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We propose a one-way coupled model that tracks individual primary particles in a
conceptually simple cellular flow set-up to predict flocculation in turbulence. This
computationally efficient model accounts for Stokes drag, lubrication, cohesive and
direct contact forces on the primary spherical particles, and allows for a systematic
simulation campaign that yields the transient mean floc size as a function of the
governing dimensionless parameters. The simulations reproduce the growth of the
cohesive flocs with time, and the emergence of a log-normal equilibrium distribution
governed by the balance of aggregation and breakage. Flocculation proceeds most
rapidly when the Stokes number of the primary particles is O(1). Results from
this simple computational model are consistent with experimental observations, thus
allowing us to propose a new analytical flocculation model that yields improved
agreement with experimental data, especially during the transient stages.

Key words: sediment transport, particle/fluid flow, suspensions

1. Introduction

Cohesive sediment, commonly defined as particles with diameters Dp < 63 µm,
plays a central role in a wide range of environmental and industrial processes. For
these small grain sizes, attractive van der Waals forces can outweigh hydrodynamic,
buoyancy and collision forces, and trigger the formation of large aggregates via
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FIGURE 1. (a) Streamlines of the doubly periodic background flow. (b) Typical floc
configuration made up of spherical primary particles, with individual flocs distinguished
by colour.

flocculation (Yoshimasa 2017). Following the pioneering work by Levich (1962),
current approaches for modelling the flocculation process often employ population
balance equations (Maggi, Mietta & Winterwerp 2007; Verney et al. 2011; Shin,
Son & Lee 2015) or simplified versions thereof (Winterwerp 1998; Son & Hsu 2008,
2009; Lee et al. 2011; Shen et al. 2018). These semi-empirical models, which require
calibration with experimental data, usually do not account for the detailed profiles of
the various forces governing particle–particle interactions.

The present investigation presents a conceptually simple model to obtain flocculation
data via one-way coupled simulations that track individual primary particles and
accurately capture the inter-particle forces, based on the recent development of
advanced collision models in viscous flows (Biegert, Vowinckel & Meiburg (2017a),
and references therein), along with strategies for accurately modelling cohesive
forces (Vowinckel et al. 2019). Towards this end, we employ the well-known initial
configuration of cellular Taylor–Green flow as a simple, quasi-steady analytical
model of a turbulent flow at the Kolmogorov scale. This flow has previously been
used successfully in elucidating fundamental aspects of particle–vortex interactions
(Maxey 1987; Bergougnoux et al. 2014). We will exploit this conceptually simple,
computationally efficient scenario to systematically investigate the influence of key
physical parameters, and propose a new flocculation model that agrees closely with
experimental data.

2. Computational model

2.1. Particle motion in cellular flow fields
In the spirit of earlier investigations by Maxey (1987) and Bergougnoux et al. (2014),
we apply a simple model flow in order to investigate the effects of turbulence on the
dynamics of cohesive particles. We consider the one-way coupled motion of small
spherical particles in the two-dimensional, steady, spatially periodic cellular flow
field commonly employed as initial condition for simulating Taylor–Green vortices
(cf. figure 1a), with fluid velocity field uf = (uf , vf )

T

uf =
U0

π
sin
(πx

L

)
cos
(πy

L

)
, vf =−

U0

π
cos
(πx

L

)
sin
(πy

L

)
, (2.1a,b)
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A cellular flow model for cohesive sediment flocculation

where L and U0 represent the characteristic length and velocity scales of the vortex
flow.

Keeping in mind that cohesive sediment grains in nature may be non-spherical, we
nevertheless approximate each primary particle i as a sphere that moves with the
translational velocity up,i= (up,i, vp,i)

T and the angular velocity ωp,i. These are obtained
from the linear and angular momentum equations

mp
dup,i

dt
=Fd,i +Fg,i +

Np∑
j=1,j6=i

(Fcon,ij +Flub,ij +Fcoh,ij)︸ ︷︷ ︸
Fc,i

, (2.2)

Ip
dωp,i

dt
=

Np∑
j=1,j6=i

(Tcon,ij + Tlub,ij)︸ ︷︷ ︸
Tc,i

, (2.3)

where the primary particle i moves in response to the Stokes drag force Fd,i =

−3πDpµf (up,i − uf ,i), the gravitational force Fg,i = πD3
p(ρp − ρf )g/6, and the

particle–particle interaction force Fc,i. Here uf ,i and up,i indicate the fluid and particle
velocities evaluated at the particle centre, and mp denotes the particle’s mass, Dp its
diameter, ρp its density, and Np the total number of particles in the flow. We assume
all particles to have the same diameter and density. Here µf and ρf denote the
dynamic viscosity and the density of the fluid, respectively, and g is the gravitational
acceleration; Fc,i accounts for the direct contact force Fcon,ij in the normal and
tangential directions, as well as for short-range forces due to lubrication Flub,ij and
cohesion Fcoh,ij, where the subscript ij indicates the interaction between particles i and
j; Ip = πρpD5

p/60 denotes the moment of inertia of a particle; and Tc,i represents the
torque due to particle–particle interactions, where we distinguish between the direct
contact torque Tcon,ij and lubrication torque Tlub,ij.

Following Biegert et al. (2017a), we represent the direct contact force Fcon,ij by
means of spring–dashpot functions, while the lubrication force Flub,ij is accounted
for based on Cox & Brenner (1967), as implemented in Biegert et al. (2017b). The
model for the cohesive force Fcoh,ij is based on the work of Vowinckel et al. (2019).
It assumes a parabolic force profile, distributed over a thin shell surrounding each
particle.

2.2. Non-dimensionalization
We choose L, U0 and L/U0 as the characteristic length, velocity and time scales.
Conceptually, these can be thought of as representing Kolmogorov scales. In this way,
we obtain the dimensionless equation of motion for the particles as

m̃p
dũp,i

dt̃
=−

m̃p(ũp,i − ũf ,i)

St︸ ︷︷ ︸
F̃d,i

+
m̃pW̃

St︸ ︷︷ ︸
F̃g,i

+

Np∑
j=1,j6=i

(F̃con,ij + F̃lub,ij + F̃coh,ij), (2.4)

where dimensionless quantities are denoted by a tilde. The dynamics of the primary
particles are characterized by the Stokes number St=U0ρpD2

p/(18Lµf ) and the settling
velocity W̃ = vs/U0, where vs= (ρp− ρf )D2

pg/(18µf ) is the Stokes settling velocity of
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an individual, isolated primary particle. The dimensionless particle mass and density
ratio are defined as m̃p =πD̃3

pρ̃s/6 and ρ̃s = ρp/ρf , respectively.
The dimensionless direct contact force F̃con,ij between particles includes the normal

component F̃con,n,ij and the tangential component F̃con,t,ij, which are defined as

F̃con,ij =



−k̃n|ζ̃n,ij − ζ̃min|
3/2n− d̃nṽn,ij︸ ︷︷ ︸

F̃con,n,ij

+

min(−k̃tζ̃t,ij − d̃tṽt,ij, ‖ f F̃con,n,ij‖)t︸ ︷︷ ︸
F̃con,t,ij

, ζ̃n,ij 6 ζ̃min,

0, otherwise,

(2.5)

where ζ̃n,ij is the normal surface distance between particles i and j. We account
for the surface roughness of the particles, which is set to ζ̃min = 0.0015D̃p. Here
ζ̃t,ij is the tangential spring displacement, which denotes the accumulated relative
tangential motion between two particles in contact; ṽn,ij and ṽt,ij denote the normal
and tangential components of the relative velocity of particles i and j; n represents the
outward-pointing normal on the particle surface; and t points in the direction of the
tangential force. We use the parametrization for silicate grains described in Biegert
et al. (2017a), so that we chose a standard friction coefficient of f = 0.15 and obtain
stiffness k̃n and k̃t and damping d̃n and d̃t to obtain a specified restitution coefficient
as the ratio of impact to rebound velocity (en = 0.97) for the normal component and
rolling conditions for the tangential component of F̃con,ij, respectively.

The dimensionless lubrication force F̃lub,ij between particles i and j has the normal
and tangential components F̃lub,n,ij and F̃lub,t,ij, respectively, which are defined as

F̃lub,ij =


−

m̃pD̃pṽn,ij

8Stζ̃n,ij︸ ︷︷ ︸
F̃lub,n,ij

+
m̃p

2St
(k1ũt,ij + k2w̃t,ij)︸ ︷︷ ︸

F̃lub,t,ij

, ζ̃min < ζ̃n,ij 6 h̃,

0, otherwise,

(2.6)

where h̃= D̃p/10 is the range of the lubrication force. Here ũt,ij and w̃t,ij denote the
tangential components of the relative translational velocity and the relative rotational
velocity of the particles, respectively. The coefficients k1 and k2 take the values k1 =

0.53 ln(4ζ̃n,ij/D̃p) − 0.9588 and k2 = 0.13 ln(4ζ̃n,ij/D̃p) − 0.2526, respectively (Biegert
et al. 2017b).

The dimensionless cohesive force F̃coh,ij is defined as

F̃coh,ij =

−4Co
ζ̃ 2

n,ij − λ̃ζ̃n,ij

λ̃2
n, ζ̃min < ζ̃n,ij 6 λ̃,

0, otherwise,
(2.7)

where λ̃ = h̃/2 = D̃p/20 represents the range of the cohesive force. The cohesive
number Co indicates the ratio of the maximum cohesive force ‖Fcoh,ij‖ at ζ̃n,ij = λ̃/2
to the characteristic inertial force

Co=
max(‖Fcoh,ij‖)

U2
0L2ρf

=
AHDp

16λζ0

1
U2

0L2ρf
, (2.8)
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FIGURE 2. Transient forces on the particle to the left of the stagnation point at (1,1)
in figure 1(a), during binary interaction. The simulation parameters are Dp = 0.1, ρs = 1,
St= 0.1, W = 0: (a) breakage, Co= 2× 10−4; (b) aggregation, Co= 1× 10−3.

where the Hamaker constant AH is a function of the particle and fluid properties
and the characteristic distance ζ0 = 0.00025Dp. Vowinckel et al. (2019) provide
representative values of AH for common natural systems.

To summarize, the simulations require as input parameters the dimensionless particle
diameter D̃p, the number of particles Np, the density ratio ρ̃s, the settling velocity W̃,
the Stokes number St and the cohesive number Co. For convenience, the tilde symbol
will be omitted henceforth.

2.3. Validation: aggregation and breakage of two particles

To validate our numerical implementation of the cohesive force model, we consider
the interaction of two neutrally buoyant particles with Dp = 0.1, St = 0.1, W = 0
that are placed symmetrically to the left and right of the stagnation point at (1,1) in
figure 1(a). The particles are at rest initially, at a surface distance of λ/2= 0.0025, so
that the cohesive force is at its maximum. Figure 2 presents the temporal evolution
of the various forces acting on the particle to the left of the stagnation point, for the
two scenarios of (a) floc breakage and (b) floc aggregation. For the smaller value
of Co, the drag force that tries to separate the particles is initially larger than the
cohesive force that attracts them to each other (figure 2a). As the surface distance
between the particles increases, the cohesive force decays and approaches zero. While
the lubrication force Flub,n,ij acts to slow the separation of the particles, the overall net
force Fres,n,ij acting on the particle is always negative, so that the particles gradually
move apart. When the surface distance between the particles becomes larger than the
range of the cohesive and lubrication forces, the net force equals the drag force.

Figure 2(b), on the other hand, focuses on a case in which the cohesive force
initially is larger than the drag force, so that the particles approach each other. This
process is slowed down by the lubrication force. The particles asymptotically approach
an equilibrium position of near contact in which the separating drag force is balanced
by the attractive cohesive force.
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FIGURE 3. (a) Typical evolution of the number of flocs Nf as function of time; and
(b) floc size distribution during the equilibrium stage 506 t 6 200. Simulation parameters
are Np= 50, Dp= 0.1, ρs= 1, W = 0, St= 0.1 and Co= 5× 10−4. PDF, probability density
function.

3. Large ensemble of particles

3.1. Computational set-up
We now investigate ensembles involving more particles, to obtain insight into the
flocculation dynamics of larger systems. We employ a computational domain of size
Lx × Ly = 2 × 2, with periodic boundaries (figure 1a). All particles have identical
diameters and densities. Initially they are at rest and separated, and randomly
distributed throughout the domain. When the distance between two particles is less
than λ/2, we consider them as part of the same floc. We then track the number
of flocs Nf as a function of time, with an individual particle representing the
smallest possible floc. To improve the statistics, we repeat each simulation five
times for different random initial conditions, as the simulation results are statistically
independent of the initial particle placement.

A typical floc configuration is shown in figure 1(b). Figure 3(a) presents results
for a series of simulations with Np = 50 particles that have a size of 10 % of the
Kolmogorov length scale, i.e. Dp= 0.1. Further, the parameters for this scenario were
ρs = 1, W = 0, St= 0.1 and Co= 5× 10−4. Since the particles are dispersed initially,
the initial number of flocs Nf ,int ≈ Np. Subsequently Nf decreases rapidly due to
flocculation, before levelling off around a constant value Nf ,min that reflects a stable
balance between aggregation and breakage. The transient variation of Nf (t) can be
fitted by an exponential function of the form

Nf = (Nf ,int −Nf ,min)ebt
+Nf ,min, (3.1)

where we evaluate Nf ,min as the average number of flocs during the equilibrium stage
50 6 t 6 200. The agglomeration rate |b| with the constraint b 6 0 is obtained via a
least-squares fit. We define the characteristic flocculation time scale tchar as the time it
takes for the number of flocs to decrease from its initial value Nf ,int to a characteristic
number of flocs Nf ,char = Np/2. Hence the corresponding characteristic time can be
calculated as tchar = ln[(Np/2−Nf ,min)/(Nf ,int −Nf ,min)]/b.

Figure 3(b) displays the statistical floc size distribution during the equilibrium stage
50 6 t 6 200, where the ‘floc size’ Np,local denotes the number of particles in a floc.
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FIGURE 4. The flocculation time scale and the equilibrium number of flocs as functions
of Co and St, respectively, for Np = 50, Dp = 0.1, ρs = 1 and W = 0: (a) influence of
the cohesive number Co, for St = 0.1; (b) influence of the Stokes number St, for Co =
2.5× 10−3.

Parameter Co St Dp φ ρs W

Range 0.00015–0.025 0.01–9 0.04–0.1 0.0042–0.0916 1–3 0–2

TABLE 1. Simulated parameter ranges. The particle number Np is converted into the
pseudo volume fraction φ = (πNpD3

p)/(6LxLyDp). Note that Dp is a dimensionless value
normalized by the characteristic length scale L.

Here Nf ,local refers to the number of the flocs of the same size. We find that the
floc size distribution closely follows a log-normal distribution, consistent with previous
experimental observations (Bouyer, Line & Do-quang 2004; Hill et al. 2011; Verney
et al. 2011).

3.2. Influence of the governing parameters on the flocculation dynamics

In order to explore the dependence of the flocculation process on the key governing
quantities, we carry out a total of 300 simulations covering the parameter ranges listed
in table 1. Figure 4(a) shows that the number of flocs during the equilibrium stage
Nf ,min decreases for increasing Co. Beyond Co ≈ 0.01, all of the primary particles
aggregate into one large floc, as the cohesive forces overwhelm the hydrodynamic
stresses trying to break up the floc. The characteristic flocculation time initially
decreases as Co grows, and then levels off and remains constant. Figure 4(b)
indicates that for large Stokes numbers, St, the equilibrium floc number, Nf ,min, also
asymptotically approaches one. Interestingly, we observe that the flocculation time
tchar displays a pronounced minimum around St≈ 0.7, which reflects the well-known
optimal coupling between particle and fluid motion when the particle response time is
of the same order as the characteristic time scale of the flow (Wang & Maxey 1993).
Under these conditions, particles rapidly accumulate near the edges of the vortices,
which facilitates the formation of flocs.
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3.3. A new flocculation model based on the simulation data
According to Khelifa & Hill (2006a,b), for flocs of fractal dimension nf the mean floc
size Df is related to the average number of primary particles per floc Np,local=Np/Nf :

Df = (Np,local)
1/nf Dp. (3.2)

Equation (3.1) yields for the average number of particles per floc

Np,local =
1

(1/Np,local,int − 1/Np,local,max)ebt + 1/Np,local,max
, (3.3)

where the initial number of particles per floc is Np,local,int =Np/Nf ,int, and the average
number of particles per floc during the equilibrium stage is Np,local,max = Np/Nf ,min.
Fitting the simulation results over the parameter ranges listed in table 1 yields

Np,local,max = 8.5a1St0.65Co0.58D−2.9
p φ0.39ρ−0.49

s (W + 1)−0.38, (3.4a)

Np,local,max =Np, if Np,local,max > Np, (3.4b)

b=
{
−0.7a2St0.36Co−0.017D−0.36

p φ0.75ρ−0.11
s (W + 1)−1.4, St 6 0.7,

−0.3a2St−0.38Co0.0022D−0.61
p φ0.67ρ0.033

s (W + 1)−0.46, St> 0.7. (3.5)

For the present cellular model flow the values a1 = a2 = 1 in (3.4a) and (3.5) yield
optimal agreement with the simulation data with the fitting deviation of ±30 %
(figure 5a). For real turbulent flows, we will determine a1 and a2 by calibrating with
experimental data, as will be explained below.

Winterwerp (1998) introduced a population balance model that accounts for
aggregation and breakage for low turbulence levels. His model has the form

dDf

dt
=

k′A
nf

Dnf−3
p

ρp
GcD4−nf

f −
k′B
nf

(
µf

Fy

)q (Df −Dp

Dp

)p

Gq+1D2q+1
f , (3.6)

where G indicates the shear rate of the turbulence (units s−1), c represents the
sediment concentration (kg m−3), and Fy denotes the yield strength of the flocs
(N). Winterwerp suggests the values Fy = 10−10 N, nf = 2, p = 1 and q = 0.5. The
empirical coefficients k′A and k′B depend on the physico-chemical properties of the
sediment and fluid. While this model has enjoyed wide popularity in the literature
(Winterwerp et al. 2006; Son & Hsu 2008, 2009; Lee et al. 2011; Keyvani & Strom
2014; Strom & Keyvani 2016), it has also been pointed out that for large turbulent
shear and sediment concentrations the model predicts that the floc size will be larger
than the Kolmogorov scale η, which is not consistent with experimental observations
(Keyvani & Strom 2014; Kuprenas, Tran & Strom 2018; Sherwood, Aretxabaleta &
Harris 2018). To address this issue, Kuprenas et al. (2018) recently suggested the
modification q= 0.5+ 1.5Df /η. In the following, we will compare predictions by the
current model with both of these earlier models.

Tran, Kuprenas & Strom (2018) measured the floc size Df (t) in turbulence for
constant shear rate G and sediment concentration c (figure 5b–f ). They determined
the empirical coefficients k′A and k′B by calibrating with the experimental data for
c = 50 mg l−1. In a similar fashion, we will determine the constants a1 and a2
required for our model by calibrating with the same case displayed in figure 5(b).
Towards this end, we need to convert the experimental data into characteristic length
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FIGURE 5. (a) Total fitting deviation of (3.3)–(3.5), cases 1 to 4 shown here have
the largest fitting error among 300 different tests for the cellular flow field (figure 1a).
Comparison with experimental data: (b) calibration of the empirical coefficients for the
models of Winterwerp (1998) (k′A = 1.35 and k′B = 1.29 × 10−5), Kuprenas et al. (2018)
(k′A = 0.45 and k′B = 1.16 × 10−6), and for our (3.4)–(3.5) (a1 = 500 and a2 = 35); (c–f )
comparisons between experimental data and predictions by the model of Kuprenas et al.
(2018) and (3.2)–(3.5); the predictions by Winterwerp (1998) are also shown for further
comparison. The experimental parameters are Dp= 5 µm, G= 50 s−1, ρp= 2650 kg m−3,
ρf = 1000 kg m−3, µf = 0.001 Ns m−2, c= 15∼ 400 mg l−1.

L and velocity U0 scales that can be employed in our model – equations (3.3)–(3.5).
We accomplish this by setting L= η= [µf /(ρf G)]0.5 and U0=Gη/4. Furthermore, we
assume the Hamaker constant to be AH = 1.0 × 10−20 J (see Vowinckel et al. 2019,
pp. 37–39), and the fractal dimension nf = 2, which yields the correction constants
a1= 500 and a2= 35. The mean floc size can then be obtained from (3.2). For lower
sediment loadings, figure 5(c) shows that our model yields predictions similar to those
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of Kuprenas for the equilibrium floc size, while it tends to perform somewhat better
than Kuprenas’ model during the transient stage. These differences become more
pronounced for higher sediment loadings (figure 5d–f ), and they likely reflect the
more realistic modelling of the particle–particle interactions in the present simulations.
For these particular flow conditions, Winterwerp’s model yields valid predictions only
for sediment loads below approximately 200 mg l−1. Hence, the results encourage
the use of our conceptually simplified cellular flow model as a cost-efficient tool
to derive scaling laws in the form of (3.2)–(3.5) for a wide parameter range for
flocculation of cohesive particles in turbulent flow conditions.

4. Conclusions

We have analysed the flocculation dynamics of cohesive sediment via one-way
coupled simulations in a model turbulent flow field. The computational model
accounts for Stokes drag, lubrication, cohesive and direct contact forces, and it yields
the time-dependent floc size as a function of the governing dimensionless parameters.
The simulations reproduce the transient growth of the cohesive flocs, as well as
the emergence of a log-normal equilibrium distribution governed by the balance
of aggregation and breakage. By accounting for the detailed physical mechanisms
governing particle–particle interactions, the simulations demonstrate that flocculation
proceeds most rapidly when the Stokes number of the primary particles is O(1). We
employ the computational data in order to propose a new flocculation model. As it
is based on a more realistic representation of particle–particle interactions, this new
model yields improved agreement with the experimental measurements of Tran et al.
(2018), especially during the transient stages.
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