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Abstract—Network function virtualization (NFV) is an emerg-
ing design paradigm that replaces physical middlebox devices
with software modules running on general purpose commodity
servers. While gradually transitioning to NFV, Internet service
providers face the problem of where to introduce NFV in order
to make the most benefit of that; here, we measure the benefit
by the amount of traffic that can be serviced through the NFV.
This problem is non-trivial as it is composed of two challenging
subproblems: 1) placement of nodes to support virtual network
functions (referred to as VNF-nodes); and 2) allocation of the
VNF-nodes resources to network flows; the two subproblems
need to be considered jointly to satisfy the objective of serving
the maximum amount of traffic. This problem has been studied
recently but for the one-dimensional setting, where all network
flows require one network function, which requires a unit of
resource to process a unit of flow. In this work, we extend to
the multi-dimensional setting, where flows can require multiple
network functions, which can also require a different amount of
each resource to process a unit of flow. The multi-dimensional
setting introduces new challenges in addition to those of the one-
dimensional setting (e.g., NP-hardness and non-submodularity)
and also makes the resource allocation a multi-dimensional
generalization of the generalized assignment problem with as-
signment restrictions. To address these difficulties, we propose
a novel two-level relaxation method and utilize the primal-dual
technique to design two approximation algorithms that achieve an
approximation ratio of 2(271)(1671)7 and (e—1)(z-1)

2¢2Z(kR)1/(Z-1) 2e(Z—1+ezZR1/(Z-1))
where £ (resp. R) is the number of VNF-nodes (resp. resources),
and Z is a measure of the available resource compared to flow
demand. Finally, we perform extensive trace-driven simulations
to show the effectiveness of the proposed algorithms.

I. INTRODUCTION

Network function virtualization (NFV) is a new design
paradigm where network functions (e.g., firewall and load
balancer) that traditionally run in dedicated hardware are
now replaced by software modules hosted on general purpose
commodity hardware [1]. Several advantages can be harnessed
from this architecture such as reducing the deployment cost,
increasing the agility, and improving the scalability. These
advantages have encouraged several Internet service providers
(ISPs) to consider this architecture, and some of them have
already started the transition to NFV [2].

However, transitioning to NFV faces challenges from differ-
ent perspectives. From network flows’ perspective, each flow
needs to be processed by certain types of network functions,
and each network function requires a different amount of the
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resources at servers (e.g., CPU, memory). In addition, flows
generally need all of their traffic to be fully processed by such
functions to satisfy certain quality of services [3]. From ISPs’
perspective, transitioning to NFV usually happens in multiple
stages for several reasons such as the desire to utilize the
already provisioned hardware, or budget limitations. Consid-
ering both of these two perspectives leads to an important
question: under a limited budget, how to efficiently introduce
NFV in each stage such that the total traffic of fully processed
flows is maximized? To answer this question, we need to
address two main issues: 1) where to place nodes that support
NFV (called VNF-nodes) without exceeding the given budget?
And 2) how to allocate the VNF-nodes resources to satisfy the
requirements of network flows? We refer to this problem as
joint VNF-nodes placement and resource allocation (VPRA).
Most of the previous work either does not have a limited
budget (e.g., [4]) or relaxes the resources constraint (e.g.,
[3]). In [5], both the budget and resources constraints are
considered, along with fully processed flows requirement.
However, they consider a special case of the VPRA problem
with the following characteristics: a) there is only one type
of resource; b) all flows require the same network function;
and c) the network function requires one unit of resource
to process each unit of flows (we refer to this setting as
basic-VPRA). Even under such a simplified setting, the basic-
VPRA is already quite challenging. It is shown in [5] that
the problem is not only NP-hard but also non-submodular
(a property that generally leads to efficient solutions for
similar problems (e.g., [3])). In this work, we take one step
further and extend the basic-VPRA problem to consider the
setting with multiple network functions, multiple resources,
and heterogeneous resource requirements. We refer to this
generalization as multi-dimensional VPRA (multi-VPRA).
We systematically study the challenges of the multi-VPRA
problem and show that the difficulties introduced by the gen-
eralization call for different algorithms and design strategies.
Specifically, we consider the placement subproblem and the
allocation subproblem separately. We show that the place-
ment subproblem even with removing the fully processed
flow requirement is not easy to solve. Further, the resource
allocation subproblem is a multi-dimensional generalization
of the generalized assignment problem with assignment re-
strictions, which is a challenging problem [6]. To overcome
the challenges of the placement subproblem, we introduce
a two-level relaxation that allows us to draw a connection
to the sequence submodular (also called string submodular)
theory [7], [8] and design an efficient placement algorithm.



For the resource allocation subproblem, we utilize the primal-
dual technique [9] to design two efficient resource allocation
algorithms. We combine the placement algorithm with the
resource allocation algorithms and develop approximation
algorithms with performance guarantees for the original non-
relaxed multi-VPRA problem.

Our main contributions are summarized as follows.

« First, we systematically study the challenges arising from
the generalized multi-VPRA problem. In addition to
the challenges faced by the basic-VPRA (such as NP-
hardness and non-submodularity), we show that overcom-
ing the non-submodularity of the placement subproblem
is much harder and that the resource allocation subprob-
lem is a multi-dimensional generalization of the gener-
alized assignment problem with assignment restrictions,
which is also more challenging.

¢ Second, we introduce a novel two-level relaxation method
that enables us to convert the non-submodular placement
subproblem into a sequence submodular optimization
problem. Leveraging this useful property of sequence
submodularity, we develop an efficient algorithm for the
VNF-nodes placement. In addition, we utilize the primal-
dual technique to design two efficient resource allocation
algorithms.

o Third, we show that by combining the proposed place-
ment algorithm and the two resource allocation al-
gorithms, we can achieve an approximation ratio of

Z-DleD)  and (=UZ—1)___ for the original
2e2Z(kR)1/(Z=1) 2e(Z—1+eZR/(Z-1))
non-relaxed multi-VPRA problem, respectively, where k
(resp. R) is the number of VNF-nodes (resp. resources),
and Z is a measure of the available resource compared to
flow demand. When Z goes to infinity, the approximation
ratio becomes S and 3575, respectively.

o Finally, we conduct extensive trace-driven simulations
using Abilene dataset [10] as well as datasets from
SNDIib [11] to evaluate the performance of the proposed
algorithms.

II. RELATED WORK

The placement problem has been considered in different
domains such as NFV (e.g., [5]), SDN (e.g., [3]), and edge
cloud computing (e.g., [12]). In NFV, several studies (e.g.,
[4], [13], [14]) consider the placement of a minimum number
of VNF instances to cover all flows. A single type of network
functions is considered in [4], [13], [15], [16], and the case
of multiple network functions is considered in [14], [17],
[18], [19], [20]. However, these work neglects either the
budget constraint or the multi-dimensional resource allocation.
The work in [21] considers the placement of middleboxes to
make the shortest path between communicating pairs under a
threshold. Again, this work does not consider multiple network
functions or budget constraint. The closest work to ours is [5],
where budget, resource, and fully processed flow constraints
are considered, but it only considers one type of network
functions and only a single type of resource.

In the SDN domain, the work in [3] considers the placement
of SDN-enabled routers to maximize the total processed traffic.
They consider a budget constraint but neglect the limited
resources constraint. Similarly, in the work on edge cloud
computing [14], although the budget and resource constraints
are considered, their proposed solution is only for a special
case, and the overall problem does not consider the multi-
dimensional setting. To the best of our knowledge, the multi-
dimensional setting has rarely been considered except in a
limited number of studies. In [22], the authors consider multi-
resource VNFs with a focus on the analysis of the vertical
scaling (scaling up/down of some resources) and horizontal
scaling (the number of VNFs instances). The work of [23]
focuses only on request admission and routing. The work of
[24] also considers the multi-resource setting, but the focus
is on how to balance the load among the servers, taking into
consideration the different demand of network functions for
each resource. Our work considers the three constraints of
budget, resource, and fully processed flows, as well as the
multi-dimensional setting.

The concept of sequence (or string) submodularity is an ex-
tension of submodularity, which has been introduced recently
in several studies (e.g., [7], [8], [25]). It models objective
functions that depend on the sequence of actions. It has
been utilized to design approximation algorithms for different
applications such as online advertising [8]. To the best of our
knowledge, we are the first to utilize the concept of sequence
submodularity for the placement problem in NFV. Another
concept is the primal-dual technique, which has been utilized
extensively to design approximation algorithms for several
problems [9]. We utilize this technique to design efficient
algorithms for the multi-dimensional resource allocation sub-
problem.

III. SYSTEM MODEL

We consider a network graph G = (V, ), where V is the
set of nodes, with V' = |V|, and & is the set of edges. We have
a set of flows F, with F' = | F|. We use A to denote the traffic
rate of flow f € F. The traffic of flow f will be sent along a
predetermined path (e.g., a shortest path), and the set of nodes
along this path is denoted by Vy. We use Fy to denote the
set of all flows whose path has at least one node in a subset
of nodes U C V, ie., Fyy ={f € F | VyNU # 0}. When a
node can support some VNFs, we call it a VNF-node. Since
ISPs have a limited budget to deploy VNFs in their networks,
they can only choose a subset of nodes &/ C V to become
VNF-nodes.

We consider a set of network functions denoted by ®. Each
flow needs to be processed by one or more network functions.
The set of network functions required by flow f is denoted by
® ;. The set of flows that require network function ¢ € ® is
denoted as F(¢). Each VNF-node v € ) can host one or more
network functions. We use R to denote the set of resource
types at VNF-nodes (e.g., memory and CPU), with R = |R]|.
Each network function ¢ requires B; units of resource r € R
to process one unit of a network flow. The traffic rate A



of each flow can be split and can be processed at multiple
VNF-nodes. We use A} to denote the portion of flow f that
is assigned to VNF-node v and use A € Rf*V to denote the
assignment matrix.

As we mentioned earlier, the benefits of processed traffic can
be harnessed from fully processed flows, i.e., flows that have
all of their traffic fully processed at VNF-nodes. Hence, when
a flow traverses VNF-nodes and there is sufficient resources on
these VINF-nodes to process all of its rate, i.e., ZU eV, )\1}% >
A¢, then the flow is counted as a processed flow. Therefore, the
total fully processed traffic for a subset of VNF-nodes ¢/ C V
can be expressed as follows:

THUN) 2 Y N, L yza) (1)
fer

where 10y is the indicator function. However, there is a
total amount of each resource available at the nodes, and the
amounts could be different at different nodes. We use c, to
denote the total amount of resource r at node v. Then, the
following constraints should be satisfied:

{Z¢e¢> Be 2 rer(e) M < o

Vr € R and v € U,
- (2)
A} =0,

VfeF and Vv ¢ U.

Also, we consider a limited budget B and assume that the
cost for making node v a VNF-node is the same for all nodes,
which is denoted by b. Let & = |B/b|. Then, the budget
constraint can be expressed as a cardinality constraint, i.e.,

| < k. 3)

As a service provider with a limited budget, a plausible
objective is to introduce NFV at nodes that would result
in the maximum fully processed traffic. Therefore, we con-
sider the problem of multi-dimensional VNF-nodes placement
and resource allocation (multi-VPRA) with the objective of
maximizing the total fully processed traffic (J1 (U, A)). The
problem can be formulated as:

maximize
UCY.X
subject to  (2) and (3).

IV. CHALLENGES OF MULTI-VPRA

In this section, we analyze the multi-VPRA problem and
identify the main challenges posed by this problem. We first
decompose the multi-VPRA problem into two subproblems:
1) placement, i.e., where to deploy VNF-nodes; 2) resource
allocation of the VNF-nodes among flows. We will show
the hardness of each subproblem and explain new challenges
arising from the multi-dimensional generalization.

A. Decomposition

In this subsection, we present a decomposition of the multi-
VPRA problem into placement and allocation subproblems.
We start with the allocation subproblem because it will be used
in the placement subproblem. For a given set of VNF-nodes
U CV, let J¥(X) denote the total amount of fully processed
traffic under flow assignment A. Note that J4 () has the same

expression as that of J; (U, A) in Eq. (1). The superscript ¢/ of
J&(X) is used to indicate that it is associated with a given set
of VNF-nodes U. Then, the resource allocation subproblem
for a given set of VNF-nodes U/ can be formulated as

maximize  JY(\).

A:(2) is satisfied (P2)

Let J3(U) £ maxx.) is saisfied J5 (A) denote the placement
value function, which is the optimal value of problem (P2) for
a given set of VNF-nodes I{. Then, the placement subproblem
can be formulated as
maximize J3(U)
Uy (P3)
subject to  (3).

Note that in order to solve subproblem (P3), we need to solve
subproblem (P2) first to find the optimal A for a given set of
VNF-nodes U.

B. Hardness

In [5, Theorem 1], it is shown that for the basic-VPRA
problem, both subproblems (F2) and (FP3) are NP-hard. The
NP-hardness results can be easily extended to the multi-
dimensional case considered here. Therefore, we simply state
the hardness results in the following lemma without proofs.

Lemma 1. The resource allocation subproblem (P2) and the
placement subproblem (P3) are both NP-hard.

In addition, the placement subproblem of the basic-VPRA
has been shown to be non-submodular [5, Section IV. B].
Similarly, the non-submodularity result can also be easily
extended to the multi-dimensional case. In order to develop
efficient algorithms for the basic-VPRA, the work of [5]
employs a relaxation of the problem that allows partially
processed flows to be counted in the objective function. The
relaxation allows one to prove submodularity of the placement
subproblem and to design efficient algorithms for the basic-
VPRA. However, in the sequel, we will show that the same
framework and algorithms cannot be applied directly to solve
the multi-VPRA problem.

The first challenge is that a similar relaxation of the basic-
VPRA does not admit an efficient placement algorithm with
performance guarantees for the multi-VPRA problem. The
reason is that the objective function of the relaxed placement
subproblem of the basic-VPRA problem can be shown to be
equivalent to the maximum flow problem, which can be proved
to be submodular. In contrast, the objective function of the
relaxed placement subproblem of the multi-VPRA problem, to
the best of our knowledge, can only be evaluated using Linear
Programming, which does not provide us with enough insights
that can be utilized to prove or disprove submodularity. The
second challenge is that the resource allocation algorithms
proposed for the basic-VPRA consider only a single resource
and cannot be utilized to provide performance guarantees for
the multi-VPRA problem, where multiple resources have to
be considered during the resource allocation.



In order to address these new challenges, we introduce
a novel two-level relaxation method: (i) we allow partially
processed flows as in [5], and (ii) we consider an approximate
version of the resource allocation subproblem. This new re-
laxation method enables us to make a connection between the
relaxed placement subproblem and sequence submodular the-
ory and design efficient placement algorithms. For the resource
allocation, we design two resource allocation algorithms both
based on the primal-dual technique. Not only the proposed
placement and resource allocation algorithms can properly
handle the multi-dimensional setting, but they also guarantee
a constant approximation ratio for the original non-relaxed
multi-VPRA problem.

V. RELAXED MULTI-VPRA

In this section, we present the two-level relaxation of the
multi-VPRA problem. In the first-level, we allow partially
processed flows to be counted in the objective function, and
in this case we use Ry (U, A) to denote the relaxed objective
function (defined in Eq. (4)). In the second-level, instead of
evaluating function Ry (U, ) for a set of nodes U together, we
allow the algorithm to consider a specific ordering of nodes
and evaluate the objective function on a node by node basis.
Apparently, the first-level relaxation does not decrease the total
traffic that can be assigned to a given set of VNF-nodes U{. In
contrast, the second-level relaxation results in an approximate
version of the resource allocation subproblem, and thus, there
is a loss in the amount of processed traffic. However, we
will prove that the loss is at most 1/2 of the optimal. In
addition, through simulation results, we will show that the
loss due to the second-level relaxation is negligible. The
purpose of this two-level relaxation is to draw a connection to
the sequence submodular theory, which enables us to design
efficient algorithms with provable performance guarantees.

A. First-level Relaxation

We first introduce the first-level relaxation, which allows
partially processed flows to be counted. In this case, any
fraction of flow f processed by VNF-nodes in Vy NU will
be counted in the total processed traffic. That is, the relaxed
J1(U, ) can be expressed as follows:

RUNEY > M €
fe]:’UGVfﬂZ/[

Apparently, the total processed traffic of flow f cannot exceed
A¢, i.e., the flow rate constraint needs to be satisfied:

YN <Ap VfEF (5)
veld
Then, after the first-level relaxation, problem (P1) becomes
maximize Ry (U, )
UCV,A

(QD)
subject to  (2),(3), and (5).

Next, we explain why we need the second-level relaxation for
solving the multi-VPRA problem efficiently. Similar to the
decomposition of problem (P1), we also decompose problem

(Q1) into placement and allocation subproblems. For a given
set of VNF-nodes & C V, let AY be the set of all flow
assignment matrices A that satisfy the resources constraint (2)
and the flow rate constraint (5), and let RY(\) be the total
processed traffic, which has the same expression as that of
Ry (U, A\) but has U/ in the superscript to indicate that { is not
a decision variable. Then, the resource allocation subproblem
for a given set of VNF-nodes U/ can be formulated as

maximize R4 ().
AeAH

(Q2)

Now, let R3(U) £ maxyepu RY (X) denote the optimal value
of problem (()2) for a given set of VNF-nodes ¢/. The function
R3(U) is also called the placement value function, and the
placement subproblem can be formulated as

maximize Rs(U)
uev (@3)
subject to  (3).

Unlike the relaxed placement subproblem of the basic-VPRA
problem, which has been proven to be submodular, the sub-
modularity of the relaxed placement subproblem (Q3) of the
multi-VPRA remains unknown as explained earlier. Driven by
this observation, in the next subsection we introduce another
level of relaxation, which enables us to draw a connection to
sequence submodular theory.

B. Second-level Relaxation

In the second-level relaxation, instead of solving subprob-
lem (Q2) to obtain the optimal solution R3({/) for a set of
nodes U, we consider a specific ordering of nodes ¢/ and solve
for each node one by one according to their order (which will
be explained soon in Algorithm 1). Let (vy,va,...,v;) be
a sequence of nodes selected over k steps, where v; € V is
selected in the ¢-th step. Let the set of all possible sequences of
nodes V* = {(vy,vs,...,v) | k=0,1,...,|V| and v; € V}.
We use ), to denote the total flow assigned to node v and
define A = {\,, ¥V v € V} to denote a given feasible resource
allocation for nodes V. We define an optimal fractional re-
source allocation of node v given a fixed resource allocation of
all other nodes X to be the solution of the following problem:

maximize g )\JE
A

fer

subject to

Z A <Ay, VfeF,
UEVﬂVf (6)
$=0, VfeFand v ¢ VNVy,
ZB; Z Ap <y, Vr € R and v € V,
PED  fEF(¢)

DA =X Yo e V\ {o},
feFy

where the last constraint is to fix the resource allocation of
the other nodes according to A.



For sequence S € V*, we define function R4(S) to be the
total traffic assigned by Algorithm 1 for nodes in sequence S.
Then, the relaxed version of problem ((Q3) becomes:

maximize R4(S)
scve Q1)
subject to |S| < k.

Algorithm 1 Iterative resource allocation

Input: sequence of nodes S, set of flows F, amount of
resources ¢;,, flow rates Ay, and flow demands B}
Output: resource allocation
Initialize: set each A\, € A to zero
for i =1 to |S| do

Solve problem (6) for node v; given A

Set the value of )\, according to the solution of
problem (6)
5: end for

A

Next, we will show that function R4(S) is a
1/2—approximation of function R3(U) as long as sequence
S is one of the permutations of set /. This establishes that an
optimal solution for problem (Q4) is 1/2—approximation of
the solution of problem ((Q3). Moreover, in the next section,
we will utilize the relaxed problem ((Q4) to design efficient
algorithms for the multi-VPRA problem (P1).

In the following lemma, we present the approximation ratio
of Algorithm 1.

Lemma 2. For a given set of nodes U, let P(U) be the set
of all permutations of nodes U, then for any S € P(U), we
have that Ry(S) > S Rs(U).

Proof. Let F' C F denote the set of (partially or fully)
unsatisfied flows at the end of Algorithm 1, with their traffic
rate to be only the remaining traffic rate at the end of
Algorithm 1. We use OPT(l/) to denote the optimal resource
allocation of VNF-nodes Uf.

The maximum traffic that can be assigned by any algorithm
to VNF-nodes ¢/ has the following upper bound:

OPT(U) (ag) R4(S) + OPT(U|F")
El
< Ry(S)+ > _OPT('|F)

i=1

El
= Ra(S) + > _(Ra(v',...,v"") + OPT(v'|F)
=1
— R4(Ul7 ce. ,’Ui_l))
El

(b) ) .
SR4(S)+ § (R4(’Ul7"'avl)_R4(v17"'71}271))
i=1

= Ra(S) + Ra(S5)
= 2R4(5),
(7
where OPT (U|F’) denotes the optimal allocation of nodes
U given the remaining traffic of unsatisfied flows F’, and v*

Algorithm 2 The SSG-PRA and SSG-NRA algorithms

Input: set of nodes V, set of flows F, amount of resources,
flow rates, and budget B
Output: set of VNF-nodes U/ and resource allocation A

1: Relaxed Problem: (level I) relax function Ji (U, ) to
become Ry (U, A), and (level II) relax function R3(U) to
function R4 (S)

2: Placement Subproblem: solve problem ((Q4) using the
greedy algorithm (Algorithm 3) to obtain S

3: Resource Allocation: use either the PRA algorithm (Al-
gorithm 4) or the NRA algorithm (Algorithm 5) to obtain
resource allocation A for nodes S

denotes the ith node in sequence S. (a) holds because the
maximum traffic that can be assigned by an optimal solution
is upper-bounded by the sum of the total traffic assigned by
Algorithm 1, which is R4(S5), plus the maximum possible
traffic that can be assigned from the remaining traffic of the
unsatisfied flows to nodes U/, which is OPT(U|F"); (b) holds
because F’ is the set of flows with remaining traffic after
solving R4(S), so OPT (v?|F") is a feasible solution for node
v® when we consider Ry(v!, ... v%). O

VI. PROPOSED ALGORITHMS

In this section, we design two algorithms that approximately
solve the multi-VPRA problem (FP1). The main idea is to apply
the two-level relaxation introduced in the previous section
on the original non-relaxed problem (P1). By doing so, we
can show that the objective function of the relaxed placement
subproblem (Q4) is sequence submodular (to be defined later).
In this case, the relaxed placement subproblem can be approx-
imately solved using an efficient greedy algorithm. Moreover,
the relaxed allocation subproblem becomes a Linear Program
(LP), which can also be solved efficiently in polynomial time.
However, the solution to the relaxed problem is for the case
where any fraction of the processed flows is counted. In order
to obtain a solution for the original multi-VPRA problem
(P1), where only the fully processed flows are counted, we
propose two approximation algorithms based on the primal-
dual technique.

We use SSG-PRA and SSG-NRA to denote the algorithms
we develop by combining the Sequence Submodular Greedy
placement with the Primal-dual-based Resource Allocation
and the Node-based Resource Allocation, respectively. We
describe the algorithms in a unified framework presented in
Algorithm 2. The difference is in the resource allocation
subproblem (line 3), where SSG-PRA algorithm uses a Primal-
dual-based Resource Allocation (PRA) algorithm presented
in Algorithm 4, while SSG-NRA algorithm uses a Node-
based Resource Allocation (NRA) algorithm presented in
Algorithm 5. We show that the SSG-PRA and SSG-NRA

algorithms achieve an approximation ratio of %
(Z—1)(e—1)

and e(Z-1FZ R respectively, where Z (to be defined
later) is the amount of resource compared to flow demand.




A. Proposed Placement Algorithms

In this subsection, we prove that function R4(.S) is sequence
submodular. Then, using the property of sequence submodular-
ity, we propose a greedy algorithm for solving the placement
subproblem. First, we define some additional notations. For
two sequences A and B in V* and A = (v{,vg, ..., v} ) and
B = (v},v5,... ,vzz), we define a concatenation of A and B
as:

A® B = (vf,vg,.. Cup)

Also, we say that A < B if we can write B as A ® C for
some C' € V*.

A function from sequences to real numbers, f : V* — R,
is sequence submodular if

a b b
U VY, Vg,

1) f has the forward-monotone property, i.e.,
VA,BeV*, f(A® B) > f(A).
2) f has the diminishing-return property, i.e.,
VA< BeV* YveV,
f(A& (v) - f(A) = f(B& (v) — f(B).
Next, we have the following lemma:
Lemma 3. The function Ry(S) is sequence submodular.

Proof. First, we show that function R4(S) is forward-
monotone. Since Algorithm 1 considers elements according to
their order then for sequence A® B and sequence A, Algorithm
1 considers nodes in A first for the two sequences and in the
same order. So, the assigned traffic to nodes A will be the
same for the two sequences A @ B and A. Adding another
node v to sequence A will not affect what has been already
assigned to nodes A, and the minimum that can be assigned
to node v is zero. So, condition (1) is satisfied.

For the second condition, it is sufficient to show that what
can be assigned to node v when we consider sequence A& (v)
is greater than or equal to what can be assigned to node v when
we consider sequence B @ (v), i.e., Ra(v|A) > Ru(v|B),
where R4(v|A) = Ry(A ®v) — Ry4(A). Since A < B, then
given a feasible solution to Ry(v|B), we can remove the
traffic assigned to nodes B\ A and what remains should be a
feasible solution to R4(v|A) because in R4(v|B) all equality
constraints of nodes A are satisfied. O

Because of this useful sequence submodular property, prob-
lem (Q4) can be approximately solved using an efficient
greedy algorithm. In this case, we can use a simple Sequence
Submodular Greedy (SSG) algorithm to approximately solve
problem (Q4). In the SSG algorithm, we start with an empty
solution of VNF-nodes S; in each iteration, we add a node
that has the maximum marginal contribution to S, i.e., a node
that leads to the largest increase in the value of the objective
function R4(.S). We repeat the above procedure until £ VNF-
nodes have been selected. The overall algorithm is presented in
Algorithm 3. For sequence S selected by the SSG algorithm,
we use misg to denote the resource allocation of VNF-nodes

Algorithm 3 Sequence Submodular Greedy (SSG) algorithms

Input: set of nodes V, set of flows F, amount of resources,
flow rates, flows demand, and k = | B/b].
Output: sequence of VNF-nodes S.

1: Initialize: S =0

2: while there is a node v such that |S @ v| < k do

3: Pick a node v € V' \ S that maximizes R4(S @ v)
4: S+ Sado

5: end while

S according to Algorithm 1. Next, we state the performance
of the SSG algorithm in the following lemma.

Lemma 4. The SSG algorithm achieves an approximation
ratio of (1 —1/e), i.e., w55 > (1 — 1/€)OPT(Q4).

Proof. For an objective function that is sequence submodular,
it has been shown in [8] that the greedy algorithm achieves an
approximation ratio of (1 — 1/e). We have shown in Lemma
3 that the objective function of problem ((Q4) is sequence
submodular, so the result of the lemma holds. O

B. Resource Allocation Algorithm

While solving the placement subproblem ((4), the resource
allocation is achieved by using Algorithm 1, which allows
partially processed flows to be counted. However, problem
(P1) requires flows to be fully processed. Therefore, we
present two resource allocation algorithms that modify the
resource allocation of the selected VNF-nodes while guaran-
teeing certain approximation ratios. Both algorithms are based
on the primal-dual technique [26]. We describe each of the
algorithms in the following.

We first provide a formulation of the optimal fractional
resource allocation of sequence S, which allows partially
processed flows. Based on the dual of this formulation, we
will present the two resource allocation algorithms. We define
5}2 > b€, By to be the total amount of resource r
needed to process a unit of flow f by network functions
®r. We define the maximum demand across all flows as
dmax £ MaXfeF reRr %A s. Then, for each flow f we define
the normalized total demand of resource r as d} £ 5;/\ 7/ dmax-
In addition, for each node v, we define the normalized total
amount of resource 7 as ¢, = ¢! /dmx. Finally, we define
zZ & min,eg,rer €, as a measure of the available resource
compared to flow demand. We map sequence S to a set of
VNF-nodes S. We use z' to denote the portion of flow f that
is assigned to node v and Sy = SNV to denote the set of
VNF-nodes along the path of flow f that are in VNF-nodes
S. The optimal fractional resource allocation of sequence S



can be formulated as:

max Y Ay ) o

! feF  veSy
subject to
Zd}m;gég, VreR and v € S, ®)
feF
Y <1, VfeF,
UESf

% >0, VfeFandveS.

The corresponding dual linear program is

minZZEf,yz—t— Z Zf

L ey Yoy feS;
subject to
9)
zp+ Y djy, > Mg, VfEF and v € Sy,
reR

Yo, 2§ >0, Vo€V andr € R and f € F.

1) Primal-dual-based Resource Allocation (PRA): For the
VNF-nodes S that are selected by the greedy algorithm, we
modify their resource allocation to guarantee fully processed
flows. We propose a primal-dual-based resource allocation
algorithm, which is adapted from a multi-commodity routing
algorithm proposed in [26] and based on the dual formulation
(9). The main idea is to view the dual variable y; as a
price of resource r at VNF-node v. The algorithm chooses
a VNF-node vy with the minimum total cost for each flow.
Then, it picks a flow that maximizes the relative value (i.e.,
Ar) compared to the weighted cost and assigns that flow.
Then the price of each resource of the selected VNF-node
is updated accordingly. The update of the price y;, is designed
in a way such that if the limited resource is violated, then
the stopping condition is satisfied from the previous iteration.
The algorithm stops when all flows are assigned or when
>ves Sorer Coyn > €?71R|S|. The update of price y; is
also implemented in a way such that it maintains the value
of the dual problem within a range of the value of the
primal problem. Then, by weak duality, this establishes the
approximation ratio of the primal-dual algorithm.

We use Tse, to denote the total traffic assigned to VNF-
nodes in sequence S by the PRA algorithm. The approxima-
tion ratio of the PRA algorithm with respect to function R4(.S)
is stated in the following Lemma.

Lemma 5. The approximation ratio of the PRA algorithm is
Thra 2 szgemyror= Ba(S).

Proof. We use OPT((8)) to denote the optimal value of the
primal problem (8). The proof follows from the following:

@ Z-1
o _—_—
TPRA = Z(S[R)/ZD OPT((8))
® Z-1
> Zarizn OPT(®) (10)
© -1
z R4(S).

= Z(kR) @D

Algorithm 4 Primal-dual-based resource allocation (PRA)

1: Input: sequence of VNF-nodes S, set of flows F, nor-
malized amount of resource ¢;,, flow rates Ay, normalized
flow demands d’;.

2: Initialization: ' =0, y, =1/¢,, Vre R,v € S
3: Output: F’
4: repeat
5: for f € F do
6: vp = argmin,es {>2 cp sk
7: end for
/ A .
& f :argmaxfef{m},

o F=FU{f F=F\{f)
10: update y;, = ny(eZ*1R|S|)d;/(Ezfl), Vr € R;
11: until Zves ZTER é:yg > eZ_1R|S‘ or F =0

The primal-dual algorithm has been shown to achieve the
approximation ratio in (a) with respect to any fractional
solution [26, Lemma 5.7, Theorem 5.1]. (b) follows because
k > |S]; (c) follows from the fact that the value R4(S) is
upper bounded by OPT((8)) O

When Z goes to infinity, then the algorithm has an approxi-
mation ratio of 1/e. The time complexity of the PRA algorithm
is O(|S|F?).

2) Node-based Resource Allocation (NRA): The approxi-
mation ratio of the PRA algorithm depends on two parameters:
the budget k£ and the minimum available resource Z. If the
k is large and Z is small, then the approximation ratio of
the PRA algorithm becomes small. However, if Z is large
enough, then it will offset the effect of large k. Therefore,
we design another algorithm, node-based resource allocation
algorithm (NRA), which removes the dependence on % but
adds a constant factor to the approximation ratio. The main
idea of the NRA algorithm is to make the resource allocation
of each VNF-node separately, but picking nodes according
to their order in sequence S. For each VNF-node in S, its
resources are allocated using the primal-dual technique. The
detail of the NRA algorithm is presented in Algorithm 5.
Similar to the PRA algorithm, we view the dual variable vy,
as a price for each resource. The difference here is that we
consider each node separately and try to assign flows with the
largest ratio of the rate Ay compared to the weighted demand
ZreR d?yZ

We use mxg, to denote the total traffic assigned to VNF-
nodes S by the NRA algorithm. Next, we state the approxi-
mation ratio of the NRA algorithm in the following lemma.

Lemma 6. The approximation ratio of the NRA algorithm is
S Z—1
TNRA = Z_1+CZRl/<zfl>R4(S)-

Proof. Let F' C F denote the set of unassigned flows at the
end of Algorithm 5. The maximum traffic that can be assigned
by any algorithm to VNF-nodes S has the following upper



Algorithm 5 Greedy Resource Allocation (NRA)

1: Input: sequence of VNF- nodes S, set of flows F, nor-
malized amount of resource ¢;,, flow rates Ay, normalized
flow demand d}.

2: Initialization: assigned flows F/ = ()

3: Output: F’

4 for each VNF-node v*, i =1 to |S]| do

5: Initialization y); = 1/¢,;, Vr € R

6: repeat

7: f/ — argmaxfej_—{ﬁ};

8 F=FU{f) F=F\{f):

9: update y, = y”, (e?~ IRY /(=Y v e R,

10: until Ere’R CoilYyi = e? IR or F = ()
11: end for

bound:

(a)
R4(S) < g + OPT(S|F')

IS|
< mira + Z OPT(v'|F')

i=1

®) 51 ez

<7TNRA+ZZ71

i=1

< TNRa T %Rl/(z_l)ﬁﬁkA
Z —1+eZRY(Z~1)

Z—1

We use OPT'(S|F') to denote the maximum traffic that can be
assigned to VNF-nodes S from the remaining traffic of flows
F'. (a) holds because the maximum traffic that can be assigned
by an optimal solution is at most the sum of the total traffic
assigned by Algorithm 5, which is 75, plus the maximum
possible traffic that can be assigned from the remaining
unassigned flows, which is OPT(S|F’). For (b), the greedy
algorithm for a single node achieves an approximation ratio
of £ R'/(Z=1) with respect to any fractional solution [26,
Lemma 5.7, Theorem 5.1], so (b) holds. O

RY/(Z-1) 7711\)1;/\ (1)

TNRA*

When Z goes to infinity, then the approximation ratio is 1/(e+
1). The time complexity of the NRA algorithm is O(F?).

C. Main Results

We state our main results in Theorems 1 and 2.

Theorem 1 The SSG-PRA algorithm has an approximation

ratio of )(?/(é 1y for problem (P1) and becomes el
when Z — oo.

2e 2Z(kR) 2e2
Proof. The SSG-PRA algorithm has two main components:
1) VNF-nodes placement and 2) resource allocation. We use
OPT(P) to denote the optimal value of any problem (P).
Recall that we use Tis; to denote the resource allocation of
VNF-nodes in sequence .S selected by the SSG algorithm. We
start with the result of the VNF-nodes placement using the

SSG algorithm. For sequence S that is selected by the SSG
algorithm, we have the following result:

7Tssc. (1 —1/e)OPT(Q4)
2 S0 1/0PT(Q3)
I (12)
© 51— 1/e)OPT(Q1)
@ 1
> 5 (1= 1/e)OPT(PY),

where (a) is due to Lemma 4, (b) holds from Lemma 2, (c¢)
holds because an optimal resource allocation is assumed for
the objective function of problem (Q3), and (d) holds because
problem (Q1) is a relaxed version of problem (P1).

The second component of the SSG-PRA algorithm is the
resource allocation using the PRA algorithm for the sequence
of VNF-nodes S selected by the SSG. We have the following
result:

O _Z-1  pis
WPRAfm 4(5)
b Z -1 s

= eZ(kR)/(Z-1) 856 (13)

© (e=1)(Z-1)

= sergrryrz—n P,
where (a) comes from the approximation ratio of the PRA al-
gorithm in Lemma 5, (b) holds because when 75 is obtained
for problem (Q4) using the greedy algorithms, where the
resource allocation of sequence S is obtained using function
R4(S), and (c) holds from Eq. (12). Therefore, the result of
Theorem 1 follows. O

Theorem 2. The SSG-NRA algorithm has an approximation

ratio of - (Z((’ngéél/l(z Y for problem (P1) and becomes
e—1

5o T 36 when Z — oc.

Proof. The proof follows the same steps as the proof of
Theorem 1. O

VII. PERFORMANCE EVALUATION

In this section, we complement our theoretical analysis
of the proposed algorithms with a trace-driven simulation
study. We compare the proposed algorithms with the optimal
solution, obtained by solving the Integer Linear Program (ILP)
formulation (P1) using Gurobi solver (Gurobi 8.1.1). In ad-
dition, we conjecture that the objective function of placement
subproblem (@3) is submodular. Therefore, we present the
following two heuristics (SG-NRA algorithm and SG-PRA
algorithm) based on this conjecture. In both heuristics, the
placement is implemented in a similar way to that of the SSG
algorithm, called Submodular Greedy (SG) algorithm [27].
Specifically, we start with an empty solution of VNF-nodes
U; in each iteration, we add a node that has the maximum
marginal contribution to U, i.e., a node that leads to the
largest increase in the value of the objective function R3({/).
We repeat the above procedure until £ VNF-nodes have been
selected. Then, the resource allocation is implemented using



the NRA algorithm for the SG-NRA algorithm, with nodes
ordered based on their selection order of the SG algorithm,
and using the PRA algorithm for the SG-PRA algorithm.
We evaluate all algorithms based on the percentage of the
processed traffic achieved by them, which is defined as the
ratio between the total volume of the traffic processed by the
VNF-nodes and the total traffic volume. Note that although we
present the results of the optimal solution, the multi-VPRA
problem is NP-hard in general (Lemma 1), and for some
problem instances it may take a prohibitively large amount
of time to finish solving the ILP formulation.

A. Evaluation Datasets

1) Abilene Dataset: We consider the Abilene dataset [10]
collected from an educational backbone network in North
America. The network consists of 12 nodes and 144 flows.
Each flow rate was recorded every five minutes for 6 months.
Also, OSPF weights were recorded, which allows us to com-
pute the shortest path of each flow based on these weights. In
our experiments, we set the flow rate to the recorded value of
the first day at 8:00 pm. We consider two types of resources
(ie., |[R| = 2), and the demand of each flow is randomly
chosen between 0 and 20 (i.e., 6} € [0, 20]). The total available
resource is set to the maximum total demand of flows dpax
multiplied by a scaling parameter Z > 1.

2) SNDIib Datasets: We also consider two other datasets
from SNDIib [11]: Cost266 with 37 nodes and 1332 flows,
and ta2 with 65 nodes and 1869 flows. For Cost266, the link’s
routing cost is available, so we use that to compute the shortest
path of each flow. For ta2, we use hop-count-based shortest
path. The setting of resources is the same as that of the Abilene
dataset.

B. Evaluation Results

We start with the Abilene dataset, where we study the effect
of having different levels of resource stretch Z and different
levels of budget B. Remember that Z measures resource
stretch, which is the ratio of the minimum available resource
to the maximum flow demand. We consider a budget of 3,
6, and 10 VNF-nodes. The results are presented in Figure 1.
From the results, we make the following observations.

First, we can see that the simulation results for both the
SSG-PRA and SSG-NRA algorithms agree with their approx-
imation ratios presented in Theorems 1 and 2 in that when
the budget or Z is small, the SSG-NRA performs better and
vice versa. Specifically, we start with Figure 1(a) when the
budget is 3. When the amount of resources is small or there
are flows with huge demand (i.e., Z is small), the SSG-NRA
algorithm is slightly better, but since the number of resources
and nodes (i.e., R|U|) is small anyway, it does not affect
the performance of the SSG-PRA algorithm much. When Z
becomes larger (either by having larger amount of resources
or flows with smaller demand to make Z > 4), the effect of
the terms R|U|?~1 and RZ~! diminishes, but the effect of
the constant term of the SSG-NRA algorithm remains, which
corresponds to a slightly worse performance for larger Z. By

doubling the budget to 6 VNF-nodes, we can see in Figure
1(b) that the performance of the SSG-NRA algorithm is better
than the SSG-PRA algorithm when 7 is small (i.e., Z < 2.5).
This is because when Z is small and R|U| is large, there is a
high chance that the stopping condition of the PRA algorithm
is satisfied early although some nodes still have large unused
resources. In contrast, for the NRA algorithm, we consider
nodes one by one, and if the stopping condition is satisfied
early, it will only affect the node under consideration and the
algorithm will continue allocating the resources of the other
nodes. The same trend can also be seen in Figure 1(c).

Second, although the SSG-NRA algorithm works better
when Z is small, sometimes it fails to reach the performance
of the optimal solution even when 7 is large (see Figure 1(a)).
Increasing the budget helps alleviate this problem with SSG-
NRA algorithm, but still it needs at least double the resource
stretch Z needed by the SSG-PRA algorithm to reach a similar
performance of the optimal solution (see Figures 1(b) and
1(c)). The proposed algorithms achieve at least 1/2 of the
optimal solution, which verifies our theoretical results.

Finally, The results suggest that in order to gain the best
performance in term of total processed traffic, ISPs have two
options: 1) either to scale resources vertically by provisioning
more resources at each node (i.e., makes Z large); or 2) scale
horizontally by deploying more VNF-nodes. Both of these
options have shown promising performance as can be seen
in Figure 1.

Next, we compare the proposed algorithms with the two
heuristics: the SG-PRA and SG-NRA algorithms. We fix the
resource stretch at Z = 4 and consider different levels of
budget. We present the results in Figure 2, where we can see
that the proposed algorithms perform almost the same as the
heuristic. Our proposed algorithms even work better in some
occasions as for the SSG-NRA algorithm (Figure 2(b)). That
means even if our conjecture that R3({/) is submodular is
correct, the loss by considering the second-level relaxation is
negligible. However, the second-level relaxation is important
as it allows to draw a connection to sequence submodular
theory and establish the performance guarantee of the SSG
algorithm.

In the end, we extend the evaluation to other datasets with
a larger number of nodes and flows in Figure 3. We consider
Cost266 dataset (37 nodes and 1332 flows) and ta2 dataset (65
nodes and 1869 flows). We consider two settings of budget: 10
and 15 VNF-nodes. Comparing with the proposed algorithms,
we can see a similar trend to that of Figure 1 in that the SSG-
NRA algorithm works better for a smaller Z and vice-versa
for the SSG-PRA algorithm. Comparing both algorithms with
the optimal solution, the proposed algorithms are also within
1/2 of the value achieved by the optimal solution. In addition,
we can see that the heuristics and the proposed algorithms
perform very similarly to each other and that no algorithm
constantly dominates the other. We note that although the
resource stretch is the same for Cost266 dataset and ta2
dataset, the actual amount of resource is different because the
maximum flow rate of ta2 dataset is 140 times more than that
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Fig. 2: Compare the proposed algorithms with the heuristics

of the cost255 dataset. However, the total flow rates of ta2
dataset are 50 times less than the total flow rates of Cost266
dataset. That explains why for a similar budget, we have a
better performance for all algorithms under ta2 dataset (e.g.,
Figure 3(c)) compared to Cost266 dataset (e.g., Figure 3(a)).

VIII. CONCLUSION

In this paper, we considered the problem of placement and
resource allocation of VNF-nodes. We showed that consid-
ering the multi-dimensional setting along with the budget,
resources, and fully flow processing constraints introduces
several new challenges. However, through a two-level re-
laxation, we were able to develop an efficient placement
algorithm. In addition, we utilized the primal-dual technique
to design efficient resource allocation algorithms that account
for the multi-dimensional setting. Although the second-level
relaxation results in a smaller approximation ratio (a factor
of 1/2), we showed through simulation that its impact of the
empirical performance is negligible. Besides, the simulation
results agree with the derived approximation ratio of both
resource allocation algorithms. Specifically, the simulation
showed that for a smaller resource stretch Z and a larger
number of nodes, the NRA algorithm works better; when Z
becomes large enough, the PRA algorithm is better than the
NRA algorithm and reaches the performance of the optimal
solution earlier. In our future work, we will consider service
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(c-d)

function chaining, where the network functions required for
each flow must be in a specific order.
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