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Abstract

A message passing algorithm is derived for recovering communities within a graph generated by a
variation of the Barabdsi-Albert preferential attachment model. The estimator is assumed to know the
arrival times, or order of attachment, of the vertices. The derivation of the algorithm is based on belief
propagation under an independence assumption. Two precursors to the message passing algorithm are
analyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on
the arrival times of the children (C) of a given vertex, where the children of a given vertex are the
vertices that attached to it. Comparison of the performance of the algorithms shows it is beneficial to
know the arrival times, not just the number, of the children. The probability of correct classification of
a vertex is asymptotically determined by the fraction of vertices arriving before it. Two extensions of
Algorithm C are given: the first is based on joint likelihood of the children of a fixed set of vertices;
it can sometimes be used to seed the message passing algorithm. The second is the message passing

algorithm. Simulation results are given.!
Index terms: preferential attachment graph, message passing algorithm, graphical inference,

clustering, community recovery

I. INTRODUCTION

Community detection, a form of unsupervised learning, is the task of identifying dense

subgraphs within a large graph. For surveys of recent work, see [1]-[3]. Community detection is

'This paper was presented in part at the 2018 IEEE International Symposium on Information Theory



often studied in the context of a generative random graph model, of which the stochastic block
model is the most popular. The model specifies how the labels of the vertices are chosen, and
how the edges are placed, given the labels. The task of community detection then becomes an
inference problem; the vertex labels are the parameters to be inferred, and the graph structure
is the data. The advantage of a generative model is that it helps in the design of algorithms for
community detection.

The stochastic block model fails to capture two basic properties of networks that are seen in
practice. Firstly, it does not model networks that grow over time, such as citation networks or
social networks. Secondly, it does not model graphs with heavy-tailed degree distributions, such
as the political blog network [4]. The Barabdsi-Albert model [5], a.k.a. the preferential attachment
model, is a popular random graph model that addresses both the above shortcomings. We use the
variation of the model introduced by Jordan [6] that includes community structure. The paper [6]
considers labels coming from a metric space, though a section of the paper focuses on the case
the label space is finite. We consider only a finite label set—the model is described in Section
II-A. In recent years there has been substantial study of a variation of preferential attachment
model introduced in [7] such that different vertices can have different fitness. For example, in
a citation network, some papers attract more citations than others published at the same time.
There has also been work done on recovering clusters from graphs with different fitness (see
Chapter 9 of [8] and references therein). Our work departs from previous work by considering
community detection for the model in which the affinity for attachment between an arriving
vertex and an existing vertex depends on the labels of both vertices (i.e. for the model of [6]).

The algorithm we focus on is message passing. Algorithms that are precursors to message
passing, in which the membership of a vertex is estimated from its radius one neighborhood in
the graph, are also discussed. The algorithm is closest in spirit to that in the papers [9], [10].
Message passing algorithms are local algorithms; vertices in the graph pass messages to each
of their neighbors, in an iterative fashion. The messages in every iteration are computed on the
basis of messages in the previous iteration. The degree growth rates for vertices in different
communities are different (unless there happens to be a tie) so the neighborhood of a vertex
conveys some information about its label. A quantitative estimate of this information is the
belief (a posteriori probability) of belonging to a particular community. A much better estimate
of a vertex’s label could potentially be obtained if the labels of all other vertices were known.

Since this information is not known, the idea of message passing algorithms is to have vertices



simultaneously update their beliefs.

The main similarity between the preferential attachment model with communities and the
stochastic block model is that both produce locally tree-like graphs. However, the probabilities of
edges existing are more complicated for preferential attachment models. To proceed to develop
the message passing algorithm, we invoke an independence assumption that is suggested by
an analysis of the joint degree evolution of multiple vertices. This approach is tantamount to
constructing a belief propagation algorithm for a graphical model that captures the asymptotic
distribution of neighborhood structure for the preferential attachment graphs.

a) Organization of the paper: Section II lays the groundwork for the problem formulation
and analysis of the community detection problem. It begins by presenting a model for a graph
with preferential attachment and community structure, following [6]. The section then presents
some key properties of the graphical model in the limit of a large number of vertices. In particular,
the empirical distribution of degree, and the evolution of degree of a finite number of vertices, are
examined. Stochastic coupling and total variation distance are used extensively. In addition, it is
shown that the growth rate parameter for a given fixed vertex can be consistently estimated as the
size of the graph converges to infinity. Section III formulates the community recovery problem
as a Bayesian hypothesis testing problem, and focuses on two precursors to the message passing
algorithm. The first, Algorithm C, estimates the community membership of a vertex based on
the children of the vertex (i.e. vertices that attached to the vertex). The second, Algorithm DT,
estimates the community membership of a vertex based on the number of children. Section IV
investigates an asymptotically equivalent recovery problem, based on a continuous-time random
process Z that approximates the evolution of degree of a vertex in a large graph. A key conclusion
of that section is that, for the purpose of estimating the community membership of a single
vertex, knowing the neighborhood of the vertex in the graph is significantly more informative than
knowing the degree of the vertex. Section V presents our main results about how the performance
of the recovery Algorithms C and DT scale in the large graph limit. Section VI presents an
extension of Algorithm C whereby the labels of a fixed small set of vertices are jointly estimated
based on the likelihood of their joint children sets. This algorithm has exponential complexity
in the number of labels estimated, but can be used to seed the message passing algorithm. Since
the vertices that arrive early have large degree, it can greatly help to correctly estimate the labels
of a small number of such vertices. The message passing algorithm is presented in Section VII.

Simulation results are given for a variety of examples in Section VIII. Various proofs, and the



derivation of the message passing algorithm, can be found in the appendices.

b) Related work: A different extension of preferential attachment to include communities
is given in [11]. In [11], the community membership of a new vertex is determined based on
the membership of the vertices to which the new vertex is attached. The paper focuses on the
question of whether large communities coexist as the number of vertices converges to infinity.
However, the dynamics of the graph itself is the same as in the original Barabasi-Albert model.
In contrast, our model assumes that community membership of a vertex is determined randomly
before the vertex arrives, and the distribution of attachments made depends on the community
membership. It might be interesting to consider a combination of the two models, in which some
vertices determine community membership exogenously, and others determine membership based
on the memberships of their neighbors.

Another model of graphs with community structure and possibly heavy-tailed degree distri-
bution is the degree corrected stochastic block model — see [12] for recent work and references.

There is an extensive literature on degree distributions and related properties of preferential
attachment graphs, and an even larger literature on the closely related theory of Polya urn
schemes. However, the addition of planted community structure breaks the elegant exact analysis
methods, such as the matching equivalence formulated in [13], or methods such as in [14] or
[15]. Still, the convergence of the empirical distribution of the induced labels of half edges
(see Proposition 2 below) makes the analysis tractable without the exact formulas. A sequence
of models evolved from preferential attachment with fitness [7], towards the case examined
in [6], such that the attachment probability is weighted by a factor depending on the labels
of both the new vertex and a potential target vertex. The model of [16] is a special case, for
which attachment is possible if the labels are sufficiently close. See [6], [8], [16] for additional

background literature.

II. PRELIMINARIES AND SOME ASYMPTOTICS
A. Barabdsi - Albert preferential attachment model with community structure

The model consists of a sequence of directed graphs, (G, = (V;, E;) : t > t,) and vertex

labels (¢; : t = 1) with distribution determined by the following parameters:?

>The model is the same as the finite metric space case of [6] except for differences in notation. «, S, X, i, v, Y, ¢ in [6] are
BT[], £, p,m, C, 20 here. Also, [6] denotes the initial graph as Gio while we denote it by G, we assume it has mto edges,

and we suppose the random evolution begins with the addition of vertex ¢, + 1.



« m =1 : out degree of each added vertex

« 7 = 1: number of possible labels; labels are selected from [r] = {1,...,r}

e« p=1(p1,...,pr): a priori label probability distribution

« B € R™": matrix of strictly positive affinities for vertices of different labels; f3,, is the

affinity of a new vertex with label u for attachment to a vertex of label v.

e t, = 1: initial time

o Gy, = (V,,, Ey,): initial directed graph with V;, = [t,] and mt, directed edges

o (U :te[t,]) € [r]': labels assigned to vertices in Gy, .

For each ¢t > t,, G; has t vertices given by V; = [t] and mt edges. The graphs can contain
parallel edges. No self loops are added during the evolution, so if G, has no self loops, none
of the graphs will have self loops. Of course, by ignoring the orientation of edges, we could
obtain undirected graphs.

Given the labeled graph Gy, the graph G, is constructed as follows. First vertex ¢ + 1 is
added and its label ¢, is randomly selected from [r] using distribution p, independently of G,.
Then m outgoing edges are attached to the new vertex, and the head ends of those edges are
selected from among the vertices in V; = [¢] using sampling with replacement, and probability
distribution given by preferential attachment, weighted based on labels according to the affinity
matrix.

The probabilities are calculated as follows. Note that £, has mt edges, and thus 2mt half
edges, where we view each edge as the union of two half edges. For any edge, its two half edges
are each incident to a vertex; the vertices the two half edges are incident to are the two vertices
the edge is incident to. Suppose each half edge inherits the label from the vertex it is incident to.
If ¢, 1 = u, meaning the new vertex has label u, and if one of the existing half edges has label v,
then the half edge is assigned weight (3, for the purpose of adding edges outgoing from vertex
t + 1. For each one of the new edges outgoing from vertex ¢ + 1, an existing half edge is chosen
at random from among the 2mt possibilities, with probabilities proportional to such weights.
The selection is done simultaneously for all m of the new edges, or equivalently, sampling with
replacement is used. Then the vertices of the respective selected half edges become the head

ends of the m new edges.



B. Empirical degree distribution for large T

For a vertex in G, where t > t,, the distribution of the number of edges incident on the vertex
from vertex ¢ + 1 depends on the label of the vertex, the degree of the vertex, and the labels on
all the half edges incident to the existing vertices in G;. The empirical distribution of labels of
half edges in G; converges almost surely as t — o0, as explained next. Let C; = (Cy,, : u € [r])
for t > t,, where C,, denotes the number of half edges with label u in G;. It is easy to see
that (C; : t > t,) is a discrete-time Markov process, with initial state determined by the labels
of vertices in G;,. Let 1, = % Thus, 7, is the fraction of half edges that have label u at time

t. Let h = (hy,...,h,) where

ho(n) = po + ), pu (fil%§£23f7) — 21y, (D

The following is proved in [6], by appealing to the theory of stochastic approximation. For

convenience we give essentially the same proof, using our notation, in Appendix A.

Proposition 1. [6] (Limiting fractions of half edges with given labels) n; — n* a.s. as t — 0,

where n* is the unique probability vector such that h(n*) = 0.

A second limit result we restate from [6] concerns the empirical degree distribution for the
vertices with a given label. For v € [r] and integers n > m and T, let:

« HV(T) denote the number of vertices with label v in Gr

« NJ(T') denote the number of vertices with label v and with degree n in Gr

« PU(T) = MaT) denote the fraction of vertices with label v that have degree n in Grp.

H*(T)
Let
Buw
0 = ——=——- foru,velr],
) 221;/ ﬁuv/n:/ [ ]
and
0 = > pub, forve[r]. 2)

Proposition 2. [6] (Limiting empirical distribution of degree for a given label) Let n > m and
v € [r] be fixed. Then limy_,o, P*(T') = p, (0%, m) almost surely, where

_ T(+m)I(n)
polfm) = Or(m)T (n + § + 1)

:[F(%+m)] 1 5

QF(m) n%Jrl



The asymptotic equivalence in (3) as n — oo follows from Sterling’s formula for the Gamma
function. The proposition shows that the limiting degree distribution of a vertex with label v

selected uniformly at random from among the vertices with label v in GG has probability mass

1

. . . . . —( ¥+l
function with tail decreasing like n= \%

. If B, is the same for all u,v then 6 = 1/2 for
all v and we see the classical tail exponent -3 for the Barabdsi-Albert model.

The proof of Proposition 2 given in [6] is based on examining the evolution of the fraction
of vertices with a given label and given degree n. Using the convergence analysis of stochastic
approximation theory, this yields limiting difference equations for p,, that can be solved to find
pn. However, since all vertices with a given label are grouped together, the analysis does not
identify the limiting degree distribution of a vertex as a function of the arrival time of the vertex.

The following section investigates the evolution of the degree of a single vertex, or finite set
of vertices, conditioned on their labels. As a preliminary application, we produce an alternative
proof of Proposition 2 in Appendix D. The main motivation for this alternative approach is that

it can also be applied to analyze the probability of label error as a function of time of arrival of

a vertex, for two of the recovery algorithms we consider.

C. Evolution of vertex degree—the processes Y, }N/, }V/, and Z

Consider the preferential attachment model defined in Section II-A. Given a vertex 7 with
T > t, + 1, consider the process (Y; : t > 7), where Y; is the degree of vertex 7 at time ¢.
So Y, = m. The conditional distribution (i.e. probability law) of Y;,; — Y; given (Y}, 1, ¢, =

v, 1 = w) is given by:

OuniYy
LYy =YYy, br = v, 4441 = u) = binom <m, u,v,; t> ’
m

where

9 _ /BU/U
w,v,t — g~ o -
2 Zv’ ﬁuv’ntv’

It follows that, given (Y, 7, ¢, = v), the conditional distribution of Y;,; — Y} is a mixture of

binomial distributions with selection probability distribution p, which we write as:

OuviYs
LY =YY, by =v) = Z pubinom (m, Uit t) )
ue(r]

mt

Proposition 1 implies, given any € > 0, if 7 is sufficiently large, P {||n; — n*| < e for all t > 7} >

1 — e. Therefore, 0y, ~ 0, for v € [r]. A mixture of binomial distributions, all with small



means, can be well approximated by a Bernoulli distribution with the same mean. Thus, we
expect L(Y; 11 — Yi|Y;, €, = v) ~ Ber (@) )

Based on these observations, we define a random process that is an idealized variation of Y
obtained by replacing 7; by the constant vector n*, and allowing jumps of size one only. The
process Y has parameters 7, m, and 1, where 7 is the activation time, m is the state at the
activation time, and ¥ > 0 is a rate parameter. The process YVisa time-inhomogeneous Markov

process with initial value Y, = m. For ¢ > 7 and y such that % < 1, we require:
~ ~ ~ 0,
£(Fier =TT = ) - ger (). @

By induction, starting at time 7, we find that ENQ <m+t—7fort>=7.If T > mand ¥ < 1, then

A

-+ < 1 for all £ > 7 with probability one, in which case (4) and the initial condition completely

specify the distribution of (}7 :t > 7). However, for added generality we allow 9 > 1, in which
case the above construction can break down. To address such situation, we define ¢ such that ¢
is the stopping time ¢ = inf{¢ : VY, > t} and we define Y, = +oo for t > (.

The process Y can be thought of as a (non Markovian) discrete time birth process with
activation time 7 and birth probability at a time ¢ proportional to the number of individuals.
However, the birth probability (or birth rate) per individual, ? has a factor %, which tends to
decrease the birth rate per individual. To obtain a process with constant birth rate per individual
we introduce a time change by using the process (Y.s : s = 0). In other words, we use ¢ for the
original time variable and s = Int as a new time variable. We will define a process Z such that
(Zinry it =7)~ (Y : t = 7), or equivalently, (Z, : s > 0) ~ (Yes : s > 0), in a sense to be
made precise.

The process Z = (Zs : s = 0) is a continuous time pure birth Markov process with initial
state Zy = m and birth rate Yk in state k, for some ¥ > 0. (It is a simple example of a Bellman-
Harris process, and is related to busy periods in Markov queueing systems.) The process Z
represents the total number of individuals in a continuous time branching process beginning
with m individuals activated at time 0O, such that each individual spawns another at rate v. For

—519)

fixed s, Z, has the negative binomial distribution negbinom(m, e . In other words, its marginal

probability distribution (7, (s,9,m) : n € Z,) is given by

(s, 9,m) = (

In particular, taking m = 1 shows 7 (s, ¥, 1) is the geometric distribution with parameter e~

—1
n )e—mﬁs(l _ e—ﬂS)"—m for n = m. (%)
m— 1
Us and

hence, mean e”*. The expression (5) can be easily derived for m = 1 by solving the Kolmogorov



forward equations recursively in n: 7, = —vnm, +9¥(n—1)m,_1 for n > 1, with the convention
and base case, mp = 0. For m > 2, the process Z has the same distribution as the sum of m
independent copies of Z with m = 1, proving the validity of (5) by the same property for the
negative binomial distribution.

Let §V/t = Z(r) for integers ¢ > 7. The mapping from Z to Y does not depend on the
parameter 1J, so a hypothesis testing problem for Z maps to a hypothesis testing problem for Y.
There is loss of information because the mapping is not invertible, but the loss tends to zero as
T — 20, because the rate of sampling of Z increases without bound.

The following proposition, proven in Appendix B, shows that Y, Y and Y are asymptotically
equivalent in the sense of total variation distance. Since the processes Y, Y and Y are integer
valued, discrete time processes, their trajectories over a finite time interval [, T'] have discrete
probability distributions. See the beginning of Appendix B for a review of the definition of total
variation distance and its significance for coupling. Sometimes we write }7(19) instead of Y, and

?(19) instead of }V/, to denote the dependence on the parameter .

Proposition 3. Suppose 7,7 — o such that T > T and T /7 is bounded. Fix v € [r]. Then

drv (Vi |lr = v), Yirry (07)) — 0, 6)

and for any 9 > 0,

~ ~

dry (Ve (9), Viry (9)) = 0, )

The first part of Proposition 3 can be strengthened as follows. The labels in £[; 7] are mu-
tually independent, each with distribution p. We can define a joint probability distribution
over (Y[T 11, ¢p) by specifying the conditional probability distribution of Y[T 7] given {[y 1

as follows. Given £[; 1y, 37[7771] is a Markov sequence with YT = m and:

0
£(Y Ytl‘ﬁt—uf —UY}l—y)—Ber(jj_u;> (8)

By the law of total probability, this gives the same marginal distribution for E(?[T’T]MT:U) as

(4) with 9 = 67, as long as max, {0} }y <t
Proposition 4. Suppose 7,7 — o such that T > T and T /7 is bounded. Fix v € [r]. Then

dry ((3/[T,T]7€[1,T]) ) (%T,T]yg[l,T]>> — 0, 9)



The proof is a minor variation of the proof of Proposition 3 because the estimates on total

variation distance are uniform for ¢; or 67 , bounded. Details are left to the reader.

D. Joint evolution of vertex degrees

Instead of considering the evolution of degree of a single vertex we consider the evolution of
degree for a finite set of vertices, still for the preferential attachment model with communities,
(Gy = (Vi, Ey) : t = t,), defined in Section II-A. Given integers 71,...,7; with t, <73 < -+ <
77, let Y/ = 0if 1 <t < 7; and let Y denote the degree of vertex 7; at time ¢ if ¢ > 7;. Let
vy = (Y7 : je[J]). Let (vy,...,v;) € [r]”. We consider the evolution of (Yt[‘]] :t>1) given
(Urysilry) = (v1,...,vg). Let ¥; = 0 for j € [J]. About the notation 6* vs. J: The vector
0* = (0 : v € [r]) denotes the limiting rate parameters for the r possible vertex labels defined
in (2), whereas ¥ = (¥, : j € [J]) denotes the limiting rate parameters for the specific set of .J
vertices being focused on, conditioned on their labels being vy, ..., v;.

The process Y1 is defined similarly. Fix J > 1, integers 7y,...,7y with 1 <7y < ... < Ty,
and ¥ € (R.()”. Suppose for each j € [.J] that Y7 is a version of the process Y defined in Section
II-C, with parameters 7;, m, and ¥/;, with the extension }N/tj = 0 for 1 < ¢ < 7; — 1. Furthermore,
suppose the J processes (}N/j )je(s] are mutually independent. Finally, let Y = (}N/t[’]] t=1)
where Y}/l = (Y7 : j € [J]). Note that Y17 is itself a time-inhomogeneous Markov process. In
what follows we write Y[/] (9) instead of Y71 when we wish to emphasize the dependence on

the parameter vector J. Let Y1) be defined analogously, based on Y.

Proposition 5. Fix the parameters of the preferential attachment model, m,r, 3, p,t,, Gy,, l[14,]-
Fix J =1l and vy,...,v5 €[], and let 9; = 6} for j€[J]. Let 9 — 0 and let 7, ...,7; and

T vary such that 7o < 171 < ... < 7y, and T /1o is bounded. Then
AN J :
dry (V@) (Y716, = v for je[])) =0
Al [T
dry (Th@), V@) = 0
The proposition is proved in Appendix C. A key implication of the proposition is that the
degree evolution processes for a finite number of vertices are asymptotically independent in the
assumed asymptotic regime. In particular, the following corollary is an immediate consequence

of the proposition. It shows that the degrees of J vertices at a fixed time 71" are asymptotically

independent with marginal distributions given by (5).

10



Corollary 1. (Convergence of joint distribution of degrees of J vertices at a given time) Under

the conditions of Proposition 5, for a vector n = (ny,...,ny) with n; = m,
lim  sup [P {YT[J] =n|(lry,....lr,) = (v1, ... 7'UJ)}
T0O=XO 1 7y, T
_ H T, (IN(T/7;),9;,m) ‘ = 0.
JjelJ]

Remark 1. Corollary 1 implies, given {, = v, the limiting distribution of the degree of T in
Gr is negbinom(m, (1/T)%), as 7,T — oo with T < T and T /7 bounded. This generalizes the

result known in the classical case B,, =1 where 0% = 1/2, shown on p. 286 of [13].

E. Large time evolution of degree of a fixed vertex and consistent estimation of the rate parameter

of a vertex

Consider the Barabdsi-Albert model with communities. Fix 7 > 1 and let Y; denote the degree
of 7 in G, for t > t,. To avoid triviality, assume 7 is not an isolated vertex in the initial graph
G, The following proposition offers a way to consistently estimate the rate parameter 6; . If
the parameters 6 of the Barabdasi-Albert model are distinct, it follows that any fixed finite set
of vertices could be consistently classified in the limit as 7" — oo, without knowledge of the

model parameters.

Proposition 6. (Large time behavior of degree evolution) For T fixed,

. IDYT "
%%W— 0, a.s. (10)

«

Here, “a.s.”" means almost surely, or in other words, with probability one.

The following strengthening of Proposition 6 is conjectured.

Conjecture 1. (Sharp large time behavior of degree evolution) For T fixed,
: Yr
lim —9* =
7 (1)
for a random variable W with P{W > 0} = 1.

a.s. (1)

See Appendix E for a proof of the proposition and a proof that (11) holds with Y replaced
by Y.

11



III. COMMUNITY RECOVERY BASED ON CHILDREN

Given vertices 7 and 7, we say 7 is a child of 7y, and 7 is a parent of 7, if 7 = max{rg,t,}+1,
and there is an edge from 7 to 7. It is assumed that the known initial graph G, is arbitrary and
carries no information about vertex labels. Thus, for the purpose of inferring the vertex labels,
the edges in (&;, are not relevant beyond the degrees that they imply for the vertices in Gy, .
Assuming 7' is an integer with 1 < 7 < 7T, let 07 denote the children of 7 in G and p7 the
parents of 7. So p7 = Fif 7 <t,and 0T < {t, +1,...,T}.

Consider the problem of estimating ¢, given observation of a random object O. For instance,
the object could be the degree of vertex 7 in G, or it could be the set of children of 7 in
G, or it could be the entire graph. This is an r-ary hypothesis testing problem. It is assumed
a priori that the label /. has probability distribution p, so it makes sense to try to minimize the
probability of error in the Bayesian framework. Let A, denote the log-likelihood vector defined
by A, (Oli) = Inp(O|¢, = i) for i € [r]. By a central result of Bayesian decision theory, the
optimal decision rule is the MAP estimator, given by

ZT,MAP = argmax (In p; + A (Oli))
Remark 2. (i) Knowing G is equivalent to knowing the indices of the vertices and the undirected
graph induced by dropping the orientations of the edges of Gr.

(ii) The estimators considered in this paper are assumed to know the order of arrival of
the vertices (which we take to be specified by the indices of the vertices for brevity) and the
parameters m, 3 and p. It is clear that in some cases the parameters can be estimated from
a realization of the graph for sufficiently large T In particular, the parameter m is directly
observable. By Proposition 6, if the order of arrival is known, the set of growth rates {0% : v € [r]}
can be estimated. So if the 0 ’s are distinct, the distribution p can also be consistently estimated.

(iii) If the indices of the vertices are not known and only the undirected version of the graph
is given, it may be possible to estimate the indices if m is sufficiently large. Such problem has
been explored recently for the classical Barabdsi-Albert model [17], but we don’t pursue it here

for the variation with a planted community.

Algorithm C: The first recovery algorithm we describe, Algorithm C (“C" for “children"),

is to let O denote the set of children, 0t = {t1,...,t,}, of vertex 7 in G7. Equivalently, O could

*
v

be observation of Y|, 1), with parameters m and 6}, where 7 v t, = max{r,t,}. However,

12



motivated by Proposition 3, we consider instead observation of ?[rvto,T]a which has a distribution
asymptotically equivalent to the distribution of Y}, 17. Let dy(7) denote the initial degree of
vertex 7, defined to be the degree of 7 in G, if 7 < t, and dy(7) = m otherwise. Given
a possible children set ot = {t1,...,t,}, let yfTTT], denote the corresponding degree evolution

sample path: 7™ = d,(7) + |07 " [7,t]| for T vt, < t < T, The probability EN/[TV,:C”T] corresponds
to children set 0t = {ty,...,t,} is given by

Pt ={t1,....tn}) =

H (1 _ ysagtle;k) ytazle;k
Nor t—1 teoT t—1

te[rvito+1,T

so the log likelihood for observation }?Tvto,ﬂ = yfTTV t.7] 18°

yar g%
AY = |or|In6F + Z In (1— tt__l 1”)
N\or

te[rvto+1,T

Algorithm C for estimating £, is to use the MAP estimator based on p and AY. Using the

approximation In(1 + s) = s and approximating the sum by an integral we find A® ~ )\, where

T yﬁT
2 (v) = |o7|In 0% —Q:J L dt
TVvito
— 07| In 0¥ + 6 (do(f) In~ ;t” + Y %) (12)
teor

Algorithm DT: The second recovery algorithm we describe, Algorithm DT (“DT" for
“degree thresholding"), is to let O denote the number of children of vertex 7 in Grp, or,
equivalently, the degree of 7 at time 7" minus the initial degree of 7. Equivalently, O could be
observation of Y — d,(7). However, motivated by Proposition 3, we consider instead consider
observation of Y7 — do(7), which has the negbinom (do(7), (r/T)%) distribution given £, = v,

for v € [r]. The log likelihood vector in this case, given the number of children, |07, is:
APT (v) = —do(7)0; (T/7) + o7 n (1 = (/7)) .

where we have dropped a term (log of binomial coefficient) not depending on v. Algorithm DT
for estimating ¢, is to use the MAP decision rule based on p and APT or in other words, the
MAP decision rule based on O = Y7, or equivalently, based on O = Z;, where § = In(T/7)

(because }v/T = Zs). Let f27(p,0% m,5) denote the resulting average error probability p.

13



IV. HYPOTHESIS TESTING FOR Z

Proposition 3 gives an asymptotic equivalence of }/'[T7T],§~/[T7T], and lv/'[T,T]. Recall that }V/[T,T]
is obtained by sampling the continuous time process Zi,./,) at integers ¢t € [7,T]. Thus,
the continuous time process Z is not observable. However, as 7 — oo, the rate that Z is
sampled increases without bound, so asymptotically Zjg1n(7/7) is observed. We consider here
the hypothesis testing problem based on observation of Zjg,(7/-)) such that under H, it has rate
parameter ¢ = 0* for v € [r]. This is sensible in case the parameter values 0, v € [r], are
distinct. To this end, we derive the log likelihood vector.

Suppose {si,...,58,} < (0,5] such that 0 < s; < --- < s, and § = InT/7. Since the
inter-jump periods are independent (exponential) random variables, the likelihood of si,... s,
being the jump times during [0, 5] under hypothesis H,, is the product of the likelihoods of the
observed inter-jump periods, with an additional factor of the likelihood of not seeing a jump in

the last interval:

n—1
(H 0% (m + Z’)eé)ﬁ‘(mﬂ)(swlsi)) o0 (n+m)(5—sn)

=0

Thus, the log likelihood for observing this is (letting sq = 0):

A =nln6* — 6* (mS—FE(S—si)) (13)
i—1

(With s; = In(t;/7), (13) is the same as (12), although in (12) the variables ¢; are supposed to
be integer valued.) Let A; = (m5+ >, (5 —s;)) . Note that A is the area under the trajectory

of Zjos). Moreover, n + m is the value of Zs. So the log-likelihood vector is given by:
A = (Zs —m)In @ — (A;)67F, (14)

which is a linear combination of Z; — m and A;. Thus, the MAP decision rule has a simple
form. Let f5(p, 0%, m,3) denote the average error probability p. for the M AP decision rule
based on observation of Z g.

There is apparently no closed form expression for the distribution of A?, so computation of
15 (p, 0%, m, 5) apparently requires Monte Carlo simulation or some other numerical method.
A closed form expression for the moment generating function of AZ is given in the following
proposition, proved in Appendix F, and it can be used to either bound the probability of error

or to accelerate its estimation by importance sampling.
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Proposition 7. The joint moment generating function of Z, and Ay is given as follows, where

Exm [-] denotes expectation assuming the parameters of Z are \,m :

Yam(u,v,5) = Ey [euzs"r’UAS]

e(v—)\)s+u m s
= u . 1
T+ 2 (1= o) >

v

Proposition 7 can be used to bound p. for the special case of two possible labels, r = 2,
in which estimating ¢, is a binary hypothesis testing problem: H; : ¢ = 67, vs. Hy : ¥ = 6;.
For such a problem the likelihood vector A? can be replaced by the log likelihood ratio, A =
AZ(1) — A?(2). By a standard result in the theory of binary hypothesis testing (due to [18],
stated without proof in [19], proved in special case m; = w5 = 0.5 in [20], and same proof easily

extends to general case), the probability of error for the MAP decision rule is bounded by

T2y < Pe < /T1T2PB, (16)

where the Bhattacharyya coefficient (or Hellinger integral) pj is defined by pp = E [e*/?|H,]

and m; and 7y are the prior probabilities on the hypotheses. The proposition with A = 65,

u=1In(07/63), v = —5% and s = 5 yields

pe.c = Exm [6u(z§_m)+ms] = Yam(u,v,s)e”™

m
e_(9T+9;)§/2
- * gk
1 — 2V*91 ‘12 (1 _ e—(0f+0;‘)§/2)
07 +05

Here we wrote pp ¢ to denote it as the Bhattacharyya coefficient for Algorithm C (for the large
T limit). Using this expression in (16) provides upper and lower bounds on p. = f5(p, 0*,m, 3)
in case r = 2.

For the sake of comparison, we note that the Bhattacharyya coefficient for the hypothesis

testing problem based on lv/T alone, i.e. Algorithm DT, is easily found to be:

e—(ei“ +0%)5/2

1— ¢(1 — e %) (1 — e %79)

PB,DT =

V. PERFORMANCE SCALING FOR ALGORITHMS C AND DT

Consider the community recovery problem for m,r, p, and S fixed, and large 7, such that

the rate parameters 6 : v € [r] are distinct. Let § be an arbitrarily small positive constant.

15



The problem of recovering ¢, for some vertex 7 with 07 < 7 < T from G using children
(C) (respectively, degree thresholding (DT)) is asymptotically equivalent to the r-ary hypothesis
testing problem for observation Zj (/7)) (respectively, Zi,(7/7)) with the same parameters m
and 0 : v € [r]. This leads to the following proposition, based on the results on coupling of Y,

Y and Y and the connection of Y to Z.

Proposition 8. (Performance scaling for Algorithms C and DT) (a) Let p((f;?T denote the prob-

ability of error for recovery of the label {, using Algorithm C. For any ¢ € (0,1), as T — o0,

max_|p\0 — 15 (p, 0%, m, n(T/7))| — 0.

T:0T<7T<T
(b) Let ﬁf;? denote the fraction of errors for recovery of the labels of G using Algorithm C for

each vertex. Then,
1
PG [ 500 m (1))
0

where the convergence is in probability.

(c) Parts (a) and (b) hold with C replaced by DT.

Proof. Observing the children of vertex 7 in G is equivalent to observing Y|, 7). In view of
Proposition 5, the binary hypothesis testing problem based on observation of Y[, | is asymptot-
ically equivalent to the binary hypothesis testing problem based on observation of 37[T7T] or on
}vf[T’T]. The upper bound on total variation distance is uniform for 7'/7 bounded. In particular, the
minimum average probabilities of error for the problems become arbitrarily close as 7" — o0. To
complete the proof of (a), we next compare the probability of recovery error based on observation
of Y vs. observation based on the continuous time process Z.

The process }V/[T;p] is obtained by sampling the process Z, ) at integer times ¢ € [7,T].
The mapping from Z to Y does not depend on the parameter ¥, which could equal ¢; for any
v € [r]. In other words, observing };[T’T] is equivalent to observing Z for all s € [0,In(7"/7)]
such that 7e® is an integer, where Z has rate parameter ¢ under the hypothesis ¢, = v. Thus, in
the terminology of source coding, iv/[ﬂT] is a quantized version of Zo n(7/7)], With the quantizer
becoming arbitrarily fine as 7 — co. Therefore, the minimum probability of error for recovering

¢, based on the children of 7 in G, in the limit as 7,7 — oo with 1 < T'/7 < 1/ is uniformly

arbitrarily close to féc) (p, 0%, m,In(T'/7)). This completes the proof of part (a). Therefore, by
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the bounded convergence theorem and the fact ¢ can be taken arbitrarily small, convergence of

the expected fraction of label errors follows:

T
B[AD] % | #5006 mtn(z/m))ar
0

= Jl 1< (p, 0%, m,In(1/8))ds.
0
The last part of the proof is to show that the convergence is true not only in mean, but also
in probability. That follows by the same method used for the alternative proof of Proposition
2, about the empirical degree distribution, given in Appendix D. The key step is a proof that
the joint degree evolution processes (f/ﬂ ) for a finite number J of vertices (we only need to
consider J = 2 here) are asymptotically independent in the sense that the total variation distance
to a process with independent degree evolution converges to zero. That implies the error events
for different labels are asymptotically uncorrelated, so convergence in probability to the mean

follows by the Chebychev inequality. The same proof works for C' replaced by DT [l

We conjecture that a result similar to Proposition 8 exists for label recovery using the message
passing (MP) algorithm described in the next section.
The following proposition, proved in Appendix G, addresses the case that 7 = o(7'), including

the possibility that 7 is a constant. The estimation procedure is a modification of Algorithm C.

Proposition 9. Suppose T — oo, with 7° > 1 being a function of T such that 7°/T — 0. Then
U0 can be recovered from knowledge of the children of 7° in G with probability converging to

one.

Example 1 (Numerical comparison for a single community plus outliers). Numerical results

b 1
are shown in Figure 1 for m = 5,r = 2, p = (0.5,0.5) and = , with b = 4,
11

corresponding to a graph with a single community of vertices and outlier vertices. For these
parameters, n* = (0.622839,0.377121) and 6* = (0.598612,0.337153). There is little difference
between the error probabilities of Algorithms DT and C for t/T = 107! but the difference
is quite large for t/T < 1072. Thus, for the vertices arriving in the top one percent of time,
Algorithm C, which uses the identity of children of a vertex, substantially outperforms Algorithm
DT, which uses only the number of children. The Bhattacharyya upper bounds are not very tight
but the ratio of upper bounds for DT and C is similar to the ratio f27/fS. The derivative of

DT (p, 0% m,In(T/t)) with respect to t/T has jump discontinuities at values of t/T such that
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the threshold in the MAP test changes from one integer to the next, which is noticeable in the

plot for t/T close to 1, where the thresholds are small.

0.5 T
Bhatt upper bound DT
— Bhatt upper bound C

- 0.4H Algorithm DT
E — Algorithn C
Q0.3}
Q
o
0.2
o
=
()

0.1

0.0 : :

1073 107 10t 10°

tT

Fig. 1. Semilog plot of Bhattacharyya upper bounds % pB,pT and % pB.c, and functions f£7 and 1S, for an example with a

single community of vertices and outlier vertices.

VI. JOINT ESTIMATION OF LABELS OF A FIXED SET OF VERTICES

The idea of algorithm C' is to estimate the label of a single vertex based on the likelihood
of the observed set of children of the vertex, given the possible labels of the vertex. A natural
extension, described in this section, is to jointly estimate the labels of a small fixed set of
vertices from the joint likelihood of the children sets of the fixed set of vertices. Given a vector
of possible labels of the vertices in the set, under the approximation 7, = n* for all ¢, it is
possible to compute the joint likelihood of the children sets for the vertices. Maximizing over
all label vectors gives an approximate maximum likelihood estimate of the label vector. We use

the following notation.

« V c N, a finite set of vertices to be jointly classified

« be[r]V, an assignment of labels for the vertices in V/

o Y, is the degree of vertex 7 in Gy.

« A] is the number of edges from vertex ¢ to vertex 7

« AT =m =Y A

« Attachment of vertices in [t + 1,T] is observed, for some ¢ and 7" with max{7 : 7 € V} <

t<T.
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Joint estimation algorithm: The joint estimation algorithm for estimating (¢; : t € V) is

to calculate

by = arg max In P <<A[Tt+1,T] iTE V) ‘b) ,
using the the following approximate expression for the log likelihoods:

In P ((AEEH,T] iTE V) |b) ~ const+

c

AV

S Y7oy, \ Y708, o
S 2 () ) (-3 )

uelr] TeV eV

where const represents a constant not depending on b (it is the sum of logarithms of multinomial
coefficients) and the approximation stems entirely from approximating n; by n*. We could
calculate either the approximate ML estimator, BML by finding the arg max of the approximate
log likelihood with respect to b, or EMAP in the same way but first adding the log of the prior
probability of b. The complexity of the algorithm is ©(r"nT"), which is feasible for small values

of n.

Remark 3. By Proposition 5, if the set V were to have a fixed number of vertices, but the
vertices depended on T in such a way that V < [0T,T] for some fixed 6 > 0, then the sets
of children of the vertices would be asymptotically independent in the sense of total variation
distance. Hence, in that limit, the joint estimation algorithm of this section would have no better
performance than Algorithm C. That is why we envision using the joint estimation algorithm for
a fixed set of vertices as T" — 0.

To see why joint estimation can help, consider two fixed vertices, T and 7" with {, = v and
(., = v'. By Proposition 6 we expect the degrees of the two vertices at time t to be on the
order of m(t/7)% and m(t/7)% . Thus, if m > 2, the probability of the two vertices having a
common child at time t to be proportional to the product of their degrees divided by t?, or on
the order of (const)tej 002, Thus, if 0% + 0% > 1 we expect the number of common children
of vertices T and 7' in G to converge to infinity as T — oo, with a constant multiplier that can
thus be consistently estimated as T' — co. In particular, if 0 = 0}, > 0.5, the rate of growth of
joint children would typically depend on whether the two vertices are in the same community,

providing consistent estimation whereas Algorithm C would fail.
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VII. THE MESSAGE PASSING ALGORITHM

In this section, we describe how Alorithm C (the MAP rule given children) can be extended to
a message passing algorithm. We describe the algorithm for the case of r > 2 possible labels for
a general r x r matrix 3 with positive entries, and fixed m > 1. Throughout the remainder of this
section, let (V, E) be a fixed instance of the random graph, (Vr, Et), with known parameters
m,r, 3, p,to, Gi,, and T. The message passing algorithm is run on this graph, with the aim of

calculating A, for 1 < 7 < T, where for each 7, A, is a log-likelihood vector:
A (v) = InP{Er = E|l; = v} + const, wve|r]

where const represents a constant that can depend on the graph but does not depend on the
vertex label v. Then we can calculate the maximum likelihood (ML) and maximum a posteriori

probability (MAP) estimators of the label of a vertex 7 by 277 ML = argmaxye[y| A, (v) and

lrvap = arg maXye[r] P\ (V).

The messages in the message passing algorithm given below are also log likelihood vectors,
so two values, v, € R", of such a message are considered to be equivalent if v — 1/ is
proportional to the all ones vector in R". For example, given a log likelihood vector v there is a
canonical equivalent log likelihood vector V' such that max,e[,) ' (u) = 0, namely, ’ defined by
V'(u) = v(u) — maxyep) v(u'). This fact is useful for numerical computation; in our computer
code we stored all log likelihood vectors in their equivalent canonical forms. A log likelihood
vector is said to be a null log likelihood vector if it is a constant multiple of the all one vector.
In other words, a null log likelihood vector is equivalent to the zero vector. In the special case
r =2, A (1) — A (2) and v(1) — v(2) represent log likelihood ratios, and the algorithm below
can easily be restated using real valued messages that have interpretations as log likelihood ratios
instead of using length two log likelihood vectors.

A complete specification of a message passing algorithm includes specification of the following
elements:

1) initial messages

2) mappings from messages received at a vertex to messages sent by the vertex

3) timing of message passing and termination criterion

4) mappings from messages received at a vertex to the output log likelihood vector of the

vertex
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About element 3). A natural choice for the timing of message passing is synchronous. For
synchronous timing, all messages to be sent along each edge of the graph Gr (excluding edges
in the initial graph G, ) are computed. Based on those, log likelihood vectors are computed for
each vertex and the next round of messages to be sent is computed. An alternative timing of
messages is to alternate between updating only messages from children to parents and updating
only messages from parents to children. For termination, we stopped the message passing when
the sum of Euclidean norms of differences in the canonical log likelihood vectors was below a
threshold.

In this section we specify the equations for elements 1), 2), and 4).

Given vertices 7 and 7y, we say 7 is a child of 7y, and 7y is a parent of 7, if 7 > max{r, t,}+1,
and there is an edge from 7 to 7. It is assumed that the known initial graph G, is arbitrary and
carries no information about vertex labels. Thus, for the inference problem at hand, the edges
in GG, are not relevant beyond the degrees that they imply for the vertices in GG;,. Let 07 denote
the children of 7 in Gt and p7 the parents of 7. So p7 = F if 7 < t,and 07 < {t,+1,...,T}.
Let v,_,,, denote a message passed from child to parent, and s.,_,, denote a message passed
from parent to child.

Let g : R" — R" and ¢ : R" — R" be defined as follows (here “cp" denotes child to parent,

and “pc" denotes parent to child)

gP(v)(v) =1n Z e”(“)puézm/ej for v e R"

ug(r]

g () () =In (Y05 e py /0% | for pe R,
v'e[r]

where 07, , and 0;; are defined in Section II-B. For convenience, we repeat the expression in (12)

for the approximate log likelood vector based on observation of children:

TV i, t
M (v) = |oT|In 0% + 6F <d0(7') In i 2 In T) : (17)

where 7 v t, = max{7,t,} and dy(7) is the initial degree of vertex 7, defined to be the degree
of 7 in Gy, if 7 < t, and do(7) = m otherwise. The message passing equations are given as

follows. See Appendix H for a derivation.
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Vrsmy = /\76-1 + Z fVVtHT + 2 ﬁTlHT (18)

teor T1EPT\{70}
frgor = A+ DL o+ Y Fron (19)
tedro\{7} T1EPTO
Urrg = 9P (Vrsry) (20)
ﬁTo—W’ = gpc(,uTo—>T) (21)
Ar = A7+ D s+ D) Fingor, (22)
teor TOEPT
with the initial conditions:
D”T—V?'U =0 ﬁT()—H‘ = O, (23)
or equivalently
Vroorg = A gy = AS. (24)

In (18) - (22) messages with the letter v are sent from child to parent, and messages with
letter 1 are sent from parent to child. The r coordinates of a message without a tilde represent
likelihoods given possible labels of the sending vertex, while the r coordinates of a message
with a tilde represent likelihoods given possible labels of the receiving vertex. The equations
could be written entirely using only the v’s and u’s by applying (20) and (21) within (18) and
(19). Or the equations could be written entirely using only the 7’s and ji’s by applying (18) and
(19) within (20) and (21).

The edges in the initial graph G;, are not relevant in the algorithm beyond the fact they
determine the degrees of the vertices in G;,. The message passing equations are written as if
there are no parallel edges in (V, E). While the fraction of edges that are parallel to other
edges will be small for large 7', they are permitted. The convention used in the message passing
algorithm is that 07 and @7 are to be considered as multisets, so that if a vertex appears with
some multiplicity in one of those sets, then the corresponding term in the summations will be

appearing the corresponding number of times.
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Remark 4. The fitness only case of the preferential attachment model with communities occurs

if either of the following two equivalent conditions hold:

1) [ has rank one

2) 0, =05 for all u.
Since the distribution of the preferential attachment model with communities does not change if
a row of (B is multiplied by a positive constant, for the fitness only case of the model it could
be assumed that the rows of [ are identical.

In the fitness only case of the model, both g and g map to null log likelihood vectors for
any choice of their arguments, so all messages generated in the message passing algorithm are
null log likelihood vectors. Consequently, if B has rank one then the message passing algorithm

converges in one iteration and it coincides with algorithm C.

VIII. MONTE CARLO SIMULATION RESULTS

The simulation results reported in this paper were computed for random graphs with m = 5,
pu = 1/r for u € [r], and two vertices in the initial graph (i.e. {, = 2) with degree 2m each.
The specific choice of initial edges is not relevant, but there could for example be 2m parallel
edges between the two initial vertices, or for example each of the two vertices could have m

self loops.

A. Single community

The performance of the message passing algorithm is described for the case of a single
community plus outliers, described in Example 1. Through numerical experimentation, we found
the following timing of message passing works well. We take the initial values of all i and 7
messages to be zero. For the timing of message passing we run two phases. In the first phase
the messages from children to parents (i.e. the ©°s) are repeatedly updated, while messages from
parents to children are held fixed. In the second phase the messages 7 are held fixed and the
messages from parents to children are repeatedly updated until the messages converge. In both
phases the messages converge in a finite number of iterations. After both phases are completed,
the (approximate) likelihood ratios are computed. Numerical results are shown in Figure 2. The
message passing algorithm significantly outperforms the other two algorithms. Another version
of algorithm with about the same performance is to use synchronous scheduling of all messages,

while applying the message balancing method described in Section VIII-B.
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Fig. 2. Semilog plot of error probability vs. vertex index for algorithms DT,C, and MP for single community example with

m =5, p=(0.5,0.5), and b = 4. The average over 1000 runs of MP is shown.

B. Symmetric multiple community graphs

To model the situation that each vertex is in one of » communities with equal probability,

with equal affinities within each community, let p, = 1/r for v € [r] and, for some b > 1,

5 b ifu=v
Y] 1 else
Then n* = p, 0, = ﬁ and, for u # v, 0, , = m Also, 07 = 0.5 for all v. Note

that \¢ is a null log likelihood vector for all 7. Up to equivalence of log likelihood vectors (i.e.

ignoring addition of constant multiples of the all one vector) g () = ¢*°(-) = g(-), where

g(v)(v) =1n | be" 2 e
[r]\{v}
In the special case r = 2, the messages can be taken to be scalars representing log likelihood

bet+1
et+b *

ratios, with ¢ taking the form g(p) = In

The functions ¢ and ¢”° map null log likelihood vectors to null log likelihood vectors,
so all messages equal to null log likelihood vectors is a fixed point of the message passing
equations (18) - (21). Community detection is apparently rather difficult for this model in case
m = 1 because G is a tree and for the symmetric two or more community graphs the local
neighborhood of a vertex does not indicate which community the vertex is in, at least under

the idealized assumption 7, = 1. We restrict attention to the case m > 2. In that case, we can
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apply the joint estimation algorithm given in Section VI to identify the labels of a small number
of vertices, which we call seeds to help initialize the message passing algorithm. Accordingly,
for the message passing algorithm, we assume that the labels of the seed vertices are correctly
revealed to the algorithm. Accordingly, the ;2 and v messages sent by a seed vertex 7 with /. = u

would all be the same, and be given by:
Voo (1) = 0 ifvo=u
—o0 else
All other messages are initially set to zero. At every iteration, all the messages (both ;. and v)
are updated synchronously.

One other technique, we call message balancing, was employed to get the algorithm to give
good performance. Intuitively, the idea is to balance the total amount of negativity about each
community within the messages. The following description of message balancing assumes the
messages are stored in their equivalent canonical form, described near the beginning of Section
VII. At the beginning of each iteration, the ;i messages are scaled by a positive vector f:
I, — folly- The scale vector f is chosen for the iteration so that the sum of all the scaled
11 messages is a null log likelihood vector (i.e. multiple of all ones vector) and the sum of
the messages is preserved. The ;i messages are similarly scaled. Empirically we found similar
performance if only the ;i messages were scaled, or if only the /i messages sent by seeds were
scaled.

We first present numerical results for an example with two communities for 7' = 10, 000, m =
5, and b = 4. We first describe the performance of the joint estimation algorithm for estimating the
labels of the first ten vertices, taken to be seed vertices, and then describe the performance of the
message passing algorithm assuming the seed vertices are correctly classified. The performance
of the joint estimation algorithm is shown in Figure 3. Two different methods of determining
which ones of vertices 2 through 10 are in the same community as vertex 1 were used. The first
method, called “partial data" in the figure, estimates the label of each vertex 7 with 2 < 7 < 10
by jointly estimating labels for the set of two vertices V' = {1, 7}, while the second method,
called “complete data" in the figure, is to jointly infer the labels of vertices in V' = {1,2,...,10}.
The value ¢ = 20 was used. It was observed that the last term in the likelihood expression is
sometimes negative (a result of the approximation 7, = 7)) for some values of ¢ and b. That was
only observed in the simulations for some values of ¢ with ¢ < 30. If for some ¢ a negative

likelihood was observed for some b, then the likelihood term for that ¢ was dropped for all
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vectors b. The performance gives good evidence that for n fixed, the labels of the first n vertices
can be inferred with error probability converging to zero as 7' — oo, for the symmetric two

community model.

| W Partial Data
EEE Complete Data

S ©°

o

© o
|

o

=3

&
|

Probability of error

Vertex number

Fig. 3. Error probabilities for determining whether vertices 1 and 7 are in the same community, for 2 < 7 < 10, assuming
symmetric two community model with parameters b = 4, m = 5, T' = 10, 000. Error probabilities are shown for (a) estimation
based on joint likelihoods given labels for two vertices at a time (i.e. vertices 1 and 7 with 2 < 7 < 10), and (b) for estimation
based on approximate maximum likelihood estimate of labels of vertices 1 through 10 simultaneously. Error probabilities are
estimated by fraction of errors in 2048 simulations of graph, for estimation based on children with time of arrival ¢ in the

interval [20, 10%].

Next Figure 4 shows the performance of the message passing algorithm run on 100 graphs
of size T' = 10,000, with parameters m = 5,b = 4 with two communities with ten seed
vertices. The message passing algorithm is run until the norm of the difference in the vector of
log-likelihoods is less than 1. The probability of error curve plotted for each random graph is
averaged over bins of width increasing with time. The ends of the bin intervals are chosen as a
geometric progression with factor 1.2. Although there were only ten seed vertices, the algorithm
nearly always correctly classified the first 100 vertices, and also most of the first 1000 vertices.

Performance of the message passing algorithm for four communities with 20 seed vertices
is shown in Figure 5. The result of running on 100 sample graphs is shown. The algorithm
had poor performance for one sample labeled graph, for which one of the communities was not
represented among the seeds. In other simulations we have seen the algorithm fail occasionally

even if all communities are represented among the seeds.

C. Three communities with symmetry between two of them

Consider three communities 1,2,3 such that each vertex is equally likely to be in any of the

three communities. Vertices in community 1 have a growth rate distinct from the growth rates
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Fig. 4. Semilog plot of error probability vs. vertex index for algorithm MP for symmetric two (r = 2) community graphs with
m =5 and b = 4. The algorithm was given labels of the first ten vertices and message balancing was used. Smoothed results

for 100 graphs are shown, with the average of them represented by the thicker blue curve.
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Fig. 5. Semilog plot of error probability vs. vertex index for algorithm MP for symmetric four (r = 4) community graphs with
m = 5 and b = 4. The performance for MP run on 100 independently generated graphs is shown. The algorithm was given
labels of the first twenty vertices and message balancing was used. Smoothed results for 100 graphs are shown, with the average

of them represented by the thicker blue curve.

of the other two communities, and the other two communities are statistically identical. We
again begin with the joint estimation algorithm, because identifying seed vertices can help the

message passing algorithm distinguish vertices in the two statistically identical communities. To
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display the performance of the joint estimation algorithm we need to adjust for the fact that
the assignment of labels 2 vs. 3 to the two symmetric communities is arbitrary. Thus, before
computing errors, we see whether swapping the 2’s and 3’s of the output label vector reduces
the number of errors. If yes, the 2’s and 3’s of the output vector are swapped. If there is a tie,
with probability 0.5, the 2’s and 3’s are all swapped. Then, for each seed vertex, we say a big
error is made if the true label is 1 and the estimate is not 1, or vice versa. We say a small error
is made if both the true label and estimated label are in {2,3} but they are unequal. The event
that the label of a seed vertex is in error is the disjoint union of a big error event and small
error event. The message passing algorithm was run using synchronous message timing with 15
seed vertices and message balancing.

Two different 5 matrices were tried, which we list with their corresponding vectors (6%)

21 1 411
=114 1 =12 4 1
11 4 2 1 4

(6*)" = (0.420,0.532,0.532]) (6*)'1 = (0.590,0.438,0.438)

For version I of the model, Figure 6 displays the performance of the joint estimation algorithm
and Figure 7 displays the performance of the message passing algorithm for 15 seed vertices.
Proposition 6 implies that as 7' — oo the probability of big errors converges to zero. The

probability of small errors is apparently small for this model and algorithm.

=2
o
=

2 406 Em small errors | |
= mmm big errors
0 .05 9 R
©
O .04 .
e
5 003
_
5 0.02
= 0.01

0.00

1 2 3 4 5
vertex

Fig. 6. Big errors and small errors for joint estimation of the labels of first five vertices for version I of the three communities

example, estimated using 1000 sample graphs. At least one label is incorrect in 0.139 fraction of graphs.

For version II of the model, Figure 8 displays the performance of the joint estimation algorithm

and Figure 9 displays the performance of the message passing algorithm for 15 seed vertices.

28



0.40

0.35}

0.30

0.25

0.20

015+

probability of error

0.10

0.05}

0.00 = s
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Fig. 7. Error probabilities by vertex for version I of the three communities example, for message passing with 15 seed vertices.

Smoothed results for 100 graphs are shown, with the average of them represented by the thicker blue curve.

There are many more small errors for version II of the model than for version I, which is ex-
plained by the fact that for version II, the two equal sized communities that can’t be distinguished
by growth rates alone (because 05 = 03) have much smaller degrees than vertices in the two
equal sized communities of version I. In fact, we conjecture that the probability of small errors
does not converge to zero for the joint estimation algorithm for version II. The reason is that
the mean number of common children of two vertices that have labels in {2, 3} is stochastically

bounded above as 7" — oo, because 6 + 6% < 1 for v,v" € {2,3}. See Remark 3.

>, 0.08]
0.07 |
0.06 |
0.05
0.04 |
0.03f
0.02 |
0.01f
0.00

I small errors
I big errors

error probabilit

vertex

Fig. 8. Big errors and small errors for joint estimation of the labels of first five vertices for version II of the three communities

example , estimated using 1000 sample graphs.
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Fig. 9. Error probabilities by vertex for version II of the three communities example, for message passing with 15 seed vertices.

IX. CONCLUSION

The message passing algorithm, together with seeding by the joint inference algorithm and
balancing method, appear to work well in Monte Carlo simulations. The use of seeds takes
advantage of the large degrees of a few vertices. The performance of the joint inference algorithm
is related to the large time degree evolution of one or more fixed vertices 7 such that 7'/ — o
as ' — oo, whereas the derivation of the message passing algorithm is based on the joint degree
evolution for one or more vertices 7 such that 7 — oo and 7'/7 remains bounded. As version
IT of the three community example points out, it may not always be possible to consistently
recover a fixed set of vertex labels as 7" — oo, while it is possible if the parameters 0 : v € [r]

are distinct.
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APPENDIX A

PROOF OF PROPOSITION 1

Simple algebra yields

Cip1 — Cp — 2mny,
2m(t + 1)

M+1 — M = (25)

The conditional distribution of C;1 — C; given C} and given ;1 = u can be represented

using a random variable with a multinomial distribution as

d. . Buvn v
Ciy1 — Cy = me, + multinom (m, (m TV E [7’])) ,

where e, is the unit length r vector with u* coordinate equal to one. Therefore,

/B’LLU v
E[CtJrl,v - Ct,v|Ct] = MpPy + Zu:mpu <Zvlﬁ—u7ff’7]m’ (26)
Combining with (25) yields that
1
E — = h(n:). 27
(741 — me|Ct] 20t 1 1) (1) (27)
This gives the representation
= h M, 28
Me+1 = 1N + 20+ 1) [7(ne) + M] (28)
where
M, = Cy1 — Cy — E[Cyy — CU|CY), (29)

Note that M is a bounded martingale difference sequence; IP {|A/;[|, < 4m} = 1 for all ¢. Also,
the Jacobian matrix of A is uniformly bounded over the domain of probability vectors so A is
Lipschitz continuous. In view of (28) and these properties, the theory of stochastic approximation
implies the possible limit points of 7, is the set of stable equilibrium points of the ode n = h(n)
[21, Chapter 2, Theorem 2] .

Since ), h,(n) = 0, the ode 1 = h(n) can be restricted to the space of probability vectors.
A Lyapunov function is used in [6] to show that the ode 7 = h(n) restricted to the space of

probability vectors has a unique globally stable equilibrium point, which we denote by 7n*.
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APPENDIX B

PROOF OF PROPOSITION 3

Remark 5. (i) We shall use extensively the connection between total variation distance and
coupling. Given two discrete probability distributions a and b on the same discrete set, the
total variation distance between a and b is defined by drv(a,b) = 3>, |a; — b|. If A and
B are random variables, not necessarily on the same probability space, we write dry (A, B)
to represent dry(L(A),L(B)), which is the total variation distance between the probability
distributions of A and B. Clearly drv is a distance metric; in particular it satisfies the triangle
inequality. An operational meaning is dry(a,b) = minP {A # B}, where the minimum is taken
over all pairs of jointly distributed random variables (A, B) such that A has distribution a and
B has distribution b. In other words, dry(a,b) is the minimum failure probability when one
attempts to couple a random variable with distribution a to a random variable with distribution
b.
(ii) The distance dry(a,b) can be expressed as

dry(a,b) = Y (b — a;)+ (30)
Expression (30) is especially useful if b; > a; for only a small set of indices i. For example, if
a and b are distributions on 7. such that b is a Bernoulli probability distribution and ay = by,

then dry(a,b) = by — a.

The proofs of (6) and (7) are similar. Since the proof of (6) depends slightly on (7), we prove
(7) first.
Fix t > 7 and y > m. The conditional distribution of the increment %H — §V/t of the Markov

process Y given }v/t = gy can be identified as follows:

th=y)

=L (Zln((tJrl)/T) — Za(t/r)

Zlnt = y)
=L (Zln(lﬁ) Zo = y)

i)

Hence, the following lemma is relevant, were e represents %

c(m—z
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Lemma 1. Let y be a positive integer and 9,¢ > 0. Then

dry (negbinom (y, (1+ €>_19> -, Ber(ﬁye))
2
<3 (Dy + 9*(2y + 1)y) . 31)
Proof. The shifted negative binomial distribution assigns more probability mass to O than the

Bernoulli distribution:
P{negbinom <y, (1+ e)_’g) —y = 0} > 1 — Yy,
or equivalently,
(1+6)7% =1 —dye,

as is readily proved by considering the derivative of each side with respect to e for ¢ > 0.
Therefore, by Remark 5(ii), the total variation distance to be bounded is given by the difference
in probability mass at 1 for the two distributions. In other words, if § denotes the variational

distance on the lefthand side of (31), then
§=vye—y(l+e) ™™ (1—(1+e)7").

Note that 6 = 0 for ¢ = 0. Dividing through by y and differentiating with respect to ¢ we find

dé
STy (1,

and in particular the derivative at € = 0 is also zero. Differentiating again yields:
d*§

= —Ouloy + )1+

+ 9y + D)Wy + 1) + 1)(1 + )2
(2 —Yy(Wy + 1)+ 9y + 1)y +1)+1)
=9+ 9*(2y + 1)
where to get inequality (a) we first multiply the lefthand side by (1 + €)?*2 (thus increasing
it) and then multiplying the second term on the lefthand side by (1 + ¢)?, thus increasing the

positive term further. The lemma follows by twice integrating with respect to e. 0
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Proof of (7). Let n be a positive integer with n > m. We appeal to Lemma 1 to show that

Y- and SV/[ﬂT] can be coupled (i.e. constructed on the same probability space) such that the

probability of coupling failure before both processes reach state n is bounded as follows:

T
P {}N/[T,T] AN F# iv/[T,T] A n} < Z

t=1

In +9%(2n + 1)n
2t2

_Un+ 9?(2n + 1)n

~

T—1

The construction is done sequentially in time, starting with the process Y, letting EV/T = m, and
enlarging the probability space Y is defined on in order to construct }V/; for 7+1 <t <7 on the
same probability space. For each time ¢ in the range 7 < ¢ < 7T — 1, once the random variable
E has been constructed, if the coupling has been successful so far (i.e. SN/[T,t] = lv/[m]) and if
}v/t < n —1, we appeal to Lemma 1 with y = }v/t to show that the coupling can be continued to
work at time ¢ + 1, with coupling error bounded above by Lemma 1.

For this same pair of processes, it follows that

S ~ In+9*(2n + 1 >
P T # Vo) <« 22D p Yo )

T—1

Since Yy = Zin(r/r)» the distribution of Yo is negbinom <m, (%)ﬂ>, and the set of such distribu-
tions is tight under the limiting regime of the proposition. In other words, lim,, . limsup,. _,, P {EV/T > n} =

0 under the assumption T'/7 is bounded. The statement (7) follows. L]

The proof of (6), given next, is based on the following lemma.

Lemma 2. Given a positive integer y, (6,.,) € RLY, p, and (6% : v

1) € R, let 0, =

€ [r
> Pubuw. Suppose t =1 and v € [r] such that 9”:7‘1—”;/ <1 forall u, 2¢ <1, and e,ny < 1. Then

: Oy 05y
dry (%: pubinom (m, -, ) , Ber (T))

Onaxy” 100 — O3y
< max + v ,
t2 t

where Opax = maxy, , 0y 0.
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Proof. By the triangle inequality,

0 o*
dry (Z pubinom (m, ;;;:ty) , Ber <”Ty>>
: 00y 0.y
< dry (; pubinom (m, p— ) , Ber < " )) (32)
+ dpy (Ber <9;y) Ber (%y)) (33)

To bound the term on line (32), we appeal to Remark 5(ii). Note that the probability masses at

0 for the two distributions inside dry are ordered as:
. eu,vy Hu,vy "
;pubmom (m, -, ) ) = Zulpu (1 i )
Ou0y Oy Ouy
= w|ll—— =1- =B
O I

So the term in (32) is the difference of the probability masses at 1:
91} . eu v
ty — Zu]pubmom <m, mty> 1

0,y Oy Ouoy ™
= _ 2 ]_ —_ 2
t ;p“ t < mt

0

The term on line (33) is equal to w. ]

Proof of (6). Let n be a positive integer with n > m. Since the entries of  are assumed to be
strictly positive, there is a finite value 0, such that 0,,,; < 0.« for all . Given € > 0 let F
be the event defined by F' = {|0,: — 0| > € for some ¢ > 7}. We appeal to Lemma 2 to show
that Y}, 7 and }N/[T,T] can be coupled (i.e. constructed on the same probability space) such that

the probability of coupling failure before both processes reach state n is bounded as follows:
P {Y[T,T] AN F# }N/hT] A n}

T-1
92 2 6) - 0*
<P{F}+ ) ( ma” [ ”|n)

2
t=7 ¢ t
92 2
<P(F)+an+enln
T—1 T—1
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For this same pair of processes, it follows that

P {}/’[T,T] # }N/I’[T,T]}

In + 9*(2n + 1)n
-1

<P{F}+ +P{}7T>n}
By Proposition 2 (almost sure convergence of 7, — n*) P(F) — 0 as 7 — 0. By (7), already
proved,

lim lim sup
n—0o0 7,7—00

P{Tr>n} B {Fa=n} | -0,

so, just as for )v/T, the set of distributions of ?T is tight under the limiting regime of the
proposition. In other words, lim,, o limsup, ., P {EN/T = n} = 0 under the assumption 7'/7

is bounded. The statement (6) follows. O

APPENDIX C

PROOF OF PROPOSITION 5

The proof is similar to the proof of Proposition 3. Before proving the proposition we introduce
some notation and present a lemma that is used to bound the coupling failure probability at a
given step in the construction. A subprobability vector for a set [d] = {1,...,d} is a d-tuple of
the form @ = (a; : @ € [d]) such that a; > 0 for i € [d] and },_,ya; < 1. Let r and J be positive
integers. Suppose p is a probability distribution on [J]. Suppose p,p’, and g for all u € [r]
are subprobability vectors for [.J]. |

« Let sel(p) represent the selector distribution on Z7 with probability mass p; on the vector

e;, and probability mass 1 — )] ; pj on the zero vector.

« Let sel"™(p) denote the distribution of the sum of m independent random vectors, each with

the distribution sel(p). In other words, sel*”(p) is the m-fold convolution of sel(p).

« Let >}, pysel™ (g ) denote the distribution that is a mixture of the distributions sel*™" (g )

as u varies with sélection probability distribution p. |

« Let ®/_,Ber(p;) denote the distribution of a random .J vector with independent coordinates,

with coordinate j having distribution Ber(p,).
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Lemma 3. Suppose p is a probability distribution on [J]. Suppose p,p’, and q, forallue [7]

are subprobability vectors for |J].
2

dryv (®7_,Ber(p;),sel(p)) < Z D (34)
JjelJ]
dry (sel(p), sel(p Z lp; — P (35)

*m 1
dry | sel (Z pug%_) , Z pusel (Egm_)
u€lr]

u

2

<D o | D) (36)

uelr] jelJ]
Proof. Inequality (35) follows easily from the definitions. The proofs of the other two inequalities

rely on Remark 5(ii). Note that the distribution sel(p) is supported on .J +1 points in Z’, namely,
Q,Bl, ., C. AISO,

®;]:18er(pj)

=[[a=-p)=1=> p;=sel(p)
jelJ] -

0 e[

Thus, by Remark 5(ii),

dry (®] 1Ber(p;), ), sel(p Z D; — H (1—pj)

2

<ij Z TS ij ;

jelJl  j'elI].i'#i jelJ]
which establishes (34). The proof of (36), given next, is similar. The probability masses the two

distributions on the lefthand side of (36) place at zero is ordered as follows:

m

Zpu 1_%ZQU,j 21_m2ﬁu2£]u,j’
ug(r] je[J]

uelr] jelJ]

Therefore, by Remark 5(ii),

Z pusel™™ (%Qu,-) , sel (Z ,Ouguy_)
uelr] u

=Yty |1 {1
J

e[J] uelr] m J'elJ)5#5

37



2 Z Pullus 2 Qo

]E
2

< Z Pu Z Qu,j )

uelr] jelJ]

which establishes (36). ]

Lemma 4. Suppose the conditions of Lemma 3 hold, and, in addition, ), puq.; = p; for all
j €[J]. Then

m 1
dTV ®;-]=1|3er(pj), Z pusel* <Egu,) (37)
ug(r]
2 2
< Dpi )+ D=0+ D) o | D) u
JelJ] JelJ] uglr] JjelJ]

Proof. The lefthand side of (37) is less than or equal to the sum of the lefthand sides of (34)-(36)
by the triangle inequality for dpy . The righthand side of (37) is the sum of the righthand sides
of (34)-(36). So the lemma follows from Lemma 3. [

Proof of Proposition 5. By the tightness of £(Y;|¢, = v;) for each j in the limit regime of
the proposition, implied by Proposition 3 and the known distribution of EV/T, it suffices to prove
the proposition with Y[ and Y each replaced by versions of the same processes that are
stopped when the sum of the vertex degrees (i,e. the coordinates) of the process first becomes
greater than or equal to a fixed, positive integer n. So let n be a fixed, positive integer. Let the
process Y be given, defined on some probability space. By enlarging the probability space,
we can construct Y[[12]r] on the same space, and the total variation distance is upper bounded

by the probability the processes are different from each other at some time before the sum of

coordinates is greater than n or before time 7'+ 1. The construction is done sequentially in time.

For each time ¢ in the range 1 <t < 7T — 1, once the random variable EN/t is constructed, we
appeal to Lemma 3 with ¢, ; in the lemma given by ——2—_ Since the entries of 3 are assumed

to be strictly positive, there is a finite value 6., such that Ouvt < Omax for all £. Given € > 0
let F' be the event defined by F' = {|0,: — 0| > ¢ for some t > 7}.
Fix ¢t with 77 <t <T. Let A, = {j : 7; < t}, so that A, is the set of vertices in [.J] that are

active at time ¢. For j ¢ A; the values of Y 71 and YZH are deterministic and they are equal.
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If t +1 = 7; for some j we call ¢t an exceptional time. Exceptional times must be handled
differently than other times because for such a time, conditioning on (/,, = v;), or, equivalently,
on ({;11 = v;), effects the distribution of (Ytj_';1 — Ytj/ : j/ € A;), and Lemma 4 doesn’t apply.
The effect of such exceptional times on coupling error can be bounded as follows. First, there
are less than or equal to J exceptional times. Secondly, for such an exceptional time ¢,

NOmax
t

P{Yt{;l — Y7 # 0 for some j' € Ayl = Uj} <

and also
nemax

t

P{ﬁﬁl—if # 0 for some j/EAt} <

so that if YI/) and Y11 are coupled up to time t, the coupling can be extended to to time
t + 1 with additional probability of coupling error at most ”QT‘”‘ The overall increase in the
probability of coupling failure due to the exceptional times is less than or equal to % — 0.
Next, suppose ¢ is not an exceptional time. Let y € Z7 such that > ;3/ < n and 3’ = 0 for
B0 0u; Y’ Ou,v; 1y

Jj ¢ Ay Lemma 4 with p; = D; = ;and qu; = —

t g t

for j € A, implies that the
error for attempting to couple }N/t[ﬂ to Yt[jﬁ given iw/t[‘]] = Yt[‘]] =yl is less than or equal to
N 2 ,
(ZJE[J] ﬁjyj) n Zje[J] [0 — Ou,; ey’
12 t

A 2
(Zje[J] eu,vj,ty]>
+ Z Pu 2

Hence, the probability of coupling failure, before the sum of degrees is n and before time 7'+ 1,

is less than or equal to

T 202 2 2 2
]P)(F) + emaan + Z (J emaxn + E + emaxn ) ’

70 = 12 t t2
which can be made arbitrarily small as in the proof of Proposition 3. U
APPENDIX D

APPENDIX: ALTERNATIVE PROOF OF PROPOSITION 2

This section gives an alternative proof of Proposition 2, but only for convergence in probability,
based on Corollary 1. The same method can be used to prove Proposition 8(b), concerning the
convergence in probability of the fraction of label errors made by two recovery algorithms. We

use the notation given just before the statement of Proposition 2.
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Since the labels of the vertices are independent with distribution p, by the law of large numbers,
H*(T
lim L = Dy (a.s. and in probability) .
T—0 T

Thus, it suffices to show that for fixed n > m,

NH(T)
1 _n\ /
11m T

T—o0

= pypn(0i,m)  (in probability).

By the Chebychev inequality, for that it suffices to show the following two conditions:
E[N.(T)] _

Jim =2, (07, m) (38)
. N(T)\ _

Write NY(T) = 31T, x-, where x, = 1 if £, = v and the degree of vertex 7 at time 7T is n,
and x, = 0 otherwise. Then |E [NY(T)] — Zf:toﬂ]E [x-]| < t,. By Corollary 1 with J = 1,
t=T,and v € [r],

lim sup
00 7, T:v>79 and T>7g

’]E [x+] — pomn (I0(T'/7), 0%, m) ’ =0. (40)

Therefore, by the bounded convergence theorem, (38) holds with

pu(0,m) = %f o (In(T/t), 0, m)dt

0

o (n—1Y "
(:) (:1 - 1) J;) um@(l . u&)nfmdu
1/n—1\ (! .
(__) 5 (TL 1> J ,UmflJrg(l _ ,U)nfmdv
m— 0

@1l/n—-1 1
= — B - n— 1
9(m—1> <m+9,n m + )

@ T (% + m) ['(n)
) (n+ 5 +1) @D

where (a) follows by the definition of the negative binomial distribution and change of variable

u = t/T, (b) follows by the change of variable v = u?, and (c) and (d) follow from standard

formulas for the beta function, B.

It remains to verify (39). First note that

var(NY(T Z Z CoV(Xrs Xry)- (42)

T1=173=1
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Note that

E [XTlXT2] = ng {Y% = nvng =n 67’1 = 67'2 = U} )

and by Corollary 1 with J =2, ¢t =T, and v; = v = v,

lim sup

N
70 OOﬁ,Tg,T:TgST1<TQ and T>19

T T
E [Xr, Xra] — P27 (1n—,9:,m> T (ln—,é’;",m) ‘ — 0.
T2

1

So, in view of (40) and the fact Cov(xr,, Xr) = E [Xr, Xra] — E [Xr | E [Xr] 5

lim sup |CoV(Xrys Xry)| = 0.

TP gy iy o< <m2 and T>7o
Using this to bound the terms on the righthand side of (42) with 71,7 € [79,7] and 71 # 7o,

and bounding the other terms by one, yields:
var(NJ(T)) < 2Tty + T+

T?( sup |cOv<xmxT2>|) _ o(T?).

71,72, T mo<T1 <T2 <T
if )79 — oo with 75/T — 0. This implies (39), completing the alternative proof of the

Proposition 2 (for convergence in probability).

Remark 6. In essence, the calculation in (41) demonstrates that the limiting empirical distri-
bution of degree for vertices of a given label v at a large time T, is the marginal distribution
for the following joint distribution: the vertex time of arrival is uniform over [0,T] and, given

o . .. P . . 0%
the arrival is at time 7, the conditional distribution of degree is negbinom (m, (%) ”) :

APPENDIX E

CONSISTENT ESTIMATION OF THE GROWTH RATE PARAMETER FOR A GIVEN VERTEX

Proposition 6 is proved in this section and evidence for Conjecture 1 is given. First a different
method for estimating the rate parameter of Y is established. Consider the Barabasi-Albert
model with communities. Fix 7, > 1 and 7 with 7 > max{7,,t,} (recall that ¢, is the number
of vertices in the initial graph). Let Y; denote the degree of 7, in GG; for all ¢ > 7. To avoid
triviality associated with an isolated vertex in G, suppose Y, > 1. We also suppose Y, < mr,

so by induction on ¢, % < m for all £ > 7. Let ¥ = 6 where v is the label of 7,.
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Proposition 10. (Consistent estimation of rate parameter) The estimator V1 defined by

~ Yr —Y;
T = T-1y,
t=7 ¢

(43)
is consistent. In other words, limr_,, U7 = ¢ a.s.

To prove the proposition we first examine a sequential version of ¥)r. Given a positive constant

M with M > m, let T, denote the stopping time defined by

Ty
TMzmin{T>T:27t>M}
t=7
Let 3M be 5T for T = T, or, in other words,
;\9\ o YTM — Y;'
M = T[w—l ﬁ

t=7 t

Lemma 5. Under the idealized assumption n, = n*, for any € > (),

P { moM

Z €S 5 g
<o
Proof. Notice that the denominator of 9y is in the interval [M — m, M] with probability one.

Also,
T-1 T-1
Y, JY,
YT—YT—ﬁ<§ f) = (YtH—Yt—Tt),

Doy — 0

t=1 t=1
so that (YT -Y, -9 ZtT:_Tl % T = 7) is a martingale. Since 77, is a bounded optional sampling

time, the martingale optional sampling theorem can be applied to yield

TA{ —1

E[Yr, — Y, =E [19 > %] e [0(M —m), 9M].

Next we bound the second moments. It is easy to show that a random variable U with values

in [0,m] and mean p satisfies var(U) < m?£ (1—£) < mp. For any t > 7, Y1 — Y,
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takes values in [0,m] and, given the past J, it has conditional mean “Xt. It follows that

t
E| (Vi1 — Y, — 22)°

}}] < @. Therefore, again using the optional sampling theorem,

Tnly 2
t=T1

Th—1 2
M ’19Y
—E ; E (YtH—Yt—Tt) ft”
T]u—]. Y
<m19E[2 —t] <miM
t=1 ¢

Thus, for any € > 0, the Chebychev inequality yields

TM—IY
t
P{YTM—YT—ﬁ(Z 7)

> E(M—m)}

t=1
myM
S S
e2(M — m)?
which implies the conclusion of the proposition. [
Proof of Proposition 10. Since Y; > 1 for all t > T, Z?:_Tl % — o0 a.s. as 1" — oo. Therefore,

for 7, fixed (the vertex for which we want to estimate the rate parameter), whether ¥ is consistent
does not depend on the choice of 7. For any given € > 0, by taking 7 very large, we can thus
ensure |1, — n*| < € for all ¢ > 7 with probability at least 1 — e. Therefore, it suffices to prove
the proposition under the added assumption n; = n* for all ¢ > 7. It follows that it suffices to
prove that 9 a 18 a consistent family of estimators of 9J.

So it remains to prove consistency of the family of estimators @M as M — oo. For that
purpose, it suffices to show that for arbitrarily small € > 0, along the sequence of M values
M, = (1 + ¢€)*, the estimation error is greater than or equal to ¢ for only finitely many values of
k, with probability one. That follows from Lemma 5, because the error probability in Lemma 5 is

O(1/M) and },"_, 1/M,, < oo, so the Borel Cantelli lemma implies the desired conclusion. [

Proposition 6 will follows from Proposition 10 and the following lemmas, which are essentially

Gronwall type inequalities.

Lemma 6. Suppose (f(s) : s € Ry) is a positive nondecreasing function such that for some
¥ > 0,
f(5) = f(0) _

et ng(u)du a
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Then

. Inf(S)
dm =g =

Proof. Given any e > 0, there exits S, such that
£(S) = F(0) + (0 — o) LS f(u)du for S > S..
Since f(u) = f(0) for all u,
f(S)=C+(0—¢ f( Jdu for S = S,
where C' = f(0)(1 + (6 — €)S,). Thus, for any s > 0, setting S = s + S, yields
(s +5.) >C’+(9—6)J f(s+ S)du for s> 0.

By induction on £ it follows that f(s+.S.) = C’Z] 0 jf)s)] so that f(s+S.) = Ce*("=) for all
In f(.5)
5

In f(S) <9

s = 0. Therefore, liminfg_, > 1. It can be proved similarly that limsupg_,,, —g— < ¥,

establishing the lemma. [

Lemma 7. Let (y, : t € {7,7+ 1,...}) be a sequence of positive numbers such that y;,1 — y; €
[0,m] for all t = T, and such that

1' yT - yT _
1m

T-1 -
T—o0o Yt
Zt='r t

Then
lim YT _
T—oo In(T'/7)
Proof. We shall apply the previous lemma by switching to a continuous parameter and then
applying a change of time. Note that 0 < StH lds = 1 —In(1+ }) < 5. Hence
Su (T, 1Nw (N u
OiZ?‘L t 52—2: (2?>

The hypotheses thus imply

Yyr — Yr _
T (104 gy

Letting f(s) = y|res|, the change of variable u = In(t/7) yields
yr —yr _ f(n(T/7)) — f(0) _ f(n(T/7)) — f(0)

STT @dt o SE f(ln(tt/T))dt o Séﬂ(T/T) f(u)du
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so the hypotheses of Lemma 6 hold. Lemma 6 yields

In
lim D Yres|
S—o0

which by the change of variable S = In(7'/7), is equivalent to the conclusion of the lemma. [J
Proof of Proposition 10. Proposition 10 follows directly from Proposition 10 and Lemma 7. [

Evidence for Conjecture 1 The Kesten-Stigum theorem [22] in the case of single-type branch-

—¥s — IV a.s. for some random variable W such that

ing processes implies that limg . Zse
P{W >0} =1 and E [W] = Z; = m. (This follows from the fact that Z restricted to multiples
of any small positive constant » > 0 is a discrete-time single-type Galton Watson branching
process with number of offspring per individual per time period, represented by a random
variable Ly, such that L, has the negbinom(m,e”") distribution. Note that P{L;, > 1} = 1
and E[L,In L] < o0.) Since Ze s also converges in distribution to the Gamma distribution

with parameters m and 9, it follows that W has such distribution. It follows that (11) holds if

the process Y is replaced by the process Y.

APPENDIX F

PROOF OF PROPOSITION 7

The process Z with parameters A\, m represents the total population of a branching process
starting with m root individuals at time O, such that each individual in the population spawns
new individuals at rate A\. And A, represents the sum of the lifetimes, truncated at time s, of all
the individuals in the population. The joint distribution of (Z, A) with parameters \,m is the
same as the distribution of the sum of m independent versions of (Z, A) with parameters A, 1,
Hence, it suffices to prove the lemma for m = 1.

So for the remainder of this proof suppose m = 1; there is a single root individual. Suppose

there are n(s) children of the root individual, produced at times Ry, ..., R,). Then
n(s)
Z,=1+) ZL 4 (44)
=1
n(s)
Ag=s+ Y AL, (45)

=1
where Z¢_ r, denotes the total subpopulation of the [ child of the root, s — R; time units after

the birth of the [*" child, and Aﬁ_ R is the associated sum of lifetimes of that subpopulation,
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truncated s — R; time units after the birth of the [** child (i.e. truncated at time s). The processes
(Z', A") are independent and have the same distribution as (Z, A). The variables Ry, ..., Ry

are the points of a Poisson process of rate \. Therefore,

n(s)
eUZSJrUAS = eu+vs H eXp(U/ZS,RZ + UAS*RZ>7
=1

which after taking expectations yields

n(s)
ai(u,v,8) = "™ Ey, [ exp(uZ’_ Rt vAL Rz)] )

=1
Since n(s) is a Poisson(\) random variable, and, given n(s), Ry,..., R, are distributed
uniformly on [0, s], the above expectation can be simplified by first conditioning on n(s), and

then summing over all possible values of n(s) (tower property).

77ZJ)\71 (U, v, S)

D g )\ k
_ qust S ]EAl 1_[ uZ!(s—R;)+vAl(s—R;)
© e s )\
= 3 (jmm ol 6)

In the above step, the expectation of the product is the same as the product of the expectations,
because the variables (Z!(s — R;), A'(s — R;)),l = 1,...,k are independent of each other.
Moreover, the expectation of each of the k terms is identical. Denoting F'(s) = { ¢x1(u, v, 7)dr,

we can write (46) as
F(S) _ €u+vse—)\seAF(s)

d
d_ (ef)\F(S)) _ _Ae(vf)\)SJru; F(O> _ O
S
ef)\F(s) =1 — ¥ JS e('uf)\)s/dsl
0

/\eu V—A)S
:1+v—)\(1_€( ’\))
F(s) = —ilog (1 + UAE X (1- e(”_’\)s)>

(47)

Finally, using vx 1 (u, v, s) = F(s) yields (15) for m = 1, and the proof is complete.
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APPENDIX G

PROOF OF PROPOSITION 9

Proof. The basic difficulty to be overcome is that the limit result ; — n* in Proposition 1 doesn’t
approximately determine the distribution of the degree evolution for vertex 7, if 7, — oo0. To
produce an estimator for ¢,. given Y[‘;,J,T], we produce a virtual degree growth process, denoted
by }vf[‘;’T], which becomes arbitrarily close to }N/[T,T] in total variation distance as 7" — oo under
any of the r hypotheses about /.., where 7 — oo with 7/T — a for some fixed 6 > 0.

Given an arbitrary € > 0, select § € (0, 1) so small that f5(p, 6% m,In(1/5)) < e. Suppose T
depends on 7" such that 7/T" — ¢ as T' — 0. By Proposition 8, /. can be recovered with error
probability less than e from 37[7711] by using Algorithm C.

The virtual process }?[27T] has initial value SNfTO = m. Thus, although 7, arrives before 7, the
virtual process does not begin evolution until after time 7. The construction of yo proceeds by
induction and uses a random thinning of the process Y°, the actual degree growth process for

7°. The thinning probability is the ratio of degrees. Specifically, for ¢ with 7 <t < T — 1, let

0 70|\ 0 o . o o }70
LY =YYy, Y7, 2) = binom <Yt+1 —Y ,Y—to> :
t
The virtual process }Vf[‘;’T] satisfies the same properties as Y[, 7 (based on the degree evolution

of vertex 7) used in the proof of Proposition 5, so for v € [r],

dry (ol = v), By 6 = v) = 0.

Hence, applying Algorithm C, designed for recovery of /., to the virtual process }vf[ﬁT] recovers

(.. with average error probability less than e for 7" sufficiently large. [

APPENDIX H

DERIVATION OF THE MESSAGE PASSING EQUATIONS

The initial conditions given by (23) are chosen to make the initial likelihood vector the same
as produced by Algorithm C (observation of children). Equations (18) - (22) are derived in what
follows in the special case m = 1, with the initial graph G, consisting of a single vertex (i.e.
t, = 1) with a self-loop. In that case, the graph (V, F) is a tree (ignoring the self-loop incident
to the first vertex) so the message passing algorithm is conceptually simpler. The equations (18)

- (22) for any finite m > 1 are simply taken to have the same form as for m = 1 on the grounds
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that loopy message passing is obtained by using the same equations as for message passing
without loops.

Our first assumption in deriving the message passing algorithm is that the approximation \¢
for the log likelihood vector based on observation of children (derived in Section III) is exact,

or in other words:
InP{or = {t1,... . tu}[lr = v} = A\ (v), (48)

where A¢(v) is given by (17). The second assumption is regarding how the distribution of 07

changes, given the label of another vertex. Namely,
P{oT = {t1,...,tu}|lr = v, 0 = u} (49)

P{oT = {t1,...,tu}|lr = v} Gi,v/&j if 7 eor
P{or = {t1,. ..t} = v} it 7/ ¢ or
where the expression for the first case follows from (8).

The third assumption is regarding the joint distribution of degree-growth processes. Observing
the degree-growth process of one vertex 7 changes the distribution of the degree growth process
of another vertex 7’ in one of two possible ways. Firstly, the children of the first vertex cannot
be the children of the other (if m = 1). However, Proposition 5 shows this effect is insignificant.
Secondly, observing the degree-growth process gives us some information about the label of
each vertex. If one vertex appears as a child of the other (say 7’ € 07), the probability of the
given observation is affected; else it is not. In the asymptotic limit, the degree-growth processes
of a finite number of vertices are indeed independent, by Proposition 5.

The following additional notation is used. Let D* denote the event of observing the subtree
of (V, E) rooted at 7, and of depth k. For example, D! = {07 = {t1,...,t,}}, D? = {01 =
{ti,... . ta}, 0ty = {ti,...,t} },...,0t, = {t},...,t7 }}. Further, let D, denote the event of
observing the subtree of (V, E') rooted at 7. We call this subtree as the descendants of 7. The

event of observing the entire graph is Dy, because the initial graph has a single vertex. Therefore:
A, (v) =InP{Er = E|{;, = v} = nP{Dy|{; = v} (50)

For a vertex 7 with 7 > 2, the event D;\D, includes the information of which vertex is the
parent of vertex 7. Also, for vertices 7 and 7y with 7y < 7, let 7 — 7 denote the event there is

an edge from 7 to 7.
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At this point, we make the assumption:
P{Di|t; = v} =P{D.|l; = v}P{D\D,|l, = v} VT (51)

In other words, D, and D;\D, are assumed to be conditionally independent given ¢, = v. The
rationale for that also comes from ignoring the implications of the fact that the descendants of
7 must be disjoint from the descendants of vertices close to 7 in G in the direction through
the parent of 7.

Let 7 and 7y be vertices such that 7 is a child of 7. We define the messages as follows, and

then derive the message passing equations as fixed points.

Vrosro(u) = InP{D-[(; = u} (52)
(o)~ I (P{Dl\DTMTQEUO,ETO — v} 9;) 53)
Vrory (V) = InP{D;|l,, = v,7 — T} (54)
firg—r (1) £ P {D\D; |0, = u} (55)

Remark 7. In the definition (53) of (i, it is assumed that O represents some choice of label,

but the definition for all choices of 0 are equivalent. In other words, because of (49),

P{D\D.|l; =u,l;,, =v}0F
Mm—ﬂ'(v) :ln( { 1\ ‘ G* } )

(56)
for any u € [r].

We show that the message passing equations (18) - (22) follow from our independence
assumptions and the definitions of the messages given in (52) - (55).
Derivation of (18): Start with the fact D, = D! n (ns.D;), and, given ¢, = v and D!,

The events D,,t € 0t are conditionally independent. Hence,

P{D,|t, = v}
= P{D!|t, = v} [ [P{D|¢; = v, D}}
teotT
= P{DHt, = v} [ [P{Di|t; = v, t > 7}.
teor
So by (48) and the definition of 7;_,,
P {D-|t; = v} = A(v) + > D (v). (57)

teor

Since v, (v) = InP{D,|¢; = v} this establishes (18) for m = 1.
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Derivation of (19): Assume 7y > t, + 1; the proof in case 7y < t, is similar. Then, also

accounting for the assumption m = 1, (19) becomes

:U’TOHT = >\7C';) + 2 atHTO + /j71H707 (58)
teoTo\{7}

where 7; is the parent of 7y. Observe that
D\D7 = (D1\D7,) 0 (Dr\Dy7)
= (Di\D,) n D} (Nieon iy Dt)

Therefore,

P{D\D, |, = 0,0y, = v}

=P{D\D,|l; = 0,0, = v}P{D \D;|{; = 0,0, = v}

=P{D\D,,|l;, = v}P{D, \D.|l; =0,¢,, = v}

= P{D,\D,|lr, = v} P{D} |t; = 0,0, = v}

[ P{Dt: =0,6r, = v,t — 7}
tedro\{7}

= P{D,\Dr|ls, = v} P{D] |0; = 0,0, = v}
[ P{Ditr, =v,t — 7}
tedro\{7}

Multiplying both sides of the above by GGT’?, using (49), and taking logarithms yields
0,v

0*
pe0) = 0 2 i 0+ (AG 0+ 10 22
0,v

+ Z Dt—»T (U)7
tedro\{T}

which is equivalent to (58), so that (19) is proved for m = 1.
Derivation of (20): Note that

P {DTMTO =v,T7 = 7'0}

= Z P{D;, {; = ull;, = v,T — T}

u€(r]

= > Pt = ulty, =v,7 > 7} P{D,|l; = u}
u€(r]

ueuv Vr—sro (U
= 3 Htten,

ue(r] v
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where for the second inequality we used

P{D,, l; = ull,, =v,7 > 170} = P{D,|¢; = u}. Taking the logarithm of each side yields (20).

(1]
(2]

(3]
(4]

(3]

(6]

(71

(8]
(91

(10]

(11]

[12]

Derivation of (21): The derivation is given by:
firg—r(u) = InP{D\D|C; = u}

=In Y P{D\D;,{s, = v|t; = u}

ve(r]
=In Z P{D\D,|t; = u,l,, = v}P{l, =v|l; = u}
ve(r]
P{D\D:|l; =u,l;, =
=In ) 0, 1O D| fr iy =0},
ve(r] w,v
P{D\D,|l; = 0,0, =
i Y g PADNDA =06 = 0}
velr] 0w

= () ().

Derivation of (22): Equation (22) (for m = 1) follows from (50), (51), (57), and (55).
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