Joint Placement and Allocation of Virtual Network
Functions with Budget and Capacity Constraints

Gamal Sallam and Bo Ji
Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
Email: {tug43066, boji} @temple.edu

Abstract—With the advent of Network Function Virtualization
(NFV), network services that traditionally run on proprietary
dedicated hardware can now be realized using Virtual Network
Functions (VNFs) that are hosted on general-purpose commodity
hardware. This new network paradigm offers a great flexibility
to Internet service providers (ISPs) for efficiently operating their
networks (collecting network statistics, enforcing management
policies, etc.). However, introducing NFV requires an investment
to deploy VNFs at certain network nodes (called VNF-nodes),
which has to account for practical constraints such as the
deployment budget and the VNF-node capacity. To that end,
it is important to design a joint VNF-nodes placement and
capacity allocation algorithm that can maximize the total amount
of network flows that are fully processed by the VNF-nodes
while respecting such practical constraints. In contrast to most
prior work that often neglects either the budget constraint or
the capacity constraint, we explicitly consider both of them. We
prove that accounting for these constraints introduces several
new challenges. Specifically, we prove that the studied problem
is not only NP-hard but also non-submodular. To address these
challenges, we introduce a novel relaxation method such that the
objective function of the relaxed placement subproblem becomes
submodular. Leveraging this useful submodular property, we
propose two algorithms that achieve an approximation ratio
of 3(1 —1/e) and (1 — 1/e) for the original non-relaxed
problem, respectively. Finally, we corroborate the effectiveness of
the proposed algorithms through extensive evaluations using both
trace-driven simulations and simulations based on synthesized
network settings.

I. INTRODUCTION

The advent of Network Function Virtualization (NFV) has
made it easier for Internet service providers (ISPs) to employ
various types of functionalities in their networks. NFV requires
the replacement of network services that traditionally run on
proprietary dedicated hardware with software modules, called
Virtual Network Functions (VNFs), which run on general-
purpose commodity hardware [1]. A wide variety of network
functions (firewalls, intrusion detection systems, WAN opti-
mizers, etc.) can be applied to flows passing through network
nodes that host VNFs (called VNF-nodes). A flow must be
fully processed at one or multiple VNF-nodes so that the
potential benefits introduced by NFV can be harnessed [2].
The new network paradigm enabled by NFV not only offers
a great flexibility of introducing new network functions, but
it also reduces capital and operational expenditure. Therefore,
major ISPs have already started the process of transforming
their technologies and operations to support NFV [3].

This work was supported in part by the NSF under Grant CNS-1651947.

However, such moves often take place in multiple stages
due to the budget limit; in each stage, only a subset of nodes
can be selected for deploying/placing VNFs. Moreover, VNF
instances typically have a limited capacity, which is shared for
processing multiple passing flows. Therefore, given a deploy-
ment budget and capacity limit, it is of critical importance to
choose a best subset of nodes to become VNF-nodes and to
determine the optimal capacity allocation so as to maximize
the amount of network traffic passing through them.

In contrast to most prior work that often neglects either the
budget constraint (e.g., [4], [5]) or the capacity constraint (e.g.,
[2]), we explicitly consider both constraints and formulate a
Jjoint problem of VNF-nodes placement and capacity allocation
(VPCA). The VPCA problem has two main components: VNF-
nodes placement and VNF-nodes capacity allocation, which
are tightly coupled with each other. That is, deciding where
to place the VNF-nodes depends on how the capacity of the
VNF-nodes will be allocated; determining an optimal capacity
allocation apparently depends on where the VNF-nodes are
placed. The challenges posed by this problem are two folds.
First, the placement and capacity allocation subproblems
are both NP-hard. Second, even if we assume that there is
an oracle that can optimally solve the capacity allocation
subproblem, the placement subproblem is non-submodular.
This is in stark contrast to the previously studied problem
without the capacity constraint [2], which has been shown to
be submodular and can be approximately solved using efficient
greedy algorithms.

To that end, we introduce a novel relaxation method that
allows us to design efficient algorithms with constant approx-
imation ratios for the studied VPCA problem. We summarize
our key contributions as follows.

o First, we formulate the VPCA problem with budget and
capacity constraints as an Integer Linear Program (ILP).
Then, we provide an in-depth discussion about the new chal-
lenges introduced by the budget and capacity constraints.
Specifically, we show that the placement and capacity
allocation subproblems are both NP-hard. Further, we show
that the objective function of the placement subproblem is
not submodular.

o To address these challenges, we relax the requirement of
fully processed flows and allow partially processed flows to
be counted. This simple relaxation enables us to prove that
the relaxed placement subproblem is submodular based on

523

a novel network flow reformulation of the relaxed capacity
allocation subproblem. Leveraging this useful submodular
property, we design two efficient algorithms that achieve an
approximation ratio of 1(1 —1/e) and (1 — 1/¢) for the
original (non-relaxed) VPCA problem, respectively. To the
best of our knowledge, this is the first work that exploits this
type of relaxation method to solve a non-submodular opti-
mization problem with provable performance guarantees.

o Finally, we evaluate the performance of the proposed al-
gorithms using both trace-driven simulations and simula-
tions based on synthesized network settings. The simulation
results show that the proposed algorithms perform very
closely to the optimal solution obtained from an ILP solver
and better than another algorithm [6].

The rest of the paper is organized as follows. First, we
position our work compared to related work in Section IL
Next, we describe the system model and problem formulation
in Section III and discuss the challenges of the VPCA problem
in Section IV. Then, we introduce the VPCA relaxation and
reformulation in Section V and the proposed algorithms in
Section VI. Finally, we present the numerical results in Section
VII and conclude the paper in Section VIII.

Due to space limitations, most of the proofs are omitted and
provided in our online technical report [7].

II. RELATED WORK

There has been a large body of work that studies the
placement problem in different contexts such as NFV, SDN,
and edge cloud computing. In NFV, a placement is usually
considered at a scale of VNF instances, i.e., where and how
many instances of each network function should be placed and
allocated [4], [8], [9], [10]. Different objectives are considered
in each of them. The problem of how to meet the demand
from all of the flows with a minimum cost (e.g., in terms of
the number of instantiated instances) is considered in [4], [11].
An extension of these work considers the setting where each
flow must traverse a chain of network functions instead of just
one function [12]. A similar problem is also considered in [8§],
[13] but for an online setting where flows arrive and leave in an
online fashion. In [10], they consider a joint problem of VNF
placement and routing, aiming to minimize the total consumed
resources, while a similar problem is considered in [9], with a
different objective of ensuring network stability. Also, in [14],
the authors consider the placement of a minimum number of
nodes to achieve the original maximum flow under a given
service function chaining constraint.

In [15], the authors consider the problem of placement and
scheduling in the edge clouds. They show that the problem is
not submodular in general. Then, they develop a heuristic for
the general problem and also identify a special case where the
problem becomes submodular, which can be solved efficiently.
In [2], the authors consider the selection of a set of nodes to
upgrade to SDN. By assuming that the SDN nodes have an
infinite capacity, they show that the problem is submodular.
Similarly, the work in [5] considers the placement of middle-
boxes to keep the shortest paths between all communicating

pairs under a certain threshold. They show that the problem
without a budget constraint is submodular. Different from
these studies, we consider both limited VNF-node processing
capacity and limited budget constraints. It is more realistic
to account for both constraints, which actually brings new
challenges that will be discussed in Section IV.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network graph G = (V, £), where V is the set
of nodes, with V' = |V|, and & is the set of edges connecting
nodes in G. We have a set of flows F, with F' = |F|. We
use Ay to denote the traffic rate of flow f € F. The traffic of
flow f will be sent along a predetermined path (e.g., a shortest
path), and the set of nodes along this path is denoted by V.
We use F, to denote the set of all flows whose path has one or
more nodes in a given setf, i.e., Fyy = {f € F | ViNU # 0}.
When a node is able to support some VNFs, we call it a VNF-
node. Since ISPs have a limited budget to deploy VNFs in their
networks, they can only choose a subset of nodes &Y C V to
become VNF-nodes. The traffic rate Ay of each flow can be
split and can be processed at multiple VNF-nodes. We use A%
to denote the portion of flow f that is assigned to VNF-node
v and use A € RF*V to denote the assignment matrix.

As we mentioned earlier, the benefits of processed traffic can
be harnessed from fully processed flows, i.e., flows that have
all of their traffic processed at VNF-nodes. Hence, when a flow
traverses VNF-nodes and there is a sufficient capacity on these
VNF-nodes to process all of its rate, i.e., Zvevmu /\;i > Ay,
then the flow is counted as a processed flow. Therefore, the
total processed traffic can be expressed as follows:

VAUZBYEDY M o, A2 A b ey
feF

where 1y is the indicator function. Note that each VNF-node
v has a limited processing capacity, denoted by c,. Hence, the
total traffic rate assigned to a node should satisfy the following
capacity constraint:

v <
Zifef)\f <ec,, YoeU,)
$ =0, VfeFand Vo ¢ U.

We assume that the largest traffic rate of any flow is no larger
than the smallest processing capacity of any node'. Also, we
consider a limited budget, denoted by B, and require that
the total cost of introducing VNF-nodes do not exceed B.
We use b, to denote the cost of making node v a VNF-
node. Hence, the total cost of VNF-nodes should satisfy the
following budget constraint:

Z b, < B. 3)

vel
The above budget constraint limits the number of nodes
that can become VNF-nodes, and we may only have a subset

'While some studies (e.g., [4]) consider the placement of VNF instances
and allow the flow rate to be larger than the capacity of a VNF instance, we
consider the problem of placing VNF-nodes, each of which can host multiple
VNF instances. Therefore, it is reasonable to assume that the capacity of such
a VNF-node is larger than the rate of any flow.

524

of flows that traverse some VNF-nodes. Accounting for the
above deployment budget and VNF capacity constraints, we
consider a joint problem of VNF-nodes placement and ca-
pacity allocation (VPCA). The objective is to choose a best
subset of nodes to become VNF-nodes and optimally allocate
their capacities so as to maximize the total amount of fully
processed traffic. We provide the mathematical formulation of
the VPCA problem in the following:
maximize Jy(U,)
UCV,A (P].)
subject to (2),(3).
IV. CHALLENGES OF VPCA

Here, we will identify the unique challenges of the VPCA
problem formulated in (P1). We first decompose the VPCA
problem into two subproblems: 1) placement: how to select a
subset of nodes to become VNF-nodes and 2) allocation: for
a given set of VNF-nodes, how to divide their capacity for
processing a subset of flows. Then, we prove that both sub-
problems are NP-hard and that the placement subproblem is
non-submodular. This is very different from similar problems
neglecting the capacity constraint (2) [2], which have been
shown to be submodular and can be approximately solved.

A. NP-hardness

First, we present the formulations of the two subproblems.
We start with the allocation subproblem because it will be used
in the placement subproblem. For a given set of VNF-nodes
U C VY, let J¥(X) denote the total amount of fully processed
traffic under flow assignment A. Note that J5 () has the same
expression as that of Jy (U, A) in Eq. (1). The superscript U
of J& () is to indicate that it is associated with a given set of
VNF-nodes U/. Then, the capacity allocation subproblem for a
given set of VNF-nodes U/ can be formulated as

JH(N).

maximize
A:(2) is satisfied

(P2)

Let J3(U) £ maxy.) is saisied J5 (A) denote the optimal value
of problem (P2) for a given set of VNF-nodes /. Then, the
placement subproblem can be formulated as
maximize J5(U)
uey (P3)
subject to (3).

Note that in order to solve problem (P3), we need to solve
problem (P2) to find the optimal A for a given set of VNF-

nodes Y. In the following theorem, we will show that both
subproblems (P2) and (P3) are NP-hard.

Theorem 1. The capacity allocation subproblem (P2) and the
placement subproblem (P3) are both NP-hard.

B. Non-submodularity

Note that the objective function J5(U/) of the placement sub-
problem (P3) is a set function. At first glance, problem (P3)
looks like a submodular maximization problem, which has
been extensively studied in the literature and can be approxi-
mately solved using efficient algorithms [16], [17]. However,

Fig. 1: An example to show non-submodularity of J5(Uf)

we will show that the objective function J5(If) is generally
non-submodular, which makes the placement subproblem (P3)
and the overall problem (1) much more challenging. We first
give the definition of submodular functions.

Definition 1. For a finite set of elements V, a function H:
2V — R is submodular if for any subset V1 C Vo C V and
any element v € V\Va, we have

H(Vl U{U}) *H(Vl) 2 H(VQU{’U}) 7H(V2) (4)

The above definition exhibits an important property of
diminishing returns. In our problem, if the VNF-node capacity
is infinite, i.e., there is no capacity constraint (2), then a flow
f can always be fully processed as long as its path has at
least one VNF-node, i.e., Vy NU # (. In this case, the total
processed traffic J; (U, X) can be rewritten as

TLU) = Ay, ruz0y ©)
jeF

where the capacity allocation becomes irrelevant as it does not
impact the value of function Ji (). It has been shown in [2]
that the function J{ (/) is monotonically nondecreasing and
submodular. In this special case, problem (P1) with objective
function J{(U) can be approximately solved using efficient
greedy algorithms.

However, using the example presented in Fig. 1, we show
that the objective function .J5(I/) is no longer submodular if
the VNF-nodes have a limited capacity. Consider three flows:
flow f; with path vy — v, flow fy with path vo — w3,
and flow f3 with path v — v1. Assume that each VNF-node
has a capacity of 3, and each flow has a traffic rate of 2.
If node w3 is the only VNF-node, then it can only support
one flow because its capacity is 3. Therefore, the marginal
contribution of adding node vs as a VNF-node to the empty
setis J3({vz}) — J3(0) = 2—0 = 2. Now, assume that before
making node v3 a VNF-node, node vy is already a VNF-node,
which can support one flow. By making node v3 a VNF-node,
all three flows can be fully processed, and hence, the total
processed traffic becomes 6, i.e., the marginal contribution of
adding node v3 to the set {va } is J3({ve}U{vs})—J3({v2}) =
6—2=4> J3({vs})—J5(0) = 2. This violates the definition
of submodular set functions in Eq. (4).

In [18], a notion called supermodular degree is introduced
to characterize the level of violation of submodularity for a set
function. For problems with a bounded supermodular degree,
the authors of [18] propose a greedy algorithm with perfor-
mance guarantees for the considered problem with a non-

525

submodular objective function. However, the proposed greedy
algorithm has two main limitations. First, its approximation
ratio is a function of the supermodular degree, which, in our
case, could be as large as the number of nodes in the network.
Second, its complexity is exponential in the supermodular
degree and could be prohibitively high when the supermodular
degree is large.

Therefore, our problem (P1) is much more challenging
than other similar problems studied in prior work, where the
objective function is submodular or has a bounded supermod-
ular degree. To that end, in the next section we will address
the aforementioned unique challenges by introducing a novel
relaxation and a problem reformulation, which enable us to
propose two algorithms with constant approximation ratios.

V. RELAXATION AND REFORMULATION

In this section, we present a relaxation of the VPCA
problem that allows partially processed flows to be counted.
Further, we introduce a novel network flow reformulation of
the relaxed capacity allocation subproblem. Both of these tech-
niques will be utilized in designing two efficient approximation
algorithms in the next section.

A. Relaxed VPCA Formulation

We first introduce the relaxed VPCA problem, which allows
partially processed flows to be counted. In the relaxed VPCA
problem, any fraction of flow f processed by VNF-nodes in
V; NU will be counted in the total processed traffic. That is,
the relaxed J; (U, X) can be expressed as follows:

RUN2Y " > A% (6)

fEFvevyNU

Apparently, the total processed traffic of flow f cannot exceed
Ay, i.e., the following constraint needs to be satisfied:

SN <), VfEF @)
veu

Then, the relaxed version of problem (F1) becomes

maximize Ri(U,N)
Uy (@D
subject to (2), (3), (7).

Next, we decompose problem (1), in the same way as
we did for problem (P1), into placement and allocation
subproblems. For a given set of VNF-nodes U/ C V), let AU
be the set of all flow assignment matrices A that satisfy the
capacity constraint (2) and the flow rate constraint (7), and
let RY(X) be the total processed traffic, which has the same
expression as that of Ry (U,) but has U/ in the superscript
so as to indicate that this function is for a given set of VNF-
nodes Y. Then, the capacity allocation subproblem for a given
set of VNF-nodes U/ can be formulated as

(Q2)

maximize RY ().
AU

Now, let R3(U) £ maxycau RS (A) denote the optimal
value of problem (Q)2) for a given set of VNF-nodes ¢/. Then,
the placement subproblem can be formulated as

maximize Rs3(U)
uey (@3)
subject to (3).

Note that although the relaxed placement subproblem (Q3)
can still be shown to be NP-hard, we will prove that the
objective function R3({/) is monotonically nondecreasing and
submodular. This useful submodular property allows us to
approximately solve problem ((3). On the other hand, the
relaxed capacity allocation subproblem (()2) becomes an LP,
which can be efficiently solved; alternatively, we can also solve
(Q2) using a maximum flow algorithm (discussed at the end
of Section VI-A).

B. Network Flow Formulation

In this subsection, we introduce a novel network flow refor-
mulation of problem (Q2). The purpose of this reformulation
is two-fold: 1) we will use it to prove that the objective function
of the relaxed placement subproblem (Q)3) is submodular;
ii) we will leverage it to develop a combinatorial algorithm
for problem (()2), which is also part of an approximation
algorithm we will propose for the original VPCA problem.

For problem (Q2), we reformulate a network flow problem
by constructing a directed graph Z = (N, L) as follows.
The set of vertices A/ consists of the following: an artificial
source vertex s, set Nz consisting of flow-vertices f each
corresponding to flow f € F, set Ny consisting of node-
vertices v each corresponding to node v € V, and set ANy
consisting of node-vertices v’ each corresponding to node
v € V. Hence, N = {s} UNFUNy,UNy/, where Ny consists
of the sinks. Let (x,y) be an edge in £, which is from z € N/
to y € N. The set of edges L consists of the following: set £;
consisting of edges (s, f) connecting the source vertex s to
each flow-vertex f € Nz, set Lo consisting of edges (f,v’)
connecting each flow-vertex f € ANz to each node-vertex
v" € Ny corresponding to a node v € Vy, set L3 consisting
of edges (v/,v) connecting each node-vertex v’ € Ny to its
corresponding node-vertex v € Ny. We use c(z,y) to denote
the capacity of edge (z,y). Hence, £ = £1UL3ULs. An edge
(s, f) € L4 has capacity A¢; an edge (f,v’) € Lo has capacity
As; an edge (v/,v) € L3 has capacity ¢,. Fig. 2 presents an
example of the constructed graph Z for the network in Fig. 1.

Next, we describe flows over graph Z. Consider functions
o(z,y) : N x N —= Ry, where R is the set of non-negative
real numbers. We define ®(X,Y) £ 3 . >_yey plz,y) for
X,V CN. An s-V flow is a function p(z,y) : N x N — R
such that the following is satisfied:

1) Capacity constraints: o(z,y) < c(z,y) for all pairs

(z,y) € N x N. (Note that c(x,y) =0 if (z,y) ¢ L.)

2) Flow conservation: the net-flow at every non-source non-

sink vertex « € N'\ ({s}UNy) is zero, i.e., D(N, {z})—
o({z},N) =0.

3) Positive incoming flow: the net-flow at the source s is

non-positive, i.e., (N, {s}) — &({s},N) <0.

526

Ny

sinks Ay

Fig. 2: An example of the constructed graph Z for the network
in Flg 1, where .F = {fl,f27f3}, V = {1)171)2,1)3}, Vf1 =
{1}1,’!}2}, sz = {1}2,’03}, and Vf3 = {’01,1)3}

4) Positive outgoing flow: the net-flow at every sink ¢t € Ny,
is non-negative, i.e., ®(N, {t}) — ®({t},N) > 0.
Let F be the set of all s-V flows over Z.
For a subset of sinks? &/ C Ny, we define

FU) = max(®(N,U) — &U,N)), 8)
pEF
which is the maximum total net-flow at the sinks in .
The maximum net-flow problem is to find an s-V flow (i.e.,
function ¢) that achieves the maximum in (8). In Lemma 1,
we show the equivalence between the capacity allocation
subproblem (()2) and the maximum net-flow problem (8).

Lemma 1. The capacity allocation subproblem (Q2) is equiv-
alent to the maximum net-flow problem (8). Hence, for any
given U C V), the optimal value of problem (Q2) is equal to
the maximum total net-flow at the sinks in U C Ny of the
associated graph 7, i.e.,

Rs(U) = F(U).)
VI. PROPOSED ALGORITHMS

In this section, we design two efficient algorithms that can
achieve constant approximation ratios for the VPCA problem
(P1). The main idea is to utilize the relaxation introduced in
the previous section, which allows partially processed flows to
be counted. By doing so, we can show that the relaxed place-
ment subproblem is submodular based on the network flow
reformulation of the relaxed capacity allocation subproblem.
In this case, the relaxed placement subproblem can be approx-
imately solved using efficient greedy algorithms. Moreover,
the relaxed allocation subproblem becomes a Linear Program
(LP), which can also be solved efficiently in polynomial time.
However, the solution to the relaxed problem is for the case
where any fraction of the processed flows is counted. In order
to obtain a solution for the original VPCA problem (P1),

2Note that each node v € V corresponds to a sink in Ny,. Hence, by
slightly abusing the notations, for any &/ C V), we also use U/ to denote the
corresponding subset of sinks in Ny,.

Algorithm 1 The RP-MCA and RP-GCA algorithms

Input: set of nodes V), set of flows F, node capacities,
node costs, flow rates, and budget B.
Output: set of VNF-nodes U/, capacity allocation A.

I: Relaxed Problem: relax function J;(U,A) to become
Rl (L{ N)\);

2: Placement Subproblem: solve problem (Q3) using the
SG algorithm or the EG algorithm, described in Section
VI-A, to obtain U.

3: Capacity Allocation: use either the MCA algorithm (Al-
gorithm 2) or the GCA algorithm (Algorithm 3) to obtain
capacity allocation A.

where only the fully processed flows are counted, we propose
two approximation algorithms by modifying the solution to the
relaxed capacity allocation subproblem: the first one is based
on a maximum flow algorithm, and the second one is based
on a greedy algorithm.

We use RP-MCA and RP-GCA to denote the algorithms
we develop by combining the Relaxed Placement with the
Maximum-flow-based Capacity Allocation and the Greedy
Capacity Allocation, respectively. We show that the RP-MCA
and RP-GCA algorithms achieve an approximation ratio of
$(1 —1/e) and (1 — 1/e), respectively. We describe the
algorithms in a unified framework presented in Algorithm 1.
The difference is in the capacity allocation subproblem (line
3), where RP-MCA algorithm uses a Max-flow-based Capacity
Allocation (MCA) algorithm presented in Algorithm 2, while
RP-GCA algorithm uses a Greedy Capacity Allocation (GCA)
algorithm presented in Algorithm 3.

A. Proposed Placement Algorithms

In this subsection, we first prove in Lemma 2 that the
objective function R3 (/) of the relaxed placement subproblem
(Q3) is monotonically nondecreasing and submodular. Then,
using the property of submodularity, we propose two greedy
algorithms for solving the placement subproblem.

Lemma 2. The function R3(U) is monotonically nondecreas-
ing and submodular.

Because of this useful submodular property, problem (Q)3)
can be approximately solved using efficient greedy algorithms.
Next, we consider two cases of problem (Q3): uniform VNF-
node costs (Case I, a special case) and heterogeneous VNF-
node costs (Case II, a general case).

In Case I, the VNF-nodes have uniform costs, i.e., b, = b
for all v € V. Then, the budget constraint (3) can be expressed
as a cardinality constraint, i.e., || < k, where k = |B/b|.
In this case, we can use a simple Submodular Greedy (SG)
algorithm to approximately solve problem (Q3). In the SG
algorithm, we start with an empty solution of VNF-nodes /; in
each iteration, we add a node that has the maximum marginal
contribution to U, i.e., a node that leads to the largest increase
in the value of the objective function. We repeat the above
procedure until £ VNF-nodes have been selected. This solution

527

has been shown to achieve an approximation ratio of (1—1/¢)
[16]. However, this algorithm does not guarantee to have the
same approximation ratio for the case of heterogeneous VNF-
node costs [17].

In Case II, the VNF-nodes have heterogeneous costs, i.e.,
the costs of VNF-nodes are different. For this case, an
Enumeration-based Greedy (EG) algorithm has been proposed
in [17], which can be shown to achieve the same approxi-
mation ratio of (1 — 1/e), but with a higher running time
complexity compared to the SG algorithm. The EG algorithm
has two phases. In Phase I, it samples all node subsets of
cardinality one or two that satisfy the budget constraint, picks
the one with the largest value of the objective function Rs,
and stores this temporary solution in ;. In Phase II, the
algorithm samples all node subsets of cardinality three and
augments each of these subsets with nodes that maximize the
relative marginal contribution (R3(V'U{u})— R3(V’)) /by, in
a greedy manner. The budget constraint must also be satisfied
throughout this procedure. Then, it selects the augmented
subset with the largest value of the objective function R3 and
stores it in Us. The final solution will be the better one between
Uy and Us, i.e., the one that achieves a larger value of the
objective function Rs.

Note that although the value of function Rs3(U) can be
obtained using an LP solver, we can alternatively compute
it using the network flow formulation presented in Section
V-B as follows. For the constructed graph Z, we connect all
the sink vertices corresponding to nodes {/ to an artificial sink
vertex d. Then, the value of R3(l{) is the maximum flow from
vertex s to vertex d in graph Z, which can be computed using
several efficient algorithms (see, e.g., [19]). In Lemma 3, we
restate the results of [16], [17] about the approximation ratio
of the SG and EG algorithms.

Lemma 3. Both the SG and EG algorithms achieve an
approximation ratio of (1 —1/e).

Proof. The proofs can be found in [16] and [17] for the SG
algorithm and the EG algorithm, respectively. L

B. Proposed Capacity Allocation Algorithms

While the solution of problem ((QQ3) allows partially pro-
cessed flows to be counted, only fully processed flows will
be counted in the original problem (P1). To that end, we
propose two algorithms to modify the capacity allocation
of VNF-nodes U so as to ensure fully processed flows and
provide certain performance guarantees. The first algorithm
is based on the network flow formulation, and the second
one is based on a simple greedy approach. We develop these
algorithms by modifying two algorithms for the multiple
knapsack problem with assignment restrictions (MKAR) [20].
However, we want to point out that there is a key difference
between our studied VPCA problem and the MKAR problem:
in the VPCA problem, a flow can be split and assigned to more
than one VNF-node, while in the MKAR problem, an item
(corresponding to a flow in our problem) cannot be split and
must be assigned to at most one knapsack (corresponding to

Algorithm 2 The MCA algorithm

Input: set of VNF-nodes U, set of flows Fy,, flow rates,
and VNF-node capacities.
Output: Capacity allocation .
Phase I:
Obtain a basic optimal solution Ay/;
Yy = Af;/)\f, for all A} in Ay
Assign each flow f with yy =1 to VNF-node v;
Construct G’ for the unassigned flows with positive (s
while G’ is not empty do
while there is a singlton VNF-node in G’ do
Perform the rounding in Step 1;
end while
Perform the rounding in Step 2;
end while
Phase II:
11: for each flow f in F, that is not assigned yet do
12: if C/(Z/{f) >)\f then

R A A ol

-
e

13: Assign flow f to a subset of VNF-nodes in {y;
14: end if
15: end for

VNF-node in our problem). Because of this key difference, an
optimal solution for the VPCA problem generally has a larger
value compared to that of the MKAR problem. Therefore,
the algorithms developed for the MKAR problem need to be
modified so as to yield a better performance.

First, we introduce some additional notations for the al-
gorithms that will be described soon. We use Uy to denote
the nodes on the path of flow f that are included in U, i.e.,
Ur = Vs NU. Let ¢, denote the remaining capacity of VNF-
node v, and let ¢, denote the total remaining capacity of the
set of VNF-nodes in 4;, i.e., cf/, = Zveui ¢,,. In what follows,
we will introduce the MCA algorithm and the GCA algorithm.

1) Maximum-flow-based Capacity Allocation (MCA): We
first present the MCA algorithm (Algorithm 2), a capacity
allocation algorithm based on the network flow formulation.
The MCA algorithm has two phases. In Phase I, MCA makes
allocation decisions by rounding a fractional flow assignment
obtained by solving problem (Q2); in Phase II, the remaining
VNF-node capacities are allocated in a greedy manner.

Phase I: Let Ay be a flow assignment obtained from
an optimal basic solution® of problem (Q2), which can be
obtained by solving a maximum flow problem as discussed
carlier. We use yj £ A}/As to denote the fraction of flow
f assigned to VNF-node v in the obtained solution Ay;. The
algorithm begins with a temporary assignment of every flow
[with y3 = 1 to the corresponding VNF-node v. For the
remaining flows, we do the following. Let G’ = (F',V', &)
be a bipartite graph constructed as follows. For each A} € Ay,
if 0 <y} <1, we add a flow vertex f to the set 7/, a VNF-
node vertex v to the set V', and an edge, with weight y;i,

3 A basic feasible solution is a solution that cannot be expressed as a convex
combination of two feasible solutions.

528

connecting flow vertex f to VNF-node vertex v, to the set £’.
Note that graph G’ cannot have a cycle because Ay is a basic
feasible solution [20, Lemma 5]. After constructing graph G’,
we repeatedly apply the following two steps to graph G’ until
it becomes empty. As a result, the modified flow assignment
yy will become either zero or one.

Step 1: For each VNF-node v € V'’ that has only one
incident flow f (called a singleton VNF-node), we modify
its capacity allocation as follows. Let r, denote the total
amount of flow rates assigned to VNF-node v and let 7/, be
the portion of r, contributed by fully assigned flows. Note that
Ty =71+ Ay If r> A}, then we set y} to zero. Now, VNF-
node v has no incident edges to it, so we remove it from
G’. In this case, the value of solution)\u will be reduced
by A%, which is no greater than 2 5T0- If] < XY, then we
unassign the flows temporarily 3551gned to VNF—node v and
assign flow f to VNF-node v instead, i.e., set y; to one, and
cancel the other fractions of flow f assigned to other VNF-
nodes. This is feasible because the rate of any flow is assumed
to be no larger than the minimum VNF-node capacity. Then,
we remove VNF-node v, flow f, and the associated edges from
G’. In this case, the value of solution Au will be reduced by
at most 7/, which is no greater than 2 57v. We repeat Step 1
until no singleton VNF-node exists. Then, we go to Step 2.

Step 2: In this step, we will perturb the fractional values
of some edges in G’ to make one of them either zero or
one. The perturbation is designed such that the capacity and
assignment constraints are not violated and the total assigned
traffic remains the same. We describe the perturbation
procedure in the following. Consider a VNF-node v; € V'
that has a degree of at least two. Let (v, f1) and (v1, fr+1)
denote two of the incident edges to VNF-node v;. Let py
and p2 denote the longest paths starting from VNF-node
vy through edges (vy, f1) and (vi, fr41), respectively; such
paths exist because G’ is a forest. Here, we use yf to denote
the fractional value of flow ¢ assigned to VNF-node j and
use \; to denote the rate of flow j. Let y1 = (yi,y3,...,yF)
denote the fractional flow assignment on the edges of
path py, and let fi,..., fr be the flow nodes of path p;.
Similarly, let yo = (Z/k+17y,]:ﬂ,...,y',§ill_1) denote the
fractional flow assignment on the edges of path p», and let

fr+1,--., frer denote the flow nodes of path pa. We perturb
. : A e, A by
y1 by adding to it y; = (5e, —5te ke, "7/\;:16’6)’
and we perturb y2 by adding to it 5 =
.y Y
(- ’\k+1 ,)\k D Vet ERRRD vevied e)\k+l €). We increase

€ until one ﬁactlonal value y]”c becomes zero or one, and if
one, i.e., yy = 1, then we assign flow f to the corresponding
VNF-node v. An example to illustrate this step is shown in
Fig. 3. In this new solution, at least one edge is removed
from G’. We repeat the perturbation procedure until at least
one VNF-node becomes a singleton, and then we go back to
Step 1. If G’ becomes empty, we start Phase II.

Phase II: We leverage the property that the traffic of a flow
can be split and processed at multiple VNF-nodes. That is,
after Phase I, we pick an unassigned flow f and check if the
total remaining capacity of VNF-nodes {{y is no smaller than

F1g 3: An example of the edges perturbation

Ay. If so, we split flow f so that the remaining capacities of
some VNF-nodes in Uy can be used to fully process flow f
and assign flow f to a subset of these VNF-nodes. We repeat
this procedure until no more flow can be assigned.

We use OPT((Q)2,U) to denote the total traffic assigned to
a given set of VNF-nodes ¢/ by an optimal solution to problem
(Q2). Also, we use 7k, to denote the total traffic assigned
to VNF-nodes U/ by the MCA algorithm. The approximation
ratio of the MCA algorithm is stated in the following Lemma.

Lemma 4. The MCA algorithm has an approximation ratio
of 1/2, ice., ¥ty > 20PT(Q2,U).

Note that the 1/2-approximation ratio of the MCA algo-
rithm can be obtained by implementing Phase I only. Phase
IT improves the empirical performance as a result of splitting
flows that are processed at multiple VNF-nodes, although the
guaranteed approximation ratio remains the same.

2) Greedy Capacity Allocation (GCA): While the MCA
algorithm achieves an approximation ratio of 1/2, it has a
relatively high complexity of O(F2V?2) (refer to Table I and
the technical report [7] for the complexity analysis). This high
complexity may render the MCA algorithm unsuitable for
certain scenarios in practice. To that end, we propose the GCA
algorithm, a simple greedy capacity allocation algorithm that
has a much lower complexity of O(FV'). A lower complexity
of the GCA algorithm is achieved at the cost of a slightly
worse approximation ratio of 1/3 (Lemma 5). However, the
approximation ratio of the GCA algorithm can be improved to
2/5 (Lemma 6) if an additional mild assumption (Assumption
1) holds. The GCA algorithm has two phases. In Phase I, we
sort flows of F7; in a nonincreasing order of their flow rates.
Then, we iteratively go through the sorted list and assign each
flow to any VNF-node in {/; if it has a sufficient capacity. In
Phase II, the remaining capacities of the VNF-nodes can be
allocated in a similar way to Phase II of the MCA algorithm
by leveraging the property that a flow can be processed at
multiple VNF-nodes. However, here the remaining flows need
to be considered according to the order in the sorted list Fy.
The GCA algorithm is presented in Algorithm 3.

529

Algorithm 3 The GCA algorithm

Input: set of VNF-nodes U/, set of flows F;;, flow rates,
and VNF-node capacities.
Output: Capacity allocation A.

: Sort flows Fy; in a noincreasing order of their flow rates;
Phase I:

2: for each flow f in the sorted set F;; do
3: if there is a VNF-node v in U/ such that > Ay then
4: Set \Y% =)\f;
5 Set ¢, =, — Ap;
6: end if
7: end for
Phase 1I:

8: for each flow f in the sorted set F;, that is not assigned
yet do
9: if C'(Z/[f) > Ay then

10: Assign flow f to a subset of VNF-nodes in Uy;
11: end if
12: end for

In Lemma 5, we state the result about the approximation
ratio of the GCA algorithm. We use 74, to denote the total
traffic assigned to VNF-nodes U/ by the GCA algorithm.

Lemma 5. The GCA algorithm has an approximation ratio of
173, i.e, o, > %OPT(QQJ/{).

Further, we show in Lemma 6 that the approximation ratio
of the GCA algorithm can be improved to 2/5 when an
additional mild assumption (Assumption 1) holds.

Assumption 1. Assume that all the VNF-nodes in U have the
same capacity and that every flow f in Fy traverses at least
two VNF-nodes in U, i.e., |Vy NU| > 2.

Lemma 6. Suppose that Assumption 1 holds. Then, the GCA
algorithm has an improved approximation ratio of 2/5, ie.,
Téen = 2OPT(Q2,U).

C. Main Results

We state our main results in Theorems 2 and 3.

Theorem 2. The RP-MCA algorithm has an approximation
ratio of (1 —1/e) for problem (P1).

Proof. The proof combines the results in Lemmas 3 and 4. [J

Theorem 3. The RP-GCA algorithm has an approximation
ratio of %(1 —1/e) for problem (P1).

Proof. The proof combines the results in Lemmas 3 and 5. [

Table I summarizes the complexity of all algorithms. In
the literature, the complexity of algorithms for submodular
functions is often measured using the number of function
evaluations. The function evaluation itself is usually assumed
to be conducted by an oracle, and thus its complexity is not
taken into account [21]. We followed this approach here. Note
that we can utilize other alternative algorithms to the EG

Setting Algorithm | Approximation Complexity
Homogeneous RP-MCA | Z(1-1/e) O(kV)T + O(F?V?)
VNF costs RP-GCA [f(1—1/e) O(kV)T + O(FV)

21—-1/e)*
Heterogeneous| RP-MCA Ta-1/e) oO(V®T + O(F2v?)
VNF costs RP-GCA | £(1—1/e) oVt + O(FV)
2(1—1/e)"

TABLE I: Approximation ratios and time complexities of
the proposed algorithms. *These are the approximation results for the
GCA algorithm when Assumption 1 holds. TThis is the number of function
evaluations used in the submodular optimization.

algorithm to improve the running time substantially but with
a slightly worse approximation ratio [17], [21]. We provide
more discussions about the complexity analysis along with
the tradeoff between the performance and complexity in the
technical report [7].

VII. NUMERICAL RESULTS

In order to evaluate the performance of the proposed al-
gorithms, we first consider real-world network topologies and
traffic statistics. We also extend the evaluations to synthesized
networks consisting of a larger number of nodes and flows.
We compare the proposed algorithms with the following
algorithms: 1) optimal solution: we can solve problem (FP1)
optimally using an ILP solver. However, this can be done for
small instances only. 2) VOL-MCA [6]: this scheme selects
the nodes with the highest traffic volume that traverses them.
For the selected nodes, we allocate their capacity using the
proposed MCA algorithm. We evaluate all algorithms based
on the percentage of the processed traffic achieved by them,
which is defined as the ratio between the total volume of
the traffic processed by the VNF-nodes and the total traffic
volume. The running time of the considered algorithms will
also be presented. We run the simulations on a PC with i7
processor and 32GB physical memory.

A. Trace-driven Evaluation

We consider the Abilene dataset [22] collected from an
educational backbone network in North America. The network
consists of 12 nodes and 144 flows. Each flow rate was
recorded every five minutes for 6 months. Also, OSPF weights
were recorded, which allows us to compute the shortest path of
each flow based on these weights. In our experiments, we set
the flow rate to the recorded value of the first day at 8:00 pm.
The cost of a VNF-node is set to $100K, and the processing
capacity is set to 1 Gbps. We vary the total budget between
$100K and $1M. Since it takes too long for the ILP solver
to find the optimal solution for 144 flows, we first consider a
subset of 45 flows.

Fig. 4 shows the percentage of processed traffic for the
considered algorithms. We can see that both the RP-MCA and
RP-GCA algorithms perform almost the same as the optimal
solution and have up to 20% improvement over the VOL-
MCA algorithm. Note that as the budget increases, the total

530

100 =
rlf
0 o ~
3 3 b7
© R
5 3 5
3 —e—Optimal 2 :”‘
g 70 a-mpvea | 8 O/ -2-RP-MCA
o o -¢-RP-GCA
a “¢-RP-GCA a VOL-MCA
60, VOL-MCA 404
2 4 6 8 10 2 4 6 8 10
Budget ($10°%) Budget ($10°)
(a) 45 flows (b) 144 flows
Fig. 4: Evaluation of Abilene dataset
100 + 30
B e -4-RP-MCA
2 -0 -RP-GCA
g % e 520/ |- vOL-MCA
kel -7) -
@ s -~ CammmmATTT
4 P -+-RP-MCA | | E 9 U o
5 ‘ - 0-RP-GCA ST S
a 70{ VOL-MCA ‘ ‘
0
20 30 40 50 20 30 40 50

Budget ($10°) Budget ($10°)

(a) Processed traffic (b) Running time

Fig. 5: Evaluation on a large synthesized network consisting
of 100 nodes

processed traffic increases under all the considered algorithms.
However, while the proposed algorithms need a budget of
$500K to process 45 flows, the VOL-MCA algorithm actually
requires double of the budget (around $11/). We make similar
observations when we consider all the 144 flows in the Abilene
dataset. In this case, it becomes infeasible to derive an optimal
solution using ILP solvers.

B. Evaluation on Synthesized Network Settings

Next, we evaluate the algorithms for a larger synthesized
network consisting of 100 nodes and 800 flows. We repeat
each experiment for 10 times and present the average results.
Fig. 5(a) shows that the proposed algorithms still exhibit a
superior performance compared to the VOL-MCA algorithm.
In Fig. 5(b), we observe that all the algorithms run very fast
(i.e., finish in less than 20 seconds). The simulation results
suggest that the proposed algorithms achieve a very good
tradeoff between the performance and the running time.

VIII. CONCLUSION

In this paper, we studied the problem of deploying VNF-
nodes and allocating their capacity. We showed how to over-
come the non-submodularity of the problem by introducing a
novel relaxation method. By utilizing a decomposition of the
problem and a novel network flow reformulation, we were
able to prove the submodularity of the relaxed placement
subproblem and develop efficient algorithms with constant
approximation ratios for the original problem. Through exten-
sive evaluations using both traces and synthesized networks,
we showed that the proposed algorithms have a performance
close to the optimal solution and better than a state-of-the-art

algorithm. In our future work, we will consider other important
objectives such as delay and energy consumption. We shall
also consider an online version of the problem where flows
come and stay for a certain amount of time.

REFERENCES

[1] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng er al., “Network functions
virtualisation: An introduction, benefits, enablers, challenges and call
for action,” in SDN and OpenFlow World Congress, vol. 48. sn, 2012.
K. Poularakis, G. lTosifidis, G. Smaragdakis, and L. Tassiulas, “One step
at a time: Optimizing sdn upgrades in isp networks,” in Proceedings of
IEEE INFOCOM, 2017.

Amdocs, “Bringing NFV to Life - Technological and Operational

Challenges in Implementing NFV.,” White paper, 2016.

Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-

rithms for joint placement and allocation of virtual network functions,”

in Proceedings of IEEE INFOCOM, 2017.

T. Lukovszki, M. Rost, and S. Schmid, “Approximate and incremental

network function placement,” Journal of Parallel and Distributed Com-

puting, 2018.

[6] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental

deployment of sdn in hybrid enterprise and isp networks,” in Proceedings
of the Symposium on SDN Research. ACM, 2016.

[7]1 G. Sallam and B. Ji, “Joint placement and allocation of virtual network

functions with budget and capacity constraints,” in arXiv preprint

https://arxiv.org/abs/1901.03931, 2019.

M. Shit, X. Lin, S. Fahmy, and D.-H. Shin, “Competitive online convex

optimization with switching costs and ramp constraints,” in Proceedings

of IEEE INFOCOM, 2018.

[9] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal dynamic
cloud network control,” in IEEE International Conference on Commu-
nications, ICC, 2016.

[10] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Ap-
proximation algorithms for the nfv service distribution problem,” in
Proceedings of IEEE INFOCOM, 2017.

[11] Y. Chen, J. Wu, and B. Ji, “Virtual network function deployment in tree-
structured networks,” in IEEE 26th International Conference on Network
Protocols (ICNP), 2018.

[12] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient
algorithms for placement of service function chains with ordering
constraints,” in Proceedings of IEEE INFOCOM, 2018.

[13] T. Lukovszki and S. Schmid, “Online admission control and embedding
of service chains,” in International Colloquium on Structural Informa-
tion and Communication Complexity. Springer, 2015.

[14] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path and maximum
flow problems under service function chaining constraints,” in Proceed-
ings of IEEE INFOCOM, 2018.

[15] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in IEEE ICDCS, 2018.

[16] G. L. Nemhauser and L. A. Wolsey, “Maximizing submodular set
functions: formulations and analysis of algorithms,” in North-Holland
Mathematics Studies. Elsevier, 1981, vol. 59, pp. 279-301.

[17] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Information Processing Letters, vol. 70, no. 1, pp. 39-45,
1999.

[18] M. Feldman and R. Izsak, “Constrained monotone function maximiza-
tion and the supermodular degree,” arXiv preprint arXiv:1407.6328,
2014.

[19] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow algorithms,”
Communications of the ACM, vol. 57, no. 8, pp. 82-89, 2014.

[20] M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi,
“Approximation algorithms for the multiple knapsack problem with
assignment restrictions,” Journal of combinatorial optimization, vol. 4,
no. 2, pp. 171-186, 2000.

[21] W. Li and N. Shroff, “Towards practical constrained monotone submod-
ular maximization,” arXiv preprint arXiv:1804.08178, 2018.

[2

—_

[3

—_

[4

=

[5

—

[8

—

[22] “Abilene dataset,” http://www.cs.utexas.edu/%7eyzhang/research/AbileneTM/,

accessed: 2019-01-14.

531

