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Abstract

A message passing algorithm is derived for recovering communities within a graph generated by a

variation of the Barabási-Albert preferential attachment model. The estimator is assumed to know the

arrival times, or order of attachment, of the vertices. The derivation of the algorithm is based on belief

propagation under an independence assumption. Two precursors to the message passing algorithm are

analyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on

the arrival times of the children (C) of a given vertex, where the children of a given vertex are the

vertices that attached to it. Comparison of the performance of the algorithms shows it is beneficial to

know the arrival times, not just the number, of the children. The probability of correct classification of

a vertex is asymptotically determined by the fraction of vertices arriving before it. Two extensions of

Algorithm C are given: the first is based on joint likelihood of the children of a fixed set of vertices;

it can sometimes be used to seed the message passing algorithm. The second is the message passing

algorithm. Simulation results are given.1

Index terms: preferential attachment graph, message passing algorithm, graphical inference,

clustering, community recovery

I. INTRODUCTION

Community detection, a form of unsupervised learning, is the task of identifying dense

subgraphs within a large graph. For surveys of recent work, see [1]–[3]. Community detection is

1This paper was presented in part at the 2018 IEEE International Symposium on Information Theory



often studied in the context of a generative random graph model, of which the stochastic block

model is the most popular. The model specifies how the labels of the vertices are chosen, and

how the edges are placed, given the labels. The task of community detection then becomes an

inference problem; the vertex labels are the parameters to be inferred, and the graph structure

is the data. The advantage of a generative model is that it helps in the design of algorithms for

community detection.

The stochastic block model fails to capture two basic properties of networks that are seen in

practice. Firstly, it does not model networks that grow over time, such as citation networks or

social networks. Secondly, it does not model graphs with heavy-tailed degree distributions, such

as the political blog network [4]. The Barabási-Albert model [5], a.k.a. the preferential attachment

model, is a popular random graph model that addresses both the above shortcomings. We use the

variation of the model introduced by Jordan [6] that includes community structure. The paper [6]

considers labels coming from a metric space, though a section of the paper focuses on the case

the label space is finite. We consider only a finite label set–the model is described in Section

II-A. In recent years there has been substantial study of a variation of preferential attachment

model introduced in [7] such that different vertices can have different fitness. For example, in

a citation network, some papers attract more citations than others published at the same time.

There has also been work done on recovering clusters from graphs with different fitness (see

Chapter 9 of [8] and references therein). Our work departs from previous work by considering

community detection for the model in which the affinity for attachment between an arriving

vertex and an existing vertex depends on the labels of both vertices (i.e. for the model of [6]).

The algorithm we focus on is message passing. Algorithms that are precursors to message

passing, in which the membership of a vertex is estimated from its radius one neighborhood in

the graph, are also discussed. The algorithm is closest in spirit to that in the papers [9], [10].

Message passing algorithms are local algorithms; vertices in the graph pass messages to each

of their neighbors, in an iterative fashion. The messages in every iteration are computed on the

basis of messages in the previous iteration. The degree growth rates for vertices in different

communities are different (unless there happens to be a tie) so the neighborhood of a vertex

conveys some information about its label. A quantitative estimate of this information is the

belief (a posteriori probability) of belonging to a particular community. A much better estimate

of a vertex’s label could potentially be obtained if the labels of all other vertices were known.

Since this information is not known, the idea of message passing algorithms is to have vertices
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simultaneously update their beliefs.

The main similarity between the preferential attachment model with communities and the

stochastic block model is that both produce locally tree-like graphs. However, the probabilities of

edges existing are more complicated for preferential attachment models. To proceed to develop

the message passing algorithm, we invoke an independence assumption that is suggested by

an analysis of the joint degree evolution of multiple vertices. This approach is tantamount to

constructing a belief propagation algorithm for a graphical model that captures the asymptotic

distribution of neighborhood structure for the preferential attachment graphs.

a) Organization of the paper: Section II lays the groundwork for the problem formulation

and analysis of the community detection problem. It begins by presenting a model for a graph

with preferential attachment and community structure, following [6]. The section then presents

some key properties of the graphical model in the limit of a large number of vertices. In particular,

the empirical distribution of degree, and the evolution of degree of a finite number of vertices, are

examined. Stochastic coupling and total variation distance are used extensively. In addition, it is

shown that the growth rate parameter for a given fixed vertex can be consistently estimated as the

size of the graph converges to infinity. Section III formulates the community recovery problem

as a Bayesian hypothesis testing problem, and focuses on two precursors to the message passing

algorithm. The first, Algorithm C, estimates the community membership of a vertex based on

the children of the vertex (i.e. vertices that attached to the vertex). The second, Algorithm DT,

estimates the community membership of a vertex based on the number of children. Section IV

investigates an asymptotically equivalent recovery problem, based on a continuous-time random

process Z that approximates the evolution of degree of a vertex in a large graph. A key conclusion

of that section is that, for the purpose of estimating the community membership of a single

vertex, knowing the neighborhood of the vertex in the graph is significantly more informative than

knowing the degree of the vertex. Section V presents our main results about how the performance

of the recovery Algorithms C and DT scale in the large graph limit. Section VI presents an

extension of Algorithm C whereby the labels of a fixed small set of vertices are jointly estimated

based on the likelihood of their joint children sets. This algorithm has exponential complexity

in the number of labels estimated, but can be used to seed the message passing algorithm. Since

the vertices that arrive early have large degree, it can greatly help to correctly estimate the labels

of a small number of such vertices. The message passing algorithm is presented in Section VII.

Simulation results are given for a variety of examples in Section VIII. Various proofs, and the
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derivation of the message passing algorithm, can be found in the appendices.

b) Related work: A different extension of preferential attachment to include communities

is given in [11]. In [11], the community membership of a new vertex is determined based on

the membership of the vertices to which the new vertex is attached. The paper focuses on the

question of whether large communities coexist as the number of vertices converges to infinity.

However, the dynamics of the graph itself is the same as in the original Barabási-Albert model.

In contrast, our model assumes that community membership of a vertex is determined randomly

before the vertex arrives, and the distribution of attachments made depends on the community

membership. It might be interesting to consider a combination of the two models, in which some

vertices determine community membership exogenously, and others determine membership based

on the memberships of their neighbors.

Another model of graphs with community structure and possibly heavy-tailed degree distri-

bution is the degree corrected stochastic block model – see [12] for recent work and references.

There is an extensive literature on degree distributions and related properties of preferential

attachment graphs, and an even larger literature on the closely related theory of Polya urn

schemes. However, the addition of planted community structure breaks the elegant exact analysis

methods, such as the matching equivalence formulated in [13], or methods such as in [14] or

[15]. Still, the convergence of the empirical distribution of the induced labels of half edges

(see Proposition 2 below) makes the analysis tractable without the exact formulas. A sequence

of models evolved from preferential attachment with fitness [7], towards the case examined

in [6], such that the attachment probability is weighted by a factor depending on the labels

of both the new vertex and a potential target vertex. The model of [16] is a special case, for

which attachment is possible if the labels are sufficiently close. See [6], [8], [16] for additional

background literature.

II. PRELIMINARIES AND SOME ASYMPTOTICS

A. Barabási - Albert preferential attachment model with community structure

The model consists of a sequence of directed graphs, pGt “ pVt, Etq : t ě toq and vertex

labels p`t : t ě 1q with distribution determined by the following parameters:2

2The model is the same as the finite metric space case of [6] except for differences in notation. α, S,X, µ, ν, Y, φ in [6] are

βT , rrs, `, ρ, η, C, 2θ here. Also, [6] denotes the initial graph as G0 while we denote it by Gto , we assume it has mt0 edges,

and we suppose the random evolution begins with the addition of vertex to ` 1.
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‚ m ě 1 : out degree of each added vertex

‚ r ě 1: number of possible labels; labels are selected from rrs fi t1, . . . , ru

‚ ρ “ pρ1, . . . , ρrq: a priori label probability distribution

‚ βββ P Rrˆr: matrix of strictly positive affinities for vertices of different labels; βuv is the

affinity of a new vertex with label u for attachment to a vertex of label v.

‚ to ě 1: initial time

‚ Gto “ pVto , Etoq: initial directed graph with Vto “ rtos and mto directed edges

‚ p`t : t P rtosq P rrs
to : labels assigned to vertices in Gto .

For each t ě to, Gt has t vertices given by Vt “ rts and mt edges. The graphs can contain

parallel edges. No self loops are added during the evolution, so if Gto has no self loops, none

of the graphs will have self loops. Of course, by ignoring the orientation of edges, we could

obtain undirected graphs.

Given the labeled graph Gt, the graph Gt`1 is constructed as follows. First vertex t ` 1 is

added and its label `t`1 is randomly selected from rrs using distribution ρ, independently of Gt.

Then m outgoing edges are attached to the new vertex, and the head ends of those edges are

selected from among the vertices in Vt “ rts using sampling with replacement, and probability

distribution given by preferential attachment, weighted based on labels according to the affinity

matrix.

The probabilities are calculated as follows. Note that Et has mt edges, and thus 2mt half

edges, where we view each edge as the union of two half edges. For any edge, its two half edges

are each incident to a vertex; the vertices the two half edges are incident to are the two vertices

the edge is incident to. Suppose each half edge inherits the label from the vertex it is incident to.

If `t`1 “ u, meaning the new vertex has label u, and if one of the existing half edges has label v,

then the half edge is assigned weight βuv for the purpose of adding edges outgoing from vertex

t`1. For each one of the new edges outgoing from vertex t`1, an existing half edge is chosen

at random from among the 2mt possibilities, with probabilities proportional to such weights.

The selection is done simultaneously for all m of the new edges, or equivalently, sampling with

replacement is used. Then the vertices of the respective selected half edges become the head

ends of the m new edges.
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B. Empirical degree distribution for large T

For a vertex in Gt, where t ě to, the distribution of the number of edges incident on the vertex

from vertex t` 1 depends on the label of the vertex, the degree of the vertex, and the labels on

all the half edges incident to the existing vertices in Gt. The empirical distribution of labels of

half edges in Gt converges almost surely as tÑ 8, as explained next. Let Ct “ pCt,u : u P rrsq

for t ě to, where Ct,u denotes the number of half edges with label u in Gt. It is easy to see

that pCt : t ě toq is a discrete-time Markov process, with initial state determined by the labels

of vertices in Gto . Let ηt “ Ct
2mt

. Thus, ηt,u is the fraction of half edges that have label u at time

t. Let h “ ph1, . . . , hrq where

hvpηq “ ρv `
ÿ

u

ρu

ˆ

βuvηv
ř

v1 βuv1ηv1

˙

´ 2ηv. (1)

The following is proved in [6], by appealing to the theory of stochastic approximation. For

convenience we give essentially the same proof, using our notation, in Appendix A.

Proposition 1. [6] (Limiting fractions of half edges with given labels) ηt Ñ η˚ a.s. as tÑ 8,

where η˚ is the unique probability vector such that hpη˚q “ 0.

A second limit result we restate from [6] concerns the empirical degree distribution for the

vertices with a given label. For v P rrs and integers n ě m and T, let:

‚ HvpT q denote the number of vertices with label v in GT

‚ N v
npT q denote the number of vertices with label v and with degree n in GT

‚ P v
n pT q “

Nv
npT q

HvpT q
denote the fraction of vertices with label v that have degree n in GT .

Let

θ˚u,v “
βuv

2
ř

v1 βuv1η
˚
v1

for u, v P rrs,

and

θ˚v “
ÿ

u

ρuθ
˚
u,v for v P rrs. (2)

Proposition 2. [6] (Limiting empirical distribution of degree for a given label) Let n ě m and

v P rrs be fixed. Then limTÑ8 P
v
n pT q “ pnpθ

˚
v ,mq almost surely, where

pnpθ,mq “
Γ
`

1
θ
`m

˘

Γpnq

θΓpmqΓ
`

n` 1
θ
` 1

˘

—

«

Γ
`

1
θ
`m

˘

θΓpmq

ff

1

n
1
θ
`1

(3)

6



The asymptotic equivalence in (3) as nÑ 8 follows from Sterling’s formula for the Gamma

function. The proposition shows that the limiting degree distribution of a vertex with label v

selected uniformly at random from among the vertices with label v in GT has probability mass

function with tail decreasing like n
´

ˆ

1

θ˚v
`1

˙

. If βu,v is the same for all u, v then θ˚v “ 1{2 for

all v and we see the classical tail exponent -3 for the Barabási-Albert model.

The proof of Proposition 2 given in [6] is based on examining the evolution of the fraction

of vertices with a given label and given degree n. Using the convergence analysis of stochastic

approximation theory, this yields limiting difference equations for pn that can be solved to find

pn. However, since all vertices with a given label are grouped together, the analysis does not

identify the limiting degree distribution of a vertex as a function of the arrival time of the vertex.

The following section investigates the evolution of the degree of a single vertex, or finite set

of vertices, conditioned on their labels. As a preliminary application, we produce an alternative

proof of Proposition 2 in Appendix D. The main motivation for this alternative approach is that

it can also be applied to analyze the probability of label error as a function of time of arrival of

a vertex, for two of the recovery algorithms we consider.

C. Evolution of vertex degree–the processes Y, rY , qY , and Z

Consider the preferential attachment model defined in Section II-A. Given a vertex τ with

τ ě to ` 1, consider the process pYt : t ě τq, where Yt is the degree of vertex τ at time t.

So Yτ “ m. The conditional distribution (i.e. probability law) of Yt`1 ´ Yt given pYt, ηt, `τ “

v, `t`1 “ uq is given by:

LpYt`1 ´ Yt|Yt, ηt, `τ “ v, `t`1 “ uq “ binom

ˆ

m,
θu,v,tYt
mt

˙

,

where

θu,v,t “
βuv

2
ř

v1 βuv1ηtv1
.

It follows that, given pYt, ηt, `τ “ vq, the conditional distribution of Yt`1 ´ Yt is a mixture of

binomial distributions with selection probability distribution ρ, which we write as:

LpYt`1 ´ Yt|Yt, ηt, `τ “ vq “
ÿ

uPrrs

ρubinom

ˆ

m,
θu,v,tYt
mt

˙

.

Proposition 1 implies, given any ε ą 0, if τ is sufficiently large, P t}ηt ´ η˚} ď ε for all t ě τu ě

1 ´ ε. Therefore, θu,v.t « θ˚u,v for v P rrs. A mixture of binomial distributions, all with small
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means, can be well approximated by a Bernoulli distribution with the same mean. Thus, we

expect LpYt`1 ´ Yt|Yt, `τ “ vq « Ber
´

θ˚v Yt
t

¯

.

Based on these observations, we define a random process that is an idealized variation of Y

obtained by replacing ηt by the constant vector η˚, and allowing jumps of size one only. The

process rY has parameters τ,m, and ϑ, where τ is the activation time, m is the state at the

activation time, and ϑ ą 0 is a rate parameter. The process rY is a time-inhomogeneous Markov

process with initial value Yτ “ m. For t ě τ and y such that ϑy
t
ď 1, we require:

LprYt`1 ´ rYt|rYt “ yq “ Ber

ˆ

ϑy

t

˙

. (4)

By induction, starting at time τ , we find that rYt ď m` t´τ for t ě τ. If τ ě m and ϑ ď 1, then
ϑrYt
t
ď 1 for all t ě τ with probability one, in which case (4) and the initial condition completely

specify the distribution of prY : t ě τq. However, for added generality we allow ϑ ą 1, in which

case the above construction can break down. To address such situation, we define ζ such that ζ

is the stopping time ζ fi inftt : ϑrYt ą tu and we define rYt “ `8 for t ą ζ.

The process Y can be thought of as a (non Markovian) discrete time birth process with

activation time τ and birth probability at a time t proportional to the number of individuals.

However, the birth probability (or birth rate) per individual, θ˚v
t

, has a factor 1
t
, which tends to

decrease the birth rate per individual. To obtain a process with constant birth rate per individual

we introduce a time change by using the process pYes : s ě 0q. In other words, we use t for the

original time variable and s “ ln t as a new time variable. We will define a process Z such that

pZlnpt{τq : t ě τq « pYt : t ě τq, or equivalently, pZs : s ě 0q « pYτes : s ě 0q, in a sense to be

made precise.

The process Z “ pZs : s ě 0q is a continuous time pure birth Markov process with initial

state Z0 “ m and birth rate ϑk in state k, for some ϑ ą 0. (It is a simple example of a Bellman-

Harris process, and is related to busy periods in Markov queueing systems.) The process Z

represents the total number of individuals in a continuous time branching process beginning

with m individuals activated at time 0, such that each individual spawns another at rate ϑ. For

fixed s, Zs has the negative binomial distribution negbinompm, e´sϑq. In other words, its marginal

probability distribution pπnps, ϑ,mq : n P Z`q is given by

πnps, ϑ,mq “

ˆ

n´ 1

m´ 1

˙

e´mϑsp1´ e´ϑsqn´m for n ě m. (5)

In particular, taking m “ 1 shows πps, ϑ, 1q is the geometric distribution with parameter e´ϑs, and

hence, mean eϑs. The expression (5) can be easily derived for m “ 1 by solving the Kolmogorov
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forward equations recursively in n: 9πn “ ´ϑnπn`ϑpn´ 1qπn´1 for n ě 1, with the convention

and base case, π0 ” 0. For m ě 2, the process Z has the same distribution as the sum of m

independent copies of Z with m “ 1, proving the validity of (5) by the same property for the

negative binomial distribution.

Let qYt “ Zlnpt{τq for integers t ě τ. The mapping from Z to qY does not depend on the

parameter ϑ, so a hypothesis testing problem for Z maps to a hypothesis testing problem for qY .

There is loss of information because the mapping is not invertible, but the loss tends to zero as

τ Ñ 8, because the rate of sampling of Z increases without bound.

The following proposition, proven in Appendix B, shows that Y, rY and qY are asymptotically

equivalent in the sense of total variation distance. Since the processes Y, rY and qY are integer

valued, discrete time processes, their trajectories over a finite time interval rτ, T s have discrete

probability distributions. See the beginning of Appendix B for a review of the definition of total

variation distance and its significance for coupling. Sometimes we write rY pϑq instead of rY , and
qY pϑq instead of qY , to denote the dependence on the parameter ϑ.

Proposition 3. Suppose τ, T Ñ 8 such that T ą τ and T {τ is bounded. Fix v P rrs. Then

dTV ppYrτ,T s|`τ “ vq, rYrτ,T spθ
˚
v qq Ñ 0, (6)

and for any ϑ ą 0,

dTV

´

rYrτ,T spϑq, qYrτ,T spϑq
¯

Ñ 0. (7)

The first part of Proposition 3 can be strengthened as follows. The labels in `r1,T s are mu-

tually independent, each with distribution ρ. We can define a joint probability distribution

over prYrτ,T s, `r1,T sq by specifying the conditional probability distribution of rYrτ,T s given `r1,T s

as follows. Given `r1,T s, rYrτ,T s is a Markov sequence with rYτ “ m and:

LprYt ´ rYt´1

ˇ

ˇ`t “ u, `τ “ v, rYt´1 “ yq “ Ber

ˆ

yθ˚u,v
t´ 1

˙

. (8)

By the law of total probability, this gives the same marginal distribution for LprYrτ,T s|`τ“vq as

(4) with ϑ “ θ˚v , as long as maxu,vtθ
˚
u,vuy ď t.

Proposition 4. Suppose τ, T Ñ 8 such that T ą τ and T {τ is bounded. Fix v P rrs. Then

dTV

´

`

Yrτ,T s, `r1,T s
˘

,
´

rYrτ,T s, `r1,T s

¯¯

Ñ 0, (9)
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The proof is a minor variation of the proof of Proposition 3 because the estimates on total

variation distance are uniform for θ˚v or θ˚u,v bounded. Details are left to the reader.

D. Joint evolution of vertex degrees

Instead of considering the evolution of degree of a single vertex we consider the evolution of

degree for a finite set of vertices, still for the preferential attachment model with communities,

pGt “ pVt, Etq : t ě toq, defined in Section II-A. Given integers τ1, . . . , τJ with to ă τ1 ă ¨ ¨ ¨ ă

τJ , let Y j
t “ 0 if 1 ď t ă τj and let Y j

t denote the degree of vertex τj at time t if t ě τj . Let

Y
rJs
t “ pY j

t : j P rJsq. Let pv1, . . . , vJq P rrs
J . We consider the evolution of pY rJst : t ě 1q given

p`τ1 , . . . , `τJ q “ pv1, . . . , vJq. Let ϑj “ θ˚vj for j P rJs. About the notation θ˚ vs. ϑ: The vector

θ˚ “ pθ˚v : v P rrsq denotes the limiting rate parameters for the r possible vertex labels defined

in (2), whereas ϑ “ pϑj : j P rJsq denotes the limiting rate parameters for the specific set of J

vertices being focused on, conditioned on their labels being v1, . . . , vJ .

The process rY rJs is defined similarly. Fix J ě 1, integers τ1, . . . , τJ with 1 ď τ1 ă . . . ă τJ ,

and ϑ P pRą0q
J . Suppose for each j P rJs that rY j is a version of the process rY defined in Section

II-C, with parameters τj , m, and ϑj, with the extension rY j
t “ 0 for 1 ď t ď τj´1. Furthermore,

suppose the J processes prY jqjPrJs are mutually independent. Finally, let rY rJs “ prY
rJs
t : t ě 1q

where rY
rJs
t “ prY j

t : j P rJsq. Note that rY rJs is itself a time-inhomogeneous Markov process. In

what follows we write rY rJspϑq instead of rY rJs when we wish to emphasize the dependence on

the parameter vector ϑ. Let qY rJs be defined analogously, based on qY .

Proposition 5. Fix the parameters of the preferential attachment model, m, r, β, ρ, to, Gto , `r1,tos.

Fix J ě 1 and v1, . . . , vJ P rrs, and let ϑj “ θ˚vj for j P rJs. Let τ0 Ñ 8 and let τ1, . . . , τJ and

T vary such that τ0 ď τ1 ă . . . ă τJ , and T {τ0 is bounded. Then

dTV

´

rY
rJs
r1,T spϑq,

´

Y
rJs
r1,T s

ˇ

ˇ`τj “ vj for j P rJs
¯¯

Ñ 0

dTV

´

rY
rJs
r1,T spϑq,

qY
rJs
r1,T spϑq

¯

Ñ 0

The proposition is proved in Appendix C. A key implication of the proposition is that the

degree evolution processes for a finite number of vertices are asymptotically independent in the

assumed asymptotic regime. In particular, the following corollary is an immediate consequence

of the proposition. It shows that the degrees of J vertices at a fixed time T are asymptotically

independent with marginal distributions given by (5).
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Corollary 1. (Convergence of joint distribution of degrees of J vertices at a given time) Under

the conditions of Proposition 5, for a vector n “ pn1, . . . , nJq with nj ě m,

lim
τ0Ñ8

sup
τ1,...,τJ ,T

ˇ

ˇ

ˇ

ˇ

P
"

Y
rJs
T “ n

ˇ

ˇ

ˇ

ˇ

p`τ1 , . . . , `τJ q “ pv1, . . . , vJq

*

´
ź

jPrJs

πnj plnpT {τjq, ϑj,mq

ˇ

ˇ

ˇ

ˇ

“ 0.

Remark 1. Corollary 1 implies, given `τ “ v, the limiting distribution of the degree of τ in

GT is negbinompm, pτ{T qθ
˚
v q, as τ, T Ñ 8 with τ ď T and T {τ bounded. This generalizes the

result known in the classical case βu,v ” 1 where θ˚v “ 1{2, shown on p. 286 of [13].

E. Large time evolution of degree of a fixed vertex and consistent estimation of the rate parameter

of a vertex

Consider the Barabási-Albert model with communities. Fix τ ě 1 and let Yt denote the degree

of τ in Gt for t ě to. To avoid triviality, assume τ is not an isolated vertex in the initial graph

Gto . The following proposition offers a way to consistently estimate the rate parameter θ˚`τ . If

the parameters θ˚v of the Barabási-Albert model are distinct, it follows that any fixed finite set

of vertices could be consistently classified in the limit as T Ñ 8, without knowledge of the

model parameters.

Proposition 6. (Large time behavior of degree evolution) For τ fixed,

lim
TÑ8

lnYT
lnpT {τq

“ θ˚`τ a.s. (10)

Here, “a.s." means almost surely, or in other words, with probability one.

The following strengthening of Proposition 6 is conjectured.

Conjecture 1. (Sharp large time behavior of degree evolution) For τ fixed,

lim
TÑ8

YT

pT {τqθ
˚
`τ

“ W a.s. (11)

for a random variable W with P tW ą 0u “ 1.

See Appendix E for a proof of the proposition and a proof that (11) holds with Y replaced

by qY .
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III. COMMUNITY RECOVERY BASED ON CHILDREN

Given vertices τ and τ0, we say τ is a child of τ0, and τ0 is a parent of τ , if τ ě maxtτ0, tou`1,

and there is an edge from τ to τ0. It is assumed that the known initial graph Gto is arbitrary and

carries no information about vertex labels. Thus, for the purpose of inferring the vertex labels,

the edges in Gto are not relevant beyond the degrees that they imply for the vertices in Gto .

Assuming T is an integer with 1 ď τ ă T , let Bτ denote the children of τ in GT and ℘τ the

parents of τ. So ℘τ “ H if τ ď to and Bτ Ă tto ` 1, . . . , T u.

Consider the problem of estimating `τ given observation of a random object O. For instance,

the object could be the degree of vertex τ in GT , or it could be the set of children of τ in

GT , or it could be the entire graph. This is an r-ary hypothesis testing problem. It is assumed

a priori that the label `τ has probability distribution ρ, so it makes sense to try to minimize the

probability of error in the Bayesian framework. Let Λτ denote the log-likelihood vector defined

by Λτ pO|iq “ ln ppO|`τ “ iq for i P rrs. By a central result of Bayesian decision theory, the

optimal decision rule is the MAP estimator, given by

p`τ,MAP “ arg max
i
pln ρi ` Λτ pO|iqq

Remark 2. (i) Knowing GT is equivalent to knowing the indices of the vertices and the undirected

graph induced by dropping the orientations of the edges of GT .

(ii) The estimators considered in this paper are assumed to know the order of arrival of

the vertices (which we take to be specified by the indices of the vertices for brevity) and the

parameters m, β and ρ. It is clear that in some cases the parameters can be estimated from

a realization of the graph for sufficiently large T. In particular, the parameter m is directly

observable. By Proposition 6, if the order of arrival is known, the set of growth rates tθ˚v : v P rrsu

can be estimated. So if the θ˚v ’s are distinct, the distribution ρ can also be consistently estimated.

(iii) If the indices of the vertices are not known and only the undirected version of the graph

is given, it may be possible to estimate the indices if m is sufficiently large. Such problem has

been explored recently for the classical Barabási-Albert model [17], but we don’t pursue it here

for the variation with a planted community.

Algorithm C: The first recovery algorithm we describe, Algorithm C (“C" for “children"),

is to let O denote the set of children, Bt “ tt1, . . . , tnu, of vertex τ in GT . Equivalently, O could

be observation of Yrτ_to,T s, with parameters m and θ˚v , where τ _ to “ maxtτ, tou. However,
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motivated by Proposition 3, we consider instead observation of rYrτ_to,T s, which has a distribution

asymptotically equivalent to the distribution of Yrτ_to,T s. Let d0pτq denote the initial degree of

vertex τ , defined to be the degree of τ in Gto if τ ď to and d0pτq “ m otherwise. Given

a possible children set Bt “ tt1, . . . , tnu, let yBτ
rτ,T s, denote the corresponding degree evolution

sample path: yBτt “ dopτq` |Bτ Xrτ, ts| for τ _ to ď t ď T, The probability rYrτ_to,T s corresponds

to children set Bt “ tt1, . . . , tnu is given by

P pBt “ tt1, . . . , tnuq “

ź

tPrτ_to`1,T szBτ

ˆ

1´
yBτsot´1θ

˚
v

t´ 1

˙

ź

tPBτ

yBτt´1θ
˚
v

t´ 1
,

so the log likelihood for observation rYrτ_to,T s “ yBτ
rτ_to,T s

is:

ΛC
τ “ |Bτ | ln θ

˚
v `

ÿ

tPrτ_to`1,T szBτ

ln

ˆ

1´
yBτt´1θ

˚
v

t´ 1

˙

Algorithm C for estimating `τ is to use the MAP estimator based on ρ and ΛC
τ . Using the

approximation lnp1` sq “ s and approximating the sum by an integral we find ΛC
τ « λτ , where

λCτ pvq fi |Bτ | ln θ˚v ´ θ
˚
v

ż T

τ_to

yBτt
t
dt

“ |Bτ | ln θ˚v ` θ
˚
v

˜

dopτq ln
τ _ to
T

`
ÿ

tPBτ

ln
t

T

¸

. (12)

Algorithm DT: The second recovery algorithm we describe, Algorithm DT (“DT" for

“degree thresholding"), is to let O denote the number of children of vertex τ in GT , or,

equivalently, the degree of τ at time T minus the initial degree of τ. Equivalently, O could be

observation of YT ´ dopτq. However, motivated by Proposition 3, we consider instead consider

observation of qYT ´ d0pτq, which has the negbinom
`

dopτq, pτ{T q
θ˚v
˘

distribution given `τ “ v,

for v P rrs. The log likelihood vector in this case, given the number of children, |Bτ |, is:

ΛDT
τ pvq “ ´dopτqθ

˚
v lnpT {τq ` |Bτ | ln

´

1´ pτ{T qθ
˚
v

¯

,

where we have dropped a term (log of binomial coefficient) not depending on v. Algorithm DT

for estimating `τ is to use the MAP decision rule based on ρ and ΛDT , or in other words, the

MAP decision rule based on O “ qYT , or equivalently, based on O “ Zs̄, where s̄ “ lnpT {τq

(because qYT “ Zs̄). Let fDTZ pρ, θ˚,m, s̄q denote the resulting average error probability pe.
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IV. HYPOTHESIS TESTING FOR Z

Proposition 3 gives an asymptotic equivalence of Yrτ,T s, rYrτ,T s, and qYrτ,T s. Recall that qYrτ,T s

is obtained by sampling the continuous time process Zlnpt{τq at integers t P rτ, T s. Thus,

the continuous time process Z is not observable. However, as τ Ñ 8, the rate that Z is

sampled increases without bound, so asymptotically Zr0,lnpT {τqs is observed. We consider here

the hypothesis testing problem based on observation of Zr0,lnpT {τqs such that under Hv it has rate

parameter ϑ “ θ˚v for v P rrs. This is sensible in case the parameter values θ˚v , v P rrs, are

distinct. To this end, we derive the log likelihood vector.

Suppose ts1, . . . , snu Ă p0, s̄s such that 0 ă s1 ă ¨ ¨ ¨ ă sn and s̄ “ lnT {τ . Since the

inter-jump periods are independent (exponential) random variables, the likelihood of s1, . . . , sn

being the jump times during r0, s̄s under hypothesis Hv, is the product of the likelihoods of the

observed inter-jump periods, with an additional factor of the likelihood of not seeing a jump in

the last interval:
˜

n´1
ź

i“0

θ˚v pm` iqe
´θ˚v pm`iqpsi`1´siq

¸

e´θ
˚
v pn`mqps̄´snq

Thus, the log likelihood for observing this is (letting s0 “ 0):

ΛZ
“ n ln θ˚v ´ θ

˚
v

˜

ms̄`
n
ÿ

i“1

ps̄´ siq

¸

(13)

(With si “ lnpti{τq, (13) is the same as (12), although in (12) the variables ti are supposed to

be integer valued.) Let As̄ fi pms̄`
řn
i“1ps̄´ siqq . Note that As̄ is the area under the trajectory

of Zr0,s̄s. Moreover, n`m is the value of Zs̄. So the log-likelihood vector is given by:

ΛZ
“ pZs̄ ´mq ln θ˚v ´ pAs̄qθ

˚
v , (14)

which is a linear combination of Zs̄ ´ m and As̄. Thus, the MAP decision rule has a simple

form. Let fCZ pρ, θ
˚,m, s̄q denote the average error probability pe for the MAP decision rule

based on observation of Zr0,s̄s.

There is apparently no closed form expression for the distribution of ΛZ , so computation of

fCZ pρ, θ
˚,m, s̄q apparently requires Monte Carlo simulation or some other numerical method.

A closed form expression for the moment generating function of ΛZ is given in the following

proposition, proved in Appendix F, and it can be used to either bound the probability of error

or to accelerate its estimation by importance sampling.
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Proposition 7. The joint moment generating function of Zs and As is given as follows, where

Eλ,m r¨s denotes expectation assuming the parameters of Z are λ,m :

ψλ,mpu, v, sq fi Eλ,m
“

euZs`vAs
‰

“

˜

epv´λqs`u

1` λeu

v´λ
p1´ epv´λqsq

¸m

. (15)

Proposition 7 can be used to bound pe for the special case of two possible labels, r “ 2,

in which estimating `τ is a binary hypothesis testing problem: H1 : ϑ “ θ˚1 , vs. H2 : ϑ “ θ˚2 .

For such a problem the likelihood vector ΛZ can be replaced by the log likelihood ratio, Λ “

ΛZp1q ´ ΛZp2q. By a standard result in the theory of binary hypothesis testing (due to [18],

stated without proof in [19], proved in special case π1 “ π2 “ 0.5 in [20], and same proof easily

extends to general case), the probability of error for the MAP decision rule is bounded by

π1π2ρ
2
B ď pe ď

?
π1π2ρB, (16)

where the Bhattacharyya coefficient (or Hellinger integral) ρB is defined by ρB “ E
“

eΛ{2
ˇ

ˇH2

‰

,

and π1 and π2 are the prior probabilities on the hypotheses. The proposition with λ “ θ˚2 ,

u “ 1
2

lnpθ˚1{θ
˚
2 q, v “ ´

θ˚1´θ
˚
2

2
, and s “ s̄ yields

ρB,C “ Eλ,m
“

eupZs´mq`vAs
‰

“ ψλ,mpu, v, sqe
´mu

“

¨

˚

˝

e´pθ
˚
1`θ

˚
2 qs̄{2

1´
2
?
θ˚1 θ

˚
2

θ˚1`θ
˚
2

`

1´ e´pθ
˚
1`θ

˚
2 qs̄{2

˘

˛

‹

‚

m

.

Here we wrote ρB,C to denote it as the Bhattacharyya coefficient for Algorithm C (for the large

T limit). Using this expression in (16) provides upper and lower bounds on pe “ fCZ pρ, θ
˚,m, s̄q

in case r “ 2.

For the sake of comparison, we note that the Bhattacharyya coefficient for the hypothesis

testing problem based on qYT alone, i.e. Algorithm DT, is easily found to be:

ρB,DT “

¨

˝

e´pθ
˚
1`θ

˚
2 qs̄{2

1´
b

p1´ e´θ
˚
1 s̄qp1´ e´θ

˚
2 s̄q

˛

‚

m

.

V. PERFORMANCE SCALING FOR ALGORITHMS C AND DT

Consider the community recovery problem for m, r, ρ, and β fixed, and large T, such that

the rate parameters θ˚v : v P rrs are distinct. Let δ be an arbitrarily small positive constant.
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The problem of recovering `τ for some vertex τ with δT ď τ ď T from GT using children

(C) (respectively, degree thresholding (DT)) is asymptotically equivalent to the r-ary hypothesis

testing problem for observation Zr0,lnpT {τqs (respectively, ZlnpT {τq) with the same parameters m

and θ˚v : v P rrs. This leads to the following proposition, based on the results on coupling of Y ,
rY and qY and the connection of qY to Z.

Proposition 8. (Performance scaling for Algorithms C and DT) (a) Let ppCqe,τ,T denote the prob-

ability of error for recovery of the label `τ using Algorithm C. For any δ P p0, 1q, as T Ñ 8,

max
τ :δTďτďT

|p
pCq
e,τ,T ´ f

C
Z pρ, θ

˚,m, lnpT {τqq| Ñ 0.

(b) Let pppCqe,T denote the fraction of errors for recovery of the labels of GT using Algorithm C for

each vertex. Then,

pp
pCq
e,T

TÑ8
ÝÑ

ż 1

0

fCZ pρ, θ
˚,m, lnp1{δqqdδ,

where the convergence is in probability.

(c) Parts (a) and (b) hold with C replaced by DT.

Proof. Observing the children of vertex τ in GT is equivalent to observing Yrτ,T s. In view of

Proposition 5, the binary hypothesis testing problem based on observation of Yrτ,T s is asymptot-

ically equivalent to the binary hypothesis testing problem based on observation of rYrτ,T s or on
qYrτ,T s. The upper bound on total variation distance is uniform for T {τ bounded. In particular, the

minimum average probabilities of error for the problems become arbitrarily close as T Ñ 8. To

complete the proof of (a), we next compare the probability of recovery error based on observation

of qY vs. observation based on the continuous time process Z.

The process qYrτ,T s is obtained by sampling the process Zlnpt{τq at integer times t P rτ, T s.

The mapping from Z to qY does not depend on the parameter ϑ, which could equal θ˚v for any

v P rrs. In other words, observing qYrτ,T s is equivalent to observing Zs for all s P r0, lnpT {τqs

such that τes is an integer, where Z has rate parameter θ˚v under the hypothesis `τ “ v. Thus, in

the terminology of source coding, qYrτ,T s is a quantized version of Zr0,lnpT {τqs, with the quantizer

becoming arbitrarily fine as τ Ñ 8. Therefore, the minimum probability of error for recovering

`τ based on the children of τ in GT , in the limit as τ, T Ñ 8 with 1 ď T {τ ď 1{δ is uniformly

arbitrarily close to f
pCq
Z pρ, θ˚,m, lnpT {τqq. This completes the proof of part (a). Therefore, by
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the bounded convergence theorem and the fact δ can be taken arbitrarily small, convergence of

the expected fraction of label errors follows:

E
”

pp
pCq
e,T

ı

TÑ8
ÝÑ

ż T

0

fCZ pρ, θ
˚,m, lnpT {τqqdτ

“

ż 1

0

fCZ pρ, θ
˚,m, lnp1{δqqdδ.

The last part of the proof is to show that the convergence is true not only in mean, but also

in probability. That follows by the same method used for the alternative proof of Proposition

2, about the empirical degree distribution, given in Appendix D. The key step is a proof that

the joint degree evolution processes prY jq for a finite number J of vertices (we only need to

consider J “ 2 here) are asymptotically independent in the sense that the total variation distance

to a process with independent degree evolution converges to zero. That implies the error events

for different labels are asymptotically uncorrelated, so convergence in probability to the mean

follows by the Chebychev inequality. The same proof works for C replaced by DT.

We conjecture that a result similar to Proposition 8 exists for label recovery using the message

passing (MP) algorithm described in the next section.

The following proposition, proved in Appendix G, addresses the case that τ “ opT q, including

the possibility that τ is a constant. The estimation procedure is a modification of Algorithm C.

Proposition 9. Suppose T Ñ 8, with τ o ě 1 being a function of T such that τ o{T Ñ 0. Then

`τo can be recovered from knowledge of the children of τ o in GT with probability converging to

one.

Example 1 (Numerical comparison for a single community plus outliers). Numerical results

are shown in Figure 1 for m “ 5, r “ 2, ρ “ p0.5, 0.5q and β “

¨

˝

b 1

1 1

˛

‚, with b “ 4,

corresponding to a graph with a single community of vertices and outlier vertices. For these

parameters, η˚ “ p0.622839, 0.377121q and θ˚ “ p0.598612, 0.337153q. There is little difference

between the error probabilities of Algorithms DT and C for t{T ě 10´1 but the difference

is quite large for t{T ď 10´2. Thus, for the vertices arriving in the top one percent of time,

Algorithm C, which uses the identity of children of a vertex, substantially outperforms Algorithm

DT, which uses only the number of children. The Bhattacharyya upper bounds are not very tight

but the ratio of upper bounds for DT and C is similar to the ratio fDTZ {fCZ . The derivative of

fDTZ pρ, θ˚,m, lnpT {tqq with respect to t{T has jump discontinuities at values of t{T such that
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the threshold in the MAP test changes from one integer to the next, which is noticeable in the

plot for t{T close to 1, where the thresholds are small.
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Fig. 1. Semilog plot of Bhattacharyya upper bounds 1
2
ρB,DT and 1

2
ρB,C , and functions fDTZ and fCZ , for an example with a

single community of vertices and outlier vertices.

VI. JOINT ESTIMATION OF LABELS OF A FIXED SET OF VERTICES

The idea of algorithm C is to estimate the label of a single vertex based on the likelihood

of the observed set of children of the vertex, given the possible labels of the vertex. A natural

extension, described in this section, is to jointly estimate the labels of a small fixed set of

vertices from the joint likelihood of the children sets of the fixed set of vertices. Given a vector

of possible labels of the vertices in the set, under the approximation ηt ” η˚ for all t, it is

possible to compute the joint likelihood of the children sets for the vertices. Maximizing over

all label vectors gives an approximate maximum likelihood estimate of the label vector. We use

the following notation.

‚ V Ă N, a finite set of vertices to be jointly classified

‚ b P rrsV , an assignment of labels for the vertices in V

‚ Y τ
t is the degree of vertex τ in Gt.

‚ Aτt is the number of edges from vertex t to vertex τ

‚ AV
c

t “ m´
ř

τPV A
τ
t

‚ Attachment of vertices in rt̄` 1, T s is observed, for some t̄ and T with maxtτ : τ P V u ď

t̄ ă T.
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Joint estimation algorithm: The joint estimation algorithm for estimating p`t : t P V q is

to calculate

pbML “ arg max
b

lnP

ˆ

´

Aτrt̄`1,T s : τ P V
¯

ˇ

ˇ

ˇ

ˇ

b

˙

,

using the the following approximate expression for the log likelihoods:

lnP
´´

Aτrt̄`1,T s : τ P V
¯

|b
¯

« const`

T´1
ÿ

t“t̄

ln
ÿ

uPrrs

ρu

˜

ź

τPV

ˆ

Y τt θ
˚
u,bτ

mt

˙Aτt`1
¸˜

1´
ÿ

τ 1PV

Y τ
1

t θ˚u,bτ 1
mt

¸AV
c

t`1

,

where const represents a constant not depending on b (it is the sum of logarithms of multinomial

coefficients) and the approximation stems entirely from approximating ηt by η˚. We could

calculate either the approximate ML estimator, pbML by finding the arg max of the approximate

log likelihood with respect to b, or pbMAP in the same way but first adding the log of the prior

probability of b. The complexity of the algorithm is ΘprnnT q, which is feasible for small values

of n.

Remark 3. By Proposition 5, if the set V were to have a fixed number of vertices, but the

vertices depended on T in such a way that V Ă rδT, T s for some fixed δ ą 0, then the sets

of children of the vertices would be asymptotically independent in the sense of total variation

distance. Hence, in that limit, the joint estimation algorithm of this section would have no better

performance than Algorithm C. That is why we envision using the joint estimation algorithm for

a fixed set of vertices as T Ñ 8.

To see why joint estimation can help, consider two fixed vertices, τ and τ 1 with `τ “ v and

`τ 1 “ v1. By Proposition 6 we expect the degrees of the two vertices at time t to be on the

order of mpt{τqθ
˚
v and mpt{τ 1qθ

˚

v1 . Thus, if m ě 2, the probability of the two vertices having a

common child at time t to be proportional to the product of their degrees divided by t2, or on

the order of pconstqtθ
˚
v`θ

˚

v1
´2. Thus, if θ˚v ` θ˚v1 ě 1 we expect the number of common children

of vertices τ and τ 1 in GT to converge to infinity as T Ñ 8, with a constant multiplier that can

thus be consistently estimated as T Ñ 8. In particular, if θ˚v “ θ˚v1 ě 0.5, the rate of growth of

joint children would typically depend on whether the two vertices are in the same community,

providing consistent estimation whereas Algorithm C would fail.
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VII. THE MESSAGE PASSING ALGORITHM

In this section, we describe how Alorithm C (the MAP rule given children) can be extended to

a message passing algorithm. We describe the algorithm for the case of r ě 2 possible labels for

a general rˆr matrix β with positive entries, and fixed m ě 1. Throughout the remainder of this

section, let pV,Eq be a fixed instance of the random graph, pVT , ET q, with known parameters

m, r, β, ρ, to, Gto , and T. The message passing algorithm is run on this graph, with the aim of

calculating Λτ for 1 ď τ ď T, where for each τ , Λτ is a log-likelihood vector:

Λτ pvq fi lnP tET “ E|`τ “ vu ` const, v P rrs

where const represents a constant that can depend on the graph but does not depend on the

vertex label v. Then we can calculate the maximum likelihood (ML) and maximum a posteriori

probability (MAP) estimators of the label of a vertex τ by p`τ,ML “ arg maxvPrrs Λτ pvq and
p`τ,MAP “ arg maxvPrrs ρvΛτ pvq.

The messages in the message passing algorithm given below are also log likelihood vectors,

so two values, ν, ν 1 P Rr, of such a message are considered to be equivalent if ν ´ ν 1 is

proportional to the all ones vector in Rr. For example, given a log likelihood vector ν there is a

canonical equivalent log likelihood vector ν 1 such that maxuPrrs ν
1puq “ 0, namely, ν 1 defined by

ν 1puq “ νpuq ´maxu1Prrs νpu
1q. This fact is useful for numerical computation; in our computer

code we stored all log likelihood vectors in their equivalent canonical forms. A log likelihood

vector is said to be a null log likelihood vector if it is a constant multiple of the all one vector.

In other words, a null log likelihood vector is equivalent to the zero vector. In the special case

r “ 2, Λτ p1q ´ Λτ p2q and νp1q ´ νp2q represent log likelihood ratios, and the algorithm below

can easily be restated using real valued messages that have interpretations as log likelihood ratios

instead of using length two log likelihood vectors.

A complete specification of a message passing algorithm includes specification of the following

elements:

1) initial messages

2) mappings from messages received at a vertex to messages sent by the vertex

3) timing of message passing and termination criterion

4) mappings from messages received at a vertex to the output log likelihood vector of the

vertex
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About element 3). A natural choice for the timing of message passing is synchronous. For

synchronous timing, all messages to be sent along each edge of the graph GT (excluding edges

in the initial graph Gto) are computed. Based on those, log likelihood vectors are computed for

each vertex and the next round of messages to be sent is computed. An alternative timing of

messages is to alternate between updating only messages from children to parents and updating

only messages from parents to children. For termination, we stopped the message passing when

the sum of Euclidean norms of differences in the canonical log likelihood vectors was below a

threshold.

In this section we specify the equations for elements 1), 2), and 4).

Given vertices τ and τ0, we say τ is a child of τ0, and τ0 is a parent of τ , if τ ě maxtτ0, tou`1,

and there is an edge from τ to τ0. It is assumed that the known initial graph Gto is arbitrary and

carries no information about vertex labels. Thus, for the inference problem at hand, the edges

in Gto are not relevant beyond the degrees that they imply for the vertices in Gto . Let Bτ denote

the children of τ in GT and ℘τ the parents of τ. So ℘τ “ H if τ ď to and Bτ Ă tto`1, . . . , T u.

Let ντÑτ0 denote a message passed from child to parent, and µτ0Ñτ denote a message passed

from parent to child.

Let gcp : Rr ÞÑ Rr and gpc : Rr ÞÑ Rr be defined as follows (here “cp" denotes child to parent,

and “pc" denotes parent to child)

gcppνqpvq “ ln

¨

˝

ÿ

uPrrs

eνpuqρuθ
˚
u,v{θ

˚
v

˛

‚ for ν P Rr

gpcpµqpvq “ ln

¨

˝

ÿ

v1Prrs

θ˚v,v1e
µpv1qρv1{θ

˚
v1

˛

‚ for µ P Rr,

where θ˚u,v and θ˚u are defined in Section II-B. For convenience, we repeat the expression in (12)

for the approximate log likelood vector based on observation of children:

λCτ pvq “ |Bτ | ln θ
˚
v ` θ

˚
v

˜

d0pτq ln
τ _ to
T

`
ÿ

tPBτ

ln
t

T

¸

, (17)

where τ _ to “ maxtτ, tou and d0pτq is the initial degree of vertex τ , defined to be the degree

of τ in Gto if τ ď to and d0pτq “ m otherwise. The message passing equations are given as

follows. See Appendix H for a derivation.

21



ντÑτ0 “ λCτ `
ÿ

tPBτ

rνtÑτ `
ÿ

τ1P℘τztτ0u

rµτ1Ñτ (18)

µτ0Ñτ “ λCτ0 `
ÿ

tPBτ0ztτu

rνtÑτ0 `
ÿ

τ1P℘τ0

rµτ1Ñτ0 (19)

rντÑτ0 “ gcppντÑτ0q (20)

rµτ0Ñτ “ gpcpµτ0Ñτ q (21)

Λτ “ λCτ `
ÿ

tPBτ

rνtÑτ `
ÿ

τ0P℘τ

rµτ0Ñτ , (22)

with the initial conditions:

rντÑτ0 “ 0 rµτ0Ñτ “ 0, (23)

or equivalently

ντÑτ0 “ λCτ µτ0Ñτ “ λCτ0 . (24)

In (18) - (22) messages with the letter ν are sent from child to parent, and messages with

letter µ are sent from parent to child. The r coordinates of a message without a tilde represent

likelihoods given possible labels of the sending vertex, while the r coordinates of a message

with a tilde represent likelihoods given possible labels of the receiving vertex. The equations

could be written entirely using only the ν’s and µ’s by applying (20) and (21) within (18) and

(19). Or the equations could be written entirely using only the rν’s and rµ’s by applying (18) and

(19) within (20) and (21).

The edges in the initial graph Gto are not relevant in the algorithm beyond the fact they

determine the degrees of the vertices in Gto . The message passing equations are written as if

there are no parallel edges in pV,Eq. While the fraction of edges that are parallel to other

edges will be small for large T , they are permitted. The convention used in the message passing

algorithm is that Bτ and ℘τ are to be considered as multisets, so that if a vertex appears with

some multiplicity in one of those sets, then the corresponding term in the summations will be

appearing the corresponding number of times.
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Remark 4. The fitness only case of the preferential attachment model with communities occurs

if either of the following two equivalent conditions hold:

1) β has rank one

2) θ˚u,v “ θ˚v for all u.

Since the distribution of the preferential attachment model with communities does not change if

a row of β is multiplied by a positive constant, for the fitness only case of the model it could

be assumed that the rows of β are identical.

In the fitness only case of the model, both gpc and gcp map to null log likelihood vectors for

any choice of their arguments, so all messages generated in the message passing algorithm are

null log likelihood vectors. Consequently, if β has rank one then the message passing algorithm

converges in one iteration and it coincides with algorithm C.

VIII. MONTE CARLO SIMULATION RESULTS

The simulation results reported in this paper were computed for random graphs with m “ 5,

ρu “ 1{r for u P rrs, and two vertices in the initial graph (i.e. to “ 2) with degree 2m each.

The specific choice of initial edges is not relevant, but there could for example be 2m parallel

edges between the two initial vertices, or for example each of the two vertices could have m

self loops.

A. Single community

The performance of the message passing algorithm is described for the case of a single

community plus outliers, described in Example 1. Through numerical experimentation, we found

the following timing of message passing works well. We take the initial values of all rµ and rν

messages to be zero. For the timing of message passing we run two phases. In the first phase

the messages from children to parents (i.e. the rν’s) are repeatedly updated, while messages from

parents to children are held fixed. In the second phase the messages rν are held fixed and the

messages from parents to children are repeatedly updated until the messages converge. In both

phases the messages converge in a finite number of iterations. After both phases are completed,

the (approximate) likelihood ratios are computed. Numerical results are shown in Figure 2. The

message passing algorithm significantly outperforms the other two algorithms. Another version

of algorithm with about the same performance is to use synchronous scheduling of all messages,

while applying the message balancing method described in Section VIII-B.
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Fig. 2. Semilog plot of error probability vs. vertex index for algorithms DT,C, and MP for single community example with

m “ 5, ρ “ p0.5, 0.5q, and b “ 4. The average over 1000 runs of MP is shown.

B. Symmetric multiple community graphs

To model the situation that each vertex is in one of r communities with equal probability,

with equal affinities within each community, let ρv “ 1{r for v P rrs and, for some b ą 1,

βu,v “

$

&

%

b if u “ v

1 else
.

Then η˚ “ ρ, θ˚u,u “
br

2pb`r´1q
and, for u ‰ v, θ˚u,v “

r
2pb`r´1q

. Also, θ˚v “ 0.5 for all v. Note

that λCτ is a null log likelihood vector for all τ. Up to equivalence of log likelihood vectors (i.e.

ignoring addition of constant multiples of the all one vector) gcpp¨q “ gpcp¨q “ gp¨q, where

gpνqpvq “ ln

¨

˝beνpvq `
ÿ

v1Prrsztvu

eνpv
1q

˛

‚.

In the special case r “ 2, the messages can be taken to be scalars representing log likelihood

ratios, with g taking the form gpµq fi ln beµ`1
eµ`b

.

The functions gcp and gpc map null log likelihood vectors to null log likelihood vectors,

so all messages equal to null log likelihood vectors is a fixed point of the message passing

equations (18) - (21). Community detection is apparently rather difficult for this model in case

m “ 1 because GT is a tree and for the symmetric two or more community graphs the local

neighborhood of a vertex does not indicate which community the vertex is in, at least under

the idealized assumption ηt ” η. We restrict attention to the case m ě 2. In that case, we can
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apply the joint estimation algorithm given in Section VI to identify the labels of a small number

of vertices, which we call seeds to help initialize the message passing algorithm. Accordingly,

for the message passing algorithm, we assume that the labels of the seed vertices are correctly

revealed to the algorithm. Accordingly, the µ and ν messages sent by a seed vertex τ with `τ “ u

would all be the same, and be given by:

ντÑτ0pvq “

$

&

%

0 if v “ u

´8 else

All other messages are initially set to zero. At every iteration, all the messages (both µ and ν)

are updated synchronously.

One other technique, we call message balancing, was employed to get the algorithm to give

good performance. Intuitively, the idea is to balance the total amount of negativity about each

community within the messages. The following description of message balancing assumes the

messages are stored in their equivalent canonical form, described near the beginning of Section

VII. At the beginning of each iteration, the rµ messages are scaled by a positive vector f :

rµv Ñ fvrµv. The scale vector f is chosen for the iteration so that the sum of all the scaled

rµ messages is a null log likelihood vector (i.e. multiple of all ones vector) and the sum of

the messages is preserved. The rµ messages are similarly scaled. Empirically we found similar

performance if only the rµ messages were scaled, or if only the rµ messages sent by seeds were

scaled.

We first present numerical results for an example with two communities for T “ 10, 000,m “

5, and b “ 4. We first describe the performance of the joint estimation algorithm for estimating the

labels of the first ten vertices, taken to be seed vertices, and then describe the performance of the

message passing algorithm assuming the seed vertices are correctly classified. The performance

of the joint estimation algorithm is shown in Figure 3. Two different methods of determining

which ones of vertices 2 through 10 are in the same community as vertex 1 were used. The first

method, called “partial data" in the figure, estimates the label of each vertex τ with 2 ď τ ď 10

by jointly estimating labels for the set of two vertices V “ t1, τu, while the second method,

called “complete data" in the figure, is to jointly infer the labels of vertices in V “ t1, 2, . . . , 10u.

The value t̄ “ 20 was used. It was observed that the last term in the likelihood expression is

sometimes negative (a result of the approximation ηt ” η) for some values of t and b. That was

only observed in the simulations for some values of t with t ď 30. If for some t a negative

likelihood was observed for some b, then the likelihood term for that t was dropped for all
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vectors b. The performance gives good evidence that for n fixed, the labels of the first n vertices

can be inferred with error probability converging to zero as T Ñ 8, for the symmetric two

community model.

1 2 3 4 5 6 7 8 9 10
Vertex number

0.00

0.02

0.04

0.06
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0.10
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y 
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 e

rro
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Fig. 3. Error probabilities for determining whether vertices 1 and τ are in the same community, for 2 ď τ ď 10, assuming

symmetric two community model with parameters b “ 4, m “ 5, T “ 10, 000. Error probabilities are shown for (a) estimation

based on joint likelihoods given labels for two vertices at a time (i.e. vertices 1 and τ with 2 ď τ ď 10q, and (b) for estimation

based on approximate maximum likelihood estimate of labels of vertices 1 through 10 simultaneously. Error probabilities are

estimated by fraction of errors in 2048 simulations of graph, for estimation based on children with time of arrival t in the

interval r20, 104s.

Next Figure 4 shows the performance of the message passing algorithm run on 100 graphs

of size T “ 10, 000, with parameters m “ 5, b “ 4 with two communities with ten seed

vertices. The message passing algorithm is run until the norm of the difference in the vector of

log-likelihoods is less than 1. The probability of error curve plotted for each random graph is

averaged over bins of width increasing with time. The ends of the bin intervals are chosen as a

geometric progression with factor 1.2. Although there were only ten seed vertices, the algorithm

nearly always correctly classified the first 100 vertices, and also most of the first 1000 vertices.

Performance of the message passing algorithm for four communities with 20 seed vertices

is shown in Figure 5. The result of running on 100 sample graphs is shown. The algorithm

had poor performance for one sample labeled graph, for which one of the communities was not

represented among the seeds. In other simulations we have seen the algorithm fail occasionally

even if all communities are represented among the seeds.

C. Three communities with symmetry between two of them

Consider three communities 1,2,3 such that each vertex is equally likely to be in any of the

three communities. Vertices in community 1 have a growth rate distinct from the growth rates
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Fig. 4. Semilog plot of error probability vs. vertex index for algorithm MP for symmetric two (r “ 2) community graphs with

m “ 5 and b “ 4. The algorithm was given labels of the first ten vertices and message balancing was used. Smoothed results

for 100 graphs are shown, with the average of them represented by the thicker blue curve.

Fig. 5. Semilog plot of error probability vs. vertex index for algorithm MP for symmetric four (r “ 4) community graphs with

m “ 5 and b “ 4. The performance for MP run on 100 independently generated graphs is shown. The algorithm was given

labels of the first twenty vertices and message balancing was used. Smoothed results for 100 graphs are shown, with the average

of them represented by the thicker blue curve.

of the other two communities, and the other two communities are statistically identical. We

again begin with the joint estimation algorithm, because identifying seed vertices can help the

message passing algorithm distinguish vertices in the two statistically identical communities. To
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display the performance of the joint estimation algorithm we need to adjust for the fact that

the assignment of labels 2 vs. 3 to the two symmetric communities is arbitrary. Thus, before

computing errors, we see whether swapping the 2’s and 3’s of the output label vector reduces

the number of errors. If yes, the 2’s and 3’s of the output vector are swapped. If there is a tie,

with probability 0.5, the 2’s and 3’s are all swapped. Then, for each seed vertex, we say a big

error is made if the true label is 1 and the estimate is not 1, or vice versa. We say a small error

is made if both the true label and estimated label are in t2, 3u but they are unequal. The event

that the label of a seed vertex is in error is the disjoint union of a big error event and small

error event. The message passing algorithm was run using synchronous message timing with 15

seed vertices and message balancing.

Two different β matrices were tried, which we list with their corresponding vectors pθ˚v q

βI “

¨

˚

˚

˚

˝

2 1 1

1 4 1

1 1 4

˛

‹

‹

‹

‚

βII “

¨

˚

˚

˚

˝

4 1 1

2 4 1

2 1 4

˛

‹

‹

‹

‚

pθ˚qI “ p0.420, 0.532, 0.532sq pθ˚qII “ p0.590, 0.438, 0.438q

For version I of the model, Figure 6 displays the performance of the joint estimation algorithm

and Figure 7 displays the performance of the message passing algorithm for 15 seed vertices.

Proposition 6 implies that as T Ñ 8 the probability of big errors converges to zero. The

probability of small errors is apparently small for this model and algorithm.

Fig. 6. Big errors and small errors for joint estimation of the labels of first five vertices for version I of the three communities

example, estimated using 1000 sample graphs. At least one label is incorrect in 0.139 fraction of graphs.

For version II of the model, Figure 8 displays the performance of the joint estimation algorithm

and Figure 9 displays the performance of the message passing algorithm for 15 seed vertices.
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Fig. 7. Error probabilities by vertex for version I of the three communities example, for message passing with 15 seed vertices.

Smoothed results for 100 graphs are shown, with the average of them represented by the thicker blue curve.

There are many more small errors for version II of the model than for version I, which is ex-

plained by the fact that for version II, the two equal sized communities that can’t be distinguished

by growth rates alone (because θ˚2 “ θ˚3 ) have much smaller degrees than vertices in the two

equal sized communities of version I. In fact, we conjecture that the probability of small errors

does not converge to zero for the joint estimation algorithm for version II. The reason is that

the mean number of common children of two vertices that have labels in t2, 3u is stochastically

bounded above as T Ñ 8, because θ˚v ` θ
˚
v1 ă 1 for v, v1 P t2, 3u. See Remark 3.

Fig. 8. Big errors and small errors for joint estimation of the labels of first five vertices for version II of the three communities

example , estimated using 1000 sample graphs.
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Fig. 9. Error probabilities by vertex for version II of the three communities example, for message passing with 15 seed vertices.

IX. CONCLUSION

The message passing algorithm, together with seeding by the joint inference algorithm and

balancing method, appear to work well in Monte Carlo simulations. The use of seeds takes

advantage of the large degrees of a few vertices. The performance of the joint inference algorithm

is related to the large time degree evolution of one or more fixed vertices τ such that T {τ Ñ 8

as T Ñ 8, whereas the derivation of the message passing algorithm is based on the joint degree

evolution for one or more vertices τ such that τ Ñ 8 and T {τ remains bounded. As version

II of the three community example points out, it may not always be possible to consistently

recover a fixed set of vertex labels as T Ñ 8, while it is possible if the parameters θ˚v : v P rrs

are distinct.

30



APPENDIX A

PROOF OF PROPOSITION 1

Simple algebra yields

ηt`1 ´ ηt “
Ct`1 ´ Ct ´ 2mηt

2mpt` 1q
. (25)

The conditional distribution of Ct`1 ´ Ct given Ct and given `t`1 “ u can be represented

using a random variable with a multinomial distribution as

Ct`1 ´ Ct
d.
“ meu `multinom

ˆ

m,

ˆ

βuvηtv
ř

v1 βuv1ηtv1
: v P rrs

˙˙

,

where eu is the unit length r vector with uth coordinate equal to one. Therefore,

ErCt`1,v ´ Ct,v|Cts “ mρv `
ÿ

u

mρu

ˆ

βuvηtv
ř

v1 βuv1ηtv1

˙

(26)

Combining with (25) yields that

Erηt`1 ´ ηt|Cts “
1

2pt` 1q
hpηtq. (27)

This gives the representation

ηt`1 “ ηt `
1

2pt` 1q
rhpηtq `Mts (28)

where

Mt “ Ct`1 ´ Ct ´ ErCt`1 ´ Ct|Cts. (29)

Note that M is a bounded martingale difference sequence; P t}Mt}1 ď 4mu “ 1 for all t. Also,

the Jacobian matrix of h is uniformly bounded over the domain of probability vectors so h is

Lipschitz continuous. In view of (28) and these properties, the theory of stochastic approximation

implies the possible limit points of ηt is the set of stable equilibrium points of the ode 9η “ hpηq

[21, Chapter 2, Theorem 2] .

Since
ř

v hvpηq ” 0, the ode 9η “ hpηq can be restricted to the space of probability vectors.

A Lyapunov function is used in [6] to show that the ode 9η “ hpηq restricted to the space of

probability vectors has a unique globally stable equilibrium point, which we denote by η˚.
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APPENDIX B

PROOF OF PROPOSITION 3

Remark 5. (i) We shall use extensively the connection between total variation distance and

coupling. Given two discrete probability distributions a and b on the same discrete set, the

total variation distance between a and b is defined by dTV pa, bq “
1
2

ř

i |ai ´ bi|. If A and

B are random variables, not necessarily on the same probability space, we write dTV pA,Bq

to represent dTV pLpAq,LpBqq, which is the total variation distance between the probability

distributions of A and B. Clearly dTV is a distance metric; in particular it satisfies the triangle

inequality. An operational meaning is dTV pa, bq “ minP tA ‰ Bu , where the minimum is taken

over all pairs of jointly distributed random variables pA,Bq such that A has distribution a and

B has distribution b. In other words, dTV pa, bq is the minimum failure probability when one

attempts to couple a random variable with distribution a to a random variable with distribution

b.

(ii) The distance dTV pa, bq can be expressed as

dTV pa, bq “
ÿ

i

pbi ´ aiq` (30)

Expression (30) is especially useful if bi ą ai for only a small set of indices i. For example, if

a and b are distributions on Z` such that b is a Bernoulli probability distribution and a0 ě b0,

then dTV pa, bq “ b1 ´ a1.

The proofs of (6) and (7) are similar. Since the proof of (6) depends slightly on (7), we prove

(7) first.

Fix t ě τ and y ě m. The conditional distribution of the increment qYt`1 ´ qYt of the Markov

process qY given qYt “ y can be identified as follows:

L
ˆ

qYt`1 ´ qYt

ˇ

ˇ

ˇ

ˇ

qYt “ y

˙

“ L
ˆ

Zlnppt`1q{τq ´ Zlnpt{τq

ˇ

ˇ

ˇ

ˇ

Zln t “ y

˙

“ L
ˆ

Zlnp1` 1
t q

ˇ

ˇ

ˇ

ˇ

Z0 “ y

˙

“ L

˜

negbinom

˜

y,

ˆ

1`
1

t

˙´ϑ
¸

´ y

¸

Hence, the following lemma is relevant, were ε represents 1
t
.
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Lemma 1. Let y be a positive integer and ϑ, ε ą 0. Then

dTV

´

negbinom
´

y, p1` εq´ϑ
¯

´ y,Berpϑyεq
¯

ď
ε2

2

`

ϑy ` ϑ2
p2y ` 1qy

˘

. (31)

Proof. The shifted negative binomial distribution assigns more probability mass to 0 than the

Bernoulli distribution:

P
!

negbinom
´

y, p1` εq´ϑ
¯

´ y “ 0
)

ě 1´ ϑyε,

or equivalently,

p1` εq´ϑy ě 1´ ϑyε,

as is readily proved by considering the derivative of each side with respect to ε for ε ą 0.

Therefore, by Remark 5(ii), the total variation distance to be bounded is given by the difference

in probability mass at 1 for the two distributions. In other words, if δ denotes the variational

distance on the lefthand side of (31), then

δ “ ϑyε´ yp1` εq´ϑy
`

1´ p1` εq´ϑ
˘

.

Note that δ “ 0 for ε “ 0. Dividing through by y and differentiating with respect to ε we find

dδ

ydε
“ ϑ` ϑyp1` εq´ϑy´1

´ ϑpy ` 1qp1` εq´ϑpy`1q´1,

and in particular the derivative at ε “ 0 is also zero. Differentiating again yields:

d2δ

ypdεq2
“ ´ϑypϑy ` 1qp1` εq´ϑy´2

` ϑpy ` 1qpϑpy ` 1q ` 1qp1` εq´ϑpy`1q´2

paq

ď ´ϑypϑy ` 1q ` ϑpy ` 1qpϑpy ` 1q ` 1q

“ ϑ` ϑ2
p2y ` 1q

where to get inequality (a) we first multiply the lefthand side by p1 ` εqθy`2 (thus increasing

it) and then multiplying the second term on the lefthand side by p1 ` εq2θ, thus increasing the

positive term further. The lemma follows by twice integrating with respect to ε.
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Proof of (7). Let n be a positive integer with n ě m. We appeal to Lemma 1 to show that
rYrτ,T s and qYrτ,T s can be coupled (i.e. constructed on the same probability space) such that the

probability of coupling failure before both processes reach state n is bounded as follows:

P
!

rYrτ,T s ^ n ‰ qYrτ,T s ^ n
)

ď

T
ÿ

t“τ

ϑn` ϑ2p2n` 1qn

2t2

ď
ϑn` ϑ2p2n` 1qn

τ ´ 1
.

The construction is done sequentially in time, starting with the process rY , letting qYτ “ m, and

enlarging the probability space rY is defined on in order to construct qYt for τ `1 ď t ď T on the

same probability space. For each time t in the range τ ď t ď T ´ 1, once the random variable
qYt has been constructed, if the coupling has been successful so far (i.e. rYrτ,ts “ qYrτ,ts) and if
qYt ď n´ 1, we appeal to Lemma 1 with y “ qYt to show that the coupling can be continued to

work at time t` 1, with coupling error bounded above by Lemma 1.

For this same pair of processes, it follows that

P
!

rYrτ,T s ‰ qYrτ,T s

)

ď
ϑn` ϑ2p2n` 1qn

τ ´ 1
` P

!

qYT ě n
)

Since qYT “ ZlnpT {τq, the distribution of qYT is negbinom
´

m,
`

τ
T

˘ϑ
¯

, and the set of such distribu-

tions is tight under the limiting regime of the proposition. In other words, limnÑ8 lim supτ,TÑ8 P
!

qYT ě n
)

“

0 under the assumption T {τ is bounded. The statement (7) follows.

The proof of (6), given next, is based on the following lemma.

Lemma 2. Given a positive integer y, pθu,vq P Rrˆr
ą0 , ρ, and pθ˚v : v P rrsq P Rr

ą0, let θv “
ř

u ρuθu,v. Suppose t ě 1 and v P rrs such that θu,vy

mt
ď 1 for all u, θvy

t
ď 1, and θ˚v y

t
ď 1. Then

dTV

˜

ÿ

u

ρubinom

ˆ

m,
θu,vy

mt

˙

,Ber

ˆ

θ˚vy

t

˙

¸

ď
θ2

maxy
2

t2
`
|θv ´ θ

˚
v |y

t
,

where θmax “ maxu,v θu,v.
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Proof. By the triangle inequality,

dTV

˜

ÿ

u

ρubinom

ˆ

m,
θu,vy

mt

˙

,Ber

ˆ

θ˚vy

t

˙

¸

ď dTV

˜

ÿ

u

ρubinom

ˆ

m,
θu,vy

mt

˙

,Ber

ˆ

θvy

t

˙

¸

(32)

` dTV

ˆ

Ber

ˆ

θvy

t

˙

,Ber

ˆ

θ˚vy

t

˙˙

(33)

To bound the term on line (32), we appeal to Remark 5(ii). Note that the probability masses at

0 for the two distributions inside dTV are ordered as:
ÿ

u

ρubinom

ˆ

m,
θu,vy

mt

˙
ˇ

ˇ

ˇ

ˇ

0

“
ÿ

u

ρu

ˆ

1´
θu,vy

mt

˙m

ě
ÿ

u

ρu

ˆ

1´
θu,vy

t

˙

“ 1´
θvy

t
“ Ber

ˆ

θvy

t

˙
ˇ

ˇ

ˇ

ˇ

0

So the term in (32) is the difference of the probability masses at 1:

θvy

t
´
ÿ

u

ρubinom

ˆ

m,
θu,vy

mt

˙
ˇ

ˇ

ˇ

ˇ

1

“
θvy

t
´
ÿ

u

ρu
θu,vy

t

ˆ

1´
θu,vy

mt

˙m´1

“
ÿ

u

ρu
θu,vy

t

˜

1´

ˆ

1´
θu,vy

mt

˙m´1
¸

ď
ÿ

u

ρu

ˆ

θu,vy

t

˙2

ď
θ2

maxy
2

t2

The term on line (33) is equal to |θv´θ˚v |y
t

.

Proof of (6). Let n be a positive integer with n ě m. Since the entries of β are assumed to be

strictly positive, there is a finite value θmax such that θu,v,t ď θmax for all t. Given ε ą 0 let F

be the event defined by F “ t|θv,t ´ θ˚v | ą ε for some t ě τu. We appeal to Lemma 2 to show

that Yrτ,T s and rYrτ,T s can be coupled (i.e. constructed on the same probability space) such that

the probability of coupling failure before both processes reach state n is bounded as follows:

P
!

Yrτ,T s ^ n ‰ rYrτ,T s ^ n
)

ď P tF u `
T´1
ÿ

t“τ

ˆ

θ2
maxn

2

t2
`
|θv,t ´ θ

˚
v |n

t

˙

ď PpF q `
θ2

maxn
2

τ ´ 1
` εn ln

T

τ ´ 1
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For this same pair of processes, it follows that

P
!

Yrτ,T s ‰ rYrτ,T s

)

ď P tF u `
ϑn` ϑ2p2n` 1qn

τ ´ 1
` P

!

rYT ě n
)

By Proposition 2 (almost sure convergence of ηt Ñ η˚) PpF q Ñ 0 as τ Ñ 8. By (7), already

proved,

lim
nÑ8

lim sup
τ,TÑ8

ˇ

ˇ

ˇ

ˇ

P
!

rYT ě n
)

´ P
!

qYT ě n
)

ˇ

ˇ

ˇ

ˇ

“ 0,

so, just as for qYT , the set of distributions of rYT is tight under the limiting regime of the

proposition. In other words, limnÑ8 lim supτ,TÑ8 P
!

rYT ě n
)

“ 0 under the assumption T {τ

is bounded. The statement (6) follows.

APPENDIX C

PROOF OF PROPOSITION 5

The proof is similar to the proof of Proposition 3. Before proving the proposition we introduce

some notation and present a lemma that is used to bound the coupling failure probability at a

given step in the construction. A subprobability vector for a set rds “ t1, . . . , du is a d-tuple of

the form a “ pai : i P rdsq such that ai ě 0 for i P rds and
ř

iPrds ai ď 1. Let r and J be positive

integers. Suppose ρ is a probability distribution on rJs. Suppose p, p1, and q
u,¨

for all u P rrs

are subprobability vectors for rJs.

‚ Let selppq represent the selector distribution on ZJ` with probability mass pj on the vector

ej , and probability mass 1´
ř

j pj on the zero vector.

‚ Let sel˚mppq denote the distribution of the sum of m independent random vectors, each with

the distribution selppq. In other words, sel˚mppq is the m-fold convolution of selppq.

‚ Let
ř

u ρusel
˚m
pq
u,¨
q denote the distribution that is a mixture of the distributions sel˚mpq

u,¨
q

as u varies with selection probability distribution ρ.

‚ Let bJj“1Berppjq denote the distribution of a random J vector with independent coordinates,

with coordinate j having distribution Berppjq.
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Lemma 3. Suppose ρ is a probability distribution on rJs. Suppose p, p1, and q
u,¨

for all u P rrs

are subprobability vectors for rJs.

dTV
`

b
J
j“1Berppjq, selppq

˘

ď

¨

˝

ÿ

jPrJs

pj

˛

‚

2

(34)

dTV pselppq, selpp
1
qq ď

ÿ

jPrJs

|pj ´ p
1
j| (35)

dTV

¨

˝sel

˜

ÿ

u

ρuqu,¨

¸

,
ÿ

uPrrs

ρusel
˚m

ˆ

1

m
q
u,¨

˙

˛

‚

ď
ÿ

uPrrs

ρu

¨

˝

ÿ

jPrJs

qu,j

˛

‚

2

(36)

Proof. Inequality (35) follows easily from the definitions. The proofs of the other two inequalities

rely on Remark 5(ii). Note that the distribution selppq is supported on J`1 points in ZJ , namely,

0, e1, . . . , eJ . Also,

b
J
j“1Berppjq

ˇ

ˇ

ˇ

ˇ

0

“
ź

jPrJs

p1´ pjq ě 1´
ÿ

jPrJs

pj “ selppq

ˇ

ˇ

ˇ

ˇ

0

.

Thus, by Remark 5(ii),

dTV
`

b
J
j“1Berppjq, selppq

˘

“
ÿ

jPrJs

pj

»

–1´
ź

j1PrJs,j1‰j

p1´ pj1q

fi

fl

ď
ÿ

jPrJs

pj
ÿ

j1PrJs,j1‰j

pj1 ď

¨

˝

ÿ

jPrJs

pj

˛

‚

2

,

which establishes (34). The proof of (36), given next, is similar. The probability masses the two

distributions on the lefthand side of (36) place at zero is ordered as follows:

ÿ

uPrrs

ρu

¨

˝1´
1

m

ÿ

jPrJs

qu,j

˛

‚

m

ě 1´m
ÿ

uPrrs

ρu
ÿ

jPrJs

qu,j.

Therefore, by Remark 5(ii),

dTV

¨

˝

ÿ

uPrrs

ρusel
˚m

ˆ

1

m
q
u,¨

˙

, sel

˜

ÿ

u

ρuqu,¨

¸

˛

‚

“
ÿ

jPrJs

ÿ

uPrrs

ρuqu,j

»

–1´

¨

˝1´
1

m

ÿ

j1PrJs:j‰j

qu,j1

˛

‚

m´1fi

fl
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ď
ÿ

jPrJs

ÿ

uPrrs

ρuqu,j

»

–

ÿ

j1PrJs

qu,j1

fi

fl

ď
ÿ

uPrrs

ρu

¨

˝

ÿ

jPrJs

qu,j

˛

‚

2

,

which establishes (36).

Lemma 4. Suppose the conditions of Lemma 3 hold, and, in addition,
ř

u ρuqu,j “ p1j for all

j P rJs. Then

dTV

¨

˝b
J
j“1Berppjq,

ÿ

uPrrs

ρusel
˚m

ˆ

1

m
q
u,¨

˙

˛

‚ (37)

ď

¨

˝

ÿ

jPrJs

pj

˛

‚

2

`
ÿ

jPrJs

|pj ´ p
1
j| `

ÿ

uPrrs

ρu

¨

˝

ÿ

jPrJs

qu,j

˛

‚

2

.

Proof. The lefthand side of (37) is less than or equal to the sum of the lefthand sides of (34)-(36)

by the triangle inequality for dTV . The righthand side of (37) is the sum of the righthand sides

of (34)-(36). So the lemma follows from Lemma 3.

Proof of Proposition 5. By the tightness of LpY j
T |`τ “ vjq for each j in the limit regime of

the proposition, implied by Proposition 3 and the known distribution of qYT , it suffices to prove

the proposition with Y
rJs
r1,T s and rY

rJs
r1,T s each replaced by versions of the same processes that are

stopped when the sum of the vertex degrees (i,e. the coordinates) of the process first becomes

greater than or equal to a fixed, positive integer n. So let n be a fixed, positive integer. Let the

process Y rJs
r1,T s be given, defined on some probability space. By enlarging the probability space,

we can construct rY
rJs
r1,T s on the same space, and the total variation distance is upper bounded

by the probability the processes are different from each other at some time before the sum of

coordinates is greater than n or before time T `1. The construction is done sequentially in time.

For each time t in the range 1 ď t ď T ´ 1, once the random variable rYt is constructed, we

appeal to Lemma 3 with qu,j in the lemma given by
θu,vj ,t

rY jt
t

. Since the entries of β are assumed

to be strictly positive, there is a finite value θmax such that θu,v,t ď θmax for all t. Given ε ą 0

let F be the event defined by F “ t|θv,t ´ θ˚v | ą ε for some t ě τu.

Fix t with τ1 ď t ď T. Let At “ tj : τj ď tu, so that At is the set of vertices in rJs that are

active at time t. For j R At the values of Y j
t`1 and rY j

t`1 are deterministic and they are equal.
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If t ` 1 “ τj for some j we call t an exceptional time. Exceptional times must be handled

differently than other times because for such a time, conditioning on p`τj “ vjq, or, equivalently,

on p`t`1 “ vjq, effects the distribution of pY j1

t`1 ´ Y j1

t : j1 P Atq, and Lemma 4 doesn’t apply.

The effect of such exceptional times on coupling error can be bounded as follows. First, there

are less than or equal to J exceptional times. Secondly, for such an exceptional time t,

P
!

Y j1

t`1 ´ Y
j1

t ‰ 0 for some j1 P At|`τ j “ vj

)

ď
nθmax

t

and also

P
!

rY j1

t`1 ´
rY j1

t ‰ 0 for some j1 P At
)

ď
nθmax

t

so that if Y rJs and rY rJs are coupled up to time t, the coupling can be extended to to time

t ` 1 with additional probability of coupling error at most nθmax

t
. The overall increase in the

probability of coupling failure due to the exceptional times is less than or equal to θmaxnJ
τ0

Ñ 0.

Next, suppose t is not an exceptional time. Let y P ZJ` such that
ř

j y
j ď n and yj “ 0 for

j R At. Lemma 4 with pj “
ϑjy

j

t
, p1j “

θvj,ty
j

t
, and qu,j “

θu,vj ,ty
j

t
for j P At implies that the

error for attempting to couple rY
rJs
t`1 to Y rJst`1 given rY

rJs
t “ Y

rJs
t “ yrJs is less than or equal to

´

ř

jPrJs ϑjy
j
¯2

t2
`

ř

jPrJs |ϑj ´ θvj ,t|y
j

t

`
ÿ

uPrrs

ρu

´

ř

jPrJs θu,vj ,ty
j
¯2

t2

Hence, the probability of coupling failure, before the sum of degrees is n and before time T `1,

is less than or equal to

PpF q `
θmaxnJ

τ0

`

T
ÿ

t“τ0

ˆ

J2θ2
maxn

2

t2
`
nε

t
`
θ2

maxn
2

t2

˙

,

which can be made arbitrarily small as in the proof of Proposition 3.

APPENDIX D

APPENDIX: ALTERNATIVE PROOF OF PROPOSITION 2

This section gives an alternative proof of Proposition 2, but only for convergence in probability,

based on Corollary 1. The same method can be used to prove Proposition 8(b), concerning the

convergence in probability of the fraction of label errors made by two recovery algorithms. We

use the notation given just before the statement of Proposition 2.
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Since the labels of the vertices are independent with distribution ρ, by the law of large numbers,

lim
TÑ8

HvpT q

T
“ ρv (a.s. and in probability) .

Thus, it suffices to show that for fixed n ě m,

lim
TÑ8

N v
npT q

T
“ ρvpnpθ

˚
v ,mq (in probability).

By the Chebychev inequality, for that it suffices to show the following two conditions:

lim
TÑ8

E rN v
npT qs

T
“ ρvpnpθ

˚
u,mq (38)

lim
TÑ8

var

ˆ

N v
npT q

T

˙

“ 0. (39)

Write N v
npT q “

řT
τ“1 χτ , where χτ “ 1 if `τ “ v and the degree of vertex τ at time T is n,

and χτ “ 0 otherwise. Then |E rN v
npT qs ´

řT
τ“to`1 E rχτ s | ď to. By Corollary 1 with J “ 1,

t “ T , and v P rrs,

lim
τ0Ñ8

sup
τ,T :τąτ0 and Tąτ0

ˇ

ˇ

ˇ

ˇ

E rχτ s ´ ρvπn plnpT {τq, θ˚v ,mq
ˇ

ˇ

ˇ

ˇ

“ 0. (40)

Therefore, by the bounded convergence theorem, (38) holds with

pnpθ,mq “
1

T

ż T

0

πnplnpT {tq, θ,mqdt

paq
“

ˆ

n´ 1

m´ 1

˙
ż 1

0

umθp1´ uθqn´mdu

pbq
“

1

θ

ˆ

n´ 1

m´ 1

˙
ż 1

0

vm´1` 1
θ p1´ vqn´mdv

pcq
“

1

θ

ˆ

n´ 1

m´ 1

˙

B

ˆ

m`
1

θ
, n´m` 1

˙

pdq
“

Γ
`

1
θ
`m

˘

Γpnq

θΓpmqΓ
`

n` 1
θ
` 1

˘ , (41)

where (a) follows by the definition of the negative binomial distribution and change of variable

u “ t{T, (b) follows by the change of variable v “ uθ, and (c) and (d) follow from standard

formulas for the beta function, B.

It remains to verify (39). First note that

varpN v
npT qq “

T
ÿ

τ1“1

T
ÿ

τ2“1

Covpχτ1 , χτ2q. (42)
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Note that

E rχτ1χτ2s “ ρ2
vP

"

Y 1
T “ n, Y 2

T “ n

ˇ

ˇ

ˇ

ˇ

`τ1 “ `τ2 “ v

*

,

and by Corollary 1 with J “ 2, t “ T , and v1 “ v2 “ v,

lim
τ0Ñ8

sup
τ1,τ2,T :τ0ďτ1ăτ2 and Těτ0

ˇ

ˇ

ˇ

ˇ

E rχτ1χτ2s ´ ρ2
vπn

ˆ

ln
T

τ1

, θ˚v ,m

˙

πn

ˆ

ln
T

τ2

, θ˚v ,m

˙
ˇ

ˇ

ˇ

ˇ

Ñ 0.

So, in view of (40) and the fact Covpχτ1 , χτ2q “ E rχτ1χτ2s ´ E rχτ1sE rχτ2s ,

lim
τ0Ñ8

sup
τ1,τ2,T :τ0ďτ1ăτ2 and Těτ0

|Covpχτ1 , χτ2q| “ 0.

Using this to bound the terms on the righthand side of (42) with τ1, τ2 P rτ0, T s and τ1 ‰ τ2,

and bounding the other terms by one, yields:

varpN v
npT qq ď 2Tτ0 ` T`

T 2

ˆ

sup
τ1,τ2,T :τ0ďτ1ăτ2ďT

|Covpχτ1 , χτ2q|
˙

“ opT 2
q.

if T, τ0 Ñ 8 with τ0{T Ñ 0. This implies (39), completing the alternative proof of the

Proposition 2 (for convergence in probability).

Remark 6. In essence, the calculation in (41) demonstrates that the limiting empirical distri-

bution of degree for vertices of a given label v at a large time T , is the marginal distribution

for the following joint distribution: the vertex time of arrival is uniform over r0, T s and, given

the arrival is at time τ , the conditional distribution of degree is negbinom
´

m,
`

τ
T

˘θ˚v
¯

.

APPENDIX E

CONSISTENT ESTIMATION OF THE GROWTH RATE PARAMETER FOR A GIVEN VERTEX

Proposition 6 is proved in this section and evidence for Conjecture 1 is given. First a different

method for estimating the rate parameter of Y is established. Consider the Barabási-Albert

model with communities. Fix τo ě 1 and τ with τ ě maxtτo, tou (recall that to is the number

of vertices in the initial graph). Let Yt denote the degree of τo in Gt for all t ě τ. To avoid

triviality associated with an isolated vertex in Gto , suppose Yτ ě 1. We also suppose Yτ ď mτ ,

so by induction on t, Yt
t
ď m for all t ě τ. Let ϑ “ θ˚v where v is the label of τo.
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Proposition 10. (Consistent estimation of rate parameter) The estimator pϑT defined by

pϑT “
YT ´ Yτ
řT´1
t“τ

Yt
t

(43)

is consistent. In other words, limTÑ8
pϑT “ ϑ a.s.

To prove the proposition we first examine a sequential version of pϑT . Given a positive constant

M with M ą m, let TM denote the stopping time defined by

TM “ min

#

T ě τ :
TM
ÿ

t“τ

Yt
t
ěM

+

Let ppϑM be pϑT for T “ TM , or, in other words,

p

pϑM “
YTM ´ Yτ
řTM´1
t“τ

Yt
t

.

Lemma 5. Under the idealized assumption ηt ” η˚, for any ε ą 0,

P
"ˇ

ˇ

ˇ

ˇ

p

pϑM ´ ϑ

ˇ

ˇ

ˇ

ˇ

ě ε

*

ď
mϑM

ε2pM ´mq2.

Proof. Notice that the denominator of p

pϑM is in the interval rM ´m,M s with probability one.

Also,

YT ´ Yτ ´ ϑ

˜

T´1
ÿ

t“τ

Yt
t

¸

“

T´1
ÿ

t“τ

ˆ

Yt`1 ´ Yt ´
ϑYt
t

˙

,

so that
´

YT ´ Yτ ´ ϑ
řT´1
t“τ

Yt
t

: T ě τ
¯

is a martingale. Since TM is a bounded optional sampling

time, the martingale optional sampling theorem can be applied to yield

E rYTM ´ Yτ s “ E

«

ϑ
TM´1
ÿ

t“τ

Yt
t

ff

P rϑpM ´mq, ϑM s.

Next we bound the second moments. It is easy to show that a random variable U with values

in r0,ms and mean µ satisfies varpUq ď m2 µ
m

`

1´ µ
m

˘

ď mµ. For any t ě τ, Yt`1 ´ Yt
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takes values in r0,ms and, given the past Ft, it has conditional mean ϑYt
t
. It follows that

E
„

`

Yt`1 ´ Yt ´
ϑYt
t

˘2

ˇ

ˇ

ˇ

ˇ

Ft



ď mϑYt
t
. Therefore, again using the optional sampling theorem,

E

»

–

˜

YTM ´ Yτ ´ ϑ

˜

TM´1
ÿ

t“τ

Yt
t

¸¸2
fi

fl

“ E

«

TM´1
ÿ

t“τ

E

«

ˆ

Yt`1 ´ Yt ´
ϑYt
t

˙2 ˇ
ˇ

ˇ

ˇ

Ft

ffff

ď mϑE

«

TM´1
ÿ

t“τ

Yt
t

ff

ď mϑM

Thus, for any ε ą 0, the Chebychev inequality yields

P

#

ˇ

ˇ

ˇ

ˇ

YTM ´ Yτ ´ ϑ

˜

TM´1
ÿ

t“τ

Yt
t

¸

ˇ

ˇ

ˇ

ˇ

ě εpM ´mq

+

ď
mϑM

ε2pM ´mq2
,

which implies the conclusion of the proposition.

Proof of Proposition 10. Since Yt ě 1 for all t ě τ,
řT´1
t“τ

Yt
t
Ñ 8 a.s. as T Ñ 8. Therefore,

for τo fixed (the vertex for which we want to estimate the rate parameter), whether pϑ is consistent

does not depend on the choice of τ. For any given ε ą 0, by taking τ very large, we can thus

ensure |ηt ´ η˚| ď ε for all t ě τ with probability at least 1´ ε. Therefore, it suffices to prove

the proposition under the added assumption ηt ” η˚ for all t ě τ. It follows that it suffices to

prove that ppϑM is a consistent family of estimators of ϑ.

So it remains to prove consistency of the family of estimators p

pϑM as M Ñ 8. For that

purpose, it suffices to show that for arbitrarily small ε ą 0, along the sequence of M values

Mk “ p1` εq
k, the estimation error is greater than or equal to ε for only finitely many values of

k, with probability one. That follows from Lemma 5, because the error probability in Lemma 5 is

Op1{Mq and
ř8

k“1 1{Mk ă 8, so the Borel Cantelli lemma implies the desired conclusion.

Proposition 6 will follows from Proposition 10 and the following lemmas, which are essentially

Grönwall type inequalities.

Lemma 6. Suppose pfpsq : s P R`q is a positive nondecreasing function such that for some

ϑ ą 0,

lim
SÑ8

fpSq ´ fp0q
şS

0
fpuqdu

“ ϑ.
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Then

lim
SÑ8

ln fpSq

S
“ ϑ.

Proof. Given any ε ą 0, there exits Sε such that

fpSq ě fp0q ` pθ ´ εq

ż S

0

fpuqdu for S ě Sε.

Since fpuq ě fp0q for all u,

fpSq ě C ` pθ ´ εq

ż S

Sε

fpuqdu for S ě Sε

where C “ fp0qp1` pθ ´ εqSεq. Thus, for any s ě 0, setting S “ s` Sε, yields

fps` Sεq ě C ` pθ ´ εq

ż s

0

fps` Sεqdu for s ě 0.

By induction on k it follows that fps`Sεq ě C
řk
j“0

ppϑ´εqsqj

j!
, so that fps`Sεq ě Cespϑ´εq for all

s ě 0. Therefore, lim infSÑ8
ln fpSq
S

ě ϑ. It can be proved similarly that lim supSÑ8
ln fpSq
S

ď ϑ,

establishing the lemma.

Lemma 7. Let pyt : t P tτ, τ ` 1, . . .uq be a sequence of positive numbers such that yt`1 ´ yt P

r0,ms for all t ě τ, and such that

lim
TÑ8

yT ´ yτ
řT´1
t“τ

yt
t

“ ϑ

Then

lim
TÑ8

ln yT
lnpT {τq

“ ϑ

Proof. We shall apply the previous lemma by switching to a continuous parameter and then

applying a change of time. Note that 0 ď 1
t
´
şt`1

t
1
s
ds “ 1

t
´ lnp1` 1

t
q ď 1

2t2
. Hence

0 ď
T´1
ÿ

t“τ

yt
t
´

ż T

τ

yttu

t
dt ď

1

2

T´1
ÿ

t“τ

yt
t2
“ o

˜

T´1
ÿ

t“τ

yt
t

¸

.

The hypotheses thus imply

lim
TÑ8

yT ´ yτ
şT

τ

yttu

t
dt
“ ϑ.

Letting fpsq “ ytτesu, the change of variable u “ lnpt{τq yields

yT ´ yτ
şT

τ

yttu

t
dt
“
fplnpT {τqq ´ fp0q

şT

τ
fplnpt{τqq

t
dt

“
fplnpT {τqq ´ fp0q
şlnpT {τq

0
fpuqdu

,
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so the hypotheses of Lemma 6 hold. Lemma 6 yields

lim
SÑ8

ln ytτeSu

S
“ ϑ,

which by the change of variable S “ lnpT {τq, is equivalent to the conclusion of the lemma.

Proof of Proposition 10. Proposition 10 follows directly from Proposition 10 and Lemma 7.

Evidence for Conjecture 1 The Kesten-Stigum theorem [22] in the case of single-type branch-

ing processes implies that limsÑ8 Zse
´ϑs “ W a.s. for some random variable W such that

P tW ą 0u “ 1 and E rW s “ Z0 “ m. (This follows from the fact that Z restricted to multiples

of any small positive constant h ą 0 is a discrete-time single-type Galton Watson branching

process with number of offspring per individual per time period, represented by a random

variable Lh, such that Lh has the negbinompm, eϑhq distribution. Note that P tLh ě 1u “ 1

and E rLh lnLhs ă 8.) Since Zte´ϑs also converges in distribution to the Gamma distribution

with parameters m and ϑ, it follows that W has such distribution. It follows that (11) holds if

the process Y is replaced by the process qY .

APPENDIX F

PROOF OF PROPOSITION 7

The process Z with parameters λ,m represents the total population of a branching process

starting with m root individuals at time 0, such that each individual in the population spawns

new individuals at rate λ. And As represents the sum of the lifetimes, truncated at time s, of all

the individuals in the population. The joint distribution of pZ,Aq with parameters λ,m is the

same as the distribution of the sum of m independent versions of pZ,Aq with parameters λ, 1,

Hence, it suffices to prove the lemma for m “ 1.

So for the remainder of this proof suppose m “ 1; there is a single root individual. Suppose

there are npsq children of the root individual, produced at times R1, . . . , Rnpsq. Then

Zs “ 1`

npsq
ÿ

l“1

Z`
s´Rl

(44)

As “ s`

npsq
ÿ

l“1

A`s´Rl (45)

where Z`
s´Rl

denotes the total subpopulation of the lth child of the root, s´Rl time units after

the birth of the lth child, and A`s´Rl is the associated sum of lifetimes of that subpopulation,
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truncated s´Rl time units after the birth of the lth child (i.e. truncated at time s). The processes

pZ l, Alq are independent and have the same distribution as pZ,Aq. The variables R1, . . . , Rnpsq

are the points of a Poisson process of rate λ. Therefore,

euZs`vAs “ eu`vs
npsq
ź

l“1

exppuZs´Rl ` vAs´Rlq,

which after taking expectations yields

ψλ,1pu, v, sq “ eu`vsEλ,1

«

npsq
ź

l“1

exppuZ l
s´Rl

` vAls´Rlq

ff

.

Since npsq is a Poissonpλq random variable, and, given npsq, R1, . . . , Rnpsq are distributed

uniformly on r0, ss, the above expectation can be simplified by first conditioning on npsq, and

then summing over all possible values of npsq (tower property).

ψλ,1pu, v, sq

“ eu`vs
8
ÿ

k“0

e´λspλsqk

k!
Eλ,1

«

k
ź

l“1

euZ
lps´Rlq`vA

lps´Rlq

ff

“ eu`vs
8
ÿ

k“0

e´λspλsqk

k!

ˆ

1

s

ż s

0

ψλpu, v, τqdτ

˙k

(46)

In the above step, the expectation of the product is the same as the product of the expectations,

because the variables pZ lps ´ Rlq, A
lps ´ Rlqq, l “ 1, . . . , k are independent of each other.

Moreover, the expectation of each of the k terms is identical. Denoting F psq fi
şs

0
ψλ,1pu, v, τqdτ ,

we can write (46) as

9F psq “ eu`vse´λseλF psq

d

ds

`

e´λF psq
˘

“ ´λepv´λqs`u; F p0q “ 0

e´λF psq “ 1´ λeu
ż s

0

epv´λqs
1

ds1

“ 1`
λeu

v ´ λ

`

1´ epv´λqs
˘

F psq “ ´
1

λ
log

ˆ

1`
λeu

v ´ λ

`

1´ epv´λqs
˘

˙

(47)

Finally, using ψλ,1pu, v, sq “ 9F psq yields (15) for m “ 1, and the proof is complete.
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APPENDIX G

PROOF OF PROPOSITION 9

Proof. The basic difficulty to be overcome is that the limit result ηt Ñ η˚ in Proposition 1 doesn’t

approximately determine the distribution of the degree evolution for vertex τo if τo ­Ñ 8. To

produce an estimator for `τo given Y o
rτo,T s, we produce a virtual degree growth process, denoted

by Y̆ o
rτ,T s, which becomes arbitrarily close to rYrτ,T s in total variation distance as T Ñ 8 under

any of the r hypotheses about `τo , where τ Ñ 8 with τ{T Ñ a for some fixed δ ą 0.

Given an arbitrary ε ą 0, select δ P p0, 1q so small that fCZ pρ, θ
˚,m, lnp1{δqq ă ε. Suppose τ

depends on T such that τ{T Ñ δ as T Ñ 8. By Proposition 8, `τ can be recovered with error

probability less than ε from rYrτ,T s by using Algorithm C.

The virtual process Y̆ o
rτ,T s has initial value rY o

τ “ m. Thus, although τo arrives before τ, the

virtual process does not begin evolution until after time τ. The construction of Y̆ o proceeds by

induction and uses a random thinning of the process Y o, the actual degree growth process for

τ o. The thinning probability is the ratio of degrees. Specifically, for t with τ ď t ď T ´ 1, let

LpY̆ o
t`1 ´ Y̆

o
t |Y̆

o
rτ,ts, Y

o
rτo,T sq “ binom

˜

Y o
t`1 ´ Y

o
t ,
Y̆ o
t

Y o
t

¸

.

The virtual process Y̆ o
rτ,T s satisfies the same properties as Yrτ,T s (based on the degree evolution

of vertex τ ) used in the proof of Proposition 5, so for v P rrs,

dTV

´

pY̆ o
rτ,T s|`τo “ vq, prYrτ,T s|`τ “ vq

¯

Ñ 0.

Hence, applying Algorithm C, designed for recovery of `τ , to the virtual process Y̆rτ,T s recovers

`τo with average error probability less than ε for T sufficiently large.

APPENDIX H

DERIVATION OF THE MESSAGE PASSING EQUATIONS

The initial conditions given by (23) are chosen to make the initial likelihood vector the same

as produced by Algorithm C (observation of children). Equations (18) - (22) are derived in what

follows in the special case m “ 1, with the initial graph Gto consisting of a single vertex (i.e.

to “ 1) with a self-loop. In that case, the graph pV,Eq is a tree (ignoring the self-loop incident

to the first vertex) so the message passing algorithm is conceptually simpler. The equations (18)

- (22) for any finite m ě 1 are simply taken to have the same form as for m “ 1 on the grounds
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that loopy message passing is obtained by using the same equations as for message passing

without loops.

Our first assumption in deriving the message passing algorithm is that the approximation λCτ
for the log likelihood vector based on observation of children (derived in Section III) is exact,

or in other words:

lnP tBτ “ tt1, . . . , tnu|`τ “ vu “ λCτ pvq, (48)

where Λc
τ pvq is given by (17). The second assumption is regarding how the distribution of Bτ

changes, given the label of another vertex. Namely,

P tBτ “ tt1, . . . , tnu|`τ “ v, `τ 1 “ uu (49)

“

$

&

%

P tBτ “ tt1, . . . , tnu|`τ “ vu θ˚u,v{θ
˚
v if τ 1 P Bτ

P tBτ “ tt1, . . . , tnu|`τ “ vu if τ 1 R Bτ
,

where the expression for the first case follows from (8).

The third assumption is regarding the joint distribution of degree-growth processes. Observing

the degree-growth process of one vertex τ changes the distribution of the degree growth process

of another vertex τ 1 in one of two possible ways. Firstly, the children of the first vertex cannot

be the children of the other (if m “ 1). However, Proposition 5 shows this effect is insignificant.

Secondly, observing the degree-growth process gives us some information about the label of

each vertex. If one vertex appears as a child of the other (say τ 1 P Bτ ), the probability of the

given observation is affected; else it is not. In the asymptotic limit, the degree-growth processes

of a finite number of vertices are indeed independent, by Proposition 5.

The following additional notation is used. Let Dk
τ denote the event of observing the subtree

of pV,Eq rooted at τ , and of depth k. For example, D1
τ ” tBτ “ tt1, . . . , tnuu, D

2
τ ” tBτ “

tt1, . . . , tnu, Bt1 “ tt11, . . . , t
1
n1
u, . . . , Btn “ ttn1 , . . . , t

n
nnuu. Further, let Dτ denote the event of

observing the subtree of pV,Eq rooted at τ . We call this subtree as the descendants of τ . The

event of observing the entire graph is D1, because the initial graph has a single vertex. Therefore:

Λτ pvq “ lnP tET “ E|`τ “ vu “ lnP tD1|`τ “ vu (50)

For a vertex τ with τ ě 2, the event D1zDτ includes the information of which vertex is the

parent of vertex τ. Also, for vertices τ and τ0 with τ0 ă τ , let τ Ñ τ0 denote the event there is

an edge from τ to τ0.
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At this point, we make the assumption:

P tD1|`τ “ vu “ P tDτ |`τ “ vuP tD1zDτ |`τ “ vu @τ (51)

In other words, Dτ and D1zDτ are assumed to be conditionally independent given `τ “ v. The

rationale for that also comes from ignoring the implications of the fact that the descendants of

τ must be disjoint from the descendants of vertices close to τ in GT in the direction through

the parent of τ.

Let τ and τ0 be vertices such that τ is a child of τ0. We define the messages as follows, and

then derive the message passing equations as fixed points.

ντÑτ0puq fi lnP tDτ |`τ “ uu (52)

µτ0Ñτ pvq fi ln

ˆ

P tD1zDτ |`τ “ 0, `τ0 “ vu θ˚v
θ˚0,v

˙

(53)

rντÑτ0pvq fi lnP tDτ |`τ0 “ v, τ Ñ τ0u (54)

rµτ0Ñτ puq fi lnP tD1zDτ |`τ “ uu (55)

Remark 7. In the definition (53) of µτ0Ñτ it is assumed that 0 represents some choice of label,

but the definition for all choices of 0 are equivalent. In other words, because of (49),

µτ0Ñτ pvq “ ln

ˆ

P tD1zDτ |`τ “ u, `τ0 “ vu θ˚v
θ˚u,v

˙

(56)

for any u P rrs.

We show that the message passing equations (18) - (22) follow from our independence

assumptions and the definitions of the messages given in (52) - (55).

Derivation of (18): Start with the fact Dτ “ D1
τ X pXtPBτDtq , and, given `τ “ v and D1

τ ,

The events Dt, t P Bτ are conditionally independent. Hence,

P tDτ |`τ “ vu

“ P
 

D1
τ |`τ “ v

(

ź

tPBτ

P
 

Dt|`τ “ v,D1
τ

(

“ P
 

D1
τ |`τ “ v

(

ź

tPBτ

P tDt|`τ “ v, tÑ τu .

So by (48) and the definition of rνtÑτ ,

lnP tDτ |`τ “ vu “ λCτ pvq `
ÿ

tPBτ

rνtÑτ pvq. (57)

Since ντÑτ0pvq “ lnP tDτ |`τ “ vu this establishes (18) for m “ 1.
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Derivation of (19): Assume τ0 ě to ` 1; the proof in case τ0 ď to is similar. Then, also

accounting for the assumption m “ 1, (19) becomes

µτ0Ñτ “ λCτ0 `
ÿ

tPBτ0ztτu

rνtÑτ0 ` rµτ1Ñτ0 , (58)

where τ1 is the parent of τ0. Observe that

D1zDτ “ pD1zDτ0q X pDτ0zDτ q

“ pD1zDτ0q XD
1
τ0
X
`

XtPBτ0ztτuDt

˘

Therefore,

P tD1zDτ |`τ “ 0, `τ0 “ vu

“ P tD1zDτ0 |`τ “ 0, `τ0 “ vuP tDτ0zDτ |`τ “ 0, `τ0 “ vu

“ P tD1zDτ0 |`τ0 “ vuP tDτ0zDτ |`τ “ 0, `τ0 “ vu

“ P tD1zDτ0 |`τ0 “ vuP
 

D1
τ0
|`τ “ 0, `τ0 “ v

(

ź

tPBτ0ztτu

P tDt|`τ “ 0, `τ0 “ v, tÑ τu

“ P tD1zDτ0 |`τ0 “ vuP
 

D1
τ0
|`τ “ 0, `τ0 “ v

(

ź

tPBτ0ztτu

P tDt|`τ0 “ v, tÑ τu

Multiplying both sides of the above by θ˚v
θ˚0,v

, using (49), and taking logarithms yields

µτ0Ñτ pvq “ ln
θ˚v
θ˚0,v

` rµτ1Ñτ0pvq `

ˆ

ΛC
τ0
pvq ` ln

θ˚0,v
θ˚v

˙

`
ÿ

tPBτ0ztτu

rνtÑτ pvq,

which is equivalent to (58), so that (19) is proved for m “ 1.

Derivation of (20): Note that

P tDτ |`τ0 “ v, τ Ñ τ0u

“
ÿ

uPrrs

P tDτ , `τ “ u|`τ0 “ v, τ Ñ τ0u

“
ÿ

uPrrs

P t`τ “ u|`τ0 “ v, τ Ñ τ0uP tDτ |`τ “ uu

“
ÿ

uPrrs

ρuθ
˚
u,v

θ˚v
eντÑτ0 puq,
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where for the second inequality we used

P tDτ , `τ “ u|`τ0 “ v, τ Ñ τ0u “ P tDτ |`τ “ uu . Taking the logarithm of each side yields (20).

Derivation of (21): The derivation is given by:

rµτ0Ñτ puq “ lnP tD1zDτ |`τ “ uu

“ ln
ÿ

vPrrs

P tD1zDτ , `τ0 “ v|`τ “ uu

“ ln
ÿ

vPrrs

P tD1zDτ |`τ “ u, `τ0 “ vuP t`τ0 “ v|`τ “ uu

“ ln
ÿ

vPrrs

θ˚u,v
P tD1zDτ |`τ “ u, `τ0 “ vu

θ˚u,v
ρv

“ ln
ÿ

vPrrs

θ˚u,v
P tD1zDτ |`τ “ 0, `τ0 “ vu

θ˚0,v
ρv

“ gpcpµτ0Ñτ qpuq.

Derivation of (22): Equation (22) (for m “ 1) follows from (50), (51), (57), and (55).
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