensolver (LAPACK). The
required number of periods in the Fourier series is mmax = 4
which translates to the basis size B = 2mmax + 1 = 9. For ozone,
we used an SDT basis set truncated at quite low energy Ecut =
2000 cm−1, which gives B = 12 basis functions. This basis is
sufficient to describe the ground state at 1451 cm−1 with an
error of 120 cm−1 using LAPACK but is too small for excited
state calculations (the computed excited state energy is 700
cm−1 larger than the true value of 2147 cm−1). Nevertheless, in
this work we are primarily interested in benchmarking the new
QAE method against a standard classical numerical eigensolver
(LAPACK) and not in the absolute accuracy of the solutions.
We refer the reader interested in accurate classical calculations
to the relevant literature.34,37 For the three-dimensional ozone
system, we plot the probability density (the wave function
squared) as a function of the symmetric-stretch coordinate ρ in
Figure 1b.38,39 The SDT basis functions span the other two
internal degrees of freedom (not plotted) at each value of ρ
and are computed classically.34 The number of qubits K per
expansion coefficient (or basis function) is 7 for oxygen and 5
for ozone which is the maximum possible number which fits
within the 64 logical fully connected qubits on the hardware
quantum annealer (D-Wave machine). Namely, K·B = 7·9 = 63
for oxygen and K·B = 5·12 = 60 for ozone.
Figure 2 illustrates the convergence of the energies as a

function of the number of qubits K per expansion coefficient aα
(i.e., the level of discretization). There are several interesting
findings to discuss. First, the error decreases exponentially as a
function of K, which is very appealing. Second, the error
decreases and reaches a plateau, for both solvers and both

molecules. This shared behavior demonstrates that the QAE
algorithm itself is universal and practical, but the actual error is
solver and system dependent. Third, the quantum annealer (D-
Wave machine) is much less accurate (by 2−3 orders of
magnitude) than the classical QUBO solver. In addition,
because the total number of qubits currently available in the
quantum annealer is rather limited, the corresponding
(dashed) curves do not continue to higher values of K.
Finally, the classical QUBO solver brings the error for O2

down to 0.01 cm−1 which coincidently matches the error of
chosen basis size. No more than K = 8 qubits (a qubyte) per
coefficient are needed for oxygen. For ozone, K = 5 qubits are
required by the classical QUBO solver to reach the plateau
within an error of less than 3 cm−1. This is quite accurate,
compared to the 120 cm−1 error due to the chosen (small)
SDT basis.
Table S1 in the Supporting Information gives the parameters

used in scanning over the normalization penalty λ. The initial
λmin could be zero or some value that is smaller than the
expected energy of the state being computed (if it is roughly
known a priori). The number of steps Nλ specifies the number
of samples and is a convergence parameter. The last parameter
is the step size Δλ which ideally should be the same for all K
within a given problem. However, for small K we were always
getting trivial solutions which is probably due to the inaccurate
description of the problem. The only way we found to avoid
this is to increase the step size Δλ by more than an order of
magnitude. We faced the same issue when we were simulating
the hardware noise. Increasing both the step size and the
number of steps allowed us to overcome this obstacle.

3.2. Algorithm Scaling. An idealized QUBO solver would
give the lowest state immediately. The hardware based solver,
such as a quantum annealer, is expected to find the lowest state
by means of inherent quantum tunneling between states. The
software based solver, such as the Tabu search implemented in
qbsolv (see Sec. 5), searches for the lowest state by crawling on
the landscape and remembering configurations that were
visited previously and are now “tabued”. No matter what type
of solver is used, QAE performs Nλ iterations to find a good
normalization penalty. Therefore, in the case of an ideal
QUBO solver, the scaling of the algorithm is simply O(Nλ). In
practice, however, this theoretical scaling is not obtainable,
because the QUBO solver may also have additional (internal)
effects on performance and undesirable artifacts can occur. For
example, the classical QUBO solver (qbsolv) that we used in
this work shows a steplike runtime as a function of K (see
Figure S1 in the Supporting Information), which is due to a
backbone-based method inspired by Glover et al.40 used to
partition the problem into smaller pieces.
In the next paragraph, we will examine the performance of

the QAE algorithm that uses the classical QUBO solver for a
multidimensional harmonic oscillator. We will show the
runtime scales as O(NλKB

d), where d is the number of
dimensions, and B is the number of cosine basis functions in
each dimension. The oscillator frequencies were set differently
according to ωi(cm

−1) = 800 + 200·(i−1), where i is the
dimension index.
To verify the linear scaling with K, we plot the normalized

computational time (time divided by K) as a function of K in
Figure 3. All curves are roughly horizontal, and their slope does
not depend on dimensionality (except for perhaps d = 5). The
rapid increase or steps at K = 16 for 1D, at K = 6 for 2D, and at
K = 2 for 3D are due to partitioning size. They appear as soon

Figure 2. Ground and first excited state energy errors as a function of
number of qubits K per expansion coefficient aα. The molecules are
(A) O2 and (B) O3. The ground state is red, and the excited state is
green. Results were obtained using QAE with a classical QUBO solver
(solid curves) and a quantum annealer (dashed curves). Errors are
computed relative to the energies of a classical numerical eigensolver
(LAPACK).
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as the total number of qubits exceeds the sub-QUBO size of
47, which is 3 × 16 for 1D, 32 × 6 for 2D, and 33 × 2 for 3D.
Once the linear dependence on K has been established (see
Figure 3), one can then verify the exponential dependence on
dimensionality d. The logarithm of the normalized computa-
tional time is plotted in Figure 4 as a function of the

dimensionality d. All of the curves exhibit a roughly linear
dependence on d which confirms the exponential scaling.
Again, the times for all K at d = 1 and for K = 4 at d = 2 deviate
significantly from the main trend because no partitioning is
required to compute those. The average slope calculated based
on d = 2 through 4 is 0.58 which is close to the theoretically
predicted value of 0.48 (for B = 3). When d = 5 is included, the
slope increases to 0.72 which is most likely due to the very
large problem size. The total number of qubits for d = 5 is KBd

= 972 to 3888 for K = 4 to 16 and B = 3 which results in a total
number of configurations 10300 to 101000. In summary, Figures
3 and 4 confirm the scaling law O(NλKB

d) of the method using
a classical QUBO solver.

We did not perform scaling studies on the hardware
quantum annealer (D-Wave machine) because it was not
practical due to the small number of logical qubits and long
runtime. For example, for O2 we were able to approach small
problems with B = 9 and K = 1 to 7, and the runtime was about
tdw = 2500 s. This time does not depend on the number of
logical qubits K, because all problems are treated by the
hardware as maximum-size problems. In contrast, the classical
QUBO solver runtime for these problems was about tcl = 30 s,
which is almost 2 orders of magnitude faster. The long runtime
for the hardware quantum annealer is primarily due to the large
number of reads (see Figure S3). In addition, the analysis for
the d-dimensional harmonic oscillator would require an
extensive QUBO partitioning, which means another factor of
10 to 100 increase in tdw.

3.3. Chaining in Quantum Annealer. The only
constraint we have discussed so far is a normalization
constraint with associated penalty λ. However, there is another
constraint and penalty factor worth mentioning when running
on a quantum annealer (D-Wave machine). Namely, the chain
constraint and the associated chain penalty. The physical
qubits in the hardware do not have an all-to-all connectivity
which is a requirement of the algorithm. In fact, each qubit has
six neighbors at most (see Chimera graph).30 Fortunately,
there is a method to embed a fully connected graph on top of
the hardware graph. In this approach, a number of qubits are
organized into so-called chains. Qubits within a chain act like a
single logical qubit which is connected to all other logical
qubits. To program chains in the hardware Chimera graph, one
adds a set of constraints which have a single strength or chain
penalty c. As with any constraint, the associated penalty or
weight c should be neither too small, because then the chains
are broken, nor too large, because then the hardware will
become insensitive to the original problem. The simplest
approach to find a good chain penalty is to perform scanning,
in a similar way to λ scanning. Figure 5 demonstrates an
example of this two-dimensional scanning for the ground state
of O2 with a Fourier basis of size B = 7 (mmax = 3) and K = 3.

Figure 3. Normalized computational time for the d-dimensional
harmonic oscillator. The time is plotted as a function of K and was
obtained using QAE with a classical QUBO solver. Results are
presented for 1D (red), 2D (green), 3D (blue), 4D (black), and 5D
(brown). The number of cosine basis functions is B = 3 (mmax = 2).
No slope in all curves demonstrates linear scaling of the algorithm
with K.

Figure 4. Logarithm of the normalized computational time as a
function of the number of dimensions. The time was measured for the
d-dimensional harmonic oscillator and was obtained using QAE with
a classical QUBO solver. Results are presented for the number of
qubits per coefficient K = 4 (red), K = 8 (green), K = 12 (blue), and
K = 16 (black). The number of cosine basis functions is B = 3 (mmax =
2). The linear dependence confirms exponential scaling in d.

Figure 5. Scanning in the normalization λ and chain c penalties. The
calculation was performed on the hardware quantum annealer (D-
Wave machine) to find the minimum energy (see color scale in cm−1).
The three major regions of interest are trivial solutions (top-left
black), broken chains (bottom red-blue), and the optimal region
where both the normalization and chain constraints are satisfied and
the minimum energy solution is obtained (top-right blue).
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As expected, in the region of small c the minimum energy is
unacceptably large, simply due to broken chains. For large c we
see two regions: the region of small λ, which contains trivial
solutions only (because the normalization constraint is too
weak) and the region of large λ with reasonable minimum
energies. The “phase transition” between these two regions
occurs close to the true ground state energy 791.64 cm−1. The
result of this two-dimensional scanning shows that a
reasonable chain penalty lies between 10000 and 20000
cm−1. We used c = 15000 cm−1 in all of our calculations.
3.4. Simulating Hardware Noise. The results obtained

on the quantum annealer are much less accurate than those
obtained using the classical QUBO solver (see Figures 1 and
2). We believe that this discrepancy is partially due to the error
with which the QUBO problem is programmed in the
hardware. The reported integrated control errors (ICE) for
the hardware we used (D-Wave) are quite large.8 For example,
the diagonal elements are programmed with a mean error 0.7%
of the maximum matrix element. In the O2 calculation, the
maximum matrix element is 11.5 × 103 cm−1 which translates
into an ICE of 80 cm−1. Moreover, the error has a quite broad
distribution, and its standard deviation is 0.8%. This can
potentially double the ICE, bringing it to 160 cm−1. Upon
consideration of this source of error, the large difference
between the quantum annealer and classical results in Figure 2
is no longer that surprising. To model the effects of the
hardware errors (noise), we performed calculations with a
classical software based solver where random noise was
manually added to QUBO (see Materials and Methods).
The errors (relative to LAPACK) of the classical QUBO
solutions with different magnitudes of noise are shown in
Figure 6. On average, introduction of noise increases the error.
For the 1D harmonic oscillator, the default noise (using the
reported ICE values discussed above) mimics the quantum
annealer behavior. For oxygen, the quantum annealer behavior
is well characterized if the noise is increased by a factor of 3.
For ozone, a factor of 5 or 7 is enough. As the problem size
increases, larger noise scaling is required (to reproduce the
hardware performance), which implies that there could be
some other source of discrepancy between the hardware and
software solvers. Also, introduction of noise required an
increase in the strength of the normalization weight λ which is
reflected in Table S1.

4. DISCUSSION

There are several places in the method where some
improvements could be done and which are definitely worth
listing. First, the form of the objective functional we used in
this study is not the only one. For example, the initial
biquadratic functional I, that we simplified earlier, can be
converted to a quadratic QUBO form using multiple additional
constraints. The drawback of this approach is that it will
require additional penalty factors and ultimately will make the
problem much harder to manage and solve.
Second, the method would significantly benefit if the

normalization condition could be integrated into the func-
tional, rather than added to it. For example, one can notice that
solution a represents a point on the unit hypersphere. Thus, its
position can be described using spherical coordinates, and the
angles could be approximated with qubits q. However, the
presence of products of sines and cosines in this kind of
mapping results in a polynomial of high degree in q. This
would require multiple constraints and associated penalty

factors to convert the problem into quadratic form. The
problem becomes difficult again.
Third, the actual scaling of the algorithm depends on the

solver and its parameters. For the classical QUBO solver used
in this work, the stopping criterion is specified by the number
of repeats without any improvement. For the quantum
annealer, the user specifies the number of annealing cycles or
reads (see Materials and Methods). The scaling law O(Nλ) is
for the algorithm itself, while the runtime using a classical
QUBO solver scales as O(NλKB

d), and no performance study
was possible for the hardware QUBO solver.
Fourth, the physical or working Chimera graph of the

quantum annealer is not perfect. The yield of the working
graph, the percentage of working qubits (and couplers) that
are present, is 99% (98%).8 To make it a full-yield graph, an
additional software postprocessing is performed before results

Figure 6. Simulation of quantum annealer noise. (A) 1D harmonic
oscillator, (B) O2, and (C) O3. In each panel, the classical QUBO
solution error (relative to LAPACK) is plotted as a function of the
number of qubits K for different noise models. In general, the error for
the quantum annealer (black curves) is larger than for the classical
solver without noise (red curves). The quantum annealer behavior
can be qualitatively reproduced by adding noise to the classical
calculation. For the 1D harmonic oscillator and O2, the noise was
added with scaling factors of 1 (green), 3 (blue), and 5 (brown). For
O3, the noise scaling factors are 3 (green), 5 (blue), and 7 (brown).
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are sent back to the user. The user may opt out of this fixing
procedure, however, that reduces portability of the algorithm,
since every machine has its own working graph. Still removing
this layer might be worth exploring.
Fifth, the annealing time tann is another parameter that can

potentially play some role in the annealing process. We found
that increasing tann does not change results significantly. What
affects the results more was the number of reads Nreads. Because
there is a limitation tann·Nreads < 3 s in the API, we chose the
maximum number of reads per job submission: Nreads = 104

and tann = 299 μs. The maximum allowed tann is 2000 μs, but it
would be good to explore larger annealing times if possible.
Sixth, it is not quite clear how to properly include the ICEs

in the noise simulation tests. The errors are reported solely for
the maximum and minimum elements of QUBO matrix, and
they are a function of annealing time. In addition, they were
reported for 70% of the annealing process (i.e., there is no
error data at the end of annealing).8 For the noise tests
reported in this work, we used the reported errors at 70% and
manually scaled them.
Seventh, the annealer temperature could be another source

of error. In a recent paper41 it was argued that the annealer
temperatures must be appropriately scaled down with problem
size (at least in a logarithmic way or better yet as a power law).
In fact, during our study we had to switch from the device with
1024 qubits (DW2X) to 2048 qubits (DW2000Q). The
temperature lowered from 15.7 mK to 14.5 mK, which is
almost logarithmic (it should be 14.3 mK). However, we had
to perform 50 times more reads on the larger machine to
obtain reliable solutions for small λ and large c.
Finally, the landscape of the hypothetical configuration space

is defined by the problem. It could be that our problems have
high and thick barriers on the landscape, which effectively
disables the tunneling mechanism in the annealer and restricts
exploration. Possibly, a very long annealing time could help to
determine if this is the case. Another possibility is that the
landscape has a large number of wells and the solver jumps
from one to another.
This also might be seen as the presence of a small energy gap

between low-lying states in the QUBO Hamiltonian. We
believe that the gap size decreases exponentially with
increasing accuracy of the expansions coefficients K and
consequently with the number of qubits. This should not be
confused however with the energy spacing between the states
of problem Hamiltonian Ĥ, which is constant and is solely
determined by the physical system (for example ℏω in a
harmonic oscillator).
In summary, we developed a hybrid algorithm (QAE) for

the calculation of the vibrational spectrum of a molecule on a
quantum annealer. The eigenvalue problem is mapped to the
QUBO (Ising) problem by discretization of the expansion
coefficients using qubits. The method is hybrid due to the
scanning in a penalty (or weight) to impose wave function
normalization. Running on the actual quantum annealer
requires the additional scanning in chain penalty. The method
was applied to the ground and first excited vibrational states of
two chemically important species: O2 (oxygen) and O3

(ozone). The QAE calculations based on the classical
QUBO solver outperform those on the quantum annealer
(D-Wave machine) in both accuracy and computational time
(i.e., no supremacy of the latter one). Our tests show that this
is partially due to the errors or noise present in the hardware.
Hopefully, in the future it will be possible to build larger, more

accurate, and fully connected quantum annealers. As a final
note, the QAE algorithm is universal and can be used in any
field of science or engineering to solve the real symmetric
eigenvalue problem. To apply QAE to a complex Hermitian
matrix, one may consider converting it to a real symmetric
matrix first.42

5. MATERIALS AND METHODS

We used qbsolv43 as the software classical QUBO solver and
the D-Wave 2000Q8 as the hardware quantum solver. The
underlying qbsolv algorithm is a combination of Tabu search
and a backbone-based method inspired by Glover et al.40 The
latter one is used for partitioning the original (large) QUBO
into smaller sub-QUBOs. The only modification we did was to
increase the span of partitioning to 1 (the hard-coded value is
0.214). The number of repeats in the stopping criterion is Nrep

= 104. For the excited states calculations, we used S0 = 9000
cm−1 in the expression for H′; however, 3000 and 6000 cm−1

also worked well.
The hardware was accessed using qOp stack: qbsolv, DW

library, and SAPI.44 Although qbsolv allows running sub-
QUBOs on the hardware, we did not follow this approach,
because the contribution of the D-Wave machine to the
solution would be hard to estimate. Furthermore, qbsolv does
implicit restarts and uses a classical Tabu search to refine
solutions. Thus, a hardware calculation using the default qbsolv
is actually hybrid and not fully quantum (for problems that fit
one sub-QUBO qbsolv is completely classical). In order to
bring the actual D-Wave performance to the surface, we
removed partitioning, restarts, and refinement from qbsolv, so
that it only serves as an interface to the hardware. In addition,
we raised the number of reads to 105 (the hard-coded value is
25). Figure 5 was prepared with 5 × 105 reads (half a million),
and the chain penalty was 15000 cm−1 (the hard-coded value is
15). The number of physical qubits on the DW2000Q is 2028
qubits (99% yield) and 5903 couplers (98% yield). However,
embedding a fully connected graph leaves us with just 64
logical qubits.
Our code generates input QUBO matrices for qbsolv. It is

written in Fortran and uses LAPACK36 as the classical
numerical eigensolver (for benchmarking the QUBO results).
Convergence studies were done for Nrep, Nreads, and Nλ and are
reported in Figures S2−S4 of the Supporting Information. We
did not see a strong dependence on Tabu memory, so we used
the default values. In addition, we tested the code on d = 1 to 5
dimensional harmonic oscillators, and the convergence for d =
1 to 3 in terms of number of qubits K is given in Figure S5.
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