
RATIONALITY PROBLEM FOR CLASSIFYING SPACES OF SPINOR  
GROUPS

ALEXANDER S. MERKURJEV

A b s t r a c t .  W e  s t u d y  s t a b l y  r a t i o n a l i t y  a n d  r e t r a c t  r a t i o n a l i t y  

properties of the classi- fying spaces of split spinor groups Spinn over a field F   of 

characteristic not 2.

1. I n t r o d u c t i o n

Let G be  an  algebraic  group  over  a field  F , V   a generically  free  representation  of   
G(i.e.,  the  stabilizer  of  the  generic  point  in  V   is  trivial)  and  U  ⊂ V   a  G-invariant open

subset such  that there is  a G-torsor f  : U −→ U/G.  This is  a versal  G-torsor, i.e.,   every
G-torsor over  a field  extension  K/F with K infinite is  isomorphic  to the fiber  of  f  over a
K-point of  U/G.  Thus, the K-points of  U/G parameterize  all G-torsors  over Spec(K).

The stable rationality (respectively, retract rationality) classes of U/G are
independent of the choice of V and U . We call the variety U/G the classifying space of G
and denote it by BG. The space BG is retract rational if and only if all the G-torsors over
field extensions of F can be parameterized by algebraically independent variables
(Proposition 3.2).

We study the classifying spaces of split spinor groups Spinn over a field F of charac- teristic
not 2. The Spinn-torsors over a field extension K/F parameterize nondegenerate quadratic
forms of dimension n over K of trivial discriminant and Clifford invariant. If
n ≤  6, all such forms are isomorphic, hence B Spinn  is stably rational.  We  also show  that
B Spinn  is  stably rational if n ≤  10  (at least over  F = C) and retract rational if n ≤  16.

We  prove  several reincarnations of  the space B Spinn.  We  show  that B Spinn  isstably
birational to the Severi-Brauer  variety over  the classifying  space  BO+  of  the special    or-n

thogonal  group  corresponding  to the  Azumaya algebra  whose  class  in  the Brauer group
if  the  Clifford  invariant.  As a consequence  we  show  that B Spinn  is  stably birational to
B Spinn−1  if n is even.  We  also prove  that B Spinn  is stably birational to the   classifying
space of  an extraspecial finite group  of  order  2n  if n is  odd and 2n−1  if n is   even.

We  use  the following notation.

A variety over a field F is an integral separated scheme of finite type over F .  An 
algebraic group  over  F is  an affine  group  scheme  of  finite type over  F .

n
FA the affine  space over F .

m
1
FG = A  \ {0} the multiplicative group (torus).
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2.  R a t i o n a l  an d  r e t r a c t  r a t i o n a l var i e t i e s

If X and Y  are varieties over F , we write X ≈  Y  if X and Y  are birationally isomorphic,
s.b.

i.e., the rational function fields F (X) and F (Y ) are isomorphic over  F and X  ≈  Y   if  
X F

m n
Fand  Y   are  stably birational, i.e., X × A ≈  Y× A for  some  m and n.

n
FWe   say  that  X is  a  rational  variety  if  X ≈ A for  some   n  and  stably  rational if

s.b.
0
FX ≈ A = Spec

F .We  will use  the following  elementarylemma.

Lemma  2.1.  Let f  : Y  →  X be  a  morphism of varieties over F .  Suppose  that for every
field extension K/F  and every point x ∈ X(K) , the fiber of f  over x is a  rational  variety

s.b.
over K . Then Y ≈ X .

Proof.  By assumption,  the  generic  fiber  Z of  the  morphism  f  is  a  rational  variety

overthe function field  F (X). The result follows  since  F (Y ) ≃ F (X)(Z). Q

A morphism  of  varieties  f  :  Y   →  X over  a  field  F is  called  weakly  split  if  there  

is arational morphism  g  : X −−· Y   such  that f  ◦g  is the identity of X .  We  say that f  is split
if for  every nonempty  open  subset U ⊂ Y   there is  a rational morphism  g : X −−· Y    such
that Im(g) ∩ U ̸= ∅    and f  ◦g = idX .

A variety X over  F is  weakly  retract rational  (respectively, retract rational ) if there  is
n
Fa  nonempty  open  subvariety  Y⊂ A for  some  n and  a weakly  split  (respectively, split)

morphism f  : Y  →  X over F .
Every stably rational  variety  is  retract rational  and  hence  weakly  retract rational (see

[11, §2]).

3.  V e r s a l  t o r s o r s  a n d  c l a s s i f y i n g

spaces
Let  G be  an  algebraic  group  over  F .   A G-torsor  Y   →  X over  a  variety  X is called

versal  if  for  every  G-torsor  E →  Spec(K) for  a field  extension  K/F with K an  

infinitefield  and  every nonempty  open  subset U  ⊂ X ,  there is  a point x ∈ U (K) such  that  the
G-torsor  E →  Spec(K) is  isomorphic  to the  pull-back  of  Y   →  X with respect  to x

(see[6]).  Thus a versal G-torsor Y  →  X parameterizes all G-torsors over field extensions  K/F
by the points of  X over K .

Let G be an algebraic group over F , V a generically free representation of G over F . A  
nonempty G-invariant open  subset U  of  the affine  space A(V ) of  V   such  that there exists
a G-torsor U  →  U/G for  a variety U/G over  F is  called a friendly open  subset  of  V   or   a
friendly G-variety. Friendly open subset always exist (see [14, Proposition 4.7]) and the  
torsor U →  U/G is  versal (see [6]).  It is  called a standard versal   G-torsor.

Example 3.1. Let G = (µn)r for some n and r, where µn is the group of roots of unity of  
degree  n.  Then the natural representation  F r  of  G is  generically free  and  (Gm)r  is  a

r
Ffriendly  open  subset of A = A(Fr) with the G-torsor  (Gm)r  →  (Gm)r/G = (Gm)r, so

(Gm)r is an approximation of BG.  Note that a G-torsor over a field extension K/F   is iso-
1/n 1/n
1 2

1/n
r 1 2 r mmorphic  to Spec K(a , a , . . . , a ) →  Spec K for a point (a , a  , . . . , a  ) ∈ (G )r(K)

with ai  ∈ K × .
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We call the variety U/G the classifying space of G and denote it by BG. The stable  
rationality class of  U/G is independent  of  the choice  of  V   and U .  Indeed,  if U ′ is another
friendly open subset in a space V ′, then the variety Y    := (U × U ′)/G is an open subset 

in s.b. s.b .
the vector bundle  (U × V ′)/G over  U/G,  and  hence  U/G  ≈  Y .  Similarly,  U ′/G  ≈  Y ,

s.b . s.b. s.b.
therefore U/G  ≈  U ′/G.  Hence the formulas BG  ≈  X and BG  ≈  BG′  for some   

groupsG and G′ and varieties X ,  and also the property of  the space BG to be stably 
rational or  retract rational make sense.

We  say  that  the  G-torsors  over  field  extensions  of  F  are  rationally  parameterized if
there is a versal G-torsor Y  →  X with X a rational variety.     The following statement 

wasproved  in  [11, Corollary 5.9].

Proposition 3.2. The G-torsors over field extensions of F are rationally parameterized  if 

and only if the classifying space  BG is retract rational over  F .

Let  U  be  a  friendly  G-variety  and  let  H  ⊂  G be  a  subgroup.   Then  U  is  a friendly
H-variety.  We  think  of  the  natural  morphism  U/H →  U/G as  an  approximation  of

themorphism  BH → BG.
Let x be a K-point of U/G for a field extension K/F   and J the corresponding G-torsor

over  K ,  i .e.,  J is  the inverse  image  of  x under  U  →  U/G.  It follows  that the fiber  of

themorphism  U/H  →  U/G  over  x is  equal  to  J/H.   Lemma  2.1  then  yields  the

followingproposition.

Proposition  3.3.  Let G be  an algebraic group  over F  and H ⊂ G a  subgroup.    Suppose

s.b .

that for every field extension K/F , and every G-torsor J over K ,  the var iety J/H is  

rational over K .  Then BH  ≈  BG.

Example  3.4.  Let G be a reductive algebraic group  over  F and T  ⊂ G a maximal  torus
over F . Let N be the normalizer of T in G. For a G-torsor J the group GJ := Auttt(J )  is  
the  twist  of  G by J .  The morphism  from  J  to the  variety  MaxTori(GJ ) of  maximal
tori in  GJ  taking j  in  J to the maximal  torus  of  all φ in  GJ  such  that φ(j) ∈ jT  yields

an  isomorphism  J/N  →∼
MaxTori(GJ )  (This  is  the  twist  of  the  isomorphism  G/N 

→∼

s.b.

MaxTori(G) taking gN to gT g−1.) The variety MaxTori(GJ ) is known to be rational  [3,  

Theorem  7.9].   Hence BN ≈   BG.   This  was  proved  in  [1,  Lemma  2.4]  when  F is

algebraically closed.

4.  Q u a d r a t i c  f o r m s

The references  for  the algebraic  theory of  quadratic forms  are  [10],  [8]  
and [5].Let F be a field of characteristic different from 2  and let q  : V   →  F  be a nondegenerate

quadratic form of dimension n over F .  In an orthogonal basis of V   the form q  is   diagonal:

1
2

2
2

1 2q(x) = a  x + a  x + · · · n
2
n 1 2 n

×+ a  x  for a  , a  , . . . , a    ∈ F  . We write

(4.1) q= ⟨a1, a2, . . . ,

an⟩.The discriminant of q  is disc(q) = (−1)n(n−1)/2a1a2 · · · an  ∈ F ×/F × 2 .
Write  C(q)  for  the  Clifford  algebra   of  q   (of  dimension  2n)  and  C0(q)  for  the   even

Clifford algebra. If n is even (respectively, odd), C(q) (respectively, C0(q)) is a central  
simple  algebra over  F .
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If n is even and disc(q) is trivial, C0(q) is the product of two copies of a central simple
algebra C+(q). If n is odd, we set C+(q) := C0(q). Thus, C+(q) is a central simple
algebra over F of degree 2m, where m is so that

n =

{
2m + 1 , if n is odd;  
2m + 2 ,   if n is even.

The class  of  C+(q) in  the Brauer  group  Br(F ) is  the Clifford invariant of q.
If  R is  a commutative  ring  with 2  ∈ R× and  a, b   ∈ R× ,  we  write (a, b)  for  the (gener-

alized) quaternion R-algebra  generated  by two  elements  x and  y  that are  subject to  the
relations x2  = a,  y2  = b   and yx = −xy. It is an Azumaya algebra  of  rank 4  over   
R.If  q   is  a  form  as  in  (4.1),  the  algebra  C+(q)  is  the  tensor  product  of  m

quaternionF-algebras:

+(4.2) C  (q) =

{
1 2 1   2   3 1   2 4(a , a  ) ⊗(−a a  a  , −a a  a  ) ⊗· · ·

,

if n is odd;
(−a1a2, −a1a3) ⊗(a1a2a3a4, a1a2a3a5) ⊗· · · ,   if n is even.

We write O(q) and O+(q) for the orthogonal and special orthogonal groups, respectively.
The even Clifford group Γ+(q) is a subgroup of the multiplicative group of the even Clifford
algebra C0(q). For a field extension K/F the group Γ+(q)(K) of K-points consists of all
products of  even  number  of  anisotropic vectors in  the space  VK  = V  ⊗

+
F K .  The   

spinorgroup  Spin(q)  is  the kernel  of  the spinor norm homomorphism  Sn : Γ  (q) →  Gm taking
v1v2 · · · v2s  to the product q(v1)q(v2) · · · q(v2s).

Let qh = ⟨1, −1, 1, . . . , (−1)n−1⟩. This is a split form, i.e., a quadratic form of dimension
n over F , trivial discriminant and maximal Witt index. The form qhis hyperbolic if n is  
even.

n nWe write On, O+ ,  Γ+  and Spinn  for O(qh), O+(qh), Γ+(qh) and Spin(qh), respectively.

nThe groups  O+  and  Spinn  are  split semisimple groups.
By [8,  Chaper VII], there  are  the following 
bijections:

On -torsors over K ←→
Quadratic forms

of  dimension  n over K

nO+ -torsors over K ←→
Quadratic forms  of  dimension n

over  K of  trivial discriminant

1 +
nThe connecting map  H (K, O 

)

2
m→  H (K, G  ) = Br(K) for the exact 

sequence
m

+ θ +
n n1 → G → Γ −→            O → 1,

where θ  sends the product v1v2 · · · v2s  to the product of reflections with respect to the  vi’s,
takes  a quadratic form  q  to the Clifford invariant  of  q.  It follows  that there  is  a bijection

nΓ+ -torsors over K ←→
Quadratic forms  of  dimension  n over K

of  trivial discriminant  and  Clifford invariant

Quadratic  forms  of  dimension  n of  trivial  discriminant  and  Clifford  invariant  are pa-
rameterized by independent parameters if n ≤  14 (see [12, Theorem 4.4]).  In other   

words, +
nby Proposition  3.2,  the space BΓ is  retract rational if  n ≤ 14.
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s.b.
Lemma  4.3.  Let 1 →  H →  G →  Gm  →  1 be  an exact  sequence.  Then BH  ≈ BG.

Proof.  The  morphism  BH  →  BG is  approximated  by  f  :  U/H  →  U/G  for  a friendly

mG-variety U .  The morphism  f  is  a G  -torsor,  hence  it is  generically  split.  Thus BH ≈
s.b.

BG × Gm   ≈ BG. Q

nCorollary 4.4.  The spaces B Spinn  and BΓ+ are stably birational.  In particular, B Spinn

is retract rational if n ≤ 14.

Proof.  Apply the Lemma  4.3  to the exact sequence

+
n n

Sn
m1 →  Spin  → Γ −→ G → 1. Q

Remark  4.5.  It is proved in [12, Theorem 4.4]  (see also [4,  Theorem 4.15]) that  B 
Spinn

is  weakly retract rational if  n ≤ 14.

Every quadratic form of trivial discriminant and Clifford invariant of dimension at  
most

n n6  is  split, i.e., the group  BΓ+ is  special.  This implies  that the spaces  BΓ+ and    B Spinn

are stably rational if n ≤  6.  We  will see (Remark 5.8) that this is actually true for n  ≤  10
if F = C.

Let  q   :  V    →  F  be  a  nondegenerate  quadratic  form  of  dimension  n  over  F  of

char-acteristic  not  2.   An orthogonal  decomposition  of  V   is  a  tuple  L = (L1, L2, . . . , Ln) of
1-dimensional  subspaces  of  V    such  that  V    = L1  ⊥ L2  ⊥ ·  ·  ·   ⊥  Ln.   Orthogonal    

de-compositions  of  V   form  a  variety  Orth(q)  over  F .   Every  orthogonal  decomposition 
Lyields  a  full  flag  of  subspaces  Vi  = L1  ⊥ · · ·  ⊥ L i of  V .  Conversely,  every  full  flag (Vi)
of  subspaces  of  V   such  that the  restriction  of  q  to  every  Vi  is  nondegenerate,  yields an
orthogonal  decomposition  L with L i the orthogonal  complement  of  Vi−1  in  Vi.  It

followsthat the variety Orth(q) is birational to the full flag variety of V and therefore, Orth(q)  is  
a rational variety.

Choose an orthogonal decomposition L and consider  the subgroup H(q) of all  
elementsin  O+(q) fixing  L.  Thus, H(q) is  a finite  subgroup  of  O+(q) of  order  2n−1  acting 

by ± 1on  each  Li. As O+(q) act transitively on  Orth(q), we  have  Orth(q) ≃ O+(q)/H(q).
The group  H(q) is  canonically isomorphic  to the kernel  of  the product

homomorphism(µ2)n  →  µ2.  An H(q)-torsor over  F is  given  by a tuple a  = (a1, a2, . . . , an) of 

elementsin  F × with trivial product.  The embedding  of  H(q) into  O+(q) induces  a map  taking an
n
i= 1 i L i

n-tuple  a  to the quadratic form ⊥ a (q|   ).
An O+(q)-torsor J over a field extension K/F is the variety of isomorphisms between qK

and a quadratic form q′ over K of the same dimension and discriminant as qK . Moreover,
the variety J/H(q) is isomorphic to O+(q′)/H(q′) = Orth(q′). Hence the fiber of the
natural morphism

+
BH(q) →  BO (q)

over q′ is isomorphic to Orth(q′), and therefore, is a rational variety. We have proved the  
following lemma.

Lemma  4.6.  For every O+(q)-torsor J  over a  field extension K/F , the variety  J/H(q)
+

is rational over  K .   Each  fiber  of  the  natural morphism  BH(q) →  BO  (q)  is a rational

variety.
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5.  S ev e r i - Br au e r var i e t i e s

Let A  be  an  Azumaya algebra  of  degree  n over  a variety X over  F and  let  SB(X, A)
be  the  Severi-Brauer  variety  over  X (see  [7]).    By  definition  SB(X, A)  is  an X-

schemelocally  isomorphic  to  the  projective  space  Pn−1  for  the étale   topology  on  X .   The fiber
over  a point x ∈ X(K)  is  the variety of  right ideals  of  dimension  n in  the central  simple
K-algebra A(x).

Suppose we  have an exact sequence
i

1 → µ →−G → N → 1,

where  µ  is  subgroup  of  Gm  (thus,  µ  = Gm  or  µn  for  some  n)  and  a   representation
ρ :  G →  GL(V )  such  that  the  composition  ρ ◦i coincides  with  the  naturalembedding
µ ‹→ Gm ‹→ GL(V ).  We  then have an induced homomorphism  N →  
PGL(V ).An N -torsor J over  a variety X yields then an Azumaya  algebra

A := (End(V ) × J )/N

over  X that is  the twist of  A  by J .  The twist

P(V )J := (P(V ) × J )/N

of  the projective space  P(V ) is  the Severi-Brauer  variety SB(X, A)  over X .
Let  W  be  a  generically  free  representation  of  N and  U  ⊂ W  a  friendly  open subset.

Then the twist by the standard  versal  N -torsor  U  →  U/N yields an  Azumaya algebra  A
over  the approximation  U/N  of  BN and  a Severi-Brauer variety

(P(V ) × U )/N

over U/N  which we  denote by SB(BN, A). The stable birational type of SB(BN, A)  

doesnot depend on  the choice of  W  and  U .

Proposition  5.1.  The classifying space  BG is stably birational to SB(BN, A).

Proof.  Let  G̃       :=  (Gm ×G)/µ,  where  µ is  embedded  into  Gm ×G via  s  ›→   (s,

ρ(s−1)).The representation  ρ extends  to a  homomorphism  ρ̃                                  :  G̃   →  GL(V ).  Moreover,  Gm  is 

asubgroup  of  G̃   and G̃/ Gm ≃ N . Then

SB(BN,A ˜) = (P(V ) × U )/N = ((V \ 0)× U

)/G ˜ ˜and (V  \ 0) × U  is a friendly open subset in V  ⊕W  for the group G, i.e., ((V \ 0) × U )/G

˜ s.b.
is  an approximation of  BG, hence  SB(BN, A)   ≈ BG .̃

˜ ˜
mOn the other hand, G is a subgroup  of  G and the group G/G  ≃ G /µ is either trivial

s.b.
or  isomorphic  to Gm.  Therefore, BG  ≈  BG  ̃ by Lemma 

4.3.
Q

Consider the exact sequence
+

2 n n1 →  µ  →  Spin  → O →
1

n 1
+
n 2and a (half-)spin representation Spin    →  GL (C  ) = GL m  .  We  have then a  projective

+
n 2 n

+ +representation O →  PGL m   and  the  associated  Azumaya algebra C over  BOn . The
+ +
n nfiber of C over  a  quadratic  form  q  of  trivial  discriminant  (that is  an  O  -torsor)  is the

algebra C+(q).
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By Proposition
5.1,

(5.2) n

s.b . + +
n n

( )
B Spin ≈ SB BO , C .

Let qh = ⟨1, −1, 1, . . . , (−1)n−1⟩ be a split quadratic form  of  dimension  n and  Hn 

:= nH(qh) the  finite  subgroup  of  O+  defined  in  Section  4  for  the  standard  orthogonalbasis.

n
+
n n

+
n 1 2 nWrite B   for the pull-back of C under the morphism BH  →  BO  .  If b  = (b  , b   , . . . , b )

n n
+
nis  a tuple representing  an  H -torsor,  then  the fiber  of  B   over  b   is  the algebra  C (q(b)),

where  

(5.3)
n− 1

q(b) = ⟨b1,− b2, b3, . . . , (− 1) bn⟩

We  have  a pull-back diagram

xı

+ +
n nSB(BHn, Bn) ,̧ SB(BO ,

C )

ı

xBHn
,¸ BO+

n .

+ +
n nThe fiber  of  the top morphism  over  a K-point x of  SB(BO  , C    ) is  naturally

isomorphicto the fiber  of  the bottom map  over  the image  of  x in  BO+(K). By Lemma  4.6,  all suchn

fibers are rational varieties.  In  view of  Lemma  2.1 and equation  (5.2),

(5.4) n

s.b. + +
n n

s.b .

n n

( ) ( )
B Spin ≈ SB BO , C ≈ SB BH , B .

Write  as  above,  n = 2m + 1  i f   n is  odd  and  n = 2m + 2  i f   n is  even.   Consider   

the

m

torus (Gm)2m with coordinates x1, . . . , xm, y1, . . . , ym as an approximation of B(µ2)2m (see  
Example 3.1).  Write  Am for  the tensor product

(x1, y1) ⊗(x2, y2) . . . ⊗(xm, ym)

of  m quaternion  algebras  over  the Laurent polynomial algebra

2m
1 m 1
± 1 ± 1 ± 1 ± 1

mF [(G ) ]=F [x , . . . , x , y , . . . , y ].

Thus Am is  an  Azumaya algebra over  B (µ2)2m.
The kernel  T  of  the product homomorphism  (Gm)n →  Gm  is  an  approximation of the

+

classifying space BHn. If b = (b1, b2, . . . , bn) is a point of T , it follows from (4.2) and 
(5.3)  that in  the case  n is  odd, we have

B(b) = C  (qb) = (b1, −b2) ⊗(b1b2b3, −b1b2b4) ⊗· · ·

is  a tensor  product of  m quaternion  algebras.  The isomorphism  between  T  and (Gm)2m

defined by x1 = b1, y1   = −b2, x2 = b1b2b3, y2   = −b1b2b4, . . .  takes the algebra Bn to Am.
If n is even, we  have

C+(q) = (b1b2,−b1b3) ⊗(b1b2b3b4,−b1b2b3b5) ⊗· · ·

is a tensor product of m quaternion algebras.  The isomorphism between T and Gm ×(Gm)2m

(with coordinates t, xi and yi) defined by t = b1, x1 = b1b2, y1   = −b1b3, x2 = b1b2b3b4, y2  =
−b1b2b3b5, . . .  takes  the algebra Bn  to the pull-back  of  Am with respect to the projection
Gm ×(Gm)2m → (Gm)2m.
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We  have shown  that in eather case,

SB  BH , Bn n

s.b .

2
2m

m

( ) ( )
≈   SB B(µ ) , A .

It follows  from  (5.4) that

(5.5) n

s.b.

2
2m

m

s.b. 2m
m m

( ) ( )
B Spin ≈ SB B(µ ) , A ≈ SB (G ) , A .

We  have  proved  the followingtheorem.

Theorem  5.6.  Let  n  = 2m + 1  or  n  = 2m + 2   for  some  m.   Let  Am  be the tensor
product (x1, y1)⊗(x2, y2) . . . ⊗(xm, ym) of m quaternion Azumaya algebras over (Gm)2m

= ± 1
1

± 1 ± 1
m 1

± 1
mSpec F [x , . . . , x ,y , . . . , y ]. Then

n

s.b. 2m
m m

( )
B Spin ≈ SB (G ) , A .

Corollary  5.7.  The classifying spaces  B Spin2m+1  and B Spin2m+2  are stably birational.

Corollary  5.8.  If F = C, the classifying space  BSpinn  is stably rational for n ≤  10.

Proof. We  have  noticed  that B Spinn  is  stably rational  for  n ≤  6  (over  any  field).  It is
proved  in  [9]  that B Spinn  is  stably rational for  n = 7  and n = 10  i f  F =
C.

Q

Let Am  be  the pull-back  of  Am to the generic  point  of  (Gm)2m, i.e,  Am  is  the  tensor
product of  quaternion  algebras  (xi, yi) over  the field  of  rational functions  K = F (x, y).
The  reduced  norm  map  Nrdm  :  Am  →  K for  the  algebra  Am  is  given  by  a

polynomialin 22m + 2m variables: 22m coordinate functions on Am (in some basis for Am)
and

x1, . . . , xm, y1, . . . , ym. This polynomial is homogeneous of degree 2m in the first set of
22m variables. By [13, Theorem 4.2], the Severi-Brauer variety is stably birational to the
hypersurface given by the reduced norm polynomial.

Corollary 5.9. The classifying space B Spinn is stably birational to the hypersurface

in
m

2m

the affine space A2 +2m given by  the equation Nrd = 0.

6.  Comparison with the classifying space of finite groups

Suppose  a  quadratic  form  q   :  V    →  F  over  a  field  F  with  char(F )  ̸=  2   admits 

anorthogonal basis v1, v2, . . . , vn such that q(vi) = 1 for all i, i.e., q is the sum of squares in  
that basis.  Consider  the  subgroup  H(q) corresponding  to the  orthogonal decomposition
of V   into orthogonal sum of the subspaces Fvi (see Section 4).  Write Dn  for the pre-image

+
n 2of  H(q) under  the natural homomorphism  Spin(q)  → O

with kernel  µ .Since the group H(q) consists of all products of even number of reflections with respect
to the vectors vi, the group Dn consists of all products ±vi1 vi2  · · · vik  in the Clifford algebra
of  q  with i1  <  i 2  <  · · · <  i k  ≤  n and  k  even.  In  particular, Dn is  a finite constant group
of order 2n.

The group  Dn  is  generated  by the following elements:

c := −1, xi := v0vi ∈ Dn for i = 1, 2, . . . , n − 1.

We  have  the followingrelations:

ic2  = [c, xi] = 1 and x2 = [xi, xj ]  =c for all i ̸=
j.
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s.b. s.b .

Thus, Dn is a central extension of an elementary abelian 2-group of order 2n−1 generated  by 
the cosets  of  the xi’s by the cyclic subgroup  of  order  2  generated  by c.

Theorem 6.1. Let q bethe sum of n squares over a field F of characteristic different  from 2.  

Then Spin(q)   ≈   BDn. If − 1  is a  square  in F , then Spinn    ≈ BDn.

Proof.  Let I be a Spin(q)-torsor over a field extension K/F .  Write J for the push-forward
+

of  I with respect to the natural homomorphism  Spin(q) →  O  (q), i.e., J = I/µ2.  Thus,

s.b .

J is an O+(q)-torsor over  K .  By Lemma  4.6,  the  variety

I/Dn ≃ J/Hn

is  rational.  It follows  from  Proposition  3.3  applied  to the subgroup  Dn  of  Spin(q) that

Spin(q)  ≈ BDn. If − 1 is a square in F , the form qis split and Spin(q) = Spinn. Q

If  n = 2m + 1 ,  the  center   C = {1, c} of  Dn  is  cyclic  of  order  2  and  the  factor

groupG/C is  elementary abelian of  order  22m, hence  Dn is  an  extraspecial 2-group.    Corollary
5.7 yields the following statement.

Corollary  6.2.  Let  − 1  be a  square  in F  and  let n = 2m + 1 or n = 2m + 2  for some
m.  Then B Spinn  is stably  birational to the  classifying space  BD2m+1  of the 

extraspecial
2-group D2m+1. In particular, BD2m+1  is retract rational for m ≤ 6.

Remark 6.3. There are exactly two extraspecial 2-groups of order 22m+1 up to iso-
morphism.   It  is  proved  in  [2]   that  their  classifying  spaces  are  stably  birational  if  F isalgebraically closed  field  of  characteristic zero.  In  fact, it is  sufficient  to assume  that 
− 1is a square in F .

7.  M o r e  on  q u a t e r n i o n a l g e b r a s

In this section we prove that the classifying space of Spinn is stably birational to that  of  
a certain semisimple  group of  type A.

The  center  of  (SL2)m  is  the  group  (µ2)m. Let  Cm  be  the  kernel  of  the  product ho-
momorphism  (µ2)m →  µ2.  Write  Sm  for  the factor group  (SL2)m/Cm, thus,  we  have

anexact
sequence

m
1 →  µ2 →  Sm → (PGL2) →
1.m

2 2The mth tensor power (SL2) →  GL m  of the tautological representation of SL   yields  a
mrepresentation Sm  →  GL2m  and a homomorphism (PGL2) →  PGL2m . The associated

Azumaya algebra Dm on  B(PGL2)m is the tensor product Q1 ⊗· · · ⊗Qm, where Qi is   the
tautological quaternion  Azumaya algebra  over  the ith factor BPGL2  of B(PGL2)m.

By Proposition 5.1,

m

s.b. (
2

mBS ≈  SB  B(PGL )   , D m

)
(7.1)

Consider the composition

2(µ )   ≃ H 3
2 +

3 2‹→ O ≃ PGL ,

where  the first isomorphism  takes (x, y)  to (x, xy, y).
By  Lemma  4.6,  every  fiber  of  B(µ2)2   →  BPGL2  is  a  rational  variety.   In  fact, this

map  takes a pair {a, b}  of  elements  in  K × to the quaternion  algebra (a, b)  over  K .  The
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restriction  of  the algebra  Dm under  the map  B(µ2)2m  →  B(PGL2)m  is  the algebra Am

defined  in  the previous  section.  Therefore,  the fiber  of  the natural morphism

2
2m

m

( ) (
2

mSB B(µ ) , A →  SB  B(PGL )   ,D m

)

is  a rational variety.  By Lemma 2.1,

2
2m

m

s.b.

2
m

m

( ) ( )
SB B(µ ) , A ≈ SB B(PGL )  , D .

It follows  from  (7.1) that

(7.2) m

s.b.

2
2m

m

( )
BS ≈   SB B(µ ) , A .

Then (5.5) and  (7.2) yield the following:

s.b.

Theorem  7.3.  Let n = 2m + 1 or n = 2m + 2  for some  m.  Let Sm  be the  factor group
(SL2)m/Cm, where  Cm  is the  kernel of the  product homomorphism (µ2)m →  µ2. Then

B Spinn    ≈ BSm.

Note  that  the  group  Sm  is  a  semisimple  group  of  type  A1  + · · · + A1  (m times) and
Spinn  is  a simply connected semisimple  group  of  type Bm if n is  odd and of  type Dm+1  if
n is even.
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9 V. E .̀ Kordonskĭ ı, Stable rationality of the group Spin10, Uspekhi Mat. Nauk 55 (2000), no. 1(331),  171–

172.

10 T. Y. Lam, Introduction to quadratic forms   over  fields,  Graduate Studies in Mathematics, vol. 67,

American Mathematical Society, Providence, RI, 2005.

11 A. Merkurjev, Versal torsors and retracts, Preprint, (2018)

http: / /www.math.ucla.edu/ merkurev/papers/new-retract3 .pdf,  to  appear  in 

Transformation  groups.

12 A. Merkurjev, Invariants of algebraic  groups  and  retract rationality of classifying spaces,    

Algebraic

groups: structure and actions, Proc. Sympos. Pure Math., vol. 94, Amer. Math. Soc., Providence,  RI, 

2017, pp. 277–294.

13 D. Saltman, Norm polynomials and algebras,  J. Algebra 62 (1980), no. 2,  333–345.

http://www.math.ucla.edu/


RATIONALITY PROBLEM FOR CLASSIFYING SPACES OF SPINOR GROUPS 11

[14]  R. W. Thomason, Comparison of equivariant algebraic  and  topological  K-theory, Duke Math. J. 53

(1986), no. 3, 795–825.

D e p a r t me n t  o f  M a t h e ma t i c s ,  U n i v e r s i t y  o f  C a l i fo r n i a ,  Lo s  An g e l e s ,  C A,  9 0 0 9 5 -

1555,  USA

E-mail address :  merkurev  at math.ucla.edu


	Slide 1 
	Slide 2 
	Slide 3 
	Slide 4 
	Slide 5 
	Slide 6 
	Slide 7 
	Slide 8 
	Slide 9 
	Slide 10 
	Slide 11 

