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Abstract

In this paper, we consider a linear–quadratic stochastic two-person nonzero-sum differential game.
Open-loop and closed-loop Nash equilibria are introduced. The existence of the former is characterized
by the solvability of a system of forward–backward stochastic differential equations, and that of the latter is
characterized by the solvability of a system of coupled symmetric Riccati differential equations. Sometimes,
open-loop Nash equilibria admit a closed-loop representation, via the solution to a system of non-symmetric
Riccati equations, which could be different from the outcome of the closed-loop Nash equilibria in general.
However, it is found that for the case of zero-sum differential games, the Riccati equation system for the
closed-loop representation of an open-loop saddle point coincides with that for the closed-loop saddle
point, which leads to the conclusion that the closed-loop representation of an open-loop saddle point is
the outcome of the corresponding closed-loop saddle point as long as both exist. In particular, for linear–
quadratic optimal control problem, the closed-loop representation of an open-loop optimal control coincides
with the outcome of the corresponding closed-loop optimal strategy, provided both exist.
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1. Introduction

Let (Ω ,F ,F,P) be a complete filtered probability space on which a standard one-dimensional
Brownian motion {W (t), t ⩾ 0} is defined such that F = {Ft }t⩾0 is the natural filtration of
W (·) augmented by all the P-null sets in F . Consider the following controlled linear (forward)
stochastic differential equation (FSDE, for short) on [t, T ]:⎧⎨⎩d X (s) =

[
A(s)X (s) + B1(s)u1(s) + B2(s)u2(s) + b(s)

]
ds

+
[
C(s)X (s) + D1(s)u1(s) + D2(s)u2(s) + σ (s)

]
dW (s),

X (t) = x .

(1.1)

In the above, X (·) is called the state process taking values in the n-dimensional Euclidean space
Rn with the initial pair (t, x) ∈ [0, T ) × Rn; for i = 1, 2, ui (·) is called the control process
of Player i taking values in Rmi . We assume that the coefficients A(·), B1(·), B2(·), C(·), D1(·),
and D2(·) are deterministic matrix-valued functions of proper dimensions, and that b(·) and σ (·)
are F-progressively measurable processes taking values in Rn . For i = 1, 2 and t ∈ [0, T ), we
define

Ui [t, T ] =

{
ui : [t, T ] × Ω → Rmi

⏐⏐ui (·) is F-progressively measurable,

E
∫ T

t
|ui (s)|2ds < ∞

}
.

Any element ui (·) ∈ Ui [t, T ] is called an admissible control of Player i on [t, T ]. Under some
mild conditions on the coefficients, for any initial pair (t, x) ∈ [0, T ) × Rn and controls ui (·) ∈

Ui [t, T ], i = 1, 2, the state equation (1.1) admits a unique solution X (·) ≡ X (· ; t, x, u1(·), u2(·)).
The cost functional for Player i is defined by the following:

J i (t, x; u1(·), u2(·)) ≜ E
{
⟨G i X (T ), X (T )⟩ + 2⟨gi , X (T )⟩

+

∫ T

t

[
⟨

⎛⎜⎝Qi (s) Si
1(s)⊤ Si

2(s)⊤

Si
1(s) Ri

11(s) Ri
12(s)

Si
2(s) Ri

21(s) Ri
22(s)

⎞⎟⎠
⎛⎝X (s)

u1(s)
u2(s)

⎞⎠ ,

⎛⎝X (s)
u1(s)
u2(s)

⎞⎠⟩

+ 2⟨

⎛⎜⎝q i (s)
ρi

1(s)

ρi
2(s)

⎞⎟⎠ ,

⎛⎝X (s)
u1(s)
u2(s)

⎞⎠⟩

]
ds
}
,

(1.2)

where Qi (·), Si
1(·), Si

2(·), Ri
11(·), Ri

12(·), Ri
21(·), and Ri

22(·) are deterministic matrix-valued
functions of proper dimensions with

Qi (·)⊤ = Qi (·), Ri
j j (·)

⊤
= Ri

j j (·), Ri
12(·)⊤ = Ri

21(·), i, j = 1, 2,

where the superscript ⊤ denotes the transpose of matrices, and G i is a deterministic symmetric
matrix; q i (·), ρi

1(·), and ρi
2(·) are allowed to be vector-valued F-progressively measurable

processes, and gi is allowed to be an FT -measurable random vector. Then we can formally
pose the following problem.

Problem (SDG). For any initial pair (t, x) ∈ [0, T ) × Rn and i = 1, 2, Player i wants to find
a control u∗

i (·) ∈ Ui [t, T ] such that the cost functional J i (t, x; u1(·), u2(·)) is minimized.

The above-posed problem is referred to as a linear–quadratic (LQ, for short) stochastic
two-person differential game. In the case

J 1(t, x; u1(·), u2(·)) + J 2(t, x; u1(·), u2(·)) = 0,

∀ (t, x) ∈ [0, T ] × Rn, ∀ ui (·) ∈ Ui [t, T ], i = 1, 2,
(1.3)
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the corresponding Problem (SDG) is called an LQ stochastic two-person zero-sum differential
game. To guarantee (1.3), one usually assumes that

G1
+ G2

= 0, g1
+ g2

= 0, Q1(·) + Q2(·) = 0, q1(·) + q2(·) = 0,

S1
j (·) + S2

j (·) = 0, R1
jk(·) + R2

jk(·) = 0, ρ1
j (·) + ρ2

j (·) = 0, j, k = 1, 2.
(1.4)

We refer the readers to [22,23] (and the references cited therein) for the case of LQ stochastic
two-person zero-sum differential games. Recall that in [22], open-loop and closed-loop saddle
points were introduced and it was established that the existence of an open-loop saddle point
for the problem is equivalent to the solvability of a forward–backward stochastic differential
equation (FBSDE, for short), and the existence of a closed-loop saddle point for the problem is
equivalent to the solvability of a (differential) Riccati equation. In this paper, we will not assume
(1.4) so that (1.3) is not necessarily true. Such a Problem (SDG) is usually referred to as an
LQ stochastic two-person nonzero-sum differential game, emphasizing that (1.3) is not assumed.
We have two main goals in this paper: Establish a theory for Problem (SDG) parallel to that
of [22] (for zero-sum case); and study the difference between the closed-loop representation
of open-loop Nash equilibria and the outcome of closed-loop Nash equilibria. It turns out that
the above-mentioned difference for the non-zero sum case is indicated through the symmetry
of the corresponding Riccati equations: One is symmetric and the other is not. On the other
hand, we found that the situation in the zero-sum case, which was not discussed in [22], is
totally different: The closed-loop representation of an open-loop saddle point coincides with
the outcome of the corresponding closed-loop saddle point, when both exist. In particular, for
stochastic linear–quadratic optimal control problem, the closed-loop representation of an open-
loop optimal control is the outcome of the corresponding closed-loop optimal strategy [21].

Mathematically, posing condition (1.4) makes the structure of the problem much simpler,
since with such a condition, only one performance index is needed, for which one player is the
minimizer and the other player is the maximizer. However, as we know that in the real life, each
player should have his/her own cost functional, and even for the totally hostile situation, the
objectives of the opponents might not necessarily be exactly the opposite (zero-sum). Therefore,
realistically, it is more meaningful to investigate Problem (SDG) without assuming (1.4). By the
way, although we will not discuss such a situation in the current paper, we still would like to
point out that sometimes, certain cooperations between the players might result in both players
rewarded more.

Static version of nonzero-sum differential games could be regarded as a kind of non-
cooperative games for which one can trace back to the work of Nash [16]. For some early works
on nonzero-sum differential games, we would like to mention Lukes–Russell [12], Friedman [5],
and Bensoussan [2]. In the past two decays, due to the appearance of backward stochastic
differential equations (BSDEs, for short), some new and interesting works were published.
Among them, we would like to mention [6,7,4,3,20,10,11,8].

The rest of the paper is organized as follows. Section 2 will collect some preliminaries. Among
other things, we will recall some known results on LQ optimal control problems. In Section 3, we
will introduce open-loop and closed-loop Nash equilibria. A characterization of the existence of
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open-loop Nash equilibria in terms of the solvability of two coupled FBSDEs will be presented
in Section 4. Section 5 is devoted to the discussion of the closed-loop Nash equilibria whose
existence is characterized by the solvability of two coupled symmetric Riccati equations. In
Section 6, we will present two examples showing the difference between open-loop and closed-
loop Nash equilibria. In Section 7, closed-loop representation of open-loop Nash equilibria will
be studied, and comparison between the closed-loop representation of open-loop Nash equilibria
and the outcome of closed-loop Nash equilibria will be carried out. We will take a deeper look at
the situation for LQ zero-sum games in Section 8. Finally, some concluding remarks will be put
in order in Section 9.

2. Preliminaries

Let Rn×m be the space of all (n × m) matrices and Sn
⊆ Rn×n be the set of all (n × n)

symmetric matrices. The inner product ⟨· , ·⟩ on Rn×m is given by ⟨M, N ⟩ ↦→ tr (M⊤N ), and the
induced norm is given by |M | =

√
tr (M⊤M). We denote by R(M) the range of a matrix M ,

and for M, N ∈ Sn we use the notation M ⩾ N (respectively, M > N ) to indicate that M − N
is positive semi-definite (respectively, positive definite). Recall that any M ∈ Rn×m admits a
unique (Moore–Penrose) pseudo-inverse M†

∈ Rm×n having the following properties [19]:

M M†M = M, M†M M†
= M†, (M M†)⊤ = M M†, (M†M)⊤ = M†M.

Further, if M ∈ Rn×m and Ψ ∈ Rn×ℓ such that

R(Ψ ) ⊆ R(M),

then all the solutions Θ to the linear equation

MΘ = Ψ

are given by the following:

Θ = M†Ψ + (I − M†M)Γ , Γ ∈ Rm×ℓ.

In addition, if M⊤
= M ∈ Sn , then

M†
= (M†)⊤, M M†

= M†M; and M ⩾ 0 ⇐⇒ M† ⩾ 0.

Next, let T > 0 be a fixed time horizon. For any t ∈ [0, T ] and Euclidean space H, we introduce
the following spaces of deterministic functions:

L p(t, T ;H) =

{
ϕ : [t, T ] → H

⏐⏐ ∫ T

t
|ϕ(s)|pds < ∞

}
, 1 ⩽ p < ∞,

L∞(t, T ;H) =

{
ϕ : [t, T ] → H

⏐⏐esssup
s∈[t,T ]

|ϕ(s)| < ∞

}
,

C([t, T ];H) =

{
ϕ : [t, T ] → H

⏐⏐ϕ(·) is continuous
}
.

Further, we introduce the following spaces of random variables and stochastic processes: For any
t ∈ [0, T ],
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L2
Ft

(Ω;H) =

{
ξ : Ω → H

⏐⏐ξ is Ft -measurable, E|ξ |
2 < ∞

}
,

L2
F(t, T ;H) =

{
ϕ : [t, T ] × Ω → H

⏐⏐ϕ(·) is F-progressively measurable,

E
∫ T

t
|ϕ(s)|2ds < ∞

}
,

L2
F(Ω; C([t, T ];H)) =

{
ϕ : [t, T ] × Ω → H

⏐⏐ϕ(·) is F-adapted, continuous,

E
(

sup
t⩽s⩽T

|ϕ(s)|2
)

< ∞

}
,

L2
F(Ω; L1(t, T ;H)) =

{
ϕ : [t, T ] × Ω → H

⏐⏐ϕ(·) is F-progressively measurable,

E
( ∫ T

t
|ϕ(s)|ds

)
2 < ∞

}
.

We now recall some results on stochastic LQ optimal control problems. Consider the state
equation⎧⎨⎩d X (s) =

[
A(s)X (s) + B(s)u(s) + b(s)

]
ds

+
[
C(s)X (s) + D(s)u(s) + σ (s)

]
dW (s), s ∈ [t, T ],

X (t) = x .

(2.1)

The cost functional takes the following form:

J (t, x; u(·)) ≜ E
{
⟨G X (T ), X (T )⟩ + 2⟨g, X (T )⟩

+

∫ T

t

[
⟨

(
Q(s) S(s)⊤

S(s) R(s)

)(
X (s)
u(s)

)
,

(
X (s)
u(s)

)
⟩

+ 2⟨

(
q(s)
ρ(s)

)
,

(
X (s)
u(s)

)
⟩

]
ds
}
.

(2.2)

We adopt the following assumptions.

(S1) The coefficients of the state equation (2.1) satisfy the following:{
A(·) ∈ L1(0, T ;Rn×n), B(·) ∈ L2(0, T ;Rn×m), b(·) ∈ L2

F(Ω; L1(0, T ;Rn)),

C(·) ∈ L2(0, T ;Rn×n), D(·) ∈ L∞(0, T ;Rn×m), σ (·) ∈ L2
F(0, T ;Rn).

(S2) The weighting coefficients in the cost functional (2.2) satisfy the following:{
Q(·) ∈ L1(0, T ; Sn), S(·) ∈ L2(0, T ;Rm×n), R(·) ∈ L∞(0, T ; Sm),
q(·) ∈ L2

F(Ω; L1(0, T ;Rn)), ρ(·) ∈ L2
F(0, T ;Rm), g ∈ L2

FT
(Ω;Rn), G ∈ Sn.

Note that under (S1), for any (t, x) ∈ [0, T ) × Rn and u(·) ∈ U [t, T ] ≡ L2
F(t, T ;Rm), the

state equation (2.1) admits a unique strong solution X (·) ≡ X (· ; t, x, u(·)). Further, if (S2) is
also assumed, then the cost functional (2.2) is well-defined for every (t, x) ∈ [0, T ) × Rn and
u(·) ∈ U [t, T ]. Therefore, the following problem is meaningful.

Problem (SLQ). For any given initial pair (t, x) ∈ [0, T ) × Rn , find a ū(·) ∈ U [t, T ] such
that

J (t, x; ū(·)) = inf
u(·)∈U [t,T ]

J (t, x; u(·)) ≡ V (t, x). (2.3)

Any ū(·) ∈ U [t, T ] satisfying (2.3) is called an open-loop optimal control of Problem (SLQ)
for (t, x); the corresponding X̄ (·) ≡ X (· ; t, x, ū(·)) is called an open-loop optimal state process
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and (X̄ (·), ū(·)) is called an open-loop optimal pair. The map V (· , ·) is called the value function
of Problem (LQ).

Definition 2.1. Let (t, x) ∈ [0, T ) × Rn . If there exists a (unique) ū(·) ∈ U [t, T ] such that (2.3)
holds, then we say that Problem (SLQ) is (uniquely) open-loop solvable at (t, x). If Problem
(SLQ) is (uniquely) open-loop solvable for every (t, x) ∈ [0, T ) ×Rn , then we say that Problem
(SLQ) is (uniquely) open-loop solvable on [0, T ) × Rn .

The following result is concerned with open-loop optimal controls of Problem (SLQ) for a
given initial pair, whose proof can be found in [22] (see also [21]).

Theorem 2.2. Let (S1)–(S2) hold. For a given initial pair (t, x) ∈ [0, T ) × Rn , a state-control
pair (X̄ (·), ū(·)) is an open-loop optimal pair of Problem (SLQ) if and only if the following hold:

(i) The stationarity condition holds:

B(s)⊤Ȳ (s) + D(s)⊤ Z̄ (s) + S(s)X̄ (s) + R(s)ū(s) + ρ(s) = 0, a.e. s ∈ [t, T ], a.s.

where (Ȳ (·), Z̄ (·)) is the adapted solution to the following BSDE:⎧⎨⎩
dȲ (s) = −

[
A(s)⊤Ȳ (s) + C(s)⊤ Z̄ (s) + Q(s)X̄ (s) + S(s)⊤ū(s) + q(s)

]
ds

+ Z̄ (s)dW (s), s ∈ [t, T ],
Ȳ (T ) = G X̄ (T ) + g.

(ii) The map u(·) ↦→ J (t, 0; u(·)) is convex.

Next, for any given t ∈ [0, T ), take Θ(·) ∈ L2(t, T ;Rm×n) ≡ Q[t, T ] and v(·) ∈ U [t, T ]. For
any x ∈ Rn , let us consider the following equation on [t, T ]:⎧⎨⎩d X (s) =

{
[A(s) + B(s)Θ(s)]X (s) + B(s)v(s) + b(s)

}
ds

+
{
[C(s) + D(s)Θ(s)]X (s) + D(s)v(s) + σ (s)

}
dW (s),

X (t) = x,

(2.4)

which admits a unique solution X (·) ≡ X (· ; t, x,Θ(·), v(·)), depending on Θ(·) and v(·). The
above is called a closed-loop system of the original state equation (2.1) under closed-loop strategy
(Θ(·), v(·)). We point out that (Θ(·), v(·)) is independent of the initial state x . With the above
corresponding solution X (·), we define

J (t, x;Θ(·)X (·) + v(·)) = E
{
⟨G X (T ), X (T )⟩ + 2⟨g, X (T )⟩

+

∫ T

t

[
⟨

(
Q(s) S(s)⊤

S(s) R(s)

)(
X (s)

Θ(s)X (s) + v(s)

)
,

(
X (s)

Θ(s)X (s) + v(s)

)
⟩

+ 2⟨

(
q(s)
ρ(s)

)
,

(
X (s)

Θ(s)X (s) + v(s)

)
⟩

]
ds
}
.

Let us recall the following definition.

Definition 2.3. A pair (Θ̄(·), v̄(·)) ∈ Q[t, T ] × U [t, T ] is called a closed-loop optimal strategy
of Problem (SLQ) on [t, T ] if

J (t, x; Θ̄(·)X̄ (·) + v̄(·)) ⩽ J (t, x;Θ(·)X (·) + v(·)),
∀ x ∈ Rn, ∀ (Θ(·), v(·)) ∈ Q[t, T ] × U [t, T ],

(2.5)

where X̄ (·) = X (· ; t, x, Θ̄(·), v̄(·)), and X (·) = X (· ; t, x,Θ(·), v(·)).



J. Sun and J. Yong / Stochastic Processes and their Applications 129 (2019) 381–418 387

We emphasize that the pair (Θ̄(·), v̄(·)) is required to be independent of the initial state x ∈ Rn .
It is interesting that the following equivalence theorem holds.

Proposition 2.4. Let (S1)–(S2) hold and let (Θ̄(·), v̄(·)) ∈ Q[t, T ]×U [t, T ]. Then the following
statements are equivalent:

(i) (Θ̄(·), v̄(·)) is a closed-loop optimal strategy of Problem (SLQ) on [t, T ].

(ii) For any x ∈ Rn and v(·) ∈ U [t, T ],

J (t, x; Θ̄(·)X̄ (·) + v̄(·)) ⩽ J (t, x; Θ̄(·)X (·) + v(·)),

where X̄ (·) = X (· ; t, x, Θ̄(·), v̄(·)) and X (·) = X (· ; t, x, Θ̄(·), v(·)).

(iii) For any x ∈ Rn and u(·) ∈ U [t, T ],

J (t, x; Θ̄(·)X̄ (·) + v̄(·)) ⩽ J (t, x; u(·)), (2.6)

where X̄ (·) = X (· ; t, x, Θ̄(·), v̄(·)).

Proof. The implication (i) ⇒ (ii) follows by taking Θ(·) = Θ̄(·) in (2.5).
For the implication (ii) ⇒ (iii), take any u(·) ∈ U [t, T ] and let X (·) = X (· ; t, x, u(·)). Then

d X (s) =
{
[A(s) + B(s)Θ̄(s)]X (s) + B(s)[u(s) − Θ̄(s)X (s)] + b(s)

}
ds

+
{
[C(s) + D(s)Θ̄(s)]X (s) + D(s)[u(s) − Θ̄(s)X (s)] + σ (s)

}
dW (s),

with X (t) = x . Thus, if let

v(·) = u(·) − Θ̄(·)X (·),

we have

J (t, x; Θ̄(·)X̄ (·) + v̄(·)) ⩽ J (t, x; Θ̄(·)X (·) + v(·)) = J (t, x; u(·)),

which proves (iii).
For the implication (iii) ⇒ (i), take any (Θ(·), v(·)) ∈ Q[t, T ] × U [t, T ] and let X (·) be the

solution to (2.4). Let u(·) = Θ(·)X (·) + v(·), Then by (iii), we have

J (t, x; Θ̄(·)X̄ (·) + v̄(·)) ⩽ J (t, x; u(·)) = J (t, x;Θ(·)X (·) + v(·)).

This completes the proof. □

From the above result, we see that if (Θ̄(·), v̄(·)) is a closed-loop optimal strategy of Problem
(SLQ) on [t, T ], then for any fixed initial state x ∈ Rn , with X̄ (·) denoting the state process
corresponding to (t, x) and (Θ̄(·), v̄(·)), (2.6) implies that the outcome

ū(·) ≡ Θ̄(·)X̄ (·) + v̄(·) ∈ U [t, T ]

is an open-loop optimal control of Problem (SLQ) for (t, x). Therefore, for Problem (SLQ), the
existence of closed-loop strategies on [t, T ] implies the existence of open-loop optimal controls
for initial pair (t, x) for any x ∈ Rn . We point out that the situation will be different for two-
person differential games. Details will be carried out later.

For closed-loop optimal strategies, we have the following characterization [22,21].
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Theorem 2.5. Let (S1)–(S2) hold. Then Problem (SLQ) admits a closed-loop optimal strategy

on [t, T ] if and only if the following Riccati equation admits a solution P(·) ∈ C([t, T ]; Sn):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ṗ + P A + A⊤ P + C⊤ PC + Q

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†(B⊤ P + D⊤ PC + S) = 0, a.e. on [t, T ],
R(B⊤ P + D⊤ PC + S) ⊆ R(R + D⊤ P D), a.e. on [t, T ],
R + D⊤ P D ⩾ 0, a.e. on [t, T ],
P(T ) = G,

such that

(R + D⊤ P D)†(B⊤ P + D⊤ PC + S) ∈ L2(t, T ;Rm×n),

and the adapted solution (η(·), ζ (·)) to the BSDE on [t, T ]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη = −

{[
A − B(R + D⊤ P D)†(B⊤ P + D⊤ PC + S)

]⊤
η

+
[
C − D(R + D⊤ P D)†(B⊤ P + D⊤ PC + S)

]⊤
ζ

+
[
C − D(R + D⊤ P D)†(B⊤ P + D⊤ PC + S)

]⊤ Pσ

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†ρ + Pb + q
}

ds + ζdW,

η(T ) = g,

satisfies{
B⊤η + D⊤ζ + D⊤ Pσ + ρ ∈ R(R + D⊤ P D), a.e. s ∈ [t, T ], a.s.
(R + D⊤ P D)†(B⊤η + D⊤ζ + D⊤ Pσ + ρ) ∈ L2

F(t, T ;Rm).

In this case, any closed-loop optimal strategy (Θ̄(·), v̄(·)) of Problem (SLQ) admits the following

representation:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ̄ = −(R + D⊤ P D)†(B⊤ P + D⊤ PC + S)

+
[
I − (R + D⊤ P D)†(R + D⊤ P D)

]
θ,

v̄ = −(R + D⊤ P D)†(B⊤η + D⊤ζ + D⊤ Pσ + ρ)
+
[
I − (R + D⊤ P D)†(R + D⊤ P D)

]
ν,

for some θ (·) ∈ L2(t, T ;Rm×n) and ν(·) ∈ L2
F(t, T ;Rm). Further, the value function V (· , ·) is

given by

V (t, x) = E
{
⟨P(t)x, x⟩ + 2⟨η(t), x⟩ +

∫ T

t

[
⟨Pσ, σ ⟩ + 2⟨η, b⟩ + 2⟨ζ, σ ⟩

−
⟨
(R + D⊤ P D)†(B⊤η + D⊤ζ + D⊤ Pσ + ρ),

B⊤η + D⊤ζ + D⊤ Pσ + ρ
⟩]

ds
}
.
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3. Stochastic differential games

We now return to our Problem (SDG). Recall the sets Ui [t, T ] = L2
F(t, T ;Rmi ) of all open-

loop controls of Player i (i = 1, 2). For notational simplicity, we let m = m1 + m2 and denote

B(·) = (B1(·), B2(·)), D(·) = (D1(·), D2(·)),

Si (·) =

(
Si

1(·)

Si
2(·)

)
, Ri (·) =

(
Ri

11(·) Ri
12(·)

Ri
21(·) Ri

22(·)

)
≡

(
Ri

1(·)

Ri
2(·)

)
,

ρi (·) =

(
ρi

1(·)

ρi
2(·)

)
, u(·) =

(
u1(·)
u2(·)

)
.

Naturally, we identify U [t, T ] = U1[t, T ] × U2[t, T ]. With such notations, the state equation
becomes⎧⎨⎩d X (s) =

[
A(s)X (s) + B(s)u(s) + b(s)

]
ds

+
[
C(s)X (s) + D(s)u(s) + σ (s)

]
dW (s), s ∈ [t, T ],

X (t) = x,

(3.1)

and the cost functionals become (i = 1, 2)

J i (t, x; u(·)) = E
{
⟨G i X (T ), X (T )⟩ + 2⟨gi , X (T )⟩

+

∫ T

t

[⟨(Qi (s) Si (s)⊤

Si (s) Ri (s)

)(
X (s)
u(s)

)
,

(
X (s)
u(s)

)⟩
+ 2

⟨(q i (s)
ρi (s)

)
,

(
X (s)
u(s)

)⟩]
ds
}
.

(3.2)

Let us introduce the following standard assumptions:

(G1) The coefficients of the state equation (3.1) satisfy the following:{
A(·) ∈ L1(0, T ;Rn×n), B(·) ∈ L2(0, T ;Rn×m), b(·) ∈ L2

F(Ω; L1(0, T ;Rn)),
C(·) ∈ L2(0, T ;Rn×n), D(·) ∈ L∞(0, T ;Rn×m), σ (·) ∈ L2

F(0, T ;Rn).

(G2) The weighting coefficients in the cost functionals (3.2) satisfy the following: For
i = 1, 2,{

Qi (·) ∈ L1(0, T ; Sn), Si (·) ∈ L2(0, T ;Rm×n), Ri (·) ∈ L∞(0, T ; Sm),
q i (·) ∈ L2

F(Ω; L1(0, T ;Rn)), ρi (·) ∈ L2
F(0, T ;Rm), gi

∈ L2
FT

(Ω;Rn), G i
∈ Sn.

Under (G1), for any (t, x) ∈ [0, T ) × Rn and u(·) = (u1(·)⊤, u2(·)⊤)⊤ ∈ U [t, T ], Eq. (3.1)
admits a unique solution [22]

X (·) ≜ X (· ; t, x, u1(·), u2(·)) ≡ X (· ; t, x, u(·)) ∈ L2
F(Ω; C([t, T ];Rn)).

Moreover, the following estimate holds:

E
(

sup
t⩽s⩽T

|X (s)|2
)
⩽ KE

{
|x |

2
+

( ∫ T

t
|b(s)|ds

)
2
+

∫ T

t
|σ (s)|2ds +

∫ T

t
|u(s)|2ds

}
,

hereafter K > 0 represents an absolute constant. Therefore, under (G1)–(G2), the cost
functionals J i (t, x; u(·)) ≡ J i (t, x; u1(·), u2(·)) are well-defined for all (t, x) ∈ [0, T ) × Rn

and all (u1(·), u2(·)) ∈ U1[t, T ] ×U2[t, T ]. Having the above, we now introduce the following
definition.
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Definition 3.1. A pair (u∗

1(·), u∗

2(·)) ∈ U1[t, T ] × U2[t, T ] is called an open-loop Nash
equilibrium of Problem (SDG) for the initial pair (t, x) ∈ [0, T ) × Rn if

J 1(t, x; u∗

1(·), u∗

2(·)) ⩽ J 1(t, x; u1(·), u∗

2(·)), ∀ u1(·) ∈ U1[t, T ],

J 2(t, x; u∗

1(·), u∗

2(·)) ⩽ J 2(t, x; u∗

1(·), u2(·)), ∀ u2(·) ∈ U2[t, T ].
(3.3)

Next, we denote

Qi [t, T ] = L2(t, T ;Rmi ×n), i = 1, 2.

For any initial pair (t, x) ∈ [0, T ) × Rn , Θ(·) ≡ (Θ1(·)⊤,Θ2(·)⊤)⊤ ∈ Q1[t, T ] × Q2[t, T ] and
any v(·) ≡ (v1(·)⊤, v2(·)⊤)⊤ ∈ U1[t, T ] × U2[t, T ], consider the following system:⎧⎨⎩d X (s) =

{
[A(s) + B(s)Θ(s)]X (s) + B(s)v(s) + b(s)

}
ds

+
{
[C(s) + D(s)Θ(s)]X (s) + D(s)v(s) + σ (s)

}
dW (s),

X (t) = x .

(3.4)

Under (G1), the above admits a unique solution X (·) ≡ X (· ; t, x,Θ1(·), v1(·),Θ2(·), v2(·)). If we
denote

ui (·) = Θi (·)X (·) + vi (·), i = 1, 2, (3.5)

then (3.4) coincides with the original state equation (1.1). We call (Θi (·), vi (·)) a closed-
loop strategy of Player i , and call (3.4) the closed-loop system of the original system under
closed-loop strategies (Θ1(·), v1(·)) and (Θ2(·), v2(·)) of Players 1 and 2. Also, we call u(·) ≡

(u1(·)⊤, u2(·)⊤)⊤ with ui (·) defined by (3.5) the outcome of the closed-loop strategy (Θ(·), v(·)).
With the solution X (·) to (3.4), we denote

J i (t, x;Θ(·)X (·) + v(·)) ≡ J i (t, x;Θ1(·)X (·) + v1(·),Θ2(·)X (·) + v2(·))

= E
{
⟨G i X (T ), X (T )⟩ + 2⟨gi , X (T )⟩

+

∫ T

t

[⟨(Qi (Si )⊤

Si Ri

)(
X

ΘX + v

)
,

(
X

ΘX + v

)⟩
+ 2

⟨(q i

ρi

)
,

(
X

ΘX + v

)⟩]
ds
}

= E
{
⟨G i X (T ), X (T )⟩ + 2⟨gi , X (T )⟩

+

∫ T

t

[⟨(Qi
+ Θ⊤Si

+ (Si )⊤Θ + Θ⊤ RiΘ (Si )⊤ + Θ⊤ Ri

Si
+ RiΘ Ri

)(
X
v

)
,

(
X
v

)⟩
+ 2

⟨(q i
+ Θ⊤ρi

ρi

)
,

(
X
v

)⟩]
ds
}
.

(3.6)

Similarly, one can define J i (t, x;Θ1(·)X (·) + v1(·), u2(·)) and J i (t, x; u1(·),Θ2(·)X (·) + v2(·)).
We now introduce the following definition.

Definition 3.2. A 4-tuple (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) ∈ Q1[t, T ]×U1[t, T ]×Q2[t, T ]×U2[t, T ]
is called a closed-loop Nash equilibrium of Problem (SDG) on [t, T ] if for any x ∈ Rn and any
4-tuple (Θ1(·), v1(·); Θ2(·), v2(·)) ∈ Q1[t, T ] × U1[t, T ] × Q2[t, T ] × U2[t, T ], the following
hold:

J 1(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X∗(·) + v∗

2 (·))
⩽ J 1(t, x;Θ1(·)X (·) + v1(·),Θ∗

2 (·)X (·) + v∗

2 (·)),
(3.7)

J 2(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X∗(·) + v∗

2 (·))
⩽ J 2(t, x;Θ∗

1 (·)X (·) + v∗

1 (·),Θ2(·)X (·) + v2(·)).
(3.8)
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Note that in both (3.7) and (3.8),

X∗(·) = X (· ; t, x,Θ∗

1 (·), v∗

1 (·),Θ∗

2 (·), v∗

2 (·)),

whereas, in (3.7),

X (·) = X (· ; t, x,Θ1(·), v1(·),Θ∗

2 (·), v∗

2 (·)),

and in (3.8),

X (·) = X (· ; t, x,Θ∗

1 (·), v∗

1 (·),Θ2(·), v2(·)).

Thus, X (·) appeared in (3.7) and (3.8) are different in general. We emphasize that the closed-loop
Nash equilibrium (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) is independent of the initial state x . The following
result provides some equivalent definitions of closed-loop Nash equilibrium.

Proposition 3.3. Let (G1)–(G2) hold and let (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) ∈ Q1[t, T ]×U1[t, T ]×
Q2[t, T ] × U2[t, T ]. Then the following are equivalent:

(i) (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) is a closed-loop Nash equilibrium of Problem (SDG) on [t, T ].

(ii) For any (v1(·), v2(·)) ∈ U1[t, T ] × U2[t, T ],

J 1(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X∗(·) + v∗

2 (·))

⩽ J 1(t, x;Θ∗

1 (·)X (·) + v1(·),Θ∗

2 (·)X (·) + v∗

2 (·)),

J 2(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X∗(·) + v∗

2 (·))

⩽ J 2(t, x;Θ∗

1 (·)X (·) + v∗

1 (·),Θ∗

2 (·)X (·) + v2(·)).

(iii) For any (u1(·), u2(·)) ∈ U1[t, T ] × U2[t, T ],

J 1(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X∗(·) + v∗

2 (·))

⩽ J 1(t, x; u1(·),Θ∗

2 (·)X (·) + v∗

2 (·)), (3.9)

J 2(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X∗(·) + v∗

2 (·))

⩽ J 2(t, x;Θ∗

1 (·)X (·) + v∗

1 (·), u2(·)). (3.10)

Proof. The proof is similar to that of Proposition 2.4. □

If we denote

ūi (·) = Θ∗

i (·)X∗(·) + v∗

i (·), i = 1, 2, (3.11)

then (3.9)–(3.10) become

J 1(t, x; ū1(·), ū2(·)) ⩽ J 1(t, x; u1(·),Θ∗

2 (·)X (·) + v∗

2 (·)), (3.12)

J 2(t, x; ū1(·), ū2(·)) ⩽ J 2(t, x;Θ∗

1 (·)X (·) + v∗

1 (·), u2(·)). (3.13)

Since in (3.12), X (·) corresponds to u1(·) and (Θ∗

2 (·), v∗

2 (·)), one might not have

ū2(·) = Θ∗

2 (·)X (·) + v∗

2 (·).

Likewise, one might not have the following either:

ū1(·) = Θ∗

1 (·)X (·) + v∗

1 (·).
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Hence, comparing this with (3.3), we see that the outcome (ū1(·), ū2(·)) of the closed-loop Nash
equilibrium (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) defined by (3.11) is not an open-loop Nash equilibrium of
Problem (SDG) for (t, X∗(t)) in general.

On the other hand, if (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) is a closed-loop Nash equilibrium of Problem
(SDG) on [t, T ], we may consider the following state equation on [t, T ] (denoting Θ∗(·) =

(Θ∗

1 (·)⊤,Θ∗

2 (·)⊤)⊤):⎧⎨⎩
d X (s) =

[
(A + BΘ∗)X + B1v1 + B2v2 + b

]
ds

+
[
(C + DΘ∗)X + D1v1 + D2v2 + σ

]
dW (s),

X (t) = x,

(3.14)

with cost functionals

J̃ i (t, x; v1(·), v2(·)) = J i (t, x;Θ∗

1 (·)X (·) + v1(·),Θ∗

2 (·)X (·) + v2(·)), i = 1, 2. (3.15)

Then by (ii) of Proposition 3.3, (v∗

1 (·), v∗

2 (·)) is an open-loop Nash equilibrium of the correspond-
ing (nonzero-sum differential) problem. Such an observation will be very useful below.

4. Open-loop Nash equilibria and FBSDEs

In this section, we discuss the open-loop Nash equilibria for Problem (SDG) in terms of
FBSDEs. The main result of this section can be stated as follows.

Theorem 4.1. Let (G1)–(G2) hold and let (t, x) ∈ [0, T ) × Rn be given. Then u∗(·) ≡

(u∗

1(·)⊤, u∗

2(·)⊤)⊤ ∈ U1[t, T ] × U2[t, T ] is an open-loop Nash equilibrium of Problem (SDG)
for (t, x) if and only if the following two conditions hold:

(i) The adapted solution (X∗(·), Y ∗

i (·), Z∗

i (·)) to the FBSDE on [t, T ]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d X∗(s) =
[
A(s)X∗(s) + B(s)u∗(s) + b(s)

]
ds

+
[
C(s)X∗(s) + D(s)u∗(s) + σ (s)

]
dW (s),

dY ∗

i (s) = −
[
A(s)⊤Y ∗

i (s) + C(s)⊤ Z∗

i (s) + Qi (s)X∗(s)

+ Si (s)⊤u∗(s) + q i (s)
]
ds + Z∗

i (s)dW (s),

X∗(t) = x, Y ∗

i (T ) = G i X∗(T ) + gi ,

i = 1, 2, (4.1)

satisfies the following stationarity condition:

Bi (s)⊤Y ∗

i (s) + Di (s)⊤ Z∗

i (s) + Si
i (s)X∗(s) + Ri

i (s)u∗(s) + ρi
i (s) = 0,

a.e. s ∈ [t, T ], a.s.
(4.2)

(ii) For i = 1, 2, the following convexity condition holds:

E
{ ∫ T

t

[⟨
Qi (s)X i (s), X i (s)

⟩
+ 2

⟨
Si

i (s)X i (s), ui (s)
⟩
+
⟨
Ri

i i (s)ui (s), ui (s)
⟩]

ds

+
⟨
G i X i (T ), X i (T )

⟩}
⩾ 0, ∀ ui (·) ∈ Ui [t, T ],

(4.3)

where X i (·) is the solution to the following FSDE on [t, T ]:{
d X i (s) =

[
A(s)X i (s) + Bi (s)ui (s)

]
ds +

[
C(s)X i (s) + Di (s)ui (s)

]
dW (s),

X i (t) = 0.
(4.4)

Or, equivalently, the map ui (·) ↦→ J i (t, x; u(·)) is convex (for i = 1, 2).
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Proof. For a given (t, x) ∈ [0, T ) × Rn and u∗(·) ∈ U [t, T ], let (X∗(·), Y ∗

1 (·), Z∗

1 (·)) be the
adapted solution to FBSDE (4.1) with i = 1. For any u1(·) ∈ U1[t, T ] and ε ∈ R, let X ε(·) be the
solution to the following perturbed state equation on [t, T ]:⎧⎨⎩d X ε(s) =

{
A(s)X ε(s) + B1(s)[u∗

1(s) + εu1(s)] + B2(s)u∗

2(s) + b(s)
}
ds

+
{
C(s)X ε(s) + D1(s)[u∗

1(s) + εu1(s)] + D2(s)u∗

2(s) + σ (s)
}
dW (s),

X ε(t) = x .

Then denoting X1(·) the solution of (4.4) with i = 1, we have X ε(·) = X∗(·) + εX1(·) and

J 1(t, x; u∗

1(·) + εu1(·), u∗

2(·)) − J 1(t, x; u∗

1(·), u∗

2(·))

= εE
{⟨

G1[2X∗(T ) + εX1(T )], X1(T )⟩ + 2⟨g1, X1(T )
⟩

+

∫ T

t

[⟨⎛⎜⎝Q1 (S1
1 )⊤ (S1

2 )⊤

S1
1 R1

11 R1
12

S1
2 R1

21 R1
22

⎞⎟⎠
⎛⎝2X∗

+ εX1
2u∗

1 + εu1
2u∗

2

⎞⎠ ,

⎛⎝X1
u1
0

⎞⎠⟩+ 2
⟨(q1

ρ1
1

)
,

(
X1
u1

)⟩]
ds
}

= 2εE
{⟨

G1 X∗(T ) + g1, X1(T )
⟩
+

∫ T

t

[⟨
Q1 X∗

+ (S1)⊤u∗
+ q1, X1

⟩
+
⟨
S1

1 X∗
+ R1

1u∗
+ ρ1

1 , u1
⟩]

ds
}

+ ε2E
{⟨

G1 X1(T ), X1(T )
⟩
+

∫ T

t

[⟨
Q1 X1, X1

⟩
+ 2

⟨
S1

1 X1, u1
⟩
+
⟨
R1

11u1, u1
⟩]

ds
}
.

On the other hand, applying Itô’s formula to s ↦→ ⟨Y ∗

1 (s), X1(s)⟩, we obtain

E
{⟨

G1 X∗(T ) + g1, X1(T )
⟩
+

∫ T

t

[⟨
Q1 X∗

+ (S1)⊤u∗
+ q1, X1

⟩
+
⟨
S1

1 X∗
+ R1

1u∗
+ ρ1

1 , u1
⟩]

ds
}

= E
∫ T

t

{⟨
−
[
A⊤Y ∗

1 + C⊤ Z∗

1 + Q1 X∗
+ (S1)⊤u∗

+ q1], X1
⟩
+
⟨
Y ∗

1 , AX1 + B1u1
⟩

+
⟨
Z∗

1 , C X1 + D1u1
⟩
+
⟨
Q1 X∗

+ (S1)⊤u∗
+ q1, X1

⟩
+
⟨
S1

1 X∗
+ R1

1u∗
+ ρ1

1 , u1
⟩}

ds

= E
∫ T

t

⟨
B⊤

1 Y ∗

1 + D⊤

1 Z∗

1 + S1
1 X∗

+ R1
1u∗

+ ρ1
1 , u1

⟩
ds.

Hence,

J 1(t, x; u∗

1(·) + εu1(·), u∗

2(·)) − J 1(t, x; u∗

1(·), u∗

2(·))

= 2εE
∫ T

t

⟨
B⊤

1 Y ∗

1 + D⊤

1 Z∗

1 + S1
1 X∗

+ R1
1u∗

+ ρ1
1 , u1

⟩
ds

+ ε2E
{⟨

G1 X1(T ), X1(T )
⟩
+

∫ T

t

[⟨
Q1 X1, X1

⟩
+ 2

⟨
S1

1 X1, u1
⟩
+
⟨
R1

11u1, u1
⟩]

ds
}
.

It follows that

J 1(t, x; u∗

1(·), u∗

2(·)) ⩽ J 1(t, x; u∗

1(·) + εu1(·), u∗

2(·)), ∀ u1(·) ∈ U1[t, T ], ∀ ε ∈ R,

if and only if (4.3) holds for i = 1, and

B⊤

1 Y ∗

1 + D⊤

1 Z∗

1 + S1
1 X∗

+ R1
1u∗

+ ρ1
1 = 0, a.e. s ∈ [t, T ], a.s. (4.5)
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Similarly,

J 2(t, x; u∗

1(·), u∗

2(·)) ⩽ J 2(t, x; u∗

1(·), u∗

2(·) + εu2(·)), ∀ u2(·) ∈ U2[t, T ], ∀ ε ∈ R,

if and only if (4.3) holds for i = 2, and

B⊤

2 Y ∗

2 + D⊤

2 Z∗

2 + S2
2 X∗

+ R2
2u∗

+ ρ2
2 = 0, a.e. s ∈ [t, T ], a.s. (4.6)

Combining (4.5)–(4.6), we obtain (4.2). □

Remark 4.2. (i) Note that (4.1); i = 1, 2, are two coupled FBSDEs, and these two FBSDEs are
coupled through the relation (4.2). In fact, from (4.2), we see that(

R1
11 R1

12

R2
21 R2

22

)(
u∗

1

u∗

2

)
= −

(
B⊤

1 Y ∗

1 + D⊤

1 Z∗

1 + S1
1 X∗

+ ρ1
1

B⊤

2 Y ∗

2 + D⊤

2 Z∗

2 + S2
2 X∗

+ ρ2
2

)
.

Thus, say, in the case that the coefficient matrix of u∗ is invertible, one has(
u∗

1

u∗

2

)
= −

(
R1

11 R1
12

R2
21 R2

22

)−1 (
B⊤

1 Y ∗

1 + D⊤

1 Z∗

1 + S1
1 X∗

+ ρ1
1

B⊤

2 Y ∗

2 + D⊤

2 Z∗

2 + S2
2 X∗

+ ρ2
2

)
.

Plugging the above into (4.1), we see the coupling between the two coupled FBSDEs (with
i = 1, 2).

(ii) An easily verifiable condition for the convexity of the map ui (·) ↦→ J i (t, x; u(·)) is

G i ⩾ 0, Ri
i i (s) > 0, Qi (s) − Si

i (s)⊤ Ri
i i (s)−1Si

i (s) ⩾ 0; a.e. s ∈ [t, T ]. (4.7)

This can be seen by completing the square: For any x ∈ Rn and u ∈ Rmi ,⟨
Qi (s)x, x

⟩
+ 2

⟨
Si

i (s)x, u
⟩
+
⟨
Ri

i i (s)u, u
⟩

=
⟨[

Qi (s) − Si
i (s)⊤ Ri

i i (s)−1Si
i (s)

]
x, x

⟩
+
⟨
Ri

i i (s)
[
u + Ri

i i (s)−1Si
i (s)x

]
, u + Ri

i i (s)−1Si
i (s)x

⟩
⩾ 0, a.e. s ∈ [t, T ].

Note that the conditions (4.3); i = 1, 2, are independent, and both can be regarded as
the convexity condition for certain Problem (SLQ) with appropriate state equation and cost
functional. For more discussion on the convexity, we refer the interested readers to [21].

To conclude this section, let us write FBSDE (4.1) and stationarity condition (4.2) more
compactly. For this, we introduce the following:

A(·) =

(
A(·) 0
0 A(·)

)
, B(·) =

(
B(·) 0

0 B(·)

)
≡

(
B1(·) B2(·) 0 0

0 0 B1(·) B2(·)

)
,

C(·) =

(
C(·) 0

0 C(·)

)
, D(·) =

(
D(·) 0

0 D(·)

)
≡

(
D1(·) D2(·) 0 0

0 0 D1(·) D2(·)

)
,

Q(·) =

(
Q1(·) 0

0 Q2(·)

)
, S(·) =

(
S1(·) 0

0 S2(·)

)
, R(·) =

(
R1(·) 0

0 R2(·)

)
,

q(·) =

(
q1(·)
q2(·)

)
, ρ(·) =

(
ρ1(·)
ρ2(·)

)
, G =

(
G1 0
0 G2

)
, g =

(
g1

g2

)
.
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Then ⎧⎪⎪⎨⎪⎪⎩
A(·) ∈ L1(0, T ;R2n×2n), B(·) ∈ L2(0, T ;R2n×2m),
C(·) ∈ L2(0, T ;R2n×2n), D(·) ∈ L∞(0, T ;R2n×2m),
Q(·) ∈ L1(0, T ; S2n), S(·) ∈ L2(0, T ;R2m×2n), R(·) ∈ L∞(0, T ; S2m),
q(·) ∈ L2

F(Ω; L1(0, T ;R2n)), ρ(·) ∈ L2
F(0, T ;R2m), G ∈ S2n, g ∈ L2

FT
(Ω;R2n).

Further, let

J =

⎛⎜⎜⎝
Im1 0
0 0
0 0
0 Im2

⎞⎟⎟⎠ ≡

⎛⎜⎜⎝
Im1 0m1×m2

0m2×m1 0m2×m2
0m1×m1 0m1×m2
0m2×m1 Im2

⎞⎟⎟⎠ ∈ R2m×m, Ik =

(
Ik

Ik

)
∈ R2k×k .

Clearly, one has

B(·)J ≡

(
B1(·) B2(·) 0 0

0 0 B1(·) B2(·)

)⎛⎜⎜⎝
Im1 0
0 0
0 0
0 Im2

⎞⎟⎟⎠ =

(
B1(·) 0

0 B2(·)

)
,

D(·)J ≡

(
D1(·) D2(·) 0 0

0 0 D1(·) D2(·)

)⎛⎜⎜⎝
Im1 0
0 0
0 0
0 Im2

⎞⎟⎟⎠ =

(
D1(·) 0

0 D2(·)

)
,

J⊤S(·) ≡

(
Im1 0 0 0
0 0 0 Im2

)⎛⎜⎜⎜⎜⎝
S1

1 (·) 0

S1
2 (·) 0

0 S2
1 (·)

0 S2
2 (·)

⎞⎟⎟⎟⎟⎠ =

(
S1

1 (·) 0
0 S2

2 (·)

)
,

J⊤R(·) ≡

(
Im1 0 0 0
0 0 0 Im2

)⎛⎜⎜⎜⎜⎝
R1

1(·) 0

R1
2(·) 0

0 R2
1(·)

0 R2
2(·)

⎞⎟⎟⎟⎟⎠ =

(
R1

1(·) 0
0 R2

2(·)

)
,

J⊤ρ(·) ≡

(
Im1 0 0 0
0 0 0 Im2

)⎛⎜⎜⎜⎜⎝
ρ1

1 (·)

ρ1
2 (·)

ρ2
1 (·)

ρ2
2 (·)

⎞⎟⎟⎟⎟⎠ =

(
ρ1

1 (·)

ρ2
2 (·)

)
.

With the above notation, FBSDE (4.1) can be written as (suppressing s and dropping ∗)⎧⎨⎩
d X =

(
AX + Bu + b

)
ds +

(
C X + Du + σ

)
dW,

dY = −
(
A⊤Y + C⊤Z + QIn X + S⊤Imu + q

)
ds + ZdW,

X (t) = x, Y(T ) = GIn X (T ) + g,

(4.8)

where

Y(·) =

(
Y1(·)
Y2(·)

)
, Z(·) =

(
Z1(·)
Z2(·)

)
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and the stationarity condition (4.2) can be written as

J⊤
(
B⊤Y + D⊤Z + SIn X + RImu + ρ

)
= 0, a.e. s ∈ [t, T ], a.s. (4.9)

Keep in mind that (4.8) is a coupled FBSDE with the coupling given through (4.9).

5. Closed-loop Nash equilibria and Riccati equations

We now look at closed-loop Nash equilibria for Problem (SDG). Again, for simplicity of
notation, we will suppress the time variable s as long as no confusion arises. First, we present
the following result which is a consequence of Theorem 4.1.

Proposition 5.1. Let (G1)–(G2) hold. Suppose that (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) ∈ Q1[t, T ] ×

U1[t, T ] × Q2[t, T ] × U2[t, T ] is a closed-loop Nash equilibrium of Problem (SDG) on [t, T ].
Denote Θ∗(·) ≡ (Θ∗

1 (·)⊤,Θ∗

2 (·)⊤)⊤ and let X(·) be the solution to the Rn×n-valued SDE{
dX = (A + BΘ∗)Xds + (C + DΘ∗)XdW, s ∈ [t, T ],
X(t) = I. (5.1)

Then for i = 1, 2, the adapted solution (Yi (·),Zi (·)) to the Rn×n-valued BSDE on [t, T ]⎧⎪⎪⎨⎪⎪⎩
dYi = −

{
(A + BΘ∗)⊤Yi + (C + DΘ∗)⊤Zi

+
[
Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗
]
X
}

ds + Zi dW,

Yi (T ) = G iX(T ),

(5.2)

satisfies

B⊤

i Yi + D⊤

i Zi + (Si
i + Ri

iΘ
∗)X = 0, a.e. s ∈ [t, T ], a.s. (5.3)

Proof. Let us consider state equation (3.14) with the cost functionals defined by (3.15). Denoting
v(·) = (v1(·)⊤, v2(·)⊤)⊤, by an argument similar to (3.6), we have:

J̃ i (t, x; v(·)) ≡ J i (t, x;Θ∗(·)X (·) + v(·))

= E
{
⟨G i X (T ), X (T )⟩ + 2⟨gi , X (T )⟩

+

∫ T

t

[
⟨

(
Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗ (Si )⊤ + (Θ∗)⊤ Ri

Si
+ RiΘ∗ Ri

)(
X
v

)
,

(
X
v

)
⟩

+ 2⟨

(
q i

+ (Θ∗)⊤ρi

ρi

)
,

(
X
v

)
⟩

]
ds
}
.

We know by (ii) of Proposition 3.3 that v∗(·) ≡ (v∗

1 (·)⊤, v∗

2 (·)⊤)⊤ is an open-loop Nash
equilibrium for the problem with the state equation (3.14) and with the cost functionals
J̃ i (t, x; v(·)) for any initial pair (t, x). Thus, according to Theorem 4.1, we have for i = 1, 2,

B⊤

i Y ∗

i + D⊤

i Z∗

i + (Si
i + Ri

iΘ
∗)X∗

+ Ri
i v

∗
+ ρi

i = 0, a.e. s ∈ [t, T ], a.s. (5.4)

with X∗(·) being the solution to the closed-loop system:⎧⎨⎩d X∗
=
[
(A + BΘ∗)X∗

+ Bv∗
+ b

]
ds

+
[
(C + DΘ∗)X∗

+ Dv∗
+ σ

]
dW, s ∈ [t, T ],

X∗(t) = x,

(5.5)
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and (Y ∗

i (·), Z∗

i (·)) being the adapted solution to the following BSDE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dY ∗

i = −

{
(A + BΘ∗)⊤Y ∗

i + (C + DΘ∗)⊤ Z∗

i

+
[
Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗
]
X∗

+ (Si
+ RiΘ∗)⊤v∗

+ q i
+ (Θ∗)⊤ρi

}
ds + Z∗

i dW, s ∈ [t, T ],

Y ∗

i (T ) = G i X∗(T ) + gi .

(5.6)

Since (Θ∗(·), v∗(·)) is independent of x and (5.4)–(5.6) hold for all x ∈ Rn , by subtracting
solutions corresponding to x and 0, the latter from the former, we see that for any x ∈ Rn , the
adapted solution (X (·), Yi (·), Z i (·)) (i = 1, 2) to the following FBSDE on [t, T ]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d X = (A + BΘ∗)Xds + (C + DΘ∗)XdW, s ∈ [t, T ],

dYi = −

{
(A + BΘ∗)⊤Yi + (C + DΘ∗)⊤ Z i

+
[
Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗
]
X
}

ds + Z i dW,

X (t) = x, Yi (T ) = G i X (T ),

satisfies

B⊤

i Yi + D⊤

i Z i + (Si
i + Ri

iΘ
∗)X = 0, a.e. s ∈ [t, T ], a.s.

The desired result then follows easily. □

Now we are ready to present the main result of this section, which characterizes the closed-
loop Nash equilibrium of Problem (SDG).

Theorem 5.2. Let (G1)–(G2) hold. Then (Θ∗(·), v∗(·)) ∈ Q[t, T ] × U [t, T ] is a closed-loop
Nash equilibrium of Problem (SDG) on [t, T ] if and only if the following hold:

(i) For i = 1, 2, the solution Pi (·) ∈ C([t, T ]; Sn) to the Lyapunov type equation⎧⎨⎩
Ṗi + Pi A + A⊤ Pi + C⊤ Pi C + Qi

+ (Θ∗)⊤(Ri
+ D⊤ Pi D)Θ∗

+
[
Pi B + C⊤ Pi D + (Si )⊤

]
Θ∗

+ (Θ∗)⊤
[
B⊤ Pi + D⊤ Pi C + Si]

= 0,

Pi (T ) = G i ,

(5.7)

satisfies the following two conditions:

Ri
i i + D⊤

i Pi Di ⩾ 0, a.e. s ∈ [t, T ], (5.8)

B⊤

i Pi + D⊤

i Pi C + Si
i + (Ri

i + D⊤

i Pi D)Θ∗
= 0, a.e. s ∈ [t, T ]. (5.9)

(ii) For i = 1, 2, the adapted solution (ηi (·), ζi (·)) to the BSDE on [t, T ]⎧⎪⎪⎨⎪⎪⎩
dηi = −

{
A⊤ηi + C⊤ζi + (Θ∗)⊤

[
B⊤ηi + D⊤ζi + D⊤ Piσ + ρi

+ (Ri
+ D⊤ Pi D)v∗

]
+
[
Pi B + C⊤ Pi D + (Si )⊤

]
v∗

+ C⊤ Piσ + Pi b + q i
}

ds + ζi dW,

ηi (T ) = gi ,

(5.10)

satisfies

B⊤

i ηi + D⊤

i ζi + D⊤

i Piσ + ρi
i + (Ri

i + D⊤

i Pi D)v∗
= 0, a.e. s ∈ [t, T ], a.s. (5.11)
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Proof. We first prove the necessity. Suppose that (Θ∗(·), v∗(·)) is a closed-loop Nash equilibrium
of Problem (SDG) on [t, T ], where Θ∗(·) ≡ (Θ∗

1 (·)⊤,Θ∗

2 (·)⊤)⊤ and v∗(·) ≡ (v∗

1 (·)⊤, v∗

2 (·)⊤)⊤.
Let X(·) and Yi (·) (i = 1, 2) be the solutions of (5.1) and (5.2), respectively. Consider the
following linear ordinary differential equation (ODE, for short) which is equivalent to (5.7):⎧⎨⎩

Ṗi + Pi (A + BΘ∗) + (A + BΘ∗)⊤ Pi + (C + DΘ∗)⊤ Pi (C + DΘ∗)
+ Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗
= 0, s ∈ [t, T ],

Pi (T ) = G i .

(5.12)

Such an equation admits a unique solution Pi (·) ∈ C([t, T ]; Sn). By Itô’s formula, we have

d(PiX) = ṖiXds + Pi (A + BΘ∗)Xds + Pi (C + DΘ∗)XdW
= −

{
(A + BΘ∗)⊤ PiX + (C + DΘ∗)⊤ Pi (C + DΘ∗)X
+
[
Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗
]
X
}
ds

+ Pi (C + DΘ∗)XdW.

Comparing the above with (5.2), by the uniqueness of adapted solutions to BSDEs, one has

Yi = PiX, Zi = Pi (C + DΘ∗)X; i = 1, 2.

From (5.1), we see that the process X(·) is invertible almost surely. Then, the above together with
(5.3) leads to (5.9). Now let X∗(·) be the solution to (5.5), and for i = 1, 2, let (Y ∗

i (·), Z∗

i (·)) be
the adapted solution to (5.6). Define{

ηi = Y ∗

i − Pi X∗,

ζi = Z∗

i − Pi (C + DΘ∗)X∗
− Pi (Dv∗

+ σ ). (5.13)

Then ηi (T ) = gi , and

dηi = dY ∗

i − Ṗi X∗ds − Pi d X∗

= −

{
(A + BΘ∗)⊤Y ∗

i + (C + DΘ∗)⊤ Z∗

i + (Si
+ RiΘ∗)⊤v∗

+ Pi (Bv∗
+ b)

+ q i
+ (Θ∗)⊤ρi

+
[
Ṗi + Pi (A + BΘ∗) + Qi

+ (Θ∗)⊤Si
+ (Si )⊤Θ∗

+ (Θ∗)⊤ RiΘ∗
]
X∗

}
ds

+

{
Z∗

i − Pi
[
(C + DΘ∗)X∗

+ Dv∗
+ σ

]}
dW

= −

{
(A + BΘ∗)⊤Y ∗

i + (C + DΘ∗)⊤ Z∗

i + (Si
+ RiΘ∗)⊤v∗

+ Pi (Bv∗
+ b)

+ q i
+ (Θ∗)⊤ρi

− (A + BΘ∗)⊤ Pi X∗
− (C + DΘ∗)⊤ Pi (C + DΘ∗)X∗

}
ds + ζi dW

= −

{
(A + BΘ∗)⊤ηi + (C + DΘ∗)⊤ζi + (C + DΘ∗)⊤ Pi (Dv∗

+ σ )

+ (Si
+ RiΘ∗)⊤v∗

+ Pi (Bv∗
+ b) + q i

+ (Θ∗)⊤ρi
}

ds + ζi dW

= −

{
A⊤ηi + C⊤ζi + (Θ∗)⊤

[
B⊤ηi + D⊤ζi + D⊤ Piσ + ρi

+ (Ri
+ D⊤ Pi D)v∗

]
+
[
Pi B + C⊤ Pi D + (Si )⊤

]
v∗

+ C⊤ Piσ + Pi b + q i
}

ds + ζi dW.

Thus, (ηi , ζi ) is the adapted solution to BSDE (5.10). Next, from the proof of Proposition 5.1 we
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know that (5.4) holds. Thus (noting (5.9) and (5.13)),

0 = B⊤

i Y ∗

i + D⊤

i Z∗

i + (Si
i + Ri

iΘ
∗)X∗

+ Ri
i v

∗
+ ρi

i

= B⊤

i ηi + D⊤

i ζi + D⊤

i Piσ + ρi
i + (Ri

i + D⊤

i Pi D)v∗

+
[
B⊤

i Pi + D⊤

i Pi C + Si
i + (Ri

i + D⊤

i Pi D)Θ∗
]
X∗

= B⊤

i ηi + D⊤

i ζi + D⊤

i Piσ + ρi
i + (Ri

i + D⊤

i Pi D)v∗,

which is (5.11). The proof of (5.8) will be included in the proof of sufficiency.
To prove the sufficiency, we take any v(·) = (v1(·)⊤, v2(·)⊤)⊤ ∈ U1[t, T ] × U2[t, T ]. Denote

w = (v⊤

1 , (v∗

2 )⊤)⊤, and let

X (·) = X (· ; t, x,Θ∗

1 (·), v1(·),Θ∗

2 (·), v∗

2 (·))

be the state process corresponding to (t, x) and (Θ∗

1 (·), v1(·),Θ∗

2 (·), v∗

2 (·)). By applying Itô’s
formula to s ↦→ ⟨P1(s)X (s), X (s)⟩ + 2⟨η1(s), X1(s)⟩, we have

E
[⟨

G1 X (T ), X (T )
⟩
+ 2

⟨
g1, X (T )

⟩]
− E

[
⟨P1(t)x, x⟩ + 2⟨η1(t), x⟩

]
= E

∫ T

t

{⟨
Ṗ1 X, X

⟩
+ 2⟨P1 X, (A + BΘ∗)X + Bw + b⟩

+
⟨
P1
[
(C + DΘ∗)X + Dw + σ

]
, (C + DΘ∗)X + Dw + σ

⟩
− 2

⟨
A⊤η1 + C⊤ζ1 + (Θ∗)⊤

[
B⊤η1 + D⊤ζ1 + D⊤ P1σ + ρ1

+ (R1
+ D⊤ P1 D)v∗

]
, X
⟩

− 2
⟨[

P1 B + C⊤ P1 D + (S1)⊤
]
v∗

+ C⊤ P1σ + P1b + q1, X
⟩

+ 2⟨η1, (A + BΘ∗)X + Bw + b⟩ + 2⟨ζ1, (C + DΘ∗)X + Dw + σ ⟩

}
ds

= E
∫ T

t

{⟨[
Ṗ1 + P1(A + BΘ∗) + (A + BΘ∗)⊤ P1

+ (C + DΘ∗)⊤ P1(C + DΘ∗)
]
X, X

⟩
+ 2⟨P1 X, Bw + b⟩ + 2⟨P1(C + DΘ∗)X, Dw + σ ⟩ + ⟨P1(Dw + σ ), Dw + σ ⟩

− 2
⟨
(Θ∗)⊤

[
D⊤ P1σ + ρ1

+ (R1
+ D⊤ P1 D)v∗

]
, X
⟩

− 2
⟨[

P1 B + C⊤ P1 D + (S1)⊤
]
v∗

+ C⊤ P1σ + P1b + q1, X
⟩

+ 2⟨η1, Bw + b⟩ + 2⟨ζ1, Dw + σ ⟩

}
ds

= E
∫ T

t

{⟨[
Ṗ1 + P1(A + BΘ∗) + (A + BΘ∗)⊤ P1

+ (C + DΘ∗)⊤ P1(C + DΘ∗)
]
X, X

⟩
+ 2

⟨
(P1 B + C⊤ P1 D)w −

[
P1 B + C⊤ P1 D + (S1)⊤

]
v∗

− q1, X
⟩

+ 2
⟨
D⊤ P1 Dw − (R1

+ D⊤ P1 D)v∗
− ρ1,Θ∗ X

⟩
+
⟨
D⊤ P1 Dw, w

⟩
+ 2

⟨
B⊤η1 + D⊤ζ1 + D⊤ P1σ, w

⟩
+ ⟨P1σ, σ ⟩ + 2⟨η1, b⟩ + 2⟨ζ1, σ ⟩

}
ds.

On the other hand, we have
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J 1(t, x;Θ∗ X (·) + w(·)) − E
[⟨

G1 X (T ), X (T )
⟩
+ 2

⟨
g1, X (T )

⟩]
= E

∫ T

t

[⟨ (Q1
+ (Θ∗)⊤S1

+ (S1)⊤Θ∗
+ (Θ∗)⊤ R1Θ∗ (S1)⊤ + (Θ∗)⊤ R1

S1
+ R1Θ∗ R1

)

×

(
X
w

)
,

(
X
w

) ⟩
+ 2

⟨(q1
+ (Θ∗)⊤ρ1

ρ1

)
,

(
X
w

)⟩]
ds

= E
∫ T

t

{⟨[
Q1

+ (Θ∗)⊤S1
+ (S1)⊤Θ∗

+ (Θ∗)⊤ R1Θ∗
]
X, X

⟩
+ 2

⟨
(S1)⊤w + q1, X

⟩
+ 2

⟨
R1w + ρ1,Θ∗ X

⟩
+
⟨
R1w, w

⟩
+ 2

⟨
ρ1, w

⟩}
ds.

Combining the above two equations, together with Eq. (5.12) (which is equivalent to (5.7)) and
conditions (5.9) and (5.11), one obtains

J 1(t, x;Θ∗ X (·) + w(·)) − E
[
⟨P1(t)x, x⟩ + 2⟨η1(t), x⟩

]
= E

∫ T

t

{
2
⟨[

P1 B + C⊤ P1 D + (S1)⊤
]
(w − v∗), X

⟩
+ 2

⟨
(R1

+ D⊤ P1 D)(w − v∗),Θ∗ X
⟩
+
⟨
(R1

+ D⊤ P1 D)w, w
⟩

+ 2
⟨
B⊤η1 + D⊤ζ1 + D⊤ P1σ + ρ1, w

⟩
+ ⟨P1σ, σ ⟩ + 2⟨η1, b⟩ + 2⟨ζ1, σ ⟩

}
ds

= E
∫ T

t

{
2
⟨[

P1 B1 + C⊤ P1 D1 + (S1
1 )⊤

]
(v1 − v∗

1 ), X
⟩

+ 2
⟨
(R1

1 + D⊤

1 P1 D)⊤(v1 − v∗

1 ),Θ∗ X
⟩

+
⟨
(R1

11 + D⊤

1 P1 D1)v1, v1
⟩
+ 2

⟨
(R1

12 + D⊤

1 P1 D2)v∗

2 , v1
⟩
+
⟨
(R1

22 + D⊤

2 P1 D2)v∗

2 , v
∗

2

⟩
+ 2

⟨
B⊤

1 η1 + D⊤

1 ζ1 + D⊤

1 P1σ + ρ1
1 , v1

⟩
+ 2

⟨
B⊤

2 η1 + D⊤

2 ζ1 + D⊤

2 P1σ + ρ1
2 , v∗

2

⟩
+ ⟨P1σ, σ ⟩ + 2⟨η1, b⟩ + 2⟨ζ1, σ ⟩

}
ds

= E
∫ T

t

{⟨
(R1

11 + D⊤

1 P1 D1)v1, v1
⟩
− 2

⟨
(R1

11 + D⊤

1 P1 D1)v∗

1 , v1
⟩

+
⟨
(R1

22 + D⊤

2 P1 D2)v∗

2 , v
∗

2

⟩
+ 2

⟨
B⊤

2 η1 + D⊤

2 ζ1 + D⊤

2 P1σ + ρ1
2 , v∗

2

⟩
+ ⟨P1σ, σ ⟩ + 2⟨η1, b⟩ + 2⟨ζ1, σ ⟩

}
ds

= E
∫ T

t

{⟨
(R1

11 + D⊤

1 P1 D1)(v1 − v∗

1 ), v1 − v∗

1

⟩
−
⟨
(R1

11 + D⊤

1 P1 D1)v∗

1 , v
∗

1

⟩
+
⟨
(R1

22 + D⊤

2 P1 D2)v∗

2 , v
∗

2

⟩
+ 2

⟨
B⊤

2 η1 + D⊤

2 ζ1 + D⊤

2 P1σ + ρ1
2 , v∗

2

⟩
+ ⟨P1σ, σ ⟩ + 2⟨η1, b⟩ + 2⟨ζ1, σ ⟩

}
ds.

Consequently,

J 1(t, x;Θ∗ X (·) + w(·)) − J 1(t, x;Θ∗ X∗(·) + v∗(·))

= E
∫ T

t

⟨
(R1

11 + D⊤

1 P1 D1)(v1 − v∗

1 ), v1 − v∗

1

⟩
ds.
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It follows that for any v1(·) ∈ U1[t, T ],

J 1(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X (·) + v∗

2 (·))

⩽ J 1(t, x;Θ∗

1 (·)X (·) + v1(·),Θ∗

2 (·)X (·) + v∗

2 (·)),

if and only if

R1
11 + D⊤

1 P1 D1 ⩾ 0, a.e. s ∈ [t, T ].

Similarly, for any v2(·) ∈ U2[t, T ],

J 2(t, x;Θ∗

1 (·)X∗(·) + v∗

1 (·),Θ∗

2 (·)X (·) + v∗

2 (·))

⩽ J 2(t, x;Θ∗

1 (·)X (·) + v∗

1 (·),Θ∗

2 (·)X (·) + v2(·)),

if and only if

R2
22 + D⊤

2 P2 D2 ⩾ 0, a.e. s ∈ [t, T ].

This proves the sufficiency, as well as the necessity of (5.8). □

Note that conditions (5.9) and (5.11) are, respectively, equivalent to:(
B⊤

1 P1 + D⊤

1 P1C + S1
1

B⊤

2 P2 + D⊤

2 P2C + S2
2

)
+

(
R1

1 + D⊤

1 P1 D

R2
2 + D⊤

2 P2 D

)
Θ∗

= 0,(
B⊤

1 η1 + D⊤

1 ζ1 + D⊤

1 P1σ + ρ1
1

B⊤

2 η2 + D⊤

2 ζ2 + D⊤

2 P2σ + ρ2
2

)
+

(
R1

1 + D⊤

1 P1 D

R2
2 + D⊤

2 P2 D

)
v∗

= 0.

Therefore,

Θ∗
= −

(
R1

1 + D⊤

1 P1 D

R2
2 + D⊤

2 P2 D

)−1 (
B⊤

1 P1 + D⊤

1 P1C + S1
1

B⊤

2 P2 + D⊤

2 P2C + S2
2

)
, (5.14)

v∗
= −

(
R1

1 + D⊤

1 P1 D

R2
2 + D⊤

2 P2 D

)−1 (
B⊤

1 η1 + D⊤

1 ζ1 + D⊤

1 P1σ + ρ1
1

B⊤

2 η2 + D⊤

2 ζ2 + D⊤

2 P2σ + ρ2
2

)
,

provided the involved inverse (which is an Rm×m-valued function) exists. By plugging such a
Θ∗(·) into (5.7), we see that the equations for P1(·) and P2(·) are coupled, symmetric, and of
Riccati type.

Now, let us try to rewrite the Lyapunov type equations in a more compact form. Note that
(recalling the notation we introduced in the previous section)

0 =

(
B⊤

1 P1 + D⊤

1 P1C + S1
1

B⊤

2 P2 + D⊤

2 P2C + S2
2

)
+

(
R1

1 + D⊤

1 P1 D

R2
2 + D⊤

2 P2 D

)
Θ∗

=

(
B⊤

1 0
0 B⊤

2

)(
P1 0
0 P2

)(
In

In

)
+

(
D⊤

1 0
0 D⊤

2

)(
P1 0
0 P2

)(
C 0
0 C

)(
In

In

)
+

(
Im1 0 0 0
0 0 0 Im2

)(
S1 0
0 S2

)(
In

In

)
+

[(
Im1 0 0 0
0 0 0 Im2

)(
R1 0
0 R2

)(
Im

Im

)
+

(
D⊤

1 0
0 D⊤

2

)(
P1 0
0 P2

)(
D 0
0 D

)(
Im

Im

)]
Θ∗
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≡ J⊤
(
B⊤P + D⊤PC + S

)
In +

[
J⊤
(
R + D⊤PD

)
Im
]
Θ∗,

with

P(·) ≡

(
P1(·) 0

0 P2(·)

)
.

Hence, in the case that
[
J⊤
(
R + D⊤PD

)
Im
]−1

≡

(
R1

1 + D⊤

1 P1 D

R2
2 + D⊤

2 P2 D

)−1

exists and is bounded, we

have

Θ∗
= −

[
J⊤
(
R + D⊤PD

)
Im
]−1J⊤

(
B⊤P + D⊤PC + S

)
In, (5.15)

which is the same as (5.14). On the other hand, (5.7) can be written as

0 =

(
Ṗ1 0
0 Ṗ2

)
+

(
P1 0
0 P2

)(
A 0
0 A

)
+

(
A 0
0 A

)⊤ (P1 0
0 P2

)
+

(
C 0
0 C

)⊤ (P1 0
0 P2

)(
C 0
0 C

)
+

(
Q1 0
0 Q2

)
+

(
Θ∗ 0
0 Θ∗

)⊤ (R1
+ D⊤ P1 D 0

0 R2
+ D⊤ P2 D

)(
Θ∗ 0
0 Θ∗

)
+

(
P1 B + C⊤ P1 D + (S1)⊤ 0

0 P2 B + C⊤ P2 D + (S2)⊤

)(
Θ∗ 0
0 Θ∗

)
+

(
Θ∗ 0
0 Θ∗

)⊤ (B⊤ P1 + D⊤ P1C + S1 0
0 B⊤ P2 + D⊤ P2C + S2

)
.

Consequently, one sees that the following holds:⎧⎨⎩
Ṗ + PA + A⊤P + C⊤PC + Q + Θ⊤

(
R + D⊤PD

)
Θ

+
(
PB + C⊤PD + S⊤

)
Θ + Θ⊤

(
B⊤P + D⊤PC + S

)
= 0, a.e. s ∈ [t, T ],

P(T ) = G,

(5.16)

where

Θ(·) =

(
Θ∗(·) 0

0 Θ∗(·)

)
,

and Θ∗ is given by (5.15). Clearly, (5.16) is symmetric.

6. Two examples

From the previous sections, we see that the existence of an open-loop Nash equilibrium is
equivalent to the solvability of a coupled system of two FBSDEs, together with the convexity
condition for the cost functionals (see (4.3)); and that the existence of a closed-loop Nash
equilibrium is equivalent to the solvability of a coupled system of two symmetric Riccati
equations satisfying certain type of non-negativity condition (see (5.8)). Then a natural question
is: Are open-loop and closed-loop Nash equilibria really different? In this section, we will present
two examples showing that they are indeed different.

The following example shows that Problem (SDG) may have only open-loop Nash equilibria.
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Example 6.1. Consider the following Problem (SDG) with one-dimensional state equation{
d X (s) =

[
u1(s) + u2(s)

]
ds +

[
u1(s) − u2(s)

]
dW (s), s ∈ [t, 1],

X (t) = x,

and cost functionals

J 1(t, x; u1(·), u2(·)) = J 2(t, x; u1(·), u2(·)) = EX (1)2
≡ J (t, x; u1(·), u2(·)).

Let β ⩾ 1
1−t . We claim that(

uβ

1 (s), uβ

2 (s)
)

= −

(
βx
2

1[t,t+ 1
β

](s),
βx
2

1[t,t+ 1
β

](s)
)

, s ∈ [t, 1],

is an open-loop Nash equilibrium of the problem for the initial pair (t, x). Indeed, it is clear that
for any u1(·) ∈ L2

F(t, 1;R),

J (t, x; u1(·), uβ

2 (·)) ⩾ 0.

On the other hand, the state process Xβ(·) corresponding to
(
uβ

1 (s), uβ

2 (s)
)

and (t, x) satisfies
Xβ(1) = 0. Hence,

J (t, x; uβ

1 (·), uβ

2 (·)) = 0 ⩽ J (t, x; u1(·), uβ

2 (·)), ∀ u1(·) ∈ L2
F(t, 1;R).

Likewise,

J (t, x; uβ

1 (·), uβ

2 (·)) = 0 ⩽ J (t, x; uβ

1 (·), u2(·)), ∀ u2(·) ∈ L2
F(t, 1;R).

This establishes the claim.
However, this problem does not admit a closed-loop Nash equilibrium. We now show this by

contradiction. Suppose (Θ∗

1 (·), v∗

1 (·);Θ∗

2 (·), v∗

2 (·)) is a closed-loop Nash equilibrium. Consider
the corresponding ODEs in Theorem 5.2, which now become{

Ṗi + Pi (Θ∗

1 − Θ∗

2 )2
+ 2Pi (Θ∗

1 + Θ∗

2 ) = 0,

Pi (1) = 1,
i = 1, 2. (6.1)

The corresponding constraints read

P1, P2 ⩾ 0, P1 + P1(Θ∗

1 − Θ∗

2 ) = 0, P2 − P2(Θ∗

1 − Θ∗

2 ) = 0. (6.2)

Since P1(·) and P2(·) satisfy the same ODE (6.1), we have P1(·) = P2(·). Then (6.2) implies
P1(·) = 0, which contradicts the terminal condition P1(1) = 1.

The following example shows that Problem (SDG) may have only closed-loop Nash
equilibria.

Example 6.2. Consider the following Problem (SDG) with one-dimensional state equation{
d X (s) = u1(s)ds + u2(s)dW (s), s ∈ [t, 1],
X (t) = x,

and cost functionals

J 1(t, x; u1(·), u2(·)) = E
{
|X (1)|2 +

∫ 1

t
|u1(s)|2ds

}
,

J 2(t, x; u1(·), u2(·)) = E
{
−|X (1)|2 +

∫ 1

t

[
− |X (s)|2 + |u2(s)|2

]
ds
}
.
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We claim that the problem admits a closed-loop Nash equilibrium of form (Θ1(·), 0; Θ2(·), 0). In
fact, by Theorem 5.2, we need to solve the following Riccati equations for P1(·) and P2(·):⎧⎨⎩Ṗ1(s) + P1(s)Θ2(s)2

+ 2P1(s)Θ1(s) + Θ1(s)2
= 0,

P1(1) = 1,

P1(s) + Θ1(s) = 0,

(6.3)

⎧⎪⎪⎨⎪⎪⎩
Ṗ2(s) + P2(s)Θ2(s)2

+ 2P2(s)Θ1(s) + Θ2(s)2
− 1 = 0,

P2(1) = −1,

1 + P2(s) ⩾ 0,

[1 + P2(s)]Θ2(s) = 0.

(6.4)

By the fourth equation in (6.4), we may assume Θ2(·) = 0. Then (6.3)–(6.4) become (taking into
account Θ1(·) = −P1(·) from the third equation in (6.3)){

Ṗ1(s) = P1(s)2,

P1(1) = 1,

{
Ṗ2(s) = 2P1(s)P2(s) + 1,

P2(1) = −1, 1 + P2(s) ⩾ 0.

A straightforward calculation leads to

P1(s) =
1

2 − s
, P2(s) =

−(2 − s)3
− 2

3(2 − s)2 .

Therefore, ((s − 2)−1, 0; 0, 0) is a closed-loop Nash equilibrium of the problem.
Next, we claim that the problem does not have open-loop Nash equilibria. Indeed, suppose

(u∗

1(·), u∗

2(·)) is an open-loop Nash equilibrium for some initial pair (t, x). Then u∗

2(·) is an open-
loop optimal control of the following Problem (SLQ) with state equation{

d X (s) = u∗

1(s)ds + u2(s)dW (s), s ∈ [t, 1],
X (t) = x,

(6.5)

and cost functional

J̃ (t, x; u2(·)) = E
{
−|X (1)|2 +

∫ 1

t

[
− |X (s)|2 + |u2(s)|2

]
ds
}
. (6.6)

For any u2(·) ∈ L2
F(t, 1;R), the corresponding solution to (6.5) is given by

X (s) = x +

∫ s

t
u∗

1(r )dr +

∫ s

t
u2(r )dW (r ). (6.7)

Let ε > 0 be undetermined. Substituting (6.7) into (6.6) and using the inequality (a + b)2 ⩾
(1 −

1
ε
)a2

+ (1 − ε)b2, we see

J̃ (t, x; u2(·)) ⩽
(1

ε
− 1

)
E
(

x +

∫ 1

t
u∗

1(s)ds
)

2
+ (ε − 1)E

( ∫ 1

t
u2(s)dW (s)

)
2

+

(1
ε

− 1
)
E
∫ 1

t

(
x +

∫ s

t
u∗

1(r )dr
)

2ds

+ (ε − 1)E
∫ 1

t

( ∫ s

t
u2(r )dW (r )

)
2ds + E

∫ 1

t
|u2(s)|2ds

=

(1
ε

− 1
)
E
[(

x +

∫ 1

t
u∗

1(s)ds
)

2
+

∫ 1

t

(
x +

∫ s

t
u∗

1(r )dr
)

2ds
]

+ εE
∫ 1

t
|u2(s)|2ds + (ε − 1)E

∫ 1

t

∫ s

t
|u2(r )|2drds.
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Now, by taking u2(s) = λ, λ ∈ R, we have

J̃ (t, x; λ) ⩽
(1

ε
− 1

)
E
[(

x +

∫ 1

t
u∗

1(s)ds
)

2
+

∫ 1

t

(
x +

∫ s

t
u∗

1(r )dr
)

2ds
]

+
λ2(1 − t)

2

[
2ε + (ε − 1)(1 − t)

]
.

Choosing ε > 0 small enough so that 2ε + (ε − 1)(1 − t) < 0 and then letting λ → ∞, we see
that

inf
u2(·)∈L2

F(t,1;R)
J̃ (t, x; u2(·)) = −∞,

which contradicts the fact that u∗

2(·) is an open-loop optimal control of the associated LQ
problem.

7. Closed-loop representation of open-loop Nash equilibria

Inspired by the decoupling technique introduced in [13,14,25,26], we now look at the
solvability of FBSDE (4.1)–(4.2). Recall that with the notation introduced in Section 4, (4.1)
and (4.2) are equivalent to (4.8) and (4.9), respectively. To solve FBSDE (4.8)–(4.9), we make
the ansatz that the adapted solution (X (·), Y(·), Z(·)) to Eq. (4.8) has the form

Y(·) =

(
Π1(·)X (·) + η1(·)
Π2(·)X (·) + η2(·)

)
≡ Π(·)X (·) + η(·);

Π(·) ≜
(
Π1(·)
Π2(·)

)
, η(·) ≜

(
η1(·)
η2(·)

)
,

(7.1)

where Πi : [t, T ] → Rn×n; i = 1, 2, are differentiable maps to be determined, and η(·) is
a stochastic process satisfying a certain equation. To match the terminal condition Y(T ) =

GIn X (T ) + g, we impose the requirements

Π(T ) = GIn, η(T ) = g.

The second requirement suggests that the equation for η(·) should be a BSDE:{
dη(s) = α(s)ds + ζ (s)dW (s), s ∈ [t, T ],
η(T ) = g,

where α : [t, T ] × Ω → R2n is to be determined, and

ζ (·) =

(
ζ1(·)
ζ2(·)

)
.

Applying Itô’s formula to s ↦→ Π(s)X (s) + η(s), we have

−
(
A⊤Y + C⊤Z + QIn X + S⊤Imu + q

)
ds + ZdW (s) = dY

=
[
Π̇X + Π(AX + Bu + b) + α

]
ds +

[
Π(C X + Du + σ ) + ζ

]
dW (s)

=
[
(Π̇ + ΠA)X + ΠBu + Πb + α

]
ds +

[
ΠC X + ΠDu + Πσ + ζ

]
dW (s).

Hence, one should have

Z = ΠC X + ΠDu + Πσ + ζ . (7.2)

The stationarity condition (4.9) then becomes

0 = J⊤
(
B⊤Y + D⊤Z + SIn X + RImu + ρ

)
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= J⊤
[
B⊤(ΠX + η) + D⊤(ΠC X + ΠDu + Πσ + ζ ) + SIn X + RImu + ρ

]
= J⊤

(
B⊤Π + D⊤ΠC + SIn

)
X + J⊤

(
RIm + D⊤ΠD

)
u

+ J⊤
(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
.

Note that

J⊤
(
RIm + D⊤ΠD

)
=

(
Im1 0 0 0
0 0 0 Im2

)(
R1

+ D⊤Π1 D
R2

+ D⊤Π2 D

)
=

(
R1

11 + D⊤

1 Π1 D1 R1
12 + D⊤

1 Π1 D2

R2
21 + D⊤

2 Π2 D1 R2
22 + D⊤

2 Π2 D2

)
.

This is an Rm×m-valued function which is not symmetric in general, even Π1 and Π2 are
symmetric. If the matrix J⊤

(
RIm + D⊤ΠD

)
is invertible, then

u = −
[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤Π + D⊤ΠC + SIn

)
X

−
[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
, (7.3)

and

0 =
(
Π̇ + ΠA

)
X + ΠBu + Πb + α + A⊤(ΠX + η)

+ C⊤(ΠC X + ΠDu + Πσ + ζ ) + QIn X + S⊤Imu + q

=
(
Π̇ + ΠA + A⊤Π + C⊤ΠC + QIn

)
X +

(
ΠB + C⊤ΠD + S⊤Im

)
u

+ α + A⊤η + C⊤ζ + Πb + C⊤Πσ + q

=
(
Π̇ + ΠA + A⊤Π + C⊤ΠC + QIn

)
X

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤Π + D⊤ΠC + SIn

)
X

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1

× J⊤
(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
+ α + A⊤η + C⊤ζ + Πb + C⊤Πσ + q

=

{
Π̇ + ΠA + A⊤Π + C⊤ΠC + QIn

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤Π + D⊤ΠC + SIn

)}
X

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1

× J⊤
(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
+ α + A⊤η + C⊤ζ + Πb + C⊤Πσ + q.

This suggests that Π(·) should be a solution to the Riccati equation on [t, T ]:⎧⎪⎪⎨⎪⎪⎩
Π̇ + ΠA + A⊤Π + C⊤ΠC + QIn

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1

× J⊤
(
B⊤Π + D⊤ΠC + SIn

)
= 0,

Π(T ) = GIn,

(7.4)
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and that the BSDE for (η(·), ζ (·)) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dη = −

{(
A⊤

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1J⊤B⊤

)
η

+

(
C⊤

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1J⊤D⊤

)
ζ

+

(
C⊤

−
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1J⊤D⊤

)
Πσ

+ Πb + q −
(
ΠB + C⊤ΠD + S⊤Im

)[
J⊤(RIm + D⊤ΠD)

]−1J⊤ρ
}

ds + ζdW,

η(T ) = g.

(7.5)

The above procedure implies that if the Riccati equation (7.4) indeed admits a solution Π(·),
then the triple (X (·), Y(·), Z(·)), defined through the FSDE on [t, T ]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d X =

{(
A − B

[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤Π + D⊤ΠC + SIn

))
X

− B
[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
+ b

}
ds

+

{(
C − D

[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤Π + D⊤ΠC + SIn

))
X

− D
[
J⊤(RIm + D⊤ΠD)

]−1J⊤
(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
+ σ

}
dW,

X (t) = x,

(7.1) and (7.2), is an adapted solution to FBSDE (4.8) with respect to the control u(·) defined
by (7.3), and the stationarity condition (4.9) holds. If, in addition, the convexity condition (4.3)
holds for i = 1, 2, then by Theorem 4.1, Problem (SDG) admits an open-loop Nash equilibrium
for every initial state x , and the open-loop Nash equilibria take the form

u(·) = Θ(·)X (·) + v(·), (7.6)

for some (Θ(·), v(·)) ∈ Q[t, T ]×U [t, T ] which is independent of x . (7.6) is called a closed-loop
representation of the open-loop Nash equilibria of Problem (SDG). More precisely, we have the
following definition.

Definition 7.1. We say that open-loop Nash equilibria of Problem (SDG) on [t, T ] admit a
closed-loop representation, if there exists a pair (Θ(·), v(·)) ∈ Q[t, T ] × U [t, T ] such that for
any initial state x ∈ Rn , the process

u(s) ≜ Θ(s)X (s) + v(s), s ∈ [t, T ] (7.7)

is an open-loop Nash equilibrium of Problem (SDG) for (t, x), where X (·) is the solution to the
following closed-loop system:⎧⎨⎩d X (s) =

{
[A(s) + B(s)Θ(s)]X (s) + B(s)v(s) + b(s)

}
ds

+
{
[C(s) + D(s)Θ(s)]X (s) + D(s)v(s) + σ (s)

}
dW (s),

X (t) = x .

(7.8)

Comparing Definitions 3.2 and 7.1, it is natural to ask whether the closed-loop representation
of open-loop Nash equilibria is the outcome of some closed-loop Nash equilibrium. The
following example shows that this is not the case in general.

Example 7.2. Consider the following state equation:{
d X (s) =

[
u1(s) + u2(s)

]
ds + X (s)dW (s), s ∈ [t, T ],

X (t) = x,
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with cost functionals

J 1(t, x; u1(·), u2(·)) = E
[

X (T )2
+

∫ T

t
u1(s)2ds

]
,

J 2(t, x; u1(·), u2(·)) = E
[

X (T )2
+

∫ T

t
u2(s)2ds

]
.

For this case, we have⎧⎪⎪⎨⎪⎪⎩
A = 0, C = 1, B1 = B2 = 1, D1 = D2 = 0, b = σ = 0,

Q1
= Q2

= 0, S1
= S2

= 0, R1
=

(
1 0
0 0

)
, R2

=

(
0 0
0 1

)
,

G1
= G2

= 1, q1
= q2

= 0, ρ1
= ρ2

= 0, g1
= g2

= 0.

Clearly, the convexity condition (4.3) holds for i = 1, 2. In this example, the Riccati equation
(7.4) can be written componentwise as follows:{

Π̇1(s) + Π1(s) − Π1(s)
[
Π1(s) + Π2(s)

]
= 0, s ∈ [t, T ],

Π1(T ) = 1,
(7.9){

Π̇2(s) + Π2(s) − Π2(s)
[
Π1(s) + Π2(s)

]
= 0, s ∈ [t, T ],

Π2(T ) = 1.
(7.10)

It is easy to see that

Π1(s) = Π2(s) =
eT −s

2eT −s − 1
are solutions to (7.9) and (7.10), respectively. Note that in this case the adapted solution
(η(·), ζ (·)) to BSDE (7.5) is (0, 0). Then by the preceding argument, the open-loop Nash
equilibria of this Problem (SDG) on [t, T ] admit a closed-loop representation given by

u1(s) = u2(s) = −
eT −s

2eT −s − 1
X (s), s ∈ [t, T ]. (7.11)

Next we verify that the problem admits a closed-loop Nash equilibrium of form (Θ1(·), 0;

Θ2(·), 0). In light of Theorem 5.2, we need to solve the following Riccati equations for P1(·) and
P2(·):⎧⎨⎩Ṗ1(s) + P1(s) + Θ1(s)2

+ 2P1(s)
[
Θ1(s) + Θ2(s)

]
= 0,

P1(T ) = 1,

P1(s) + Θ1(s) = 0,

(7.12)

⎧⎨⎩Ṗ2(s) + P2(s) + Θ2(s)2
+ 2P2(s)

[
Θ1(s) + Θ2(s)

]
= 0,

P2(T ) = 1,

P2(s) + Θ2(s) = 0.

(7.13)

Noting the third equations in (7.12) and (7.13), we can further write (7.12)–(7.13) as follows:{
Ṗ1(s) = P1(s)2

+ 2P1(s)P2(s) − P1(s),
P1(T ) = 1,

(7.14){
Ṗ2(s) = P2(s)2

+ 2P2(s)P1(s) − P2(s),
P2(T ) = 1.

(7.15)

Now it is easily seen that

P1(s) = P2(s) =
eT −s

3eT −s − 2
.
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Hence,

Θ1(s) = Θ2(s) = −P1(s) = −
eT −s

3eT −s − 2
. (7.16)

Comparing (7.11) with (7.16), we see that the closed-loop representation of open-loop Nash
equilibria is different from the outcome of closed-loop Nash equilibria.

Now we give a characterization of the closed-loop representation of open-loop Nash
equilibria.

Theorem 7.3. Let (G1)–(G2) hold and let (Θ(·), v(·)) ∈ Q[t, T ] × U [t, T ]. Then open-loop
Nash equilibria of Problem (SDG) on [t, T ] admit the closed-loop representation (7.7) if and
only if the following hold:

(i) The convexity condition (4.3) holds for i = 1, 2.

(ii) The solution Π(·) ∈ C([t, T ];Rn×2n) to the ODE on [t, T ]{
Π̇ + ΠA + A⊤Π + C⊤ΠC + QIn +

(
ΠB + C⊤ΠD + S⊤Im

)
Θ = 0,

Π(T ) = GIn,
(7.17)

satisfies[
J⊤(RIm + D⊤ΠD)

]
Θ + J⊤

(
B⊤Π + D⊤ΠC + SIn

)
= 0, (7.18)

and the adapted solution (η(·), ζ (·)) to the BSDE on [t, T ]⎧⎨⎩dη = −
[
A⊤η + C⊤ζ +

(
ΠB + C⊤ΠD + S⊤Im

)
v

+ C⊤Πσ + Πb + q
]
ds + ζdW,

η(T ) = g,

(7.19)

satisfies[
J⊤(RIm + D⊤ΠD)

]
v + J⊤

(
B⊤η + D⊤ζ + D⊤Πσ + ρ

)
= 0. (7.20)

Proof. For any x ∈ Rn , let X (·), Π(·), and (η(·), ζ (·)) be the solutions to (7.8), (7.17), and (7.19),
respectively. Let u(·) be defined by (7.7) and set

Y = ΠX + η, Z = Π(C + DΘ)X + ΠDv + Πσ + ζ .

Then Y(T ) = GIn X (T ) + g, and

dY = Π̇Xds + Πd X + dη

=
[
Π̇X + Π(A + BΘ)X + ΠBv + Πb − A⊤η − C⊤ζ

−
(
ΠB + C⊤ΠD + S⊤Im

)
v − C⊤Πσ − Πb − q

]
ds

+
[
Π(C + DΘ)X + ΠDv + Πσ + ζ

]
dW

=
[
−
(
A⊤Π + C⊤ΠC + QIn + C⊤ΠDΘ + S⊤ImΘ

)
X − A⊤η − C⊤ζ

−
(
C⊤ΠD + S⊤Im

)
v − C⊤Πσ − q

]
ds + ZdW

=
{
−A⊤(ΠX + η) − QIn X − C⊤

[
Π(C + DΘ)X + ΠDv + Πσ + ζ

]
− S⊤Im(ΘX + v) − q

}
ds + ZdW
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=
(
−A⊤Y − QIn X − C⊤Z − S⊤Imu − q

)
ds + ZdW.

This shows that (X (·), Y(·), Z(·), u(·)) satisfies the FBSDE (4.8). According to Theorem 4.1, the
process u(·) defined by (7.7) is an open-loop Nash equilibrium for (t, x) if and only if (i) holds
and

0 = J⊤
(
B⊤Y + D⊤Z + SIn X + RImu + ρ

)
= J⊤

{
B⊤(ΠX + η) + D⊤[Π(C + DΘ)X + ΠDv + Πσ + ζ ]

+ SIn X + RIm(ΘX + v) + ρ
}

= J⊤
[
B⊤Π + D⊤ΠC + SIn + (RIm + D⊤ΠD)Θ

]
X

+ J⊤
[
B⊤η + D⊤ζ + D⊤Πσ + ρ + (RIm + D⊤ΠD)v

]
.

Since the initial state x is arbitrary and J⊤[B⊤η + D⊤ζ + D⊤Πσ + ρ + (RIm + D⊤ΠD)v] is
independent of x , the above leads to (7.18) and (7.20). □

Let us write (7.17)–(7.20) componentwise as follows: For i = 1, 2,{
Π̇i + Πi A + A⊤Πi + C⊤Πi C + Qi

+
[
Πi B + C⊤Πi D + (Si )⊤

]
Θ = 0,

Πi (T ) = G i ,
(7.21)(

R1
1 + D⊤

1 Π1 D

R2
2 + D⊤

2 Π2 D

)
Θ +

(
B⊤

1 Π1 + D⊤

1 Π1C + S1
1

B⊤

2 Π2 + D⊤

2 Π2C + S2
2

)
= 0, (7.22)⎧⎪⎪⎪⎨⎪⎪⎪⎩

dηi = −

{
A⊤ηi + C⊤ζi +

[
Πi B + C⊤Πi D + (Si )⊤

]
v

+ C⊤Πiσ + Πi b + q i
}

ds + ζi dW,

ηi (T ) = gi ,

(7.23)

(
R1

1 + D⊤

1 Π1 D

R2
2 + D⊤

2 Π2 D

)
v +

(
B⊤

1 η1 + D⊤

1 ζ1 + D⊤

1 Π1σ + ρ1
1

B⊤

2 η2 + D⊤

2 ζ2 + D⊤

2 Π2σ + ρ2
2

)
= 0. (7.24)

Noting the relation (7.22), one sees the equations for Π1(·) and Π2(·) are coupled and none
of them is symmetric. Consequently, Π1(·) and Π2(·) are not symmetric in general. Whereas
the Riccati equations (5.7) for Pi (·) (i = 1, 2) are symmetric. This is the main reason that the
closed-loop representation of open-loop Nash equilibria is different from the outcome of closed-
loop Nash equilibria.

8. Zero-sum cases

In the previous section, we have seen that for Problem (SDG), the closed-loop representation
of open-loop Nash equilibria is different from the outcome of closed-loop Nash equilibria in
general. Now we would like to take a look at the situation for LQ stochastic two-person zero-
sum differential games. In this case, Nash equilibria are usually called saddle points. According
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to (1.4), we have

G1
= −G2

≡ G, g1
= −g2

≡ g, Q1(·) = −Q2(·) ≡ Q(·),
q1(·) = −q2(·) ≡ q(·),(

R1
11(·) R1

12(·)

R1
21(·) R1

22(·)

)
≡ −

(
R2

11(·) R2
12(·)

R2
21(·) R2

22(·)

)
≡

(
R11(·) R12(·)
R21(·) R22(·)

)
≡

(
R1(·)
R2(·)

)
≡ R(·),(

S1
1 (·)

S1
2 (·)

)
= −

(
S2

1 (·)

S2
2 (·)

)
≡

(
S1(·)
S2(·)

)
≡ S(·),

(
ρ1

1 (·)

ρ1
2 (·)

)
= −

(
ρ2

1 (·)

ρ2
2 (·)

)
≡

(
ρ1(·)
ρ2(·)

)
≡ ρ(·),

(8.1)

and

J 1(t, x; u1(·), u2(·)) = −J 2(t, x; u1(·), u2(·))
= E

{
⟨G X (T ), X (T )⟩ + 2⟨g, X (T )⟩

+

∫ T

t

[
⟨

⎛⎝Q(s) S1(s)⊤ S2(s)⊤

S1(s) R11(s) R12(s)
S2(s) R21(s) R22(s)

⎞⎠⎛⎝X (s)
u1(s)
u2(s)

⎞⎠ ,

⎛⎝X (s)
u1(s)
u2(s)

⎞⎠⟩

+ 2⟨

⎛⎝ q(s)
ρ1(s)
ρ2(s)

⎞⎠ ,

⎛⎝X (s)
u1(s)
u2(s)

⎞⎠⟩

]
ds
}

≡ J (t, x; u1(·), u2(·)).

Let (Θ(·), v(·)) ∈ Q[t, T ] × U [t, T ] and assume the open-loop saddle points of Problem (SDG)
on [t, T ] admit the closed-loop representation (7.7). Eqs. (7.21) (i = 1, 2) for Π1(·) and Π2(·)
now become{

Π̇1 + Π1 A + A⊤Π1 + C⊤Π1C + Q +
(
Π1 B + C⊤Π1 D + S⊤

)
Θ = 0,

Π1(T ) = G,

and {
Π̇2 + Π2 A + A⊤Π2 + C⊤Π2C − Q +

(
Π2 B + C⊤Π2 D − S⊤

)
Θ = 0,

Π2(T ) = −G,

respectively. Obviously, both Π1(·) and −Π2(·) satisfy{
Π̇ + Π A + A⊤Π + C⊤ΠC + Q +

(
Π B + C⊤Π D + S⊤

)
Θ = 0,

Π (T ) = G.
(8.2)

Thus, Π1(·) = −Π2(·) ≡ Π (·), and (7.22) becomes(
R1 + D⊤

1 Π D

−R2 − D⊤

2 Π D

)
Θ +

(
B⊤

1 Π + D⊤

1 ΠC + S1

−B⊤

2 Π − D⊤

2 ΠC − S2

)
= 0,

or equivalently,

(R + D⊤Π D)Θ + B⊤Π + D⊤ΠC + S = 0.

This is also equivalent to{
R(B⊤Π + D⊤ΠC + S) ⊆ R(R + D⊤Π D), a.e. s ∈ [t, T ],
(R + D⊤Π D)†(B⊤Π + D⊤ΠC + S) ∈ L2(t, T ;Rm×n),

(8.3)
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and

Θ = −(R + D⊤Π D)†(B⊤Π + D⊤ΠC + S)
+ [I − (R + D⊤Π D)†(R + D⊤Π D)]θ, (8.4)

for some θ (·) ∈ L2(t, T ;Rm×n). Upon substitution of (8.4) into (8.2), the latter becomes⎧⎨⎩
Π̇ + Π A + A⊤Π + C⊤ΠC + Q

− (Π B + C⊤Π D + S⊤)(R + D⊤Π D)†(B⊤Π + D⊤ΠC + S) = 0,

Π (T ) = G,

(8.5)

with constraints (8.3). Note that Eq. (8.5) is symmetric. Likewise, we have (η1(·), ζ1(·)) =

−(η2(·), ζ2(·)) ≡ (ηΠ (·), ζΠ (·)) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dηΠ = −

{[
A⊤

− (Π B + C⊤Π D + S⊤)(R + D⊤Π D)†B⊤
]
ηΠ

+
[
C⊤

− (Π B + C⊤Π D + S⊤)(R + D⊤Π D)†D⊤
]
ζΠ

+
[
C⊤

− (Π B + C⊤Π D + S⊤)(R + D⊤Π D)†D⊤
]
Π σ

− (Π B + C⊤Π D + S⊤)(R + D⊤Π D)†ρ + Π b + q
}

ds + ζΠ dW,

ηΠ (T ) = g,

(8.6)

with constraints{
B⊤ηΠ + D⊤ζΠ + D⊤Π σ + ρ ∈ R(R + D⊤Π D), a.e. s ∈ [t, T ], a.s.
(R + D⊤Π D)†(B⊤ηΠ + D⊤ζΠ + D⊤Π σ + ρ) ∈ L2

F(t, T ;Rm),
(8.7)

and in this case,

v = −(R + D⊤Π D)†(B⊤ηΠ + D⊤ζΠ + D⊤Π σ + ρ)
+
[
I − (R + D⊤Π D)†(R + D⊤Π D)

]
ν,

for some ν(·) ∈ L2
F(t, T ;Rm). To summarize, we have the following result for LQ stochastic

two-person zero-sum differential games.

Theorem 8.1. Let (G1)–(G2) and (8.1) hold. Then the open-loop saddle points of Problem
(SDG) on [t, T ] admit a closed-loop representation if and only if the following hold:

(i) The following convexity–concavity condition holds: For i = 1, 2,

(−1)i−1E
{ ∫ T

t

[
⟨Q(s)X i (s), X i (s)⟩ + 2⟨Si (s)X i (s), ui (s)⟩ + ⟨Ri i (s)ui (s), ui (s)⟩

]
ds

+ ⟨G X i (T ), X i (T )⟩
}
⩾ 0, ∀ ui (·) ∈ Ui [t, T ],

(8.8)

where X i (·) is the solution to FSDE (4.4).

(ii) The Riccati equation (8.5) admits a solution Π (·) ∈ C([t, T ]; Sn) such that (8.3) holds,
and the adapted solution of (8.6) satisfies (8.7).

In the above case, all the closed-loop representations of open-loop saddle points are given by

u =

{
− (R + D⊤Π D)†(B⊤Π + D⊤ΠC + S)

+
[
I − (R + D⊤Π D)†(R + D⊤Π D)

]
θ
}

X

− (R + D⊤Π D)†(B⊤ηΠ + D⊤ζΠ + D⊤Π σ + ρ)
+
[
I − (R + D⊤Π D)†(R + D⊤Π D)

]
ν,
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where θ (·) ∈ L2(t, T ;Rm×n) and ν(·) ∈ L2
F(t, T ;Rm).

Proof. The result can be proved by combining Theorem 7.3 and the previous argument. We
leave the details to the interested reader. □

Now let us recall from [22] the characterization of closed-loop saddle points of LQ stochastic
two-person zero-sum differential games.

Theorem 8.2. Let (G1)–(G2) and (8.1) hold. Then Problem (SDG) admits a closed-loop saddle
point on [t, T ] if and only if the following hold:

(i) The Riccati equation⎧⎨⎩
Ṗ + P A + A⊤ P + C⊤ PC + Q

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†(B⊤ P + D⊤ PC + S) = 0,

P(T ) = G,

(8.9)

admits a solution P(·) ∈ C([t, T ]; Sn) such that the following hold:{
R(B⊤ P + D⊤ PC + S) ⊆ R(R + D⊤ P D), a.e. s ∈ [t, T ],
(R + D⊤ P D)†(B⊤ P + D⊤ PC + S) ∈ L2(t, T ;Rm×n),

(8.10)

R11 + D⊤

1 P D1 ⩾ 0, R22 + D⊤

2 P D2 ⩽ 0, a.e. s ∈ [t, T ]. (8.11)

(ii) The adapted solution (ηP (·), ζP (·)) of the BSDE on [t, T ]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dηP = −

{[
A⊤

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†B⊤
]
ηP

+
[
C⊤

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†D⊤
]
ζP

+
[
C⊤

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†D⊤
]
Pσ

− (P B + C⊤ P D + S⊤)(R + D⊤ P D)†ρ + Pb + q
}

ds + ζP dW,

ηP (T ) = g,

(8.12)

satisfies{
B⊤ηP + D⊤ζP + D⊤ Pσ + ρ ∈ R(R + D⊤ P D), a.e. s ∈ [t, T ], a.s.
(R + D⊤ P D)†(B⊤ηP + D⊤ζP + D⊤ Pσ + ρ) ∈ L2

F(t, T ;Rm).
(8.13)

In this case, the closed-loop saddle point (Θ∗(·), v∗(·)) admits the following representation:⎧⎪⎪⎨⎪⎪⎩
Θ∗

= −(R + D⊤ P D)†(B⊤ P + D⊤ PC + S)
+
[
I − (R + D⊤ P D)†(R + D⊤ P D)

]
θ,

v∗
= −(R + D⊤ P D)†(B⊤ηP + D⊤ζP + D⊤ Pσ + ρ)

+
[
I − (R + D⊤ P D)†(R + D⊤ P D)

]
ν,

(8.14)

where θ (·) ∈ L2(t, T ;Rm×n) and ν(·) ∈ L2
F(t, T ;Rm).

Comparing Theorems 8.1 and 8.2, one may ask: For LQ stochastic two-person zero-sum
differential games, when both the closed-loop representation of open-loop saddle points and the
closed-loop saddle point exist, does the closed-loop representation coincide with the outcome
of the closed-loop saddle point? The answer to this question is affirmative, as shown by the
following result.
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Theorem 8.3. Let (G1)–(G2) and (8.1) hold. If both the closed-loop representation of open-loop
saddle points and the closed-loop saddle point exist on [t, T ], then the closed-loop representation
coincides with the outcome of the closed-loop saddle point.

Proof. The proof is immediate from Theorems 8.1 and 8.2, once we show that the solution Π (·)
to the Riccati equation (8.5) with constraints (8.3) coincides with the solution P(·) to (8.9) with
constraints (8.10)–(8.11).

First, we note that if the convexity–concavity condition (8.8) holds for initial time t , it also
holds for any t ′

∈ [t, T ]. Indeed, for any t ′
∈ [t, T ], and any u1(·) ∈ U1[t ′, T ], let X1(·) be the

solution to⎧⎨⎩
d X1(s) =

[
A(s)X1(s) + B1(s)u1(s)

]
ds

+
[
C(s)X1(s) + D1(s)u1(s)

]
dW (s), s ∈ [t ′, T ],

X1(t ′) = 0,

and define the zero-extension of u1(·) as follows:

[ 0I[t,t ′) ⊕ u1](s) =

{
0, s ∈ [t, t ′),
u1(s), s ∈ [t ′, T ].

Then ũ1(·) ≡ [ 0I[t,t ′) ⊕ u1](·) ∈ U1[t, T ], and due to the initial state being 0, the solution X̃1(s)
of ⎧⎨⎩

d X̃1(s) =
[
A(s)X̃1(s) + B1(s)ũ1(s)

]
ds

+
[
C(s)X̃1(s) + D1(s)ũ1(s)

]
dW (s), s ∈ [t, T ],

X̃1(t) = 0,

satisfies

X̃1(s) =

{
0, s ∈ [t, t ′),
X1(s), s ∈ [t ′, T ].

Hence,

E
{∫ T

t ′

[
⟨Q X1, X1⟩ + 2⟨S1 X1, u1⟩ + ⟨R11u1, u1⟩

]
ds + ⟨G X1(T ), X1(T )⟩

}
= E

{∫ T

t

[⟨
Q X̃1, X̃1

⟩
+ 2

⟨
S1 X̃1, ũ1

⟩
+
⟨
R11ũ1, ũ1

⟩]
ds +

⟨
G X̃1(T ), X̃1(T )

⟩}
⩾ 0.

This proves the case i = 1. The case i = 2 can be treated similarly.
Now let (Θ∗(·), v∗(·)) be a closed-loop saddle point of Problem (SDG) on [t, T ]. Under the

assumption of the theorem, it is clear from Theorem 8.1 that for any initial pair (t ′, x) with
t ′

∈ [t, T ], the outcome

u∗(s) = Θ∗(s)X∗(s) + v∗(s), s ∈ [t ′, T ]

of (Θ∗(·), v∗(·)) is an open-loop saddle point for (t ′, x), where X∗(·) is the solution to⎧⎨⎩d X∗(s) =
{
[A(s) + B(s)Θ∗(s)]X∗(s) + B(s)v∗(s) + b(s)

}
ds

+
{
[C(s) + D(s)Θ∗(s)]X∗(s) + D(s)v∗(s) + σ (s)

}
dW (s), s ∈ [t ′, T ],

X∗(t ′) = x .

By Theorem 8.2, (Θ∗(·), v∗(·)) admits the representation (8.14), and a straightforward calculation
shows that

Ṗ + P(A + BΘ∗) + (A + BΘ∗)⊤ P + (C + DΘ∗)⊤ P(C + DΘ∗)
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+ (Θ∗)⊤ RΘ∗
+ S⊤Θ∗

+ (Θ∗)⊤S + Q = 0,

and that the adapted solution (ηP (·), ζP (·)) of (8.12) satisfies

dηP = −
[
(A + BΘ∗)⊤ηP + (C + DΘ∗)⊤ζP + (C + DΘ∗)⊤ Pσ

+ (Θ∗)⊤ρ + Pb + q
]
ds + ζP dW.

Then applying Itô’s formula to s ↦→ ⟨P(s)X∗(s), X∗(s)⟩ + 2⟨ηP (s), X∗(s)⟩ and noting that

(R + D⊤ P D)Θ∗
+ B⊤ P + D⊤ PC + S = 0,

we have

J (t ′, x; u∗(·)) = J (t ′, x;Θ∗(·)X∗(·) + v∗(·))

= E
{
⟨G X∗(T ), X∗(T )⟩ + 2⟨g, X∗(T )⟩ +

∫ T

t ′

[
⟨Q X∗, X∗

⟩ + 2⟨SX∗,Θ∗ X∗
+ v∗

⟩

+ ⟨R(Θ∗ X∗
+ v∗),Θ∗ X∗

+ v∗
⟩ + 2⟨q, X∗

⟩ + 2⟨ρ,Θ∗ X∗
+ v∗

⟩

]
ds
}

= E
{
⟨P(t ′)x, x⟩ + 2⟨ηP (t ′), x⟩

+

∫ T

t ′

[
⟨Ṗ X∗, X∗

⟩ + 2⟨P X∗, (A + BΘ∗)X∗
+ Bv∗

+ b⟩

+ ⟨P[(C + DΘ∗)X∗
+ Dv∗

+ σ ], (C + DΘ∗)X∗
+ Dv∗

+ σ ⟩

− 2
⟨
(A + BΘ∗)⊤ηP + (C + DΘ∗)⊤ζP + (C + DΘ∗)⊤ Pσ

+ (Θ∗)⊤ρ + Pb + q, X∗
⟩

+ 2⟨ηP , (A + BΘ∗)X∗
+ Bv∗

+ b⟩ + 2⟨ζP , (C + DΘ∗)X∗
+ Dv∗

+ σ ⟩

+
⟨[

Q + S⊤Θ∗
+ (Θ∗)⊤S + (Θ∗)⊤ RΘ∗

]
X∗, X∗

⟩
+ 2⟨(RΘ∗

+ S)X∗, v∗
⟩

+ 2
⟨
q + (Θ∗)⊤ρ, X∗

⟩
+ ⟨Rv∗, v∗

⟩ + 2⟨ρ, v∗
⟩

]
ds
}

= E
{
⟨P(t ′)x, x⟩ + 2⟨ηP (t ′), x⟩ +

∫ T

t ′

[
⟨Pσ, σ ⟩ + 2⟨ηP , b⟩ + 2⟨ζP , σ ⟩

+
⟨
(R + D⊤ P D)v∗, v∗

⟩
+ 2

⟨
B⊤ηP + D⊤ζP + D⊤ Pσ + ρ, v∗

⟩]
ds
}
.

(8.15)

Next, let θ (·) ∈ L2(t, T ;Rm×n), ν(·) ∈ L2
F(t, T ;Rm) and denote⎧⎪⎪⎨⎪⎪⎩

Θ = −(R + D⊤Π D)†(B⊤Π + D⊤ΠC + S)
+ [I − (R + D⊤Π D)†(R + D⊤Π D)]θ,

v = −(R + D⊤Π D)†(B⊤ηΠ + D⊤ζΠ + D⊤Π σ + ρ)
+ [I − (R + D⊤Π D)†(R + D⊤Π D)]ν.

For any initial pair (t ′, x) with t ′
∈ [t, T ], define u(·) ∈ U [t ′, T ] by

u(s) = Θ(s)X (s) + v(s), s ∈ [t ′, T ],

with X (·) being the solution to⎧⎨⎩d X (s) =
{
[A(s) + B(s)Θ(s)]X (s) + B(s)v(s) + b(s)

}
ds

+
{
[C(s) + D(s)Θ(s)]X (s) + D(s)v(s) + σ (s)

}
dW (s), s ∈ [t ′, T ],

X (t ′) = x .
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By Theorem 8.1, u(·) is an open-loop saddle point for (t ′, x), and by a computation similar to
(8.15), we obtain

J (t ′, x; u(·)) = E
{
⟨Π (t ′)x, x⟩ + 2⟨ηΠ (t ′), x⟩

+

∫ T

t ′

[
⟨Π σ, σ ⟩ + 2⟨ηΠ , b⟩ + 2⟨ζΠ , σ ⟩

+
⟨
(R + D⊤Π D)v, v

⟩
+ 2

⟨
B⊤ηΠ + D⊤ζΠ + D⊤Π σ + ρ, v

⟩]
ds
}
.

(8.16)

Since both u∗(·) ≡ (u∗

1(·)⊤, u∗

2(·)⊤)⊤ and u(·) ≡ (u1(·)⊤, u2(·)⊤)⊤ are open-loop saddle points
for (t ′, x), we have

J (t ′, x; u∗

1(·), u∗

2(·)) ⩽ J (t ′, x; u1(·), u∗

2(·)) ⩽ J (t ′, x; u1(·), u2(·))
⩽ J (t ′, x; u∗

1(·), u2(·)) ⩽ J (t ′, x; u∗

1(·), u∗

2(·)).

Therefore, J (t ′, x; u∗(·)) = J (t ′, x; u(·)) for all (t ′, x) with t ′
∈ [t, T ], which, together with

(8.15) and (8.16), yields Π (·) = P(·). □

Remark 8.4. Theorem 8.3 is based on the assumption that both the closed-loop representation
of open-loop saddle points and the closed-loop saddle points exist on [t, T ]. This assumption
is necessary because, in general, neither of these two kinds of existence implies the other
(see Sun–Yong [22]). It is different from Problem (SLQ), in which closed-loop solvability
always implies open-loop solvability. Recall from Theorem 2.5 that for Problem (SLQ), when
a closed-loop optimal strategy exists, the solution P to the corresponding Riccati equation
satisfies R + D⊤ P D ⩾ 0. This positivity condition actually implies the convexity condition
(ii) of Theorem 2.2. However, in the case of Problem (SDG), one cannot deduce the convexity–
concavity condition (8.8) from the counterpart (8.11) of R + D⊤ P D ⩾ 0, nor (8.11) from (8.8).

Finally, we have the following corollary for Problem (SLQ), which should be but has not been
stated in [21].

Corollary 8.5. For Problem (SLQ), if the open-loop optimal controls admit a closed-loop
representation, then every open-loop optimal control must be an outcome of a closed-loop
optimal strategy.

9. Concluding remarks

We have investigated a linear–quadratic stochastic two-person nonzero-sum differential game
and have come to the conclusion that the existence of an open-loop Nash equilibrium is
equivalent to the solvability of a system of FBSDEs with constraints, together with a convexity
condition of the cost functionals, and the existence of a closed-loop Nash equilibrium is
equivalent to the solvability of a system of coupled symmetric Riccati differential equations
whose solution is required to satisfy certain regularity as well as a condition on the solution
of a BSDE. We have shown by some examples that the existence of open-loop Nash equilibria
does not imply that of closed-loop Nash equilibria, and vice-versa, and that even if both open-
loop and closed-loop Nash equilibria exist, the outcome of a closed-loop Nash equilibrium is not
necessarily the closed-loop representation of open-loop Nash equilibria. Moreover, we find that
the situation in the zero-sum case is totally different: The closed-loop representation of open-loop
saddle points coincides with the outcome of the corresponding closed-loop saddle point, as long
as both exist. In particular, for stochastic LQ optimal control problem, if an open-loop optimal
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control admits a closed-loop representation, then the problem must be close-loop solvable, and
the representation is the outcome of the corresponding closed-loop optimal strategy.

As we have seen in the preceding sections, we can obtain an open-loop Nash equilibrium
and a close-loop Nash equilibrium, respectively, in terms of the solutions to the linear FBSDE
(4.1) with the constraint (4.2) and the symmetric Riccati equation (5.7) with the constraints
(5.8) and (5.9). Concerning general FBSDEs, there are mainly three approaches in the literature:
(i) Fixed point approach, which requires the time duration T is small enough [1,17]. This is
a little too restrictive. (ii) The Four-Step Scheme originally introduced in [13] (see also [14]),
which is basically a decoupling method. By using it, one reduces the FBSDE problem to a Riccati
equation, which in our case is non-symmetric (see [25,26]). (iii) The monotone conditions [9,18]
and the method of continuation [24,27], which, in the current case, can only essentially cover
the case of (4.7). From this general picture, we can see that the theory of FBSDEs is still far
away from mature. On the other hand, the solvability of Riccati equations also is still a very
challenging problem. Even for the case of deterministic optimal control problems (i.e., C(·) = 0
and D(·) = 0), in which the Riccati equation becomes symmetric, besides the classical conditions
(similar to (4.7)), there is no nice conditions that guarantee the existence and uniqueness of
solutions. We mention here that some relevant results can be found in [15,21], and [28], but more
complete results are still not available.

To conclude, we would like to point out that our study of stochastic linear–quadratic two-
person non-zero sum differential games provides a nice motivation for further investigation of
FBSDEs and Riccati equations.
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