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ABSTRACT

One of the limitations of commercially available
metal additive manufacturing (AM) processes is the
minimum feature size most processes can achieve. A
proposed solution to bridge this gap is microscale
selective laser sintering (u-SLS). The advent of this
process creates a need for models which are able to
predict the structural properties of sintered parts.
While there are currently a number of good SLS
models, the majority of these models predict sintering
as a melting process which is accurate for
microparticles. However, when particles tend to the
nanoscale, sintering becomes a diffusion process
dominated by grain boundary and surface diffusion
between particles. As such, this paper presents an
approach to model sintering by tracking the diffusion
between nanoparticles on a bed scale. Phase Field
Modeling (PFM) is used in this study to track the
evolution of particles undergoing sintering. Changes
in relative density are then calculated from the results
of the PFM simulations. These results are compared to
experimental data obtained from furnace heating done
on dried copper nanoparticle inks, and the simulation
constants are calibrated to match physical properties.

INTRODUCTION

The resolution of currently available metal additive
manufacturing (AM) technologies is generally on the
order of hundreds of micrometers [1,2]. This
resolution prevents AM technologies from expanding
into industries, such as the microelectronics industry,
where sub-10 pm part sizes are critical. Parts

fabricated for the microelectronics industry are
typically made using a combination of lithography,
etching and material deposition processes to create
2.5D electronic structures. However, there are size
limitations and associated complexities with using
these processes. The need for a more flexible
manufacturing process which matches the desired
tolerances needed for creating 3D microelectronic
structures is being filled through the creation of a
microscale selective laser sintering process (pU-SLS)
[3-5].

Selective Laser Sintering (SLS) is an AM process
by which parts are created through the fusion of
particles using energy absorbed from a laser source. In
the traditional SLS process, powder is spread onto a
bed and a laser beam is rastered over the powder bed,
providing the particles heated by the laser with enough
heat energy to fuse together and form a solid part [6].
This process is different from other AM processes, in
that it is powder based and uses a laser as the heat
source. The powder base allows for the creation of
features like overhangs as sintered parts are supported
by unsintered powder underneath it. Micro-SLS
differs from the traditional SLS process in that it deals
with the sintering of nanoparticles, which would allow
for smaller features and microscale resolution. With
the creation of this new technology, there is an
associated need for models able to predict the final
properties of sintered parts.

There are currently a number of good SLS models
[7-9], but these models deal with microparticles and as
such model sintering as a melting process. During the
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sintering of nanoparticles, the mechanism behind
sintering becomes dominated by nanoscale effects.
Some of these effects include, but are not limited to,
vapor, volume, grain boundary and surface diffusion,
viscous flow, and grain-boundary sliding/dislocations
[10]. The particles used for this study are on the order
of ten to a hundred nanometers. For this size of
particles, the dominant means of sintering has been
shown to be surface and grain-boundary diffusion
[10]. Consequently, the simulations presented in this
paper model sintering as a diffusion process
dominated by surface and grain boundary diffusion,
with minimal volume diffusion contributions.

BACKGROUND

Studying sintering as a diffusion process is not a
novel idea. A number of simulations study sintering as
a diffusion driven process. Ding and Pan studied the
sintering between nanoparticles using molecular
dynamics (MD) simulations which track the atomistic
interactions between particles [11]. These MD
simulations made use of the Lennard-Jones model to
track the potential between particles. Because MD
simulations track the interactions between atoms,
these simulations are only able to model a few
particles at a time. Ding and Pan also compared
continuum and MD models for the sintering of
nanoparticles. This comparison led to the realization
that the preliminary assumptions required for
continuum models made them inadequate for tracking
the sintering kinetics which change during the MD
simulations. Cheng and Ngan were able to expand
from the few particle MD simulations to tracking four
particles, broken into half, quarter and octet portions
and arranged in an FCC crystalline state [12]. Though
these MD models are able to track all phases of the
sintering process, they have the disadvantage of being
too computationally expensive to track more than a
few particles at a time. Alternative to these MD
models, there are discrete models which are able to
track particles on a bed scale. Rojek et al modelled
sintering as a diffusion process using a Discrete
Element Method (DEM) [13]. They found shrinkage
between particles to be driven by inter-particle
attraction which is caused by the stresses and surface
tension in the necks formed between particles. Though
this model was able to monitor a large number of
particles, sintering is modeled as a bulk process which
is governed by a particle interaction model dependent
on only grain boundary diffusion. The downside with

discrete models is that they are unable to model
nanoscale effects during sintering. Thus the gap exists
between the MD models which characterize full
nanoscale effects but can only model a few particles at
a time and the discrete models which model full beds
but are unable to model nanoscale effects. Phase Field
Modelling (PFM) can bridge this gap.

A number of Phase Field models have been created
to track the sintering behavior between particles.
Wang used PFM to track the sintering between 26
particles [14] and Shinagawa used a combination of
PFM and DEM to track the sintering between a cluster
made up of 10 particles [15]. With both of these
models, the sintering behavior is successfully
characterized for the particles in 2D. While 2D
simulations provide useful insight into the process of
diffusion between particles, they cannot accurately be
used to predict properties of real particle beds such as
volumetric shrinkage. Kumar used PFM to track the
sintering of 28 3D particles randomly arranged in a
cubic lattice [16].

In contrast to the previously mentioned models, the
simulation used in this study is able to track the
sintering between hundreds of particles. This study
simulates sintering in a 43 particle one-by-one micron
bed and a 134 particle two-by-two micron bed.
Additionally, a data analysis package is created to
determine the change in density of the bed. The
relative density of the beds are plotted as functions of
simulation time and compared against similar results
from experimental data. This comparison is used to
calibrate the simulation constants, mapping simulation
results to physical experiments.

MODEL

A Phase Field Model (PFM) was used in this study
to track the sintering of particles. PFM is a diffuse-
interface approach which tracks the evolution of
particles using phase field variables which are related
to microscopic parameters [17]. In this study, the PFM
variables used are the conserved mass density (p)
variable and the non-conserved order parameter (1);).
These variables take on values from 0 to 1 tracking the
phases of, and interphases between, particles. The
density variable differentiates between solid phase,
where it takes the value of 1, and the vapor phase,
where it takes the value of 0. On the other hand, the
order parameter takes on the value of 1 for the ith
particle and is O for every other particle. The evolution
of particles in this system is driven by the
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minimization of the total free energy, which is a
function of the phase field variables and is given in Eq.
1.

1

N
1 2
+3 ) Bylvnd
i=1

f(p,n;) is the bulk free energy, N is the total number
of particles in the system, f, is the gradient energy
term for the density variable, and f, is the gradient
energy term for the order parameter. The bulk free
energy is a Landau type potential shown in Eq. 2. [16].
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where p.,p and pse are the vapor and solid density
parameters respectively, w is related to the grain
boundary energy, K1 and K2 are constants related to
grain boundary and surface energy as shown in Eqs 3
and 4. In addition to K1 and K2, the gradient energy
terms for the density variable and the order parameter,
from Eq. 1, are related to the surface energy and grain
boundary energy in the system. Chockalingam et al
[18], showed that the surface and grain boundary
energy are functions of the constants in Eq. 1 and Eq.
2. The relationship between these constants and the
energy terms are shown in Egs. 3 and 4.
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ye» in Eq. 3 is the grain boundary energy and y; in Eq.
4 is the surface energy. As stated earlier, the sintering
kinetics is driven by the progression of the phase field

variables. The temporal evolution of the density
variable is governed by the Cahn-Hilliard equation
[19,20] which is shown in Eq. 5.
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D is the equivalent diffusion coefficient, made up of
fractions of the surface, grain boundary and volume
diffusion coefficients, and is given by Eq. 6.
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D, is the volume diffusion coefficient, D,y is the
surface diffusion coefficient, Dy is the grain boundary
diffusion coefficient, and @ = p*(7p? — 18p + 12)
having a maximum in the solid phase and a minimum
in the vapor phase [16]. The temporal evolution of the
order parameter is governed by the time-dependent
Ginzburg-Landau structural relaxation equation [21],
given in Eq. 7 where L is a constant that characterizes
grain boundary mobility.
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SIMULATION

Setup

The equations for the field variables listed above
were discretized using the Forward Euler method for
numerical differentiation. These equations were
encoded into a simulation using programming with
C++, working in units of pixel length and simulation
timesteps. Message Passing Interface (MPI) was then
used in C++ to break the simulation box into different
smaller boxes that could be analyzed by different
processors. This parallel program was then run in a
cluster using varying number of cores, depending on
the size of the simulation box. The numerical data
output from the C++ simulation is put into a python
algorithm which plots the geometry of the bed, by
converting the numerical data to the matching x-y-z
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locations of pixels, with weights relating to the density
and order parameter field variables. The constants used
in the simulation correlate to sintering at different
temperatures. For the initial test of the simulation, the
constants used are Bp = 10, pn = 3.75 in Eq. 1, K1 =
12,K2=1,w="71n Eq. 2, in Eq. 4 Dsurf =45, Dgb
4.1, Dvol = 0.08 and L = 10 in Eq. 5 [15]. These
constants were arbitrarily chosen to correspond to a
10:1 ratio of surface to grain boundary diffusion and a
2:1 ratio of surface to grain boundary energy, derived
from Equations 3 and 4. The value for the density in
vapor phase (pvap) Was taken to be 0.000000089 and in
solid phase (pso1) 0.9998. These values were chosen
instead of the standard values of 0 and 1, to allow for
numerical analysis of the discretized differential
equations. The simulation was initialized by setting
pixels outside of a particle to pvsp and in the particle to
psol. The simulation takes in beds generated with a bed
generation simulation and starts with the particles in
contact.

Bed Generation

The bed generation tool used generates particles
arranged to match an actual physical bed. These beds
consist of spherical nanoparticles, generated by setting
an initial position vector for each particle as well as a
radius, to set particle size. The generation simulation
uses Discrete Element Modelling (DEM), in a
Multiphase =~ Computational ~ Fluid  Dynamics
simulation, MFIX. Particle packings are generated
using the MFIX-DEM discrete mass inlet function,
which allows each particle to interact with neighboring
particles. Initially, the particles are distributed
randomly within the bed domain, they are given an
initial velocity and are allowed to move within an
initial set of boundary conditions. Particle interactions
are modeled using a dashpot model based on a soft-
sphere model of the particles. Subject to gravitational
and cohesive forces, the particles move around and
interact until the final steady state position is reached.
This final geometry is used as the input into the PFM
simulation. Complete details of the bed generation
process can be found in reference [22].

RESULTS AND DISCUSSION

A number of procedures were done to test the
capability and validity of the simulation described
above. These procedures include running the
simulation on a one-by-one and two-by-two
micrometer bed to prove first, that the simulation

works and produces results which are similar to
experiments, and secondly that the simulation can be
expanded for over a hundred particles. The results of
these tests are discussed in more detail below.

One-by-One Micrometer Bed

A one-by-one micrometer bed was generated with
the bed generation tool described earlier and is shown
in Fig 1. This bed is made up of 43 particles in a
simulation box with dimensions of 110 by 110 pixels
in the x-y plane and 73 pixels in the z. This
corresponds to a bed height of 750 nm and particles
with diameters ranging from 146 to 573 nm with a
mean of 218 nm, using a conversion factor of
approximately 10.6 nm/pixel. The size range of this
bed is designed to match the size distribution of the
copper nanoparticles in the ink used for the
experiments. The size distribution of this ink was
derived from experiments to match a lognormal
distribution with a mean of 232 nm and a standard
deviation of 96 nm. Using a 64 core cluster, this
simulation took approximately 19 hours to run to 2.4
million time steps. The results of the sintering
simulation are shown in Fig. 1.

At the start of the sintering process particles are in
contact to initiate diffusion. The average overlap
between the particles at the start of the simulation is
0.0004 nm. At the initiation of sintering, necks begin
to form between particles. These necks grow until the
onset of coarsening where the boundary between
particles migrates into the smaller particles shifting the
balance of mass towards the larger particle. As shown
in Fig. 1 the initial sintering periods are characterized
by fast neck growth evident in images 1a —d. The neck
formation happens rapidly leading to a faster looking
rate of evolution than in the later time steps. The
shrinkage and densification become clearer in the later
images 1f — i as the pores prevalent in the previous
time steps are filled due to diffusion as sintering
occurs. The bed shown in Fig. 1 was simulated under
isothermal conditions, with each particle having the
same values for the diffusion and energy constants.
The values in the description of Fig. 1 are the
simulation timesteps and in parenthesis the amount of
wall clock time it takes to get to the corresponding
timestep.
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Fig. 1. The evolution of a one by one micrometer bed with 43
particles. a. Initial. b. 20000 timesteps (.16 hrs.) c. 60000 timesteps
(.47 hrs.) d. 100000 timesteps (.79 hrs.); e. 280000 timesteps (2.2
hrs.) f. 450000 timesteps (3.6 hrs.) g. 700000 timesteps (5.5 hrs.) h.
850000 timesteps (6.7 hrs.) i. 1100000 timesteps (8.7 hrs.)

Data Analysis

Upon completion of the sintering simulation, the
data collected from these simulations was analyzed to
determine the change in relative density of the
simulation over time. The density of the bed was found
from analysis done on a 40-by-40 pixel box, which
corresponds to a 423-by-423 nm box, in the center of
the simulation bed. The PFM simulations assume that
sintering occurs with particles that are surrounded by
air, which allows for shrinkage across the x-y bounds
of the simulation. As such, the analysis is done in the
center of the simulation to ensure that the results
collated are impervious to edge effects. In this analysis
box, the calculations for density were found by taking
the ratio of the total sum of the conserved density
variable in the box, to the total volume of that box.
With this method, the relative density has a value of 0
in a fully porous box and a value of 1 when fully dense.
A cross-sectional view of the simulation box showing
the inner box undergoing sintering is shown in Fig. 2.

Fig. 2. Densification in the center of the simulation bed after a. 0
timesteps. b. 80000 timesteps. ¢. 160000 timesteps. d. 480000
timesteps

To get an uncertainty measure for the analysis done
on these beds, several boxes were taken from each bed.
These boxes were chosen based off an edge finding
algorithm which gives the largest possible bounds for
analysis without encroaching upon the edges of the
simulation. The significance of this tool is the ability
to determine the cutoff point between the fully
populated bulk of the bed and the edges of the
simulation which undergo x-y shrinkage. The edge
finding algorithm works by taking strips of the full z
height, along each slice in the x and y direction. In
each z-strip the deviation from the top and bottom of
the bed is calculated, and the total deviation is defined
as the Euclidean norm of these values. The total
deviation is then normalized against the largest
difference in deviations for each bed. This gives the 1
value found for the algorithm and is shown in Eq. 8
below.

T;

(tD,iz + bD,iz)

i max[ (62 + bDZ)] _ min[ (007 + sz)]

where #p and bp refer to the deviation of the z strip
from the top and bottom of the bed respectively. Once
T is calculated, the algorithm compares this value to a
predetermined cut off factor and defines the analysis
bounds as the x and y values that give T values just
below the cut off. The optimum cut off factor for the
simulation was determined analytically by varying

(8)
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different factor values to get the best agreement for all
beds tested. Fig. 3 shows the average rate of relative
density for a single one-by-one bed simulation run, as
well as the associated error bounds calculated from
varying the position of the analysis box. The relative
density is defined in Eq. 9.

pi—p
prel = . (9)
Py

Where p, is the sum of the density variable at the start
of the simulation, and p; is the sum at the simulation
timestep i.
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Fig. 3. Relative density curve, with error bounds, derived from data
analysis done on the sintering simulation

Experimental Procedure

Once data analysis was done on the simulation
beds, experiments were performed to validate the
simulation results and calibrate the simulation
constants to match physical properties. Specifically,
the simulation time step was calibrated to match the
sintering experiment time in minutes, and the
simulation energy and diffusion constants were
calibrated to match sintering temperatures. The
experiments were carried out in a furnace using
Intrinsiq CI-005 copper nanoparticle inks [23]. 2ml of
copper nanoparticle ink was dispensed into a glass
petri dish using a rubber pipette. The petri dish of ink
was dried on a hot plate at around 95°C for 16 hours.
After the solvent in the ink was dried off, dried copper
flakes of coated nanoparticles were scraped off the
petri dish with a flat spatula. These dried flakes were
then put into crucibles. Pressure was applied to form
the flakes into pellets in the crucibles. These crucibles

were put into a furnace and subject to isothermal
heating. In the furnace, the coating around the particles
dried off and the nanoparticles sintered together into a
solid pellet. The flow of the experimental procedure is
shown in the images in Fig. 4. The sintering
experiments were carried out under flowing Argon and
Hydrogen to control oxidation of the copper
nanoparticles.

5mm

Fig. 4. Experimental procedure. a. Copper nanoparticle ink. b.
Dried ink. c. Scraped off dried flakes. d. Pellets in crucible before
sintering. e. Pellets in crucible after sintering

SEM images were taken of the flakes before
sintering, and the pellets after sintering. These images
in Fig. 5, show that before sintering the particles are
discrete and can be seen separate from each other.
After sintering, the images of the pellets show that
necks have formed between the nanoparticles after
heating.

a b 1um

Fig. 5. SEM Images of sintered nanoparticles. a. Before sintering.
b. After sintering
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Analysis of the sintered copper pellets were carried
out after the experiments. The density measurement is
calculated as the ratio of mass to volume. The mass
was measured using a digital weight scale and the
height of the copper nanoparticle pellet in the crucible
was measured using a plastic stopper. First, the height
of the pellet was calculated as the difference between
the height of the stopper when placed in the empty
crucible, and the height when placed in the crucible
containing the pellet. The volume was then calculated
using this measured height and the diameter of the
crucible. Similarly, the mass of the pellet was
calculated as the difference between the mass of the
empty crucible and the mass of the crucible containing
the pellet. The initial density of the pellet was
calculated from the ratio of mass to volume. The
relative density was then calculated based off the
measurements taken. This value was calculated using
the same equation as was used for the simulation (Eq.
9), where in this case p, corresponds to the initial
density of the unsintered pellet and p; is the density
after sintering.
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The sintering experiments were carried out at
450, 500, 550 and 600°C. The relative density data at
these temperatures were fit to an exponential decay of
the form in Eq. 10.

K
-2 4k,
Pret = Kie K3 + K5

(10)

Where the K values are best fit constants. The plot of
the experiment data points and the best fit curve for the
decay in Eq. 10. is shown in Fig. 6. A consolidation of
all these plots is shown in Fig. 7. From Fig. 6, it can
be seen that sintering is characterized by an initial rate
of rapid densification and as the sintering time
proceeds the rate of densification approaches a steady
state value. Fig. 7 shows that as the temperature
increases, the amount of time it takes for the relative
density to reach steady state decreases. These curves
from the experiments were set against the results from
the simulation and the appropriate simulation
constants and simulation time calibration constant
were calculated. The process of deriving this is
discussed in the following sections.
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Fig. 6. Experimental data and curve fit at a. 450°C. b. 500°C. c. 550°C. d. 600°C
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Experiment and Simulation Sizes

The goal of carrying out the experiments is to
validate and calibrate the simulations. For this
calibration, millimeter scale crucibles are used in
comparison to micrometer scale simulation beds. This
mismatch in size is a result of the infeasibility of
applying the same size scales to both the simulation
and the experiments. That is, facilities do not exist to
conduct experiments on the micron scale and running
the simulation on the millimeter scale would require
more computational power and time than possible. As
such, initial density measurements are taken to make
sure that the simulation bed and the experiment bed at
the start of sintering are comparable. The procedure
for obtaining these density measurements in the
experiments are discussed in the experimental
procedure section above. The initial density in the
simulation bed is determined from the porosity of the
simulation bed. The number of pixels in the vapor
phase are counted and the pore density is obtained
from taking the ratio of porous pixels to the overall
number of pixels in the simulation bed. Finally, the
initial density for the simulation is calculated by

multiplying the percentage of filled pixels (1 —
porosity) in the bed with the known density of bulk
copper 0.00896 g/mm?. Distributions for the average
initial densities from the experiments and simulations
are shown in Fig. 8 with lines to indicate the 95%
confidence intervals for each distribution. The
measurements from the experiments are obtained from
an average of 6 measurements taken for each bed. This
makes the average density from the experiments
follow a normal distribution with an average of 3
mg/mm? and a standard deviation of 0.06 mg/mm?>.
The initial density for the simulations follows an
unknown distribution. Based off the Central Limit
Theorem the approximation can be made that the
average of the initial densities from the simulation
would follow a normal distribution with a mean of 3.2
mg/mm> and a standard deviation of 0.1 mg/mm?3
(which is the sample standard deviation divided by the
square root of the number of points sampled).

A two-tailed p-test was done to test the null
hypothesis that both distributions are equal. The p
value calculated from this test is 0.074. This value is
greater than 0.05, so the null hypothesis cannot be
rejected at a 90% confidence level. One reason why
the initial densities of the simulations and experiments
may differ is due to the precision of measurement. The
height measurements of the experiments are done with
plastic stoppers which introduce additional errors due
to the irregularities in the surface of the stopper. On
the other hand, there is no such irregularity in
measuring the density of the simulation where the
exact pixel height is known. Another reason why the
initial densities may differ is due to the polymer
coating around the nanoparticles used for the
experiments. This creates a mix of materials which is
not present in the simulations. Within the uncertainty
the initial densities can be said to agree and as such the
simulations can be calibrated against the experiments.
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Fig. 8. Distribution of the Average Initial Density of the Simulation and Experiment for 12 Simulation beds and 24 Experiment samples

Simulation Calibration

The constants used in the PFM simulation are
temperature and time dependent and have simulation
units. To map these constants to physical units a time
calibration must be done, matching the simulation
time in units of timesteps to experimental time in
unites of minutes. The simulation was calibrated
against experimental data by plotting the percentage
change curve from the experiments against that
derived from the simulations. The first step for this
calibration was arbitrarily changing the values of the
simulation constants related to diffusion and energy to
get a good comparison between the density curves
from the simulations and that of the experiments. After
a good rough fit was derived from comparing the
simulation data to the experimental data, the
simulation time step was calibrated to match
experimental sintering time. For the time calibration,

the simulation time steps are taken to have a linear
correlation with the actual time so that the calibration
factor is a constant (A) given in Eq. 11.

tm (timesteps)

torp(min) = —— (11)

The calibration factor was determined through a
minimization algorithm. This algorithm works by
narrowing the possible values of A to a window with
upper and lower bounds off by a negligible value of
epsilon. The values in this window minimize the total
error between the simulation data and the experimental
data. The value of A that gives the lowest error is taken
as the calibration factor mapping simulation timesteps
to experimental time. The results fitting the simulation
to experiments are shown in Fig. 9.
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The results for the time calibration values are
shown in Table 1. The Table shows the results for the
range and averages of the error and time calibration
values. The range included in these values, like the
error bars in Fig. 3, are a result of carrying out the
calibration analysis on different boxes in the center of

15 20

Time {minutes)

the simulation bed. The data in Table 1 shows an
overall average error of about 9% between the
simulation and experiments. The time calibration
factor shown in the table has an average of 20%

25

Fig. 9. Comparing experimental fit to simulations for a. 450°C. b. 500°C. ¢. 550°C

deviation between each temperature.

Table 1. Calibration Results: Time and Error

Time Calibration, 4
(timesteps/minute) Error (%)
Minimum | Maximum | Average | Minimum | Maximum | Average
450°C 101070 388864 215319 3.22 30.14 13.54
500°C 57644 277293 167598 3.57 10.91 7.01
550°C 71110 383773 250102 3.99 9.79 6.76
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Once calculated, the simulation diffusion constants
were mapped using Eq. 12.

D pixels? s DgimA
sim \ timesteps ]~ 6052

cm?
=> Dyt T (12)

Where Dsim represents the simulation diffusion
coefficients and D, represents the diffusion
coefficients when mapped to the corresponding units
in a CGS system. A is the time calibration constant in

Eq. 11 having units of timesteps/minute and S is the
size calibration constant. S here is set as 944822
pixels/ecm. The values used for the diffusion constants
in the simulation where mapped to physical units and
are shown in Table 2. For this study surface, grain
boundary and volume diffusion coefficients are
assumed to follow the ratio 1000:100:1 [24,25]
respectively. As these constants are the final constants
derived from the best fit between the experiments and
the simulation, they represent sintering simulation
constants for copper at the temperatures stated in the
table.

Table 2. Calibration Results: Diffusion constants

Surface Diffusion coefficients (cm”2/s)
Average Uncertainty
450°C 2E-07 1E-07
500°C 2.2E-07 7.9E-08
550°C 3E-07 1E-07

As of this point there has been no experimentally
determined surface diffusion coefficients for copper
nanoparticles to compare against the constants in
Table 2. Bonzel and Gjostein [26] found that at 500°C
the surface diffusion coefficient of bulk copper is
1.91E-07 cm?/s. This value falls within the same order
of magnitude as the value obtained from the
simulations, which is further validation of the model.

Two-by-Two Micrometer Bed

One of the goals for the model described in this
paper is to be able to apply it to over a hundred
particles. To this end the simulation was applied to a
two-by-two micrometer bed. The configuration of this
bed was determined using the same bed generation
tool as described earlier, and the PFM simulation was
run on this bed. The two-by-two micrometer bed
corresponds to 134 particles with diameters ranging
between 118 to 572 nm. The bed was created using the
same particle size distribution as used for the one-by-
one micrometer bed. The two-by-two micrometer bed
had a simulation box size of 286 by 282 pixels in the
x-y plane and 98 pixels in the z. With a 140 core
cluster the simulation took 48 hours to run to 220,000
time steps, and 52 hours to run to 2,030,000 time steps
in a 1440 core cluster. The results from the simulation
are shown in Fig. 10. As was the case with the one-by-

one bed, these images show a similar rate of rapid
initial neck formation and a slower rate of
densification and shrinkages as sintering proceeds.

e f

Fig. 10. The evolution of a two by two micrometer bed with 134
particles. a. Initial b. 200000 timesteps (5.1 hrs.) c. 600000
timesteps (15 hrs.) d. 1000000 timesteps (26 hrs.) e. 1500000
timesteps (38 hrs.) f. 2000000 timesteps (51 hrs.)
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Analysis done on this bed and shown in Fig. 11
quantitatively confirms that the densification is similar
to that seen in the one-by-one micrometer bed.

The plots in Fig. 11 show two density curves. The
density curve in the dashed line is a prediction from
scaling the results of a one-by-one micrometer bed by
a factor of the areal magnification between both beds.
The average error between the prediction and the
actual density curve derived from the analysis of the
beds is 12% which is smaller than the uncertainty in
these curves. This error value shows a good degree of
accuracy in scaling up the results using analysis of the
smaller bed. The significance of this test is to show the
viability of extrapolating results from one-by-one
micrometer beds for larger beds which are more
computationally expensive to run.

0.09
0.08 2by2_results

0.07 = = = 1byl prediction
0.06
0.05
0.04
0.03
0.02
0.01

0

Relative Change in Density

0 2000 4000 6000 8000 10000
Simulation time (100*timesteps)
Fig. 11. Relative change in density curve derived from data

analysis done on a 2-by-2 micrometer bed and the prediction from
a 1-byl micrometer bed.

CONCLUSION

In this paper a Phase Field Modelling (PFM)
approach is used to simulate the sintering of particles
in a one-by-one micrometer bed. The simulations
presented here are unique in that they are applied to
3D bed scale simulations using clusters which can be
extended to hundreds of particles. The validity of
expanding this simulation is tested against a larger
two-by-two micrometer bed containing 134 particles.
Additionally, a data analysis package was created that
measures the relative density change in each bed.
Experiments were also performed with a furnace. The
experimental data shows that after 10 minutes of
heating at 450°C the density value starts to reach the
maximum steady state value. As heating temperature
increases, the amount of time the nanoparticles take to
reach steady state decreases. The densification curves

obtained from the experimental data are calibrated to
match sintering simulation results and it is seen that
the simulation trend is in good agreement with the
experimental data. These comparisons between the
simulation and experiments gave a calibration factor
mapping the simulation timestep to sintering time in
minutes. The time calibration factor derived was then
used to map the diffusion constants from simulation
units to physical units and the resulting surface
diffusion constant showed good agreement with
experimental data.

For full reliability in this model the uncertainty in
the sintering process caused by variations of the sizes
and locations of nanoparticles in the bed must be
quantified. As shown in the results derived from
changing the position of the analysis box, there is a
significant amount of uncertainty that comes with the
configuration of the particles in the bed. To completely
quantify this uncertainty, different simulation beds
have to be tested to determine the changes in
calibration constants and rate of densification with
changing the initial configuration of the bed.

In conclusion, the low percentage error between the
simulation and the experiments done on the copper
nanoparticles give qualitative evidence that this model
is indeed valid for calculating the rate of densification
in nanoparticle sintering.
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