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Abstract—Network function virtualization (NFV) is an emerg-
ing design paradigm that replaces physical middlebox devices
with software modules running on general purpose commodity
servers. While gradually transitioning to NFV, Internet service
providers face the problem of where to introduce NFV in order
to make the most benefit of that; here, we measure the benefit
by the amount of traffic that can be serviced through the NFV.
This problem is non-trivial as it is composed of two challenging
subproblems: 1) placement of nodes to support virtual network
functions (referred to as VNF-nodes); and 2) allocation of the
VNF-nodes resources to network flows; the two subproblems
need to be considered jointly to satisfy the objective of serving
the maximum amount of traffic. This problem has been studied
recently but for the one-dimensional setting, where all network
flows require one network function, which requires a unit of
resource to process a unit of flow. In this work, we extend to
the multi-dimensional setting, where flows can require multiple
network functions, which can also require a different amount of
each resource to process a unit of flow. The multi-dimensional
setting introduces new challenges in addition to those of the one-
dimensional setting (e.g., NP-hardness and non-submodularity)
and also makes the resource allocation a multi-dimensional
generalization of the generalized assignment problem with as-
signment restrictions. To address these difficulties, we propose
a novel two-level relaxation method and utilize the primal-dual
technique to design two approximation algorithms that achieve an
approximation ratio of (Z−1)(e−1)

2e2Z(kR)1/(Z−1) and (e−1)(Z−1)

2e(Z−1+eZR1/(Z−1))
,

where k (resp. R) is the number of VNF-nodes (resp. resources),
and Z is a measure of the available resource compared to flow
demand. Finally, we perform extensive trace-driven simulations
to show the effectiveness of the proposed algorithms.

I. INTRODUCTION

Network function virtualization (NFV) is a new design

paradigm where network functions (e.g., firewall and load

balancer) that traditionally run in dedicated hardware are

now replaced by software modules hosted on general purpose

commodity hardware [1]. Several advantages can be harnessed

from this architecture such as reducing the deployment cost,

increasing the agility, and improving the scalability. These

advantages have encouraged several Internet service providers

(ISPs) to consider this architecture, and some of them have

already started the transition to NFV [2].

However, transitioning to NFV faces challenges from differ-

ent perspectives. From network flows’ perspective, each flow

needs to be processed by certain types of network functions,

and each network function requires a different amount of the
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resources at servers (e.g., CPU, memory). In addition, flows

generally need all of their traffic to be fully processed by such

functions to satisfy certain quality of services [3]. From ISPs’

perspective, transitioning to NFV usually happens in multiple

stages for several reasons such as the desire to utilize the

already provisioned hardware, or budget limitations. Consid-

ering both of these two perspectives leads to an important

question: under a limited budget, how to efficiently introduce

NFV in each stage such that the total traffic of fully processed

flows is maximized? To answer this question, we need to

address two main issues: 1) where to place nodes that support

NFV (called VNF-nodes) without exceeding the given budget?

And 2) how to allocate the VNF-nodes resources to satisfy the

requirements of network flows? We refer to this problem as

joint VNF-nodes placement and resource allocation (VPRA).

Most of the previous work either does not have a limited

budget (e.g., [4]) or relaxes the resources constraint (e.g.,

[3]). In [5], both the budget and resources constraints are

considered, along with fully processed flows requirement.

However, they consider a special case of the VPRA problem

with the following characteristics: a) there is only one type

of resource; b) all flows require the same network function;

and c) the network function requires one unit of resource

to process each unit of flows (we refer to this setting as

basic-VPRA). Even under such a simplified setting, the basic-

VPRA is already quite challenging. It is shown in [5] that

the problem is not only NP-hard but also non-submodular

(a property that generally leads to efficient solutions for

similar problems (e.g., [3])). In this work, we take one step

further and extend the basic-VPRA problem to consider the

setting with multiple network functions, multiple resources,

and heterogeneous resource requirements. We refer to this

generalization as multi-dimensional VPRA (multi-VPRA).

We systematically study the challenges of the multi-VPRA

problem and show that the difficulties introduced by the gen-

eralization call for different algorithms and design strategies.

Specifically, we consider the placement subproblem and the

allocation subproblem separately. We show that the place-

ment subproblem even with removing the fully processed

flow requirement is not easy to solve. Further, the resource

allocation subproblem is a multi-dimensional generalization

of the generalized assignment problem with assignment re-

strictions, which is a challenging problem [6]. To overcome

the challenges of the placement subproblem, we introduce

a two-level relaxation that allows us to draw a connection

to the sequence submodular (also called string submodular)

theory [7], [8] and design an efficient placement algorithm.



For the resource allocation subproblem, we utilize the primal-

dual technique [9] to design two efficient resource allocation

algorithms. We combine the placement algorithm with the

resource allocation algorithms and develop approximation

algorithms with performance guarantees for the original non-

relaxed multi-VPRA problem.

Our main contributions are summarized as follows.

• First, we systematically study the challenges arising from

the generalized multi-VPRA problem. In addition to

the challenges faced by the basic-VPRA (such as NP-

hardness and non-submodularity), we show that overcom-

ing the non-submodularity of the placement subproblem

is much harder and that the resource allocation subprob-

lem is a multi-dimensional generalization of the gener-

alized assignment problem with assignment restrictions,

which is also more challenging.

• Second, we introduce a novel two-level relaxation method

that enables us to convert the non-submodular placement

subproblem into a sequence submodular optimization

problem. Leveraging this useful property of sequence

submodularity, we develop an efficient algorithm for the

VNF-nodes placement. In addition, we utilize the primal-

dual technique to design two efficient resource allocation

algorithms.

• Third, we show that by combining the proposed place-

ment algorithm and the two resource allocation al-

gorithms, we can achieve an approximation ratio of
(Z−1)(e−1)

2e2Z(kR)1/(Z−1) and
(e−1)(Z−1)

2e(Z−1+eZR1/(Z−1))
for the original

non-relaxed multi-VPRA problem, respectively, where k
(resp. R) is the number of VNF-nodes (resp. resources),

and Z is a measure of the available resource compared to

flow demand. When Z goes to infinity, the approximation

ratio becomes e−1
2e2 and e−1

2e2+2e , respectively.

• Finally, we conduct extensive trace-driven simulations

using Abilene dataset [10] as well as datasets from

SNDlib [11] to evaluate the performance of the proposed

algorithms.

II. RELATED WORK

The placement problem has been considered in different

domains such as NFV (e.g., [5]), SDN (e.g., [3]), and edge

cloud computing (e.g., [12]). In NFV, several studies (e.g.,

[4], [13], [14]) consider the placement of a minimum number

of VNF instances to cover all flows. A single type of network

functions is considered in [4], [13], [15], [16], and the case

of multiple network functions is considered in [14], [17],

[18], [19], [20]. However, these work neglects either the

budget constraint or the multi-dimensional resource allocation.

The work in [21] considers the placement of middleboxes to

make the shortest path between communicating pairs under a

threshold. Again, this work does not consider multiple network

functions or budget constraint. The closest work to ours is [5],

where budget, resource, and fully processed flow constraints

are considered, but it only considers one type of network

functions and only a single type of resource.

In the SDN domain, the work in [3] considers the placement

of SDN-enabled routers to maximize the total processed traffic.

They consider a budget constraint but neglect the limited

resources constraint. Similarly, in the work on edge cloud

computing [14], although the budget and resource constraints

are considered, their proposed solution is only for a special

case, and the overall problem does not consider the multi-

dimensional setting. To the best of our knowledge, the multi-

dimensional setting has rarely been considered except in a

limited number of studies. In [22], the authors consider multi-

resource VNFs with a focus on the analysis of the vertical

scaling (scaling up/down of some resources) and horizontal

scaling (the number of VNFs instances). The work of [23]

focuses only on request admission and routing. The work of

[24] also considers the multi-resource setting, but the focus

is on how to balance the load among the servers, taking into

consideration the different demand of network functions for

each resource. Our work considers the three constraints of

budget, resource, and fully processed flows, as well as the

multi-dimensional setting.

The concept of sequence (or string) submodularity is an ex-

tension of submodularity, which has been introduced recently

in several studies (e.g., [7], [8], [25]). It models objective

functions that depend on the sequence of actions. It has

been utilized to design approximation algorithms for different

applications such as online advertising [8]. To the best of our

knowledge, we are the first to utilize the concept of sequence

submodularity for the placement problem in NFV. Another

concept is the primal-dual technique, which has been utilized

extensively to design approximation algorithms for several

problems [9]. We utilize this technique to design efficient

algorithms for the multi-dimensional resource allocation sub-

problem.

III. SYSTEM MODEL

We consider a network graph G = (V, E), where V is the

set of nodes, with V = |V|, and E is the set of edges. We have

a set of flows F , with F = |F|. We use λf to denote the traffic

rate of flow f ∈ F . The traffic of flow f will be sent along a

predetermined path (e.g., a shortest path), and the set of nodes

along this path is denoted by Vf . We use FU to denote the

set of all flows whose path has at least one node in a subset

of nodes U ⊂ V , i.e., FU = {f ∈ F | Vf ∩ U �= ∅}. When a

node can support some VNFs, we call it a VNF-node. Since

ISPs have a limited budget to deploy VNFs in their networks,

they can only choose a subset of nodes U ⊆ V to become

VNF-nodes.

We consider a set of network functions denoted by Φ. Each

flow needs to be processed by one or more network functions.

The set of network functions required by flow f is denoted by

Φf . The set of flows that require network function φ ∈ Φ is

denoted as F(φ). Each VNF-node v ∈ V can host one or more

network functions. We use R to denote the set of resource

types at VNF-nodes (e.g., memory and CPU), with R = |R|.
Each network function φ requires βr

φ units of resource r ∈ R
to process one unit of a network flow. The traffic rate λf



of each flow can be split and can be processed at multiple

VNF-nodes. We use λv
f to denote the portion of flow f that

is assigned to VNF-node v and use λ ∈ RF×V to denote the

assignment matrix.

As we mentioned earlier, the benefits of processed traffic can

be harnessed from fully processed flows, i.e., flows that have

all of their traffic fully processed at VNF-nodes. Hence, when

a flow traverses VNF-nodes and there is sufficient resources on

these VNF-nodes to process all of its rate, i.e.,
∑

v∈Vf∩U λv
f ≥

λf , then the flow is counted as a processed flow. Therefore, the

total fully processed traffic for a subset of VNF-nodes U ⊆ V
can be expressed as follows:

J1(U ,λ) �
∑
f∈F

λf1{∑v∈Vf∩U λv
f≥λf}, (1)

where 1{.} is the indicator function. However, there is a

total amount of each resource available at the nodes, and the

amounts could be different at different nodes. We use crv to

denote the total amount of resource r at node v. Then, the

following constraints should be satisfied:{∑
φ∈Φ βr

φ

∑
f∈F(φ) λ

v
f ≤ crv, ∀r ∈ R and v ∈ U ,

λv
f = 0, ∀f ∈ F and ∀v /∈ U . (2)

Also, we consider a limited budget B and assume that the

cost for making node v a VNF-node is the same for all nodes,

which is denoted by b. Let k = �B/b�. Then, the budget

constraint can be expressed as a cardinality constraint, i.e.,

|U| ≤ k. (3)

As a service provider with a limited budget, a plausible

objective is to introduce NFV at nodes that would result

in the maximum fully processed traffic. Therefore, we con-

sider the problem of multi-dimensional VNF-nodes placement

and resource allocation (multi-VPRA) with the objective of

maximizing the total fully processed traffic (J1(U ,λ)). The

problem can be formulated as:

maximize
U⊆V,λ

J1(U ,λ)
subject to (2) and (3).

(P1)

IV. CHALLENGES OF MULTI-VPRA

In this section, we analyze the multi-VPRA problem and

identify the main challenges posed by this problem. We first

decompose the multi-VPRA problem into two subproblems:

1) placement, i.e., where to deploy VNF-nodes; 2) resource

allocation of the VNF-nodes among flows. We will show

the hardness of each subproblem and explain new challenges

arising from the multi-dimensional generalization.

A. Decomposition

In this subsection, we present a decomposition of the multi-

VPRA problem into placement and allocation subproblems.

We start with the allocation subproblem because it will be used

in the placement subproblem. For a given set of VNF-nodes

U ⊆ V , let JU
2 (λ) denote the total amount of fully processed

traffic under flow assignment λ. Note that JU
2 (λ) has the same

expression as that of J1(U ,λ) in Eq. (1). The superscript U of

JU
2 (λ) is used to indicate that it is associated with a given set

of VNF-nodes U . Then, the resource allocation subproblem

for a given set of VNF-nodes U can be formulated as

maximize
λ:(2) is satisfied

JU
2 (λ). (P2)

Let J3(U) � maxλ:(2) is satisfied J
U
2 (λ) denote the placement

value function, which is the optimal value of problem (P2) for

a given set of VNF-nodes U . Then, the placement subproblem

can be formulated as

maximize
U⊆V

J3(U)
subject to (3).

(P3)

Note that in order to solve subproblem (P3), we need to solve

subproblem (P2) first to find the optimal λ for a given set of

VNF-nodes U .

B. Hardness

In [5, Theorem 1], it is shown that for the basic-VPRA

problem, both subproblems (P2) and (P3) are NP-hard. The

NP-hardness results can be easily extended to the multi-

dimensional case considered here. Therefore, we simply state

the hardness results in the following lemma without proofs.

Lemma 1. The resource allocation subproblem (P2) and the
placement subproblem (P3) are both NP-hard.

In addition, the placement subproblem of the basic-VPRA

has been shown to be non-submodular [5, Section IV. B].

Similarly, the non-submodularity result can also be easily

extended to the multi-dimensional case. In order to develop

efficient algorithms for the basic-VPRA, the work of [5]

employs a relaxation of the problem that allows partially

processed flows to be counted in the objective function. The

relaxation allows one to prove submodularity of the placement

subproblem and to design efficient algorithms for the basic-

VPRA. However, in the sequel, we will show that the same

framework and algorithms cannot be applied directly to solve

the multi-VPRA problem.

The first challenge is that a similar relaxation of the basic-

VPRA does not admit an efficient placement algorithm with

performance guarantees for the multi-VPRA problem. The

reason is that the objective function of the relaxed placement

subproblem of the basic-VPRA problem can be shown to be

equivalent to the maximum flow problem, which can be proved

to be submodular. In contrast, the objective function of the

relaxed placement subproblem of the multi-VPRA problem, to

the best of our knowledge, can only be evaluated using Linear

Programming, which does not provide us with enough insights

that can be utilized to prove or disprove submodularity. The

second challenge is that the resource allocation algorithms

proposed for the basic-VPRA consider only a single resource

and cannot be utilized to provide performance guarantees for

the multi-VPRA problem, where multiple resources have to

be considered during the resource allocation.



In order to address these new challenges, we introduce

a novel two-level relaxation method: (i) we allow partially

processed flows as in [5], and (ii) we consider an approximate

version of the resource allocation subproblem. This new re-

laxation method enables us to make a connection between the

relaxed placement subproblem and sequence submodular the-

ory and design efficient placement algorithms. For the resource

allocation, we design two resource allocation algorithms both

based on the primal-dual technique. Not only the proposed

placement and resource allocation algorithms can properly

handle the multi-dimensional setting, but they also guarantee

a constant approximation ratio for the original non-relaxed

multi-VPRA problem.

V. RELAXED MULTI-VPRA

In this section, we present the two-level relaxation of the

multi-VPRA problem. In the first-level, we allow partially

processed flows to be counted in the objective function, and

in this case we use R1(U ,λ) to denote the relaxed objective

function (defined in Eq. (4)). In the second-level, instead of

evaluating function R1(U ,λ) for a set of nodes U together, we

allow the algorithm to consider a specific ordering of nodes

and evaluate the objective function on a node by node basis.

Apparently, the first-level relaxation does not decrease the total

traffic that can be assigned to a given set of VNF-nodes U . In

contrast, the second-level relaxation results in an approximate

version of the resource allocation subproblem, and thus, there

is a loss in the amount of processed traffic. However, we

will prove that the loss is at most 1/2 of the optimal. In

addition, through simulation results, we will show that the

loss due to the second-level relaxation is negligible. The

purpose of this two-level relaxation is to draw a connection to

the sequence submodular theory, which enables us to design

efficient algorithms with provable performance guarantees.

A. First-level Relaxation

We first introduce the first-level relaxation, which allows

partially processed flows to be counted. In this case, any

fraction of flow f processed by VNF-nodes in Vf ∩ U will

be counted in the total processed traffic. That is, the relaxed

J1(U ,λ) can be expressed as follows:

R1(U ,λ) �
∑
f∈F

∑
v∈Vf∩U

λv
f . (4)

Apparently, the total processed traffic of flow f cannot exceed

λf , i.e., the flow rate constraint needs to be satisfied:∑
v∈U

λv
f ≤ λf , ∀f ∈ F . (5)

Then, after the first-level relaxation, problem (P1) becomes

maximize
U⊆V,λ

R1(U ,λ)
subject to (2), (3), and (5).

(Q1)

Next, we explain why we need the second-level relaxation for

solving the multi-VPRA problem efficiently. Similar to the

decomposition of problem (P1), we also decompose problem

(Q1) into placement and allocation subproblems. For a given

set of VNF-nodes U ⊆ V , let ΛU be the set of all flow

assignment matrices λ that satisfy the resources constraint (2)

and the flow rate constraint (5), and let RU
2 (λ) be the total

processed traffic, which has the same expression as that of

R1(U ,λ) but has U in the superscript to indicate that U is not

a decision variable. Then, the resource allocation subproblem

for a given set of VNF-nodes U can be formulated as

maximize
λ∈ΛU

RU
2 (λ). (Q2)

Now, let R3(U) � maxλ∈ΛU RU
2 (λ) denote the optimal value

of problem (Q2) for a given set of VNF-nodes U . The function

R3(U) is also called the placement value function, and the

placement subproblem can be formulated as

maximize
U⊆V

R3(U)
subject to (3).

(Q3)

Unlike the relaxed placement subproblem of the basic-VPRA

problem, which has been proven to be submodular, the sub-

modularity of the relaxed placement subproblem (Q3) of the

multi-VPRA remains unknown as explained earlier. Driven by

this observation, in the next subsection we introduce another

level of relaxation, which enables us to draw a connection to

sequence submodular theory.

B. Second-level Relaxation

In the second-level relaxation, instead of solving subprob-

lem (Q2) to obtain the optimal solution R3(U) for a set of

nodes U , we consider a specific ordering of nodes U and solve

for each node one by one according to their order (which will

be explained soon in Algorithm 1). Let (v1, v2, . . . , vk) be

a sequence of nodes selected over k steps, where vi ∈ V is

selected in the i-th step. Let the set of all possible sequences of

nodes V∗ = {(v1, v2, . . . , vk) | k = 0, 1, . . . , |V| and vi ∈ V}.

We use λ̄v to denote the total flow assigned to node v and

define λ̄ = {λ̄v, ∀ v ∈ V} to denote a given feasible resource

allocation for nodes V . We define an optimal fractional re-

source allocation of node v̄ given a fixed resource allocation of

all other nodes λ̄ to be the solution of the following problem:

maximize
λ

∑
f∈F

λv̄
f

subject to∑
v∈V∩Vf

λv
f ≤ λf , ∀f ∈ F ,

λv
f = 0, ∀f ∈ F and v /∈ V ∩ Vf ,∑

φ∈Φ

βr
φ

∑
f∈F(φ)

λv
f ≤ crv, ∀r ∈ R and v ∈ V,

∑
f∈Fv

λv
f = λ̄v ∀v ∈ V \ {v̄},

(6)

where the last constraint is to fix the resource allocation of

the other nodes according to λ̄.



For sequence S ∈ V∗, we define function R4(S) to be the

total traffic assigned by Algorithm 1 for nodes in sequence S.

Then, the relaxed version of problem (Q3) becomes:

maximize
S∈V∗

R4(S)

subject to |S| ≤ k.
(Q4)

Algorithm 1 Iterative resource allocation

Input: sequence of nodes S, set of flows F , amount of

resources crv , flow rates λf , and flow demands βr
f

Output: resource allocation

1: Initialize: set each λ̄v ∈ λ̄ to zero

2: for i = 1 to |S| do
3: Solve problem (6) for node vi given λ̄
4: Set the value of λ̄vi according to the solution of

problem (6)

5: end for

Next, we will show that function R4(S) is a

1/2−approximation of function R3(U) as long as sequence

S is one of the permutations of set U . This establishes that an

optimal solution for problem (Q4) is 1/2−approximation of

the solution of problem (Q3). Moreover, in the next section,

we will utilize the relaxed problem (Q4) to design efficient

algorithms for the multi-VPRA problem (P1).

In the following lemma, we present the approximation ratio

of Algorithm 1.

Lemma 2. For a given set of nodes U , let P(U) be the set
of all permutations of nodes U , then for any S ∈ P(U), we
have that R4(S) ≥ 1

2R3(U).
Proof. Let F ′ ⊆ F denote the set of (partially or fully)

unsatisfied flows at the end of Algorithm 1, with their traffic

rate to be only the remaining traffic rate at the end of

Algorithm 1. We use OPT(U ) to denote the optimal resource

allocation of VNF-nodes U .

The maximum traffic that can be assigned by any algorithm

to VNF-nodes U has the following upper bound:

OPT (U)
(a)

≤ R4(S) +OPT (U|F ′)

≤ R4(S) +

|S|∑
i=1

OPT (vi|F ′)

= R4(S) +

|S|∑
i=1

(R4(v
1, . . . , vi−1) +OPT (vi|F ′)

−R4(v
1, . . . , vi−1))

(b)

≤ R4(S) +

|S|∑
i=1

(R4(v
1, . . . , vi)−R4(v

1, . . . , vi−1))

= R4(S) +R4(S)

= 2R4(S),
(7)

where OPT (U|F ′) denotes the optimal allocation of nodes

U given the remaining traffic of unsatisfied flows F ′, and vi

Algorithm 2 The SSG-PRA and SSG-NRA algorithms

Input: set of nodes V , set of flows F , amount of resources,

flow rates, and budget B
Output: set of VNF-nodes U and resource allocation λ

1: Relaxed Problem: (level I) relax function J1(U ,λ) to

become R1(U ,λ), and (level II) relax function R3(U) to

function R4(S)
2: Placement Subproblem: solve problem (Q4) using the

greedy algorithm (Algorithm 3) to obtain S
3: Resource Allocation: use either the PRA algorithm (Al-

gorithm 4) or the NRA algorithm (Algorithm 5) to obtain

resource allocation λ for nodes S

denotes the ith node in sequence S. (a) holds because the

maximum traffic that can be assigned by an optimal solution

is upper-bounded by the sum of the total traffic assigned by

Algorithm 1, which is R4(S), plus the maximum possible

traffic that can be assigned from the remaining traffic of the

unsatisfied flows to nodes U , which is OPT(U|F ′); (b) holds

because F ′ is the set of flows with remaining traffic after

solving R4(S), so OPT (vi|F ′) is a feasible solution for node

vi when we consider R4(v
1, . . . , vi).

VI. PROPOSED ALGORITHMS

In this section, we design two algorithms that approximately

solve the multi-VPRA problem (P1). The main idea is to apply

the two-level relaxation introduced in the previous section

on the original non-relaxed problem (P1). By doing so, we

can show that the objective function of the relaxed placement

subproblem (Q4) is sequence submodular (to be defined later).

In this case, the relaxed placement subproblem can be approx-

imately solved using an efficient greedy algorithm. Moreover,

the relaxed allocation subproblem becomes a Linear Program

(LP), which can also be solved efficiently in polynomial time.

However, the solution to the relaxed problem is for the case

where any fraction of the processed flows is counted. In order

to obtain a solution for the original multi-VPRA problem

(P1), where only the fully processed flows are counted, we

propose two approximation algorithms based on the primal-

dual technique.

We use SSG-PRA and SSG-NRA to denote the algorithms

we develop by combining the Sequence Submodular Greedy

placement with the Primal-dual-based Resource Allocation

and the Node-based Resource Allocation, respectively. We

describe the algorithms in a unified framework presented in

Algorithm 2. The difference is in the resource allocation

subproblem (line 3), where SSG-PRA algorithm uses a Primal-

dual-based Resource Allocation (PRA) algorithm presented

in Algorithm 4, while SSG-NRA algorithm uses a Node-

based Resource Allocation (NRA) algorithm presented in

Algorithm 5. We show that the SSG-PRA and SSG-NRA

algorithms achieve an approximation ratio of
(Z−1)(e−1)

2e2Z(kR)1/(Z−1)

and
(Z−1)(e−1)

2e(Z−1+ZR1/(Z−1))
, respectively, where Z (to be defined

later) is the amount of resource compared to flow demand.



A. Proposed Placement Algorithms

In this subsection, we prove that function R4(S) is sequence

submodular. Then, using the property of sequence submodular-

ity, we propose a greedy algorithm for solving the placement

subproblem. First, we define some additional notations. For

two sequences A and B in V∗ and A = (va1 , v
a
2 , . . . , v

a
k1
) and

B = (vb1, v
b
2, . . . , v

b
k2
), we define a concatenation of A and B

as:

A⊕B = (va1 , v
a
2 , . . . , v

a
k1
, vb1, v

b
2, . . . , v

b
k2
).

Also, we say that A � B if we can write B as A ⊕ C for

some C ∈ V∗.

A function from sequences to real numbers, f : V∗ → R,

is sequence submodular if

1) f has the forward-monotone property, i.e.,

∀A,B ∈ V∗, f(A⊕B) ≥ f(A).

2) f has the diminishing-return property, i.e.,

∀A � B ∈ V∗, ∀v ∈ V∗,
f(A⊕ (v))− f(A) ≥ f(B ⊕ (v))− f(B).

Next, we have the following lemma:

Lemma 3. The function R4(S) is sequence submodular.

Proof. First, we show that function R4(S) is forward-

monotone. Since Algorithm 1 considers elements according to

their order then for sequence A⊕B and sequence A, Algorithm

1 considers nodes in A first for the two sequences and in the

same order. So, the assigned traffic to nodes A will be the

same for the two sequences A ⊕ B and A. Adding another

node v to sequence A will not affect what has been already

assigned to nodes A, and the minimum that can be assigned

to node v is zero. So, condition (1) is satisfied.

For the second condition, it is sufficient to show that what

can be assigned to node v when we consider sequence A⊕(v)
is greater than or equal to what can be assigned to node v when

we consider sequence B ⊕ (v), i.e., R4(v|A) ≥ R4(v|B),
where R4(v|A) = R4(A ⊕ v) − R4(A). Since A � B, then

given a feasible solution to R4(v|B), we can remove the

traffic assigned to nodes B \A and what remains should be a

feasible solution to R4(v|A) because in R4(v|B) all equality

constraints of nodes A are satisfied.

Because of this useful sequence submodular property, prob-

lem (Q4) can be approximately solved using an efficient

greedy algorithm. In this case, we can use a simple Sequence
Submodular Greedy (SSG) algorithm to approximately solve

problem (Q4). In the SSG algorithm, we start with an empty

solution of VNF-nodes S; in each iteration, we add a node

that has the maximum marginal contribution to S, i.e., a node

that leads to the largest increase in the value of the objective

function R4(S). We repeat the above procedure until k VNF-

nodes have been selected. The overall algorithm is presented in

Algorithm 3. For sequence S selected by the SSG algorithm,

we use πS
SSG to denote the resource allocation of VNF-nodes

Algorithm 3 Sequence Submodular Greedy (SSG) algorithms

Input: set of nodes V , set of flows F , amount of resources,

flow rates, flows demand, and k = �B/b�.

Output: sequence of VNF-nodes S.

1: Initialize: S = ∅
2: while there is a node v such that |S ⊕ v| ≤ k do
3: Pick a node v ∈ V \ S that maximizes R4(S ⊕ v)
4: S ← S ⊕ v
5: end while

S according to Algorithm 1. Next, we state the performance

of the SSG algorithm in the following lemma.

Lemma 4. The SSG algorithm achieves an approximation
ratio of (1− 1/e), i.e., πS

SSG ≥ (1− 1/e)OPT(Q4).

Proof. For an objective function that is sequence submodular,

it has been shown in [8] that the greedy algorithm achieves an

approximation ratio of (1− 1/e). We have shown in Lemma

3 that the objective function of problem (Q4) is sequence

submodular, so the result of the lemma holds.

B. Resource Allocation Algorithm

While solving the placement subproblem (Q4), the resource

allocation is achieved by using Algorithm 1, which allows

partially processed flows to be counted. However, problem

(P1) requires flows to be fully processed. Therefore, we

present two resource allocation algorithms that modify the

resource allocation of the selected VNF-nodes while guaran-

teeing certain approximation ratios. Both algorithms are based

on the primal-dual technique [26]. We describe each of the

algorithms in the following.

We first provide a formulation of the optimal fractional

resource allocation of sequence S, which allows partially

processed flows. Based on the dual of this formulation, we

will present the two resource allocation algorithms. We define

δrf �
∑

φ∈Φf
βr
φ to be the total amount of resource r

needed to process a unit of flow f by network functions

Φf . We define the maximum demand across all flows as

dmax � maxf∈F,r∈R δrfλf . Then, for each flow f we define

the normalized total demand of resource r as drf � δrfλf/dmax.

In addition, for each node v, we define the normalized total

amount of resource r as c̄rv � crv/dmax. Finally, we define

Z � minv∈S,r∈R c̄rv as a measure of the available resource

compared to flow demand. We map sequence S to a set of

VNF-nodes S. We use xv
f to denote the portion of flow f that

is assigned to node v and Sf � S ∩ Vf to denote the set of

VNF-nodes along the path of flow f that are in VNF-nodes

S. The optimal fractional resource allocation of sequence S



can be formulated as:

max
xv
f

∑
f∈F

λf

∑
v∈Sf

xv
f

subject to∑
f∈F

drfx
v
f ≤ c̄rv, ∀r ∈ R and v ∈ S,

∑
v∈Sf

xv
f ≤ 1, ∀f ∈ F ,

xv
f ≥ 0, ∀f ∈ F and v ∈ S.

(8)

The corresponding dual linear program is

min
yr
v,zf

∑
v∈S

∑
r∈R

c̄rvy
r
v +

∑
f∈Sf

zf

subject to

zf +
∑
r∈R

drfy
r
v ≥ λf , ∀f ∈ F and v ∈ Sf ,

yrv, zf ≥ 0, ∀v ∈ V and r ∈ R and f ∈ F .

(9)

1) Primal-dual-based Resource Allocation (PRA): For the

VNF-nodes S that are selected by the greedy algorithm, we

modify their resource allocation to guarantee fully processed

flows. We propose a primal-dual-based resource allocation

algorithm, which is adapted from a multi-commodity routing

algorithm proposed in [26] and based on the dual formulation

(9). The main idea is to view the dual variable yrv as a

price of resource r at VNF-node v. The algorithm chooses

a VNF-node vf with the minimum total cost for each flow.

Then, it picks a flow that maximizes the relative value (i.e.,

λf ) compared to the weighted cost and assigns that flow.

Then the price of each resource of the selected VNF-node

is updated accordingly. The update of the price yrv is designed

in a way such that if the limited resource is violated, then

the stopping condition is satisfied from the previous iteration.

The algorithm stops when all flows are assigned or when∑
v∈S

∑
r∈R c̄rvy

r
v ≥ eZ−1R|S|. The update of price yrv is

also implemented in a way such that it maintains the value

of the dual problem within a range of the value of the

primal problem. Then, by weak duality, this establishes the

approximation ratio of the primal-dual algorithm.
We use πS

PRA to denote the total traffic assigned to VNF-

nodes in sequence S by the PRA algorithm. The approxima-

tion ratio of the PRA algorithm with respect to function R4(S)
is stated in the following Lemma.

Lemma 5. The approximation ratio of the PRA algorithm is
πS

PRA ≥ Z−1
eZ(kR)1/(Z−1)R4(S).

Proof. We use OPT ((8)) to denote the optimal value of the

primal problem (8). The proof follows from the following:

πS
PRA

(a)

≥ Z − 1

eZ(|S|R)1/(Z−1)
OPT ((8))

(b)

≥ Z − 1

eZ(kR)1/(Z−1)
OPT ((8))

(c)

≥ Z − 1

eZ(kR)1/(Z−1)
R4(S).

(10)

Algorithm 4 Primal-dual-based resource allocation (PRA)

1: Input: sequence of VNF-nodes S, set of flows F , nor-

malized amount of resource c̄rv , flow rates λf , normalized

flow demands drf .

2: Initialization: F ′ = ∅, yrv = 1/c̄rv, ∀r ∈ R, v ∈ S
3: Output: F ′

4: repeat
5: for f ∈ F do
6: vf = argminv∈Sf

{∑r∈R yrv};
7: end for
8: f ′ = argmaxf∈F{ λf∑

r∈R dr
fy

r
vf

};
9: F ′ = F ′ ∪ {f ′}, F = F \ {f ′};

10: update yrvf = yrvf (e
Z−1R|S|)dr

f/(c̄
r
v−1), ∀r ∈ R;

11: until
∑

v∈S
∑

r∈R c̄rvy
r
v ≥ eZ−1R|S| or F = ∅;

The primal-dual algorithm has been shown to achieve the

approximation ratio in (a) with respect to any fractional

solution [26, Lemma 5.7, Theorem 5.1]. (b) follows because

k ≥ |S|; (c) follows from the fact that the value R4(S) is

upper bounded by OPT ((8))

When Z goes to infinity, then the algorithm has an approxi-

mation ratio of 1/e. The time complexity of the PRA algorithm

is O(|S|F 2).

2) Node-based Resource Allocation (NRA): The approxi-

mation ratio of the PRA algorithm depends on two parameters:

the budget k and the minimum available resource Z. If the

k is large and Z is small, then the approximation ratio of

the PRA algorithm becomes small. However, if Z is large

enough, then it will offset the effect of large k. Therefore,

we design another algorithm, node-based resource allocation

algorithm (NRA), which removes the dependence on k but

adds a constant factor to the approximation ratio. The main

idea of the NRA algorithm is to make the resource allocation

of each VNF-node separately, but picking nodes according

to their order in sequence S. For each VNF-node in S, its

resources are allocated using the primal-dual technique. The

detail of the NRA algorithm is presented in Algorithm 5.

Similar to the PRA algorithm, we view the dual variable yrv
as a price for each resource. The difference here is that we

consider each node separately and try to assign flows with the

largest ratio of the rate λf compared to the weighted demand∑
r∈R drfy

r
v .

We use πS
NRA to denote the total traffic assigned to VNF-

nodes S by the NRA algorithm. Next, we state the approxi-

mation ratio of the NRA algorithm in the following lemma.

Lemma 6. The approximation ratio of the NRA algorithm is
πS

NRA ≥ Z−1
Z−1+eZR1/(Z−1)R4(S).

Proof. Let F ′ ⊆ F denote the set of unassigned flows at the

end of Algorithm 5. The maximum traffic that can be assigned

by any algorithm to VNF-nodes S has the following upper



Algorithm 5 Greedy Resource Allocation (NRA)

1: Input: sequence of VNF-nodes S, set of flows F , nor-

malized amount of resource c̄rv , flow rates λf , normalized

flow demand drf .

2: Initialization: assigned flows F ′ = ∅
3: Output: F ′

4: for each VNF-node vi, i = 1 to |S| do
5: Initialization yrvi = 1/c̄rvi , ∀r ∈ R
6: repeat
7: f ′ = argmaxf∈F{ λf∑

r∈R dr
fy

r
vi
};

8: F ′ = F ′ ∪ {f ′}, F = F \ {f ′};
9: update yrvi = yrvi(eZ−1R)d

r
f/(c̄

r
vi−1), ∀r ∈ R;

10: until
∑

r∈R c̄rviyrvi ≥ eZ−1R or F = ∅;

11: end for

bound:

R4(S)
(a)

≤ πS
NRA +OPT (S|F ′)

≤ πS
NRA +

|S|∑
i=1

OPT (vi|F ′)

(b)

≤ πS
NRA +

|S|∑
i=1

eZ

Z − 1
R1/(Z−1) πvi

NRA

≤ πS
NRA +

eZ

Z − 1
R1/(Z−1)πS

NRA

=
Z − 1 + eZR1/(Z−1)

Z − 1
πS

NRA.

(11)

We use OPT (S|F ′) to denote the maximum traffic that can be

assigned to VNF-nodes S from the remaining traffic of flows

F ′. (a) holds because the maximum traffic that can be assigned

by an optimal solution is at most the sum of the total traffic

assigned by Algorithm 5, which is πS
NRA, plus the maximum

possible traffic that can be assigned from the remaining

unassigned flows, which is OPT (S|F ′). For (b), the greedy

algorithm for a single node achieves an approximation ratio

of eZ
Z−1R

1/(Z−1) with respect to any fractional solution [26,

Lemma 5.7, Theorem 5.1], so (b) holds.

When Z goes to infinity, then the approximation ratio is 1/(e+
1). The time complexity of the NRA algorithm is O(F 2).

C. Main Results

We state our main results in Theorems 1 and 2.

Theorem 1. The SSG-PRA algorithm has an approximation
ratio of (e−1)(Z−1)

2e2Z(kR)1/(Z−1) for problem (P1) and becomes e−1
2e2

when Z → ∞.

Proof. The SSG-PRA algorithm has two main components:

1) VNF-nodes placement and 2) resource allocation. We use

OPT (P ) to denote the optimal value of any problem (P ).
Recall that we use πS

SSG to denote the resource allocation of

VNF-nodes in sequence S selected by the SSG algorithm. We

start with the result of the VNF-nodes placement using the

SSG algorithm. For sequence S that is selected by the SSG

algorithm, we have the following result:

πS
SSG

(a)

≥ (1− 1/e)OPT (Q4)
(b)

≥ 1

2
(1− 1/e)OPT (Q3)

(c)
=

1

2
(1− 1/e)OPT (Q1)

(d)

≥ 1

2
(1− 1/e)OPT (P1),

(12)

where (a) is due to Lemma 4, (b) holds from Lemma 2, (c)

holds because an optimal resource allocation is assumed for

the objective function of problem (Q3), and (d) holds because

problem (Q1) is a relaxed version of problem (P1).

The second component of the SSG-PRA algorithm is the

resource allocation using the PRA algorithm for the sequence

of VNF-nodes S selected by the SSG. We have the following

result:

πS
PRA

(a)

≥ Z − 1

eZ(kR)1/(Z−1)
R4(S)

(b)
=

Z − 1

eZ(kR)1/(Z−1)
πS

SSG

(c)

≥ (e− 1)(Z − 1)

2e2Z(kR)1/(Z−1)
OPT (P1),

(13)

where (a) comes from the approximation ratio of the PRA al-

gorithm in Lemma 5, (b) holds because when πS
SSG is obtained

for problem (Q4) using the greedy algorithms, where the

resource allocation of sequence S is obtained using function

R4(S), and (c) holds from Eq. (12). Therefore, the result of

Theorem 1 follows.

Theorem 2. The SSG-NRA algorithm has an approximation
ratio of (e−1)(Z−1)

2e(Z−1+eZR1/(Z−1))
for problem (P1) and becomes

e−1
2e2+2e when Z → ∞.

Proof. The proof follows the same steps as the proof of

Theorem 1.

VII. PERFORMANCE EVALUATION

In this section, we complement our theoretical analysis

of the proposed algorithms with a trace-driven simulation

study. We compare the proposed algorithms with the optimal

solution, obtained by solving the Integer Linear Program (ILP)

formulation (P1) using Gurobi solver (Gurobi 8.1.1). In ad-

dition, we conjecture that the objective function of placement

subproblem (Q3) is submodular. Therefore, we present the

following two heuristics (SG-NRA algorithm and SG-PRA

algorithm) based on this conjecture. In both heuristics, the

placement is implemented in a similar way to that of the SSG

algorithm, called Submodular Greedy (SG) algorithm [27].

Specifically, we start with an empty solution of VNF-nodes

U ; in each iteration, we add a node that has the maximum

marginal contribution to U , i.e., a node that leads to the

largest increase in the value of the objective function R3(U).
We repeat the above procedure until k VNF-nodes have been

selected. Then, the resource allocation is implemented using



the NRA algorithm for the SG-NRA algorithm, with nodes

ordered based on their selection order of the SG algorithm,

and using the PRA algorithm for the SG-PRA algorithm.

We evaluate all algorithms based on the percentage of the

processed traffic achieved by them, which is defined as the

ratio between the total volume of the traffic processed by the

VNF-nodes and the total traffic volume. Note that although we

present the results of the optimal solution, the multi-VPRA

problem is NP-hard in general (Lemma 1), and for some

problem instances it may take a prohibitively large amount

of time to finish solving the ILP formulation.

A. Evaluation Datasets

1) Abilene Dataset: We consider the Abilene dataset [10]

collected from an educational backbone network in North

America. The network consists of 12 nodes and 144 flows.

Each flow rate was recorded every five minutes for 6 months.

Also, OSPF weights were recorded, which allows us to com-

pute the shortest path of each flow based on these weights. In

our experiments, we set the flow rate to the recorded value of

the first day at 8:00 pm. We consider two types of resources

(i.e., |R| = 2), and the demand of each flow is randomly

chosen between 0 and 20 (i.e., δrf ∈ [0, 20]). The total available

resource is set to the maximum total demand of flows dmax

multiplied by a scaling parameter Z > 1.

2) SNDlib Datasets: We also consider two other datasets

from SNDlib [11]: Cost266 with 37 nodes and 1332 flows,

and ta2 with 65 nodes and 1869 flows. For Cost266, the link’s

routing cost is available, so we use that to compute the shortest

path of each flow. For ta2, we use hop-count-based shortest

path. The setting of resources is the same as that of the Abilene

dataset.

B. Evaluation Results

We start with the Abilene dataset, where we study the effect

of having different levels of resource stretch Z and different

levels of budget B. Remember that Z measures resource

stretch, which is the ratio of the minimum available resource

to the maximum flow demand. We consider a budget of 3,

6, and 10 VNF-nodes. The results are presented in Figure 1.

From the results, we make the following observations.

First, we can see that the simulation results for both the

SSG-PRA and SSG-NRA algorithms agree with their approx-

imation ratios presented in Theorems 1 and 2 in that when

the budget or Z is small, the SSG-NRA performs better and

vice versa. Specifically, we start with Figure 1(a) when the

budget is 3. When the amount of resources is small or there

are flows with huge demand (i.e., Z is small), the SSG-NRA

algorithm is slightly better, but since the number of resources

and nodes (i.e., R|U|) is small anyway, it does not affect

the performance of the SSG-PRA algorithm much. When Z
becomes larger (either by having larger amount of resources

or flows with smaller demand to make Z ≥ 4), the effect of

the terms R|U|Z−1 and RZ−1 diminishes, but the effect of

the constant term of the SSG-NRA algorithm remains, which

corresponds to a slightly worse performance for larger Z. By

doubling the budget to 6 VNF-nodes, we can see in Figure

1(b) that the performance of the SSG-NRA algorithm is better

than the SSG-PRA algorithm when Z is small (i.e., Z ≤ 2.5).

This is because when Z is small and R|U| is large, there is a

high chance that the stopping condition of the PRA algorithm

is satisfied early although some nodes still have large unused

resources. In contrast, for the NRA algorithm, we consider

nodes one by one, and if the stopping condition is satisfied

early, it will only affect the node under consideration and the

algorithm will continue allocating the resources of the other

nodes. The same trend can also be seen in Figure 1(c).

Second, although the SSG-NRA algorithm works better

when Z is small, sometimes it fails to reach the performance

of the optimal solution even when Z is large (see Figure 1(a)).

Increasing the budget helps alleviate this problem with SSG-

NRA algorithm, but still it needs at least double the resource

stretch Z needed by the SSG-PRA algorithm to reach a similar

performance of the optimal solution (see Figures 1(b) and

1(c)). The proposed algorithms achieve at least 1/2 of the

optimal solution, which verifies our theoretical results.

Finally, The results suggest that in order to gain the best

performance in term of total processed traffic, ISPs have two

options: 1) either to scale resources vertically by provisioning

more resources at each node (i.e., makes Z large); or 2) scale

horizontally by deploying more VNF-nodes. Both of these

options have shown promising performance as can be seen

in Figure 1.

Next, we compare the proposed algorithms with the two

heuristics: the SG-PRA and SG-NRA algorithms. We fix the

resource stretch at Z = 4 and consider different levels of

budget. We present the results in Figure 2, where we can see

that the proposed algorithms perform almost the same as the

heuristic. Our proposed algorithms even work better in some

occasions as for the SSG-NRA algorithm (Figure 2(b)). That

means even if our conjecture that R3(U) is submodular is

correct, the loss by considering the second-level relaxation is

negligible. However, the second-level relaxation is important

as it allows to draw a connection to sequence submodular

theory and establish the performance guarantee of the SSG

algorithm.

In the end, we extend the evaluation to other datasets with

a larger number of nodes and flows in Figure 3. We consider

Cost266 dataset (37 nodes and 1332 flows) and ta2 dataset (65

nodes and 1869 flows). We consider two settings of budget: 10

and 15 VNF-nodes. Comparing with the proposed algorithms,

we can see a similar trend to that of Figure 1 in that the SSG-

NRA algorithm works better for a smaller Z and vice-versa

for the SSG-PRA algorithm. Comparing both algorithms with

the optimal solution, the proposed algorithms are also within

1/2 of the value achieved by the optimal solution. In addition,

we can see that the heuristics and the proposed algorithms

perform very similarly to each other and that no algorithm

constantly dominates the other. We note that although the

resource stretch is the same for Cost266 dataset and ta2

dataset, the actual amount of resource is different because the

maximum flow rate of ta2 dataset is 140 times more than that
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(c) Budget = 10 VNF-nodes

Fig. 1: Evaluation of Abilene dataset with different budget, and Z is the ratio of the minimum available resource to the

maximum flow demand
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(b) Z = 4

Fig. 2: Compare the proposed algorithms with the heuristics

of the cost255 dataset. However, the total flow rates of ta2

dataset are 50 times less than the total flow rates of Cost266

dataset. That explains why for a similar budget, we have a

better performance for all algorithms under ta2 dataset (e.g.,

Figure 3(c)) compared to Cost266 dataset (e.g., Figure 3(a)).

VIII. CONCLUSION

In this paper, we considered the problem of placement and

resource allocation of VNF-nodes. We showed that consid-

ering the multi-dimensional setting along with the budget,

resources, and fully flow processing constraints introduces

several new challenges. However, through a two-level re-

laxation, we were able to develop an efficient placement

algorithm. In addition, we utilized the primal-dual technique

to design efficient resource allocation algorithms that account

for the multi-dimensional setting. Although the second-level

relaxation results in a smaller approximation ratio (a factor

of 1/2), we showed through simulation that its impact of the

empirical performance is negligible. Besides, the simulation

results agree with the derived approximation ratio of both

resource allocation algorithms. Specifically, the simulation

showed that for a smaller resource stretch Z and a larger

number of nodes, the NRA algorithm works better; when Z
becomes large enough, the PRA algorithm is better than the

NRA algorithm and reaches the performance of the optimal

solution earlier. In our future work, we will consider service
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(b) Budget = 15 VNF-nodes
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(c) Budget = 10 VNF-nodes
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(d) Budget = 15 VNF-nodes

Fig. 3: Evaluation of Cost266 dataset (a-b) and ta2 dataset

(c-d)

function chaining, where the network functions required for

each flow must be in a specific order.
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