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ABSTRACT: Several alternative methods for the description of the interaction between rotation
and vibration are compared and contrasted using hyperspherical coordinates for a triatomic
molecule. These methods differ by the choice of the z-axis and by the assumption of a prolate or
oblate rotor shape of the molecule. For each case, a block-structure of the rotational−vibrational
Hamiltonian matrix is derived and analyzed, and the advantages and disadvantages of each method
are made explicit. This theory is then employed to compute ro-vibrational spectra of singly
substituted ozone; roughly, 600 vibrational states of 16O18O16O and 16O16O18O isomers combined,
with rotational excitations up to J = 5 and both inversion parities (21600 coupled ro-vibrational
states in total). Splittings between the states of different parities, so-called K-doublings, are
calculated and analyzed. The roles of the asymmetric-top rotor term and the Coriolis coupling
term are determined individually, and it is found that they both affect these splittings, but in the
opposite directions. Thus, the two effects partially cancel out, and the residual splittings are
relatively small. Energies of the ro-vibrational states reported in this work for 16O18O16O and 16O16O18O are in excellent agreement
with literature (available for low-vibrational excitation). New data obtained here for the highly excited vibrational states enable the
first systematic study of the Coriolis effect in symmetric and asymmetric isotopomers of ozone.

1. INTRODUCTION

Accurate quantummechanical treatment of coupled rotational−
vibrational motion can be a challenging task, even for the
smallest molecules such as triatomic, if the range of rotational
and vibrational excitations is significant (e.g., up to the
dissociation threshold), the atoms are heavy (nonhydrogen),
and the nature of problem requires accounting for all terms in
the ro-vibrational Hamiltonian operator. With rotation−
vibration interaction terms included, the size of the Hamiltonian
matrix is usually huge, and the numerical cost of its
diagonalization is very significant, often unpractical. In the
literature, such nearly exact calculations of the rotational−
vibrational spectra have been reported for H3

+,1HeHF,2 LiNC,3

HeN2
+,4 H2O,

5 H2S,
6 SO2,

7,8 HO2,
9 Ar3,

10 and very recently for
O3.

11 For an accurate ro-vibrational spectrum like that, even
after it has already been computed, the process of assigning the
vibration mode quantum numbers (v1, v2, v3) and the
asymmetric-top rotor quantum numbers (JKaKc) to the
individual rotational−vibrational states is also challenging.12

For these reasons, a symmetric-top rotor approximation (also
known as the K-conserving assumption) remains a popular
practical tool for the prediction of ro-vibrational state
energies.13−16 In this simplified method, the terms in the
Hamiltonian operator, responsible for the coupling of rotational
and vibrational degrees of freedom, are neglected (assumed to
be small), which permits to split the overall Hamiltonian matrix
into a number of independent smaller blocks that can be labeled

by quantum numbers of the symmetric-top rotor (JK). Within
each block, accurate calculations of the vibrational states can be
carried out, and then the overall spectrum of molecule is
obtained by collating these individual pieces back together. The
major drawback of this simplified approach is that the resultant
spectrum lacks the so-called K-doubling.7,17 Namely, for all
values of K in the range 1 ≤ K ≤ J, the ro-vibrational states
computed in this simplified way are doubly degenerate, whereas
in nature they are known to exhibit nonzero splittings, the K-
doubling.7,17,18 Importantly, such splittings represent a unique
spectroscopic feature of the molecule,19 and may also play a role
in natural phenomena, such as absorption of solar light by
atmospheric species.20,21

Our interest in this methodological challenge was stimulated
by the famous mystery of nonmass-dependent fractionation of
oxygen isotopes, associated with the recombination reaction
that forms ozone,22,23 which still remains unresolved.24−26 One
hypothesis, proposed by the group of Rudolf Marcus in a series
of recent papers,27,28 is that the Coriolis effect, responsible for
the rotation−vibration interaction, occurs more efficiently in the
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isotopically substituted asymmetric ozone molecules, such as
16O16O18O. The group of Marcus carried out classical trajectory
simulations to gain some insight into the mechanism of this
phenomenon but did not find enough evidence for its
justification.28 Interestingly, they concluded with the following
statement: “We speculate that the symmetry effect of Coriolis
coupling can appear in quantum mechanical analysis of the
model.”
Several accurate quantum calculations of the vibrational states

in ozone molecule are available from literature,29−32 but those
are restricted to the ground rotational state (J = 0) and one
simplest excited rotational state (J = 1 of negative parity) where
there is only one rotational block in the Hamiltonian matrix and
the Coriolis coupling does not occur. Systematic studies of the
rotationally excited states of ozone were conducted over the
years by Tyuterev and co-workers using the method of effective
Hamiltonian (see ref 33 and references therein). Their approach
gives valuable interpretation of the experimental spectra, and
also permits to validate or even adjust the potential energy
surface (PES) but, because of the semiempirical nature of their
Hamiltonian, the method remains accurate only in a limited part
of spectrum of the given molecule, which restrains its predictive
capability.
The first entirely general quantum mechanical calculation of

the rotational−vibrational states in symmetric and asymmetric
ozone molecules 16O16O18O and 16O18O16O with the Coriolis
coupling terms included was published just recently.11 As
mentioned above, both the calculations themselves and the
assignment of these states were challenging, so only the lowest
100 ro-vibrational states (for 16O16O18O and 16O18O16O
combined) were computed, assigned, and reported, up to only
J = 5. This first step is encouraging, but now the question is how
to push such calculations up to the level sufficient for the
theoretical prediction of thermal rate coefficients for several
isotopic variants of the ozone-forming recombination reaction
O + O2 → O3.
Our experience with this reaction tells us that this task would

be extremely demanding, as all states up to the dissociation
threshold have to be computed (on the order of 300 vibrational
states per rotational state of each isotopomer), plus scattering
resonances above the dissociation threshold (say within a 3 kT
range), for the values of angular momentum up to at least J = 50.
One can certainly argue that the role of the Coriolis coupling is
very likely to be significant for these high levels of rotational and
vibrational excitation. The practical question is how to conduct
such calculations in the most efficient and accurate way.
One good idea is to switch from Jacobi coordinates used in ref

11 to the hyperspherical coordinates34−38 that are better suited
for this system, for a number of reasons. First of all,
hyperspherical coordinates have a somewhat simpler form of
the Hamiltonian operator and thus are more efficient numeri-
cally. Second, they fully exploit the symmetry of the ozone
molecule and allow the treatment of both isotopomers of ozone,
16O16O18O and 16O18O16O, on an equal footing, covering all
wells on the global PES with the same grids and/or basis sets.
Although Jacoby coordinates also exploit the full symmetry of
the global PES, an incomplete basis set in Jacoby coordinates
will result in different accuracies for the two isotopomers.
Finally, hyperspherical coordinates facilitate assignment of the
computed ro-vibrational states.
However, within the hyperspherical approach, there are still

several options worth exploring. Namely, it appears that
different authors utilize different ways of positioning the z-axis

relative to the molecular plane, which results in rather different
structures of the correspondingHamiltonianmatrices.34−36One
of our goals here is to offer a comprehensive catalogue of these
possibilities, with a clear analysis of the advantages and
disadvantages of each choice. This is important as some of
these options appear to be better suited for those molecules that
are closer to the limit of a prolate symmetric top, whereas other
options are more appropriate for the molecules that are closer to
the limit of an oblate symmetric top. A concise summary of these
possibilities has never been collected in one paper, to the best of
our knowledge, which would certainly be useful for a meaningful
application of this methodology to a broad range of molecules.
These theoretical issues are addressed in Section 2 of the paper.
A practical application of this methodology to the isotopically
substituted ozone molecules 16O16O18O and 16O18O16O is
presented in Section 3, where the comparison of our data with
those previously published11 is also given. The conclusions and
the prospects for determining the origin of mass-independent
fractionation of oxygen isotopes, using this methodology, are
outlined in Section 4.

2. THEORY

Three usual Euler angles (α, β, γ) and three hyperspherical
coordinates (ρ, θ, φ) constitute the six degrees of freedom
needed for the description of the coupled rotational−vibrational
motion of a triatomic molecule. Qualitatively, the hyper-radius ρ
describes a “breathing” vibration mode, also known as
symmetric stretch, whereas the hyperangles θ and φ correspond
to bending and asymmetric-stretching modes of a triatom-
ic.39−41 In these coordinates, the exact rotational−vibrational
Hamiltonian operator is expressed in the following form13

H H T Tvib rot cor
̂ = ̂ + ̂ + ̂ (1)

The vibrational part of the Hamiltonian is separable in ρ, θ,
andφ and includes, besides the PES Vpes, what we call the “extra-
potential” term Vext

H T T T V V ( , , )vib ext pes ρ θ φ̂ = ̂ + ̂ + ̂ + +ρ θ φ (2)

This simple form of the vibrational Hamiltonian enables
efficient implementation of the sequential diagonalization-
truncation method.13 Actual expressions for these operators are

T
2

2 2

2μ ρ
̂ = −

ℏ ∂

∂
ρ

(3)

T
2 2

2

2

2
μρ θ

̂ = −
ℏ ∂

∂
θ

(4)

T
2

sin

2

2 2

2

2
μρ θ ϕ

̂ = −
ℏ ∂

∂
φ

(5)

V
2

1

4

4

sin 2
ext

2

2 2
μρ θ

= −
ℏ

+
ikjjj y{zzz (6)

where

m m m

m m m

1 2 3

1 2 3

μ =
+ + (7)

is a three-atom reduced mass.
2.1. Alternative Choices of the z-Axis. Expressions for the

rotational term T̂rot and the rotation−vibration interaction
(Coriolis) term T̂cor depend on the choice of the z-axis. In
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general, the adiabatically adjusting principal-axes hyperspherical
(APH) coordinates employ three principal axes of inertia of the
instantaneous geometry of the molecule (defined by ρ, θ, andφ)
to describe its rotational motion. These axes are adjusted
adiabatically as molecular geometry changes. Pack and Parker34

have chosen, as their z-axis, one of the principal axes that lies in
the molecular plane and follows the large-amplitude vibrational
motion of the molecule as it distorts toward two-body
dissociation (e.g., O3 → O + O2). Then, for z in the plane

T AJ BJ CJ
x y zrot
2 2 2̂ = ̂ + ̂ + ̂

(8)

T B J4 cos i
ycor θ

φ
̂ = ℏ

∂

∂
̂

ikjjjj y{zzzz (9)

Note that according to their convention, the y-axis is
perpendicular to the molecular plane, so the Coriolis term
couples J ̂ywith ∂/∂φ, which describes the angular momentum of
the pseudorotational motion (the so-called “internal rotation” of
the molecule because of its vibration along φ). Expressions of
the effective rotational constants of such a fluid rotor, as opposed
to a rigid rotor, are listed in Table 1. Note that they depend on
both ρ and θ, but not on φ.

Alternatively, Johnson35 and independently Kendrick36 have
chosen their z-axis as the principal axis perpendicular to the
molecular plane. Then, for z ⊥ to the plane

T AJ BJ CJ
y z xrot
2 2 2̂ = ̂ + ̂ + ̂

(10)

T B J4 cos i
zcor θ

φ
̂ = ℏ

∂

∂
̂

ikjjjj y{zzzz (11)

In this case, the Coriolis term couples J ̂z with ∂/∂φ. To avoid
confusion, we do not rename the effective rotational constantsA,
B, and C, but in this case they correspond to J ̂y, J ̂z, and J ̂x,
respectively, as emphasized by Table 1.
2.2. Limits of Prolate and Oblate Symmetric Tops. The

limiting case of a symmetric-top rotor is methodologically
important, even for an asymmetric-top rotor treated exactly
without any approximations, as it is always useful to split the
terms in eqs 8 and 10 such that

T T Trot sym asym
̂ = ̂ + ̂

(12)

It should be stressed that this expression is exact, not an
approximation (not yet), but is merely a convenient re-
arrangement of terms within T̂rot.
Let us assume that the three moments of inertia of the

molecule are such that it is close to the limit of a prolate
symmetric top (such as a weakly bound van der Waals complex
O···O2).

14,26,42 First consider the case of Pack and Parker34

when the z-axis lies in the molecular plane as shown by a
pictogram at the bottom of Figure 1. In this case Ix ≈ Iy > Iz,

which corresponds toA≈B <C. One can easily check that, using
the definition J2̂ = J ̂x

2 + J ̂y
2 + J ̂z

2, the expression of eq 8 can be
rewritten in the form of eq 12 with the following assignments
(prolate, z in the plane)

T
A B

J C
A B

J
2 2 zsym

2 2̂ =
+ ̂ + −

+ ̂ikjjj y{zzz (13)

T
A B

J J
2

( )
x yasym
2 2̂ =

− ̂ − ̂
(14)

Alternatively, in the case of Johnson35 and Kendrick36 with
the z-axis perpendicular to the molecular plane, as shown by the
pictogram at the bottom of Figure 2, we should set Iy ≈ Iz > Ix

(although we still have A ≈ B < C, according to the definition of
Table 1). Therefore, the expression of eq 10 can be rewritten in
the form of eq 12 with the following definitions (prolate, z ⊥ to
plane):

T
A B

J C
A B

J
2 2 xsym

2 2̂ =
+ ̂ + −

+ ̂ikjjj y{zzz (15)

T
A B

J J
2

( )
y zasym
2 2̂ =

− ̂ − ̂
(16)

These assignments are physically appealing, as we defined two
useful characteristics of the molecule. The first characteristic is
the average of two (approximately equal) rotational constants A

Table 1. Correspondence between Components of the Total
Angular Momentum J and Rotational Constants A, B, and C

of the Fluid Rotor in APH Coordinates

z in plane (Pack &
Parker)

z ⊥ plane (Johnson;
Kendrick)

corresponding rotational
constant

Jx Jy A−1 = μρ2 (1 + sin θ)

Jy Jz B−1 = 2μρ2 sin 2θ

Jz Jx C−1 = μρ2 (1 − sin θ)

Figure 1. Rotational block structure of the Hamiltonian matrix for a
prolate-top rotor molecule with the z-axis in the molecular plane.
Letters S, A, and C indicate contributions from the symmetric-top
rotor, asymmetric-top rotor, and Coriolis coupling terms, respectively.
Other blocks of the matrix are zero. The blocks are labeled byΛ andΛ′,
the value of projection of the total angular momentum J onto the z-axis.

Figure 2. Same as in Figure 1, but for a prolate-top rotor molecule with
the z-axis perpendicular to the molecular plane. The blocks are labeled
byΩ andΩ′, the value of the projection of the total angular momentum
J onto the z-axis.
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and B of a nearly prolate top, sometimes called Ã = (A + B)/2,
which appears in eqs 13 and 15. As this Ã <C, the last term in eqs
13 and 15 is positive. The second characteristic is the difference
of A and B in eqs 14 and 16, namely (A− B)/2, which serves as a
measure of deviation from the limit of a prolate symmetric top.
Indeed, in the limiting case of a perfectly symmetric prolate top,
when A = B exactly, we correctly obtain T̂asym = 0, and then
simply T̂rot = T̂sym.
We also see that if the rotor is not perfectly symmetric but is

extremely prolate, A ≈ B≪ C, then the effect of the asymmetric
term is expected to be small, T̂asym≪ T̂sym, and one can consider
an approximation in which this term is neglected (the
symmetric-top approximation). Importantly, in this case the
Coriolis coupling term, proportional to the value of B in eqs 9 or
11, is also small and can be neglected as well: T̂cor ≪ T̂sym.
Similar derivations can be conducted for a molecule in which

the three moments of inertia are such that it is close to the limit
of an oblate symmetric top (such as cyclic-O3, high-energy
isomer in the form of an equilateral triangle).43,44 Again, in the
case of Pack and Parker34 shown by a pictogram at the bottom of
Figure 3, with the z-axis chosen in the plane of the molecule, we

have Ix≈ Iz < Iy and thus A≈C > B. Now, in order to convert the
expression of eq 8 into the form of eq 12 we should set (oblate, z
in the plane)

T
C A

J B
C A

J
2 2 ysym

2 2̂ =
+ ̂ + −

+ ̂ikjjj y{zzz (17)

T
C A

J J
2

( )
z xasym
2 2̂ =

− ̂ − ̂
(18)

Alternatively, in the case of Johnson35 and Kendrick36 with
the z-axis perpendicular to the molecular plane as shown by the
pictogram at the bottom of Figure 4, we set Ix≈ Iy < Iz, which still
corresponds to A ≈ C > B, and rearrange the terms of eq 10 as
follows (oblate, z ⊥ to plane)

T
C A

J B
C A

J
2 2 zsym

2 2̂ =
+ ̂ + −

+ ̂ikjjj y{zzz (19)

T
C A

J J
2

( )
x yasym
2 2̂ =

− ̂ − ̂
(20)

We see that for a nearly oblate top, the average of the two
similar rotational constants is Ã = (A + C)/2. The Ã appears in
eqs 17 and 19 and we see that the last term in each of these
formulae is negative, as this Ã >B. Deviation from the limit of the
oblate symmetric top is measured by (C − A)/2 in eqs 18 and
20. The limiting case of a perfectly symmetric oblate top, A = C,

gives T̂asym = 0 and leads to T̂rot = T̂sym, as expected. If the rotor is
extremely oblate, such as A ≈ C ≫ B, then we can again claim
that the Coriolis coupling term, proportional to the value of B in
eqs 9 or 11, is relatively small and can probably be neglected: T̂cor

≪ T̂sym. However, in this case we cannot anymore assume that
the effect of the asymmetric term is also small, as both A and C
are large and their difference is not necessarily small relative to Ã
and/or B. From these simple considerations, it becomes clear
that one should be careful when applying the symmetric-top
approximation to the case of a nearly symmetric oblate top. This
issue is further explored in the next subsection by computing
matrix elements of these operators.

2.3. Rotational−VibrationalWavefunctions. Each of the
eigenstates (wave functions) FM

Jpk(ρ,θ,φ,α,β,γ) of the coupled
rotational−vibrational Hamiltonian can be expressed in the
following form

F D( , , ) ( , , )M
Jpk

K

J

K
Jpk

KM
Jp

0,1

∑ ρ θ φ α β γ= Ψ ̃

= (21)

where for any given J, the sum is over the modified Wigner
functions D̃KM

Jp of the given inversion parity p, labeled by K.
These functions are defined as normalized combinations of
regular Wigner functions DKM

J

D
J

D D
2 1

16 (1 )
( , , ) ( 1) ( , , )KM

Jp

K
KM
J J K p

KM
J

2
0π δ

α β γ α β γ̃ =
+

+
[ + − ]+ +

−

(22)

The values of p = 0 and p = 1 generate two possible
superpositions, one “in-phase” and one “out-of-phase”, except
that in the case of K = 0, only the in-phase superposition is
possible. For even J, the term with K = 0 contributes only to p =
0, whereas for odd J, the term with K = 0 contributes only to p =
1. In these cases, there are J + 1 terms in the sum of eq 21, withK
varied through the range 0≤ K≤ J. In the remaining cases, there
are only J terms in the sum of eq 21, with K values in the range 1
≤ K ≤ J.
The index k in Ψ̃M

Jpk of eq 21 labels ro-vibrational eigenstates,
within given J and p. These are defined by a set of vibrational
wave functions ΨK

Jpk(ρ,θ,φ), 0 ≤ K ≤ J for each i. These are
determined numerically using an efficient sequential diagonal-
ization-truncation approach that combines a symmetry-adapted
FBR in φ, with a constant step DVR in θ, and an optimized grid
DVR along ρ.13,45 Such an approach is numerically efficient and
the readers are encouraged to become familiar with this earlier
work.13

Note that the Wigner functions D̃KM
Jp are eigenfunctions of

both J2̂ and J ̂z
2 with the following eigenvalues46

Figure 3. Same as in Figure 1, but for an oblate-top rotor molecule with
the z-axis in the molecular plane.

Figure 4. Same as in Figure 2, but for an oblate-top rotor molecule with
the z-axis perpendicular to the molecular plane.
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D J D J J( 1)KM
Jp

K M
Jp

KK

2 2
δ⟨ ̃ | ̂ | ̃ ⟩ = ℏ + ̃

′ ′ (23)

D J D KKM
Jp

z K M
Jp

KK

2 2 2
δ⟨ ̃ | ̂ | ̃ ⟩ = ℏ ̃

′ ′ (24)

where δ̃KK′ is similar to the Kronecker symbol δKK′, except that
δ̃KK′ can be zero even in the case of K = K′ = 0 if J + p is odd,
namely

KK

KK

if 0

if 0
KK

KK

( 1) ,1J p

δ
δ

δ
̃ =

′ ≠

′ =
′

′

− +

lmooonooo (25)

This property will simplify the matrix elements of T̂sym in eqs
13, 15, 17, and 19. However, the functions D̃KM

Jp are not
eigenfunctions of J ̂x

2 and J ̂y
2 in eqs 15 and 17 for T̂sym; neither are

they eigenfunctions of J ̂x
2
− J ̂y

2, J ̂y
2
− J ̂z

2, and J ̂z
2
− J ̂x

2 in eqs 14,
16, 18, and 20 for T̂asym. These matrix elements are derived in
Section A of the Supporting Information and are used in the next
subsection to derive the matrix elements of T̂sym, T̂asym, and T̂cor

for all of the cases introduced above. As we will focus on the
block-structure of the Hamiltonian matrix, with the blocks
labeled by K, we will make all other indices (J, M, p, and k)
implicit in the functions ΨK

Jpk and D̃KM
Jp and will omit them for

clarity.
Note also that in eqs 21−25 we used a generic symbol K for

the projection of J onto the molecule-fixed axis z. In what
follows, we will use the symbolΛ for the projection of J onto the
z-axis chosen to lie in the plane of the molecule, following the
notation of Pack and Parker.34 But we will use symbolΩ for the
projection of J onto the z-axis chosen to be perpendicular to the
plane of the molecule, following the notation of Kendrick.36

2.4. Matrix Elements for the Prolate Top. For the case of
the z-axis in the plane of the molecule, for T̂sym of eq 13, we
obtain

D T D
A B

D J D

C
A B

D J D

J J
A B

C
A B

2

2

( 1)
2

2

z

sym
2

2

2

2 2

δ

δ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

+ ⟨Ψ | −
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

= ℏ + ⟨Ψ |
+

|Ψ ⟩ ̃

+ ℏ Λ ⟨Ψ | −
+

|Ψ ⟩ ̃

Λ Λ Λ′ Λ′ Λ Λ′ Λ Λ′

Λ Λ′ Λ Λ′

Λ Λ′ Λ′

Λ Λ′ ΛΛ′ (26)

From this formula, one can see that in this case the symmetric-
top rotor term contributes only to the diagonal blocks of the
matrix. In the schematic of Figure 1, these blocks are labeled by
letter “S”. Note that here and further in the text, the matrix
elements are computed not with the function ΨΛ itself, but
rather with the basis functions of its expansion. The details of
calculation of these vibrational integrals will be discussed
elsewhere.
For T̂asym of eq 14, we obtain

D T D
A B

D J J D

U A B

2

4

x yasym
2 2

2

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
−

|Ψ ⟩⟨ ̃ | ̂ − ̂ | ̃ ⟩

=
ℏ

⟨Ψ | − |Ψ ⟩

Λ Λ Λ′ Λ′ Λ Λ′ Λ Λ′

ΛΛ′ Λ Λ′ (27)

where

U J J

J J

J J

1

(1 )(1 )
( ( , ) ( , 1)

( , ) ( , 1)

( 1) ( , 1) ( , 2) )J p

0 0

, 2

, 2

,2

δ δ
λ λ δ

λ λ δ

λ λ δ

=
+ +

′

Λ Λ+

+ Λ′ Λ′ +

+ − Λ′ − Λ′ −

ΛΛ′

Λ Λ

+ + Λ Λ′−

+ + Λ Λ′+

+Λ+
+ + Λ −Λ′

(28)

J J J( , ) ( 1)( )λ Λ = ± Λ + ∓ Λ± (29)

Details of the derivation of the matrix UΛΛ′ and additional
discussion of its structure can be found in Section A of the
Supporting Information. As one can see from eq 28, UΛΛ′

couples the blocks of the Hamiltonian matrix withΔΛ =±2, but
also contributes to one diagonal blockΛ =Λ′ = 1. Schematically
these blocks are indicated by letter “A” in Figure 1.
For T̂cor of eq 9 we obtain

D T D B D i J D

W B

4 cos

2 cos /

ycor

2

θ
φ

θ φ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
∂

∂
|Ψ ⟩⟨ ̃ | ℏ ̂ | ̃ ⟩

= ℏ ⟨Ψ | |∂Ψ ∂ ⟩

Λ Λ Λ′ Λ′ Λ Λ′ Λ Λ′

ΛΛ′ Λ Λ′ (30)

where

W J

J J

1

(1 )(1 )
( ( , )

( , ) ( 1) ( , 1) )J p

0 0

, 1

, 1 ,1

δ δ
λ δ

λ δ λ δ

=
+ +

Λ

− Λ′ + − Λ′ −

ΛΛ′

Λ Λ′

+ Λ Λ′−

+ Λ Λ′+
+Λ+

+ Λ −Λ′

(31)

Details of the derivation of the matrixWΛΛ′ and an additional
discussion of its structure can be found in Section A of the
Supporting Information. As one can see from eq 31, WΛΛ′

couples the blocks of the Hamiltonian matrix with ΔΛ = ±1. It
means that only the first upper and first lower off-diagonal blocks
of the Hamiltonian matrix are affected, as indicated by the letter
“C” in Figure 1.
For the case of the z-axis perpendicular to the plane of the

molecule, for T̂sym of eq 15 we obtain

D T D
A B

D J D

C
A B

D J D

J J
A B

S U

C
A B

2

2

( 1)
2 4

( )

2

x

sym
2

2

2
2

δ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

+ ⟨Ψ | −
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

= ℏ + ⟨Ψ |
+

|Ψ ⟩ ̃ +
ℏ

+

⟨Ψ | −
+

|Ψ ⟩

Ω Ω Ω′ Ω′ Ω′ Ω′ Ω Ω′

Ω Ω′ Ω Ω′

Ω Ω′ ΩΩ′ ΩΩ′ ΩΩ′

Ω Ω′ (32)

Here, the matrix SΩΩ′, defined in eq A21 in the Supporting
Information, affects only the diagonal blocks of the Hamiltonian
matrix, i.e.:ΔΛ = 0. As both of the SΩΩ′ andUΩΩ′ terms appear in
eq 32, T̂sym contributes to both the main diagonal and second
off-diagonal blocks of the Hamiltonian matrix, as indicated by
letter “S” in Figure 2.
For T̂asym of eq 16 we obtain

D T D
A B

D J J D

S U A B

2

2
(( )/4 )

y zasym
2 2

2
2
δ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
−

|Ψ ⟩⟨ ̃ | ̂ − ̂ | ̃ ⟩

=
ℏ

− − Ω ̃ ⟨Ψ | − |Ψ ⟩

′ ′ ′

′ ′ ′ ′

Ω Ω Ω′ Ω Ω Ω Ω Ω

ΩΩ ΩΩ ΩΩ Ω Ω (33)

As in the case of eq 32, this matrix element contributes to the
main diagonal and the second off-diagonal blocks of the
Hamiltonian matrix, as indicated by the letter “A” in Figure 2.
For T̂cor of eq 11 we obtain
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D T D B D i J D

B

4 cos

4i 4 cos /

zcor

2

θ
φ

θ φ δ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
∂

∂
|Ψ ⟩⟨ ̃ | ℏ ̂ | ̃ ⟩

= ℏ Ω⟨Ψ | |∂Ψ ∂ ⟩ ̃

Ω Ω Ω′ Ω′ Ω Ω′ Ω Ω′

Ω Ω′ ΩΩ′ (34)

In this case, the Coriolis coupling term contributes to the
main diagonal only, as indicated by the letter “C” in Figure 2.
2.5. Matrix Elements for the Oblate Top. For the case of

the z-axis in the plane of the molecule, for T̂sym of eq 17 we
obtain

D T D
C A

D J D

B
C A

D J D

J J
C A

S U

B
C A

2

2

( 1)
2 4

( )

2

y

sym
2

2

2
2

δ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

+ ⟨Ψ | −
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

= ℏ + ⟨Ψ |
+

|Ψ ⟩ ̃ +
ℏ

−

⟨Ψ | −
+

|Ψ ⟩

Λ Λ Λ′ Λ′ Λ Λ′ Λ Λ′

Λ Λ′ Λ Λ′

Λ Λ′ ΛΛ′ ΛΛ′ ΛΛ′

Λ Λ′ (35)

For T̂asym of eq 18 we obtain

D T D
C A

D J J D

S U C A

2

2
( ( )/4 )

z xasym
2 2

2
2

δ

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
−

|Ψ ⟩⟨ ̃ | ̂ − ̂ | ̃ ⟩

=
ℏ ̃ Λ − + ⟨Ψ | − |Ψ ⟩

Λ Λ Λ′ Λ′ Λ Λ′ Λ Λ′

ΛΛ′ ΛΛ′ ΛΛ′ Λ Λ′

(36)

The Coriolis operator is the same as in the case of a prolate
top, z-axis in the plane, eq 30. The overall structure of the matrix
in this case is presented in Figure 3. The meaning of the letters is
the same as in the case of a prolate top.
The operators T̂sym and T̂asym for the case of the z-axis

perpendicular to the plane are identical to the case of the z-axis
in the plane of a prolate top, except for the names of the
rotational constants

D T D
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D J D

B
C A

D J D

J J
C A

B
C A

2

2

( 1)
2

2
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2

2
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2 2
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δ
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+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

+ ⟨Ψ | −
+

|Ψ ⟩⟨ ̃ | ̂ | ̃ ⟩

= ℏ + ⟨Ψ |
+

|Ψ ⟩ ̃

+ ℏ Ω ⟨Ψ | −
+

|Ψ ⟩ ̃

Ω Ω Ω′ Ω′ Ω Ω′ Ω Ω′

Ω Ω′ Ω Ω′

Ω Ω′ ΩΩ′

Ω Ω′ ΩΩ′ (37)

D T D
C A

D J J D

U C A

2

4

x yasym
2 2

2

⟨Ψ ̃ | ̂ |Ψ ̃ ⟩ = ⟨Ψ |
−

|Ψ ⟩⟨ ̃ | ̂ − ̂ | ̃ ⟩

=
ℏ

⟨Ψ | − |Ψ ⟩

Ω Ω Ω′ Ω′ Ω Ω′ Ω Ω′

ΩΩ′ Ω Ω′ (38)

The Coriolis operator is the same as in the case of a prolate
top, z-axis perpendicular to the plane, eq 34. The overall
structure of the matrix in this case is presented in Figure 4. The
meanings of the letters “S”, “A”, and “C” are the same as in the
case of a prolate top.

3. RESULTS AND DISCUSSION

3.1. Comparison of Different Approaches. In the case of
a prolate top, the advantage of the z-axis lying in the plane
(Figure 1) is that the largest term (T̂sym) contributes solely to the
main block diagonal, whereas smaller terms (T̂cor and T̂asym)
contribute to the first and second block off-diagonals,
respectively. Such a matrix structure provides a straightforward

way of switching between the symmetric-top rotor approx-
imation and the exact calculations. Indeed, as the molecular
shape approaches the limit of a prolate symmetric top, the values
in the off-diagonal blocks vanish and thematrix is effectively split
into the individualΛ-blocks that can be diagonalized separately.
This is exactly what we implemented for calculations reported in
ref 13: the vibrational spectrum was computed separately for
each pair of (J,Λ) with the asymmetric-top rotor terms and
Coriolis couplings neglected. As it was emphasized by Parker
and Pack,34 decoupling of differentΛ-blocks requires neglecting
both asymmetric-top rotor terms and Coriolis couplings, and
constitutes one single approximation. In this case, neglecting
only the asymmetric top rotor terms and keeping the Coriolis
couplings is not particularly useful as it would not lead to full
decoupling of the diagonal blocks.
The case of the z-axis perpendicular to the molecule plane

(Figure 2) shows that T̂sym contributes to diagonal blocks and
the second off-diagonal blocks, which introduces a substantial
off-diagonal contribution. Because of that, even in the case of a
perfectly symmetric top, one cannot neglect the values of the off-
diagonal blocks and split the overall matrix into smaller pieces.
Thus, in this case there is no way to implement the angular
momentum decoupling. However, one advantage of this
approach is that the blocks with even and odd values of Ω are
not coupled with each other, which allows one to split the overall
matrix into two blocks: one with the even values of Ω and one
with the odd values of Ω. It might be possible to do a similar
separation in the case of the z-axis in the plane too, if the basis
functions have a distinct symmetry (the details of this are further
discussed in Section C of the Supporting Information).
In the case of an oblate top, the situation is completely

opposite: now the choice of z ⊥ to the plane results in a simple
matrix structure (Figure 4), where decoupling of different values
of Ω can be achieved easily by neglecting the asymmetric top
rotor terms, showing up in the second off-diagonal blocks (the
contribution of the asymmetric term to Λ = Λ′ = 1 block can be
neglected as well). Moreover, there is no need to neglect the
Coriolis couplings, as they contribute to the diagonal blocks
only. In case of the z-axis lying in the plane (Figure 3), the
contribution of the symmetric term to the off-diagonal blocks
makes it impossible to decouple different values of Λ.
Another aspect worth considering is the cost of evaluation of

the matrix elements. If every term is calculated independently,
then the overall cost is proportional to the total number of terms
(number of letters in Figures 1−4). For example, in the case of
the prolate top, z in plane, one would have to evaluate J
symmetric terms, J − 1 Coriolis terms, and J − 1 asymmetric
terms, a total of 3J− 2 terms. For the cases depicted in Figures 2,
3 and 4 the numbers are 5J − 4, 5J − 5, and 3J − 1, respectively,
whichmakes z in the plane optimal for the case of the prolate top
and z ⊥ to the plane optimal for the case of the oblate top.
However, in practice, depending on the method of

computation of the overlaps of the vibrational wavefunctions,
it might be possible to reuse the intermediate values calculated
for one term, to quickly calculate another term for the same set
of (Λ,Λ′) or (Ω,Ω′). In this case, the total cost of matrix element
evaluations is proportional to the number of blocks that have at
least one term in them. The total number of such blocks is 3J− 3
for the case of z in the plane and 2J− 2 for the case of z ⊥ to the
plane for both prolate and oblate tops. This makes the choice of
z ⊥ to the plane better in terms of the computational cost of
evaluation of the matrix elements.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c00893
J. Phys. Chem. A XXXX, XXX, XXX−XXX

F



Finally, it might also be possible to recalculate every block
quickly after the first block is calculated (or first few blocks).
This could happen, for example, if the vibrational basis for
different blocks is the same. In this case, the difference between
the cost of matrix evaluations in different approaches is not
expected to be substantial.
Note that similar conclusions could be drawn for other

coordinate systems as well.47,48

3.2. Application to Ozone. In its equilibrium geometry
(minimum energy point on the PES), the ozone molecule is
close to a prolate-top rotor withA = 0.446 cm−1, B = 0.391 cm−1,
and C = 3.297 cm−1 (for the 16O18O16O isotopomer).49 As
ozone dissociates, the shape of its rotor becomes even more
prolate. Thus, a prolate symmetric top is often considered to be a
reasonable approximation for the ozone molecule. For the
reasons discussed above, and consistent with our previous
work,13 we have chosen to place the z-axis in the plane of the
molecule, which corresponds to eqs 26−30 for the matrix
elements and Figure 1 for the block-structure of the matrix.
The PES used for the ro-vibrational calculations in this work

was constructed by Dawes et al.50 Technical details of our
calculations are given in Section B of the Supporting
Information We carried out calculations for singly substituted
isotopologue of ozone on the global PES which includes both
symmetric 16O18O16O and asymmetric 16O16O18O isotopomers
simultaneously, for rotational excitations up to J = 5, and for the
rotational states of both values of parity p.
To begin with, we carried out calculations of the vibrational-

rotational states of ozone in the symmetric-top rotor
approximation with only diagonal blocks included (“S” in
Figure 1), where both the asymmetric-top rotor terms and the
Coriolis couplings were neglected. The results were identical to
those found in our earlier work. Then, in one set of the
intermediate calculations, in order to determine the role of
asymmetry of the rotor, we added just the asymmetric-top rotor
blocks to the matrix (only the “A” and “S” terms of Figure 1 were
included in the Hamiltonian matrix) and we recomputed the
vibrational-rotational states. Next, in the second set of the
intermediate calculations, in order to determine the magnitude
of the Coriolis effect alone, we added just the Coriolis coupling
blocks to the matrix (only the “C” and “S” terms of Figure 1 were
included in the Hamiltonian matrix) and we recomputed the
vibrational−rotational states again. In the final set of exact
calculations, we included all three types of blocks in the
Hamiltonian matrix (the “S”, “C”, and “A” terms in Figure 1).
In Figure 5, we present the shifts of the energies of the ground

vibrational state (v1, v2, v3) = (0, 0, 0) in 16O18O16O because of
the inclusion of the asymmetric-top rotor term for the rotational
excitation with J = 5. Here, we see, first of all, a moderate
negative shift by ∼0.5 cm−1 for the Λ = 0 state (parity is p = 1)
and then two relatively large shifts of the Λ = 1 states, but in the
opposite directions for two values of parity: positive shift for p =
1, and negative shift for p = 0. This creates a splitting of ∼3.5
cm−1. For Λ = 2, this splitting is reduced to ∼0.5 cm−1, in which
case it is almost exclusively due to the positive shift of the p = 1
state, as the p = 0 state exhibits only a tiny shift. For Λ = 3, the
shifts of the p = 0 and p = 1 states are both positive and small,
which leads to a tiny splitting. ForΛ = 4 andΛ = 5, the splittings
of the ro-vibrational states of the two parities are vanishingly
small.
In Figure 6, we present the shifts of energies of the ground

vibrational state (v1, v2, v3) = (0, 0, 0) in 16O18O16O because of
the inclusion of the Coriolis coupling term for the rotational

excitation with J = 5. We see, first of all, that the Coriolis effect is
an order of magnitude larger than the asymmetric-top rotor
effect. For example, the shift of the Λ = 0 state is ∼5 cm−1.
However, as the shifts are negative for both p = 0 and p = 1 parity
states, the resultant splittings are of the same order of magnitude
as before: close to 4 cm−1 for Λ = 1, about 0.5 cm−1 for Λ = 2, a
tiny splitting forΛ = 3, and vanishingly small splittings forΛ = 4
and Λ = 5. Still, the shifts because of the Coriolis term are not
small even forΛ = 5, which is close to negative 1 cm−1 for both p
= 0 and p = 1 parity states.
In order to understand the features of Figures 5 and 6, it is

useful to analyze eqs 27 and 30, which define the asymmetric and
Coriolis terms, respectively. The magnitude of deviation from
the energy of the symmetric top rotor is determined by the
values of the matrix elements of T̂asym and T̂cor. One can see that,
for the asymmetric term, the matrix elements are proportional to

UΛΛ′ and A B

4

− , whereas for the Coriolis term, they are

proportional to WΛΛ′ and 2B cos θ. The structures of the
matrixes UΛΛ′ andWΛΛ′, defined by eqs 28 and 31, are shown in
Figures 7 and 8, respectively. The cases from J = 0 to J = 3 of both

Figure 5.Deviations of the ground vibrational state of 16O18O16O from
the energies of a symmetric-top rotor because of the asymmetric-top
rotor term for J = 5. The value of Λ is plotted along the horizontal axis.
The states of two different parities are denoted by color and symbol
type. The magnitude of splitting (K-doubling) for Λ = 1 is indicated by
a double arrow.

Figure 6. Same as in Figure 5, but for the deviations from energies of a
symmetric-top rotor because of the Coriolis coupling term (alone,
without the asymmetric-top rotor term).
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parities are depicted. In the cases when the Λ = 0 state is
forbidden by symmetry, the corresponding matrix elements are
hatched. These pictures are analyzed in detail below.

For the equilibrium geometry of ozone, 0.0138 cm
A B

4

1=
− −

and 2B cos θ = 0.489 cm−1. Thus, according to eqs 27 and 30, the
Coriolis coupling term is expected to be more important than
the asymmetric top rotor term, at least for the low energy states
(small J), which is indeed the case, as one can see from Figures 5
and 6. However, the values ofWΛΛ′ grow only as O(J), whereas
the values of UΛΛ′ grow as O(J2), making the asymmetric-top
rotor term more important for the highly excited rotational
states (large J). It can also become more important for the
excited vibrational states because of larger deviations from the
equilibrium geometry. One can also see that the matrix elements
UΛΛ′ andWΛΛ′ have their maximum values atΛ = 0 and decrease
as Λ increases, approaching the limit of O(J) in the case of the
asymmetric-top term andO J( ) in the case of the Coriolis term,
but they never vanish. Because of that, the deviation from the
symmetric top rotor limit would be the largest for small values of
Λ, decrease asΛ increases, but never reach zero, even whenΛ =
J. This is, indeed, what we see in Figures 5 and 6.
In contrast to the energy shifts, the splittings between the

states of the two parities do not depend on themagnitudes of the
matrix elements of T̂asym and T̂cor directly, but rather on the
difference of their magnitudes for the cases of different parities.
If one looks through eqs 26−31, one will find that the parity
affects two things only: first, whether or not the blocks with Λ =
0 are zero (and are excluded from the Hamiltonian, hatched area
in Figures 7 and 8), and second, what is the sign of the diagonal
block Λ = Λ′ = 1 of the matrix UΛΛ′ (see Figure 7). This makes
the Λ = 1 case the most susceptible to the splitting (at least for
low values of J): in one parity it is coupled with theΛ = 0 state, in
another parity it is not; in one parity the sign of the diagonal
block Λ = Λ′ = 1 of UΛΛ′ is positive, in another parity it is
negative (with the same magnitude). The states with other
values ofΛ do not experience such drastic differences because of
the parity; thus, their splittings, being only an echo of the Λ = 1
splitting, decrease exponentially as Λ increases and eventually
vanish. As it was stated earlier, at high values of J, the asymmetric
top rotor term is expected to take precedence over the Coriolis
term. Thus, it is likely that for the high values of J, the splittings
for the Λ = 2 state may even exceed those for Λ = 1, but not
significantly.
In Figure 9, we present the shifts of energies of the ground

vibrational state (v1, v2, v3) = (0, 0, 0) in 16O18O16O for the
rotational excitation with J = 5, because of inclusion of both the
Coriolis coupling term and the asymmetric-top rotor term.Most
importantly, this figure indicates that the energy shifts because of
these two factors often occur in the opposite directions and thus
partially cancel each other out with few exceptions (e.g. Λ = 0,
andΛ = 1 and 2 with p = 0 for J = 5 where the shifts occur in the
same directions). The value of the splitting for Λ = 1 is about 1
cm−1, and it is only on the order of∼0.1 cm−1 forΛ = 2. ForΛ≥

3, the splittings are negligible. However, the effect of the Coriolis
coupling survives, as energies of all states are still reduced
(relative to the symmetric-top rotor approximation) by a non-
negligible shift. It varies in the range between negative 5 and 1
cm−1 as the value of Λ is increased from Λ = 0 to Λ = 5.
In the recent paper by Poirier and co-workers, these splittings

were named the K-doubling effect.18 Alternatively, as we use
symbolΛ for the projection of J onto the z-axis, we could use the
term Λ-doubling (although in this case one should be careful to

Figure 7. Block structure of the matrix UΛΛ′ for the rotational states
from J = 0 to J = 3 (intuitive extrapolation to larger values of J is
relatively straightforward). Two parities are shown separately: p = 0 in
the left column and p = 1 in the right column. As in Figure 1, the blocks
are labeled by Λ and Λ′. The color indicates magnitudes of matrix
elements, with red being positive, blue being negative, and white being
zero. When J + p is odd, all states corresponding to Λ = 0 or Λ′ = 0 are
forbidden by symmetry and the corresponding blocks of the
Hamiltonian matrix are excluded (hatched).

Figure 8. Same as in Figure 7, but for the matrix WΛΛ′.
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avoid confusion, as this term is also used for the splitting of
molecular levels because of the interaction of molecular rotation
with the orbital angular momentum of molecular electrons).19

Or, this effect could also be named as parity doubling, as these
splittings are caused by the differences of rotational wave-
functions of two parities.
3.3. Implications for Ozone Isotopomers. When all

terms of the Hamiltonian matrix are included, our results show
an excellent agreement with the results of the recent work by
Poirier and co-workers.11 Figure 10 plots the absolute values of

the deviations of the state energies computed here relative to
those reported in ref 11. These data include both symmetric
16O18O16O and asymmetric 16O16O18O isotopomers of ozone,
and combine the results of calculations with J = 0, 1, 2, 3, 4 and 5
for about 80 rotational−vibrational states of each parity, per
each value of J (about 850 states total). In Figure 10, each
combination of (J, p) is shown by its own color. As one can see
from the picture, the differences of computed energies are on the

order of 10−3 cm−1 for the majority of states and on the order of
10−2 cm−1 in the worst case, which matches the target accuracy
of Poirier and co-workers. We found that the values of these
differences depend on the vibrational character of the states (v1,
v2, v3), but are relatively insensitive to the rotational quantum
numbers (J, Λ, p).
It should be stressed that the two sets of very similar results

presented in Figure 10 (this work vs Poirier and co-workers)
were obtained independently by two groups without any
communication, using different coordinates (hyperspherical vs
Jacoby), employing two different codes (SpectrumSDT vs
ScalIT) and using different computer systems. The excellent
agreement at low vibrational energies gave us enough confidence
in the theory and the new code we developed to tackle a much
more demanding problema large range of vibrational
excitations. Namely, for each set of the rotational quantum
numbers (J,Λ, p) considered here, we computed 600 vibrational
states, 21,600 coupled ro-vibrational states in total. These new
spectra cover roughly 90% of the covalent well of the ozone PES
and stop just before the energy where the PES of ozone opens up
toward a shallow plateau of the weak van der Waals interaction,
followed by the bond breaking and dissociation onto O + O2.
(Calculations of the vibrational states in the remaining 10% of
the energy range are also possible, but this would require a
significant expansion of the ρ-grid, which is beyond the scope of
this paper focused mostly on the rotation−vibrational coupling.
Large-amplitude states near the threshold will be reported
elsewhere, together with calculations of scattering resonances
above the dissociation threshold.) Figure 11 summarizes the

energy progression of these ro-vibrational states for both
symmetric 16O18O16O and asymmetric 16O16O18O ozone up to
J = 5. We see that these spectra extend up to about 1000 cm−1

below the dissociation threshold for all values of J. These data,
including state energies, vibrational symmetries (see Section F
of the Supporting Information), parities p, isotopomer-specific
assignments (symmetric 16O18O16O vs asymmetric 16O16O18O),
and the weights of all Λ-components for each ro-vibrational
coupled state, are available from the archive file included in the
Supporting Information.
Overall, the spectra we computed and assigned contain up to

the 11 quanta of bendingmotion, 8 quanta of asymmetric stretch
and 7 quanta of symmetric stretch. For comparison, in the work
of Poirier and co-workers11 for J = 5 the states with nomore than

Figure 9. Same as in Figures 5 and 6, but for the case when both the
asymmetric-top rotor term and the Coriolis coupling term are included
in the Hamiltonian, which corresponds to the deviation of the exact
rotational−vibrational state energies from the symmetric-top rotor
approximation.

Figure 10. Absolute values of energy differences between the
rotational−vibrational states computed here, and the corresponding
states reported in ref 11 for 16O18O16O and 16O16O18O. Individual
colors are used for different parities p and different values of angular
momentum up to J = 5.

Figure 11. Progressions of energies of coupled ro-vibrational states up
to J = 5 computed in this work for symmetric 16O18O16O and
asymmetric 16O16O18O combined.
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2 quanta of vibrational excitation in one mode were computed.
We found that the assignments of the vibrational states in terms
of the normal mode quantum numbers (v1, v2, v3) are relatively
certain for the lower 100 vibrational states for each set of (J, Λ,
p) for both 16O18O16O and 16O16O18O. For completeness, we
provided these assignments in the tables of Section H of the
Supporting Information.
Figure 12a summarizes the progressions of energies for the

normal mode overtones, whereas Figure 12b represents the

dependence of parity splittings (orΛ-doublings) on the number
of quanta in these vibrational progressions. The data for both
16O18O16O and 16O16O18O are included, separately. From
Figure 12, one can see that the value of splitting monotonically
increases for the bending mode progression and monotonically
decreases for the symmetric stretching mode progression of
ozone. In contrast, for the asymmetric stretching mode
progression of ozone, the value of splitting first increases and
then slowly decreases, remaining roughly the same through a
broad range of vibrational excitations. This makes sense, as the
asymmetric stretching motion, described by the hyperangle φ,
does not affect the rotational constants of the molecule (see
Table 1) and thus is not expected to change significantly its
rotational asymmetry, which in turn makes the value of splitting

relatively insensitive to the excitation of the asymmetric stretch.
In contrast, excitation of the bending mode (described by the
angle θ) increases the asymmetry of the rotor (see Table 1), and
thus is expected to increase the value of splitting. This is exactly
what we see in Figure 12. It can also be concluded that the
symmetric stretching motion makes the rotor more symmetric,
as the magnitude of the splitting is significantly reduced by the
excitation of the symmetric stretching mode. Finally, from
Figure 12 we can see that, overall, the values of splittings are
larger in the symmetric 16O18O16O than in the asymmetric
16O16O18O.
It should be noted that for Figure 12 we selected the states

with the dominant contribution ofΛ = 1, for which the splittings
are the largest (see Figure 9). Similar dependencies for Λ = 2,
where the magnitudes of splittings are much smaller, can be
found in Section G of the Supporting Information. Qualitatively,
the splittings of theΛ = 2 states follow the same trends as we can
see forΛ = 1 in Figure 12. Thus, we can conclude that the values
of splittings do not change dramatically through the range of
vibrational excitations considered here.

4. CONCLUSIONS

In this work, we analyzed in detail several alternative ways of
including the asymmetric-top rotor term and the Coriolis
couplings in the accurate variational calculations of coupled
rotational vibrational states, using hyperspherical coordinates
for a triatomic molecule. Namely, one can choose to place the z-
axis of the coordinate system either in the plane of the molecule,
or perpendicular to it. In each case, the theory can be formulated
in the way appropriate for a prolate top rotor, or for an oblate top
rotor. Thus, four specific cases were considered here, each
characterized by a distinct structure of the Hamiltonian matrix.
We found that each case has its own advantages and/or
disadvantages, and we discussed those in detail. These can be
more significant or less significant, depending on the choice of
the vibrational basis set and on the way the matrix elements are
integrated. However, the case of an oblate top with the z-axis in
the plane of a molecule seems to have no advantages (within the
scope of criteria considered here) and thus should be avoided.
Two of the four cases seem to be more advantageous, as they
lead to the simplest form of the Hamiltonian matrix: prolate top
with the z-axis chosen in the plane of the molecule, and oblate
top with the z-axis chosen perpendicular to the molecular plane.
These two cases are also more flexible, as, beside the exact
calculations with all rotational−vibrational coupling included,
they also permit to implement the symmetric-top rotor
approximation within the same formalism and computer code.
The version of theory for a prolate top with the z-axis in plane

was applied to compute the rotational−vibrational states of
singly substituted ozone isotopomers, symmetric 16O18O16O
and asymmetric 16O16O18O, for the rotational excitations from J
= 0 (nonrotating ozone) to J = 5. The range of vibrational
excitations extends up to 5 quanta of excitations in one mode.
First, we carried out the simplest calculations within the
symmetric-top rotor approximation, and then we added the
asymmetric-top rotor terms and theCoriolis coupling terms, one
at a time, and finally all together. This was done for the
methodological reason, in order to illuminate the effect of each
term on the spectrum of rotational−vibrational states, and most
importantly on the K-doubling, which is the splitting of energies
for the states of two parities. We showed that for the low values
of rotational excitation in ozone, the Coriolis coupling effect is
about an order of magnitude stronger than the asymmetric top

Figure 12. Evolution of energies and parity splittings for J = 5 andΛ = 1
as a function of number of vibrational quanta along the three normal
modes of ozone. For each progression, the other two normal modes are
not excited (ν = 0). Solid and dashed lines correspond to symmetric
16O18O16O and asymmetric 16O16O18O ozone isotopomers, respec-
tively. Progressions in the lower frame have the same colors as those in
the upper frame.
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rotor effect (in terms of shifts from the symmetric top rotor
limit). The splittings because of the Coriolis and the
asymmetric-top rotor effects, however, were on the same order
ofmagnitude, but occurred in the opposite directions. Overall, in
the exact calculations with both effects included, the influence of
the two phenomena would partially cancel out, leading to
relatively small residual splittings (K-doublings). Predicted
energies of states are found to be in excellent agreement with
recently published work of Poirier and co-workers.11

The methodology and computer code developed here can be
used for calculations of accurate rotational vibrational states
using the hyperspherical coordinates for any triatomic molecule,
in order to quantify its spectroscopy near the bottom of the well,
or to assess its chemical reactivity near the bond-breaking
threshold and above it. In particular, it would be important to
determine the role of rotational−vibrational couplings in the
recombination reaction that forms ozone, focusing on the
isotope effect. This is not an easy task, as it would require
calculations for different isotopomers and isotopologues of
ozone, such as 16O18O16O, 16O16O18O, 18O16O18O, 16O18O18O,
16O17O16O, 16O16O17O, 17O16O17O, 16O17O17O, in a broad
range of rotational excitations (up to J = 50) and vibrational
excitations up to the dissociation threshold (up to 10 quanta in
one mode). This work is in progress and will be reported
elsewhere. The code developed here (SpectrumSDT) will be
made available to the community in future releases. For further
reading, the reader is encouraged to refer to ref 51, where we
applied the methodology considered here to doubly substituted
ozone species and compared it with the results for the singly
substituted case, studied in this work.
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