RATIONALITY PROBLEM FOR CLASSIFYING SPACES OF SPINOR
GROUPS

ALEXANDER S. MERKURJEV

Abstract. We study stably rationality and retract rationality
properties of the classi- fying spaces of split spinor groups Spin,, over a field I of
characteristic not 2.

1. Introduction

Let G be an algebraic group over afield F, V a generically free representation of
(i.¢5 the stabilizer of the generic point in V is trivial) and U c V a G-invariant open
subset such that thereis a G-torsor f : U-— U/G. Thisis a versal G-torsor, i.e., every
G-torsor over afield extension K/ F with K infiniteis isomorphic to the fiber of f overa
K-point of U/G. Thus, the K-points of U/ G parameterize all G-torsors over Spec(K).

The stable rationality (respectively, retract rationality) classes of U/G are
independent of the choice of Vand U. We call the variety U/ G the classifying space of G
and denote it by BG. The space BG is retract rational if and only if all the G-torsors over
field extensions of F can be parameterized by algebraically independent variables
(Proposition 3.2).

We study the classifying spaces of split spinor groups Spin,, over a field F of charac- teristic
not 2. The Spin, -torsors over a field extension K/ F parameterize nondegenerate quadratic
forms of dimension nover K of trivial discriminant and Clifford invariant. If
n< 6,all such forms are isomorphic, hence B Spin,, is stably rational. We also show that
B Spin,, is stably rational if n< 10 (at leastover F = C) and retract rationalif n < 16.

We prove several reincarnations of the space B Spin,. We show that B Spin,, isstably
birational to the Severi-Brauer variety over the classifying space BO* of the special or-
thogonal group corresponding to the Azumaya algebra whose class in the Brauer group
if the Clifford invariant. As a consequence we show that B Spin,, is stably birational to
B Spin,,_, if niseven. We also prove that B Spin,, is stably birational to the classifying
space of an extraspecial finite group of order 2" if nis odd and 27! if nis even.

We use the following notation.

A variety over a field F is an integral separated scheme of finite type over F. An

algebraic group over F is an affine group scheme of finite type over F .

A% the affine space over F .

G = AL\ {0} the multiplicative group (torus).
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2. Rational and retract rational varieties

If X and Y are varieties over F , wewrite X = Y if X and Y are birationally isomorphic,

i.e., the rational function fields F (X) and F (Y) are isomorphic over F and X~ Yif
ahd Y are stably birational,i.e., X x A7~ Yx AL for some mand n.
We say that X is a rational variety if X ~ A P for some n and stably rational if

X *"A 9 = Spec
F We willuse the following elementarylemma.

Lemma 2.1. Letf : Y - X bea morphism of varieties over F . Suppose that for every
field extension K/ F and every point x € X(K), the fiber of f over x is a rational variety

overK. Then Ys'zb' X.

Proof. By assumption, the generic fiber Z of the morphism f is a rational variety
tvefunction field F (X). The result follows since F (Y) = F(X)(Z2). Q

A morphism of varieties f: Y — X over a field Fis called weakly spli if there
ratipmal morphism g : X —- Y such that f -g isthe identity of X. We say that f is split
if for every nonempty open subset Uc Y thereis a rational morphism g: X —- Y such
thatIm(g)Nn U= @andf -g= idx.

A variety X over Fis weakly retract rational (respectively, retract rational ) if there is
a nonempty open subvariety Yc A% for some nand aweakly split (respectively, split)
morphism f : Y- X overF.

Every stably rational variety is retract rational and hence weakly retract rational (see

[11, §2]).

3. Versal torsors and classifying

Let Gbe an algebRaic 8roup over F. A G-torsor Y — X over a variety X is called
versal if for every G-torsor E —» Spec(K) for afield extension K/F with K an
fiefichibnd every nonempty open subset U c X, thereis a point x € U(K) such that the
G-torsor E —» Spec(K) is isomorphic to the pull-back of Y —» X with respect to x
[6d® Thusaversal G-torsor Y — X parameterizes all G-torsors over field extensions K/F
by the points of X over K.

Let G be an algebraic group over F , Va generically free representation of G over F . A
nonempty G-invariant open subset U of the affine space A(V') of V such that there exists
a G-torsor U —» U/ G for avariety U/Gover F is called a friendly open subset of V or a
friendly G-variety. Friendly open subset always exist (see [14, Proposition 4.7]) and the
torsor U—» U/Gis versal (see [6]). Itis called a standard versal G-torsor.

Example 3.1. Let G = (u,,)" for some n and r, where u,, is the group of roots of unity of
degree n. Then the natural representation F” of G is generically free and (Gn,)” is a
friendly open subset of AL = A(FT) with the Gtorsor (Gm)” = (Gm)”/G = (Gm)’, SO
(Gm)"is an approximation of BG. Note that a G-torsor over a field extension K/F  isiso-
morphic toSpecK(a}/” cé/", ..., H™ - SpecK forapoint(a;as,...,a )€ (Gn'(K)
with g; € K*.
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We call the variety U/ G the classifying spaceof G and denote it by BG. The stable
rationality class of U/Gisindependent of the choice of V and U. Indeed, if U'is another
friendly open subset in a space V/, then the variety Y := (Ux U’)/Gisan open subset

Me vector bundle (Ux V')/G over U/G, and hence U/G ¥ Y. Similarly, U'/G Py

therefore U/G %" U'/G. Hence the formulas BG ** X and BG ¥ BG for some
graupk G and varieties X, and also the property of the space BG to be stably
rational or retract rational make sense.

We say that the G-torsors over field extensions of F are rationally parameterized if
there is a versal G-torsor Y —» X with X arational variety.  The following statement

peeved in [11, Corollary 5.9].

Proposition 3.2. The G-torsors over field extensions of F are rationally parameterized if
and only if the classifying space BG is retract rational over F .

Let U be a friendly G-variety and let H c G be a subgroup. Then U is a friendly
H-variety. We think of the natural morphism U/H — U/Gas an approximation of
therphism BH — BG.

Let x be a K-point of U/ G for a field extension K/F  and J the corresponding G-torsor
over K, i.e., Jis theinverse image of x under U —» U/G. It follows that the fiber of
therphism U/H — U/G over xis equal to J/H. Lemma 2.1 then yields the

collpwiition.

Proposition 3.3. Let G be an algebraic group over F and H c G a subgroup.  Suppose
that for every field extension K/F , and every G-torsor Jover K, the variety J/His

rational over K. Then BH*% BG.

Example 3.4. Let G be a reductive algebraic group over F and T ¢ G a maximal torus
over F . Let N be the normalizer of T'in G. For a G-torsor J the group G’ := Auty(J ) is
the twist of G by J. The morphism from J to the variety MaxTori(G”) of maximal
toriin G” takingj in Jto the maximal torus of all pin G’ such that @(j) € jT yields

an isomorphism J/N —MaxTori(G’) (This is the twist of the isomorphism G/N
MaxTori(G) taking gN to gT g~!.) The variety MaxTori(G’) is known to be rational [3,

sb.
=

Theorem 7.9]. Hence BV BG. This was proved in [1, Lemma 2.4] when F is

algebraically closed.

4. Quadratic forms

The references for the algebraic theory of quadratic forms are [10], [8]

het F5bhe a field of characteristic different from 2 andlet g: V - F  be a nondegenerate
quadratic form of dimension n over F . In an orthogonal basis of V' the form gis diagonal:
gx)=apt ax+i--- + gxfora,ay...,q € F . Wewrite

(4.1) g={(a, a, ...,

The discriminant of q is disc(q) :q('k)-tl)”(”‘l)/zal a---a,€ F*/F *2,

Write ((q) for the Clifford algebra of g (of dimension 2™) and Cy(q) for the even
Clifford algebra. If n is even (respectively, odd), C(q) (respectively, Cy(q)) is a central
simple algebraover F .
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If nis even and disc(q) is trivial, Cy(q) is the product of two copies of a central simple
algebra C'(g). If n is odd, we set C'(q) := Ci(q). Thus, C"(q) is a central simple
algebra over F of degree 2™, where mis so that

om+ 1, if nisodd;
om+ 2, ifniseven.

The class of C"(q) in the Brauer group Br(F ) is the Clifford invariant of q.

If R is acommutative ring with 2 € R* and a, be R*, we write (a, b) for the (gener-
alized) quaternion R-algebra generated by two elements x and y that are subject to the
relations x> = a, iy = band yx = -xy. It is an Azumaya algebra of rank 4 over
R.If g is a form as in (4.1), the algebra C"(q) is the tensor product of m

F-glgelorason {
(4.2) C(q) = (a, %) -aa q , ~aq a )& if nis odd;
' ‘ (raia, ~aa) Kaaaa, anaas) ®; if niseven.

We write O(g) and O*(q) for the orthogonal and special orthogonal groups, respectively.
The even Clifford group T'*(q) is a subgroup of the multiplicative group of the even Clifford
algebra Cy(g). For a field extension K/ F the group I'"(q)(K) of K-points consists of all
products of even number of anisotropic vectors in the space Vx = V& K. The
gEinprSpin(q) is the kernel of the spinor norm homomorphism Sn:T' (g) » G taking
ViV, - - - s to the product g(v)g(vs) - + - g(rs).

Let g, = (1,-1,1,...,(-1)™"). This is a split form, i.e., a quadratic form of dimension
nover F , trivial discriminant and maximal Witt index. The form gxis hyperbolic if n is
even.

WewriteO,, O, I'", and Spin,, for O(g:), O*(gr), I''(gr) and Spin(gy), respectively.
The groups O, and Spin,, are split semisimple groups.

By [8, Chaper VII], there are the following

bijections:

Quadratic forms

0O, -torsors over K «— . .
n of dimension n over K

Quadratic forms of dimension n

O' -torsorsover K «— e 13 e
n over K of trivial discriminant

The connecting map H (K, O, » H(K, Gy) = Br(K) for the exact

) sequence o
1—>%}m—>I‘+ -0, -1,

n

where 6 sends the product v,1» - - - 1y to the product of reflections with respect to the v/s,
takes a quadratic form g to the Clifford invariant of g. Itfollows that there is a bijection

Quadratic forms of dimension n over K

I'" -torsorsover K «— e 1 qe e . ) )
n of trivial discriminant and Clifford invariant

Quadratic forms of dimension n of trivial discriminant and Clifford invariant are pa-
rameterized by independent parametersif n < 14 (see [12, Theorem 4.4]). In other
pRIgposition 3.2, the space BT, is retract rational if n< 14.
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Lemma 4.3. Let1 - H—> G- Gy — 1 beanexad sequence. ThenBH = Bé’.'

Proof. The morphism BH — BG is approximated by f : U/H - U/G for a friendly
G-variety U. The morphism f is a G ztorsor, hence it is generically split. Thus BH =

BG x Gy % BG. Q

Corollary 4.4. The spaces B Spin,, and BI'" are stably birational. In particular, B Spin,,
is retract rational if n< 14.

Proof. Apply the Lemma 4.3 to the exact sequence
1 - Spin, > I'; 25 G,, - 1. Q

Remark 4.5. Itis proved in [12, Theorem 4.4] (see also [4, Theorem 4.15]) that B
Spin,,

is weakly retract rational if n< 14.

6 iEwphitaiadthtigfoup Bitrjid alpdisatimimianheplibChiffarthinspaten tBE dianensiBrSpin,,
arastsbly rational if n< 6. We will see (Remark 5.8) that thisis actually trueforn < 10

if F= C.

Let g : V - F be a nondegenerate quadratic form of dimension n over F of
acdmstic not 2. An orthogonal decomposition of V is a tuple L = (Ly, L,, ..., L) of
1-dimensional subspaces of V such that V. = L, L L, L - - 1 L, Orthogonal
dempositions of V form a variety Orth(q) over F. Every orthogonal decomposition
yields a full flag of subspaces V;= L; L --- L L;of V. Conversely, every full flag (V)
of subspaces of V such that the restriction of gto every V;is nondegenerate, yields an
orthogonal decomposition L with L; the orthogonal complement of V_; in Vi It
fhllddwhe variety Orth(q) is birational to the full flag variety of Vand therefore, Orth(qg) is
a rational variety.

Choose an orthogonal decomposition L and consider the subgroup H(q) of all
in dthgniixing L. Thus, H(qg) is a finite subgroup of O"(g) of order 27! acting
bw each L;. As O"(q) act transitively on Orth(g), we have Orth(q) =~ O'(q)/H(q).

The group H(q)is canonically isomorphic to the kernel of the product
(ubyinempsphism H(g)-torsor over Fis given byatuplea = (ai, @, . . ., a,) of
tlefiéntyith trivial product. The embedding of H(g) into O*(q) induces a map taking an
n-tuple a to the quadraticform L, a(q|.).

An O*(g)-torsor J over a field extension K/ F is the variety of isomorphisms between gx
and a quadratic form g over K of the same dimension and discriminant as gx. Moreover,
the variety J/H(q) is isomorphic to O(q)/H(q) = Orth(qg). Hence the fiber of the
natural morphism .

BH(g) » BO ()

over ¢ is isomorphic to Orth(q), and therefore, is a rational variety. We have proved the
following lemma.

Lemma 4.6. For every O"(qg)-torsor J over a field extension K/ F, the variety J/H(q)
is rational over K. Each fiber of the natural morphism BH(q) - BO (q) is arational
variety.
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5. Severi-Brauer varieties

Let A be an Azumaya algebra of degree n over avariety X over F and let SB(X, A)
be the Severi-Brauer variety over X (see [7]). By definition SB(X, A) is an X-
boballyeisomorphic to the projective space P! for the “etale topology on X. The fiber
over a point x € X(K) is the variety of right ideals of dimension nin the central simple
K-algebra A(x).

Suppose we have an exact sequence

1> u 5G-> N o 1,

where u is subgroup of Gy, (thus, g = Gy, or u,, for some n) and a representation
p: G- GL(V) such that the composition p °i coincides with the naturalembedding
i — G, — GL(V). We then have an induced homomorphism N —

PQ@I(V Yrorsor J over avariety X yields then an Azumaya algebra

A :=(End(V)x J)/N
over X thatis thetwist of A by J. The twist
P(V):= (P(V) x J)/N

of the projective space P(V) is the Severi-Brauer variety SB(X, A) over X.

Let W be a generically free representation of N and U ¢ W a friendly open subset.
Then the twist by the standard versal IV -torsor U —» U/Nyields an Azumaya algebra A
over the approximation U/N of BN and a Severi-Brauer variety

(P(V)x U)/N

over U/N which we denote by SB(BNV, A). The stable birational type of SB(BN, A)
dotslepend on the choiceof W and U.

Proposition 5.1. The classifying space BG is stably birational to SB(BN, A).

Proof. Let G := (GmxG)/u, where u is embedded into Gy, x G via s (s,
Pte tpresentation p extends to a homomorphism 6:G— GL(V). Moreover, Gy, is
subgroup of G and G/Gm = N . Then

SB(BN,A)=(P(V)x U)/N= ((V\o)x U
and (V \ 0)x U isa friendly ol}é% subsetin V@ W forthe group G, i.e., (V\ 0) x UYG
is an approximation of BG, hence SB(BN, A) ¥ BG.

On the other hand, G is a subgroup of G and the group G/G = G ,, /uis either trivial
or isomorphic to Gy. Therefore, BG'* BG by Lemma Q
4-Fonsider the exact sequence

1- m, > Spin, > O, -
and a (half-)spin representatior Spin .~ GL (C )= GL m. We havethena projective
representation O |, » PGL,» and the associated AzumayaalgebraC ! over BO,, . The

fiberof C | over a quadratic form g of trivial discriminant (thatis an O -forsor) is the
algebra C*(q).
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By Proposition

5.1, s.b.
(53) B Spin, ¥ SBBQ, ¢ .

Let gn= (1, -1, 1, ..., (-1)™!) be a split quadratic form of dimension nand H,
H(gy) the finite subgroup of O, defined in Section 4 for the standard orthogonalbasis.
Write B ,, for the pull-back of C ;; under the morphism BH ,» BO | If b= (b, b,,..., h)

isha tuple representing an H storsor, then the fiber of B ,over bis the algebra C (g(b)),
where

(5:3) dB=(h,-b,h,.., 0" b
We have a pull-back diagram
SB(BHn: Bn) » SB(BQL ) ;rl
cC ) L
BH, CEY

The fiber of the top morphism over a K-point x of SB(BQ) ,,C )is naturally
teothedfibée of the bottom map over the image of x in BO7( K). By Lemma 4.6, all such
fibers are rational varieties. In view of Lemma 2.1 and equation (5.2),

(54) Bspin, ¥ sbBo,, ¢ ¥ shmy B

Write as above, n= 2m+ 1 if nisodd and n= 2m+ 2 if nis even. Consider
tothe (G, )>™ with coordinates xi, ..., Xm, Y1, . . . , Ym as an approximation of B(zt,)>™ (see
Example 3.1). Write A, for the tensor product

(i, y) @Ga, v . .. @(Xm, Um)

of m quaternion algebras over the Laurent polynomial algebra

FI(Gn Y"1=Fxt', ..., %, ¢, ..., 41

Thus A, is an Azumaya algebra over B (u,)>™.

The kernel T of the product homomorphism (Gy,)" —» Gn, is an approximation of the
classifying space BH,.. If b= (b, b,, .. ., by isapoint of T, it follows from (4.2) and
(5.3) thatin the case nis odd, we have

B(b) = C (qv) = (b1, -by) (bibybs, ~bibyby) @
is atensor product of m quaternion algebras. The isomorphism between T and (Gy,)*™

defined by x; = by, y1 = -by, xo = bibbs, yp = —bibyby, . . . takesthe algebraB, to A,.
If nis even, we have

C'(q) = (biby, -b1b3) ®(bib:bsby, ~bibybsbs) Q- - -
is a tensor product of m quaternion algebras. The isomorphism between T and Gy, x(Gm)?™
(with coordinates ¢, x; and y,) defined by t = by, xi = bib, y1 = -bi1bs, o = bbby, y» =
—-bib,bsbs, . . . takes the algebra B, to the pull-back of A, with respect to the projection
Gm x(Gm)*™ = (Gm)*™
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We have shown that in eather case,

SB(BHm B n) %

It follows from (5.4) that

sfa B(, 3™, A

b

. sb. ) sb. )
(5.5) B Spin, ¥ sb Bl I, Ay % s Gn T A
We have proved the following theorem.

Theorem 5.6. Let n = 2m+ 1 or n = 2m+ 2 for some m. Let A,, be the tensor
product (x;, y1)QR(a, yo) . . . ®(Xm, Ym) of m quaternion Azumaya algebras over (Gpym)*™
SpecF[x',...,xx  y',...,y5'] Then

B Spin, ¥ B G I, A, .
Corollary 5.7. The classifying spaces B Spin,,,,; and B Spin,,,,, are stably birational.
Corollary 5.8. If F = C, the classifying space BSpin,, is stably rational for n < 10.

Proof. We have noticed that B Spin,, is stably rational for n< 6 (over any field). It is
proved in [9] that B Spin,, is stablyrational for n= 7 and n= 10 if F= Q

C'Let A, be the pull-back of A, to the generic point of (Gy,)?™, i.e, A, is the tensor
product of quaternion algebras (x;, y;) over the field of rational functions K = F (x, y).
The reduced norm map Nrd,, : A,, » K for the algebra A,, is given by a
pol@Bmiap m variables: 22" coordinate functions on A, (in some basis for A)
and

X1, .+« Xm, Yi, - . . , Ym. This polynomial is homogeneous of degree 2™in the first set of
2’mvariables. By [13, Theorem 4.2], the Severi-Brauer variety is stably birational to the
hypersurface given by the reduced norm polynomial.

tbonﬂbu')space.AZf ﬁé@agﬁiémwm@qfiaﬁyhuxﬁﬂﬁtahjy birational to the hypersurface
in
6. Comparison with the classifying space of finite groups

Suppose a quadratic form g : V - F over a field F with char(F)/= 2 admits
orthogonal basis vy, v, . . ., vysuch that g(v) = 1 forall i, i.e., gis the sum of squares in
that basis. Consider the subgroup H(q) corresponding to the orthogonal decomposition
of V into orthogonal sum of the subspaces Fuv; (see Section 4). Write D,, for the pre-image
of H(g) under the natural homomorphism Spin(g) - JO

Since the group H(q) consists of all products of even numlvﬂﬂﬂfeﬂﬁbichons with respect
to the vectors v;, the group D, consists of all products +v;, v;, - - - v;, in the Clifford algebra
of gwithi; < i, < ---< ix < nand k even. In particular, D, is a finite constant group
of order 2™

The group D, is generated by the following elements:

=-1, x;:=uyv; €D, for i=1,2,...,n- 1.
We have the following relations:
c=[cgxl=1 and xi=[x, xj]=c forall i/=
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Thus, D, is a central extension of an elementary abelian 2-group of order 2™~! generated by
the cosets of the x;/'s by the cyclic subgroup of order 2 generated by c

Theorem 6.1. Let gbethesumofn squares over a field F of characteristic different from 2.
Then Spin(g) ~ BD, "If -1 isa square in F, then Spin, ~ BD."

Proof. Let I be a Spin(g)-torsor over a field extension K/ F . Write J for the push-forward
of I with respect to the natural homomorphism Spin(q) - O (q),i.e., J= I/u,. Thus,
Jisan O'(g)-torsor over K. By Lemma 4.6, the variety

I/D, = J/H,
is rational. It follows from Proposition 3.3 applied to the subgroup D, of Spin(q) that
Spin(q) 9 BD,. If -1is a square in F, the form gis split and Spin(g) = Spin,,. Q

If n=2m+ 1, the center C= {1, ¢} of D, is cyclic of order 2 and the factor
Ggoarelementary abelian of order 22, hence D, is an extraspecial 2-group. Corollary
5.7 yields the following statement.

Corollary 6.2. Let -1 be a square in F and letn= 2m+ 1 orn= 2m+ 2 for some
m. Then B Spin,, is stably birational to the classifying space BD;,.1 of the
extraspecial

2-group D> m+1. In particular, BD; .+ is retract rational for m< 6.

Remark 6.3. There are exactly two extraspecial 2-groups of order 22! up to iso-
algebhastallyltlisspdofieddinf] zh diwit ¢histicclassifying faphded i ffiehdntbivafionahif has

ispsquarein F'.

7. More on quaternion algebras

In this section we prove that the classifying space of Spin,, is stably birational to that of
a certain semisimple group of type 4.

The center of (SL,)™ is the group (u,)™. Let C,, be the kernel of the product ho-
momorphism (u,)™— u,. Write S, for the factor group (SL,)"/ C,, thus, we have
exract "
sequence 1-> u,—» Sp— (PGL,) -

The mth tensor power (SL.J™ - GL,~ of the tautological representation of SL. yields a
representation S,, > GL,» and a homomorphism (PGL,)™ —» PGL;~. The associated
Azumaya algebra D ,, on B(PGL,)™ is the tensor product Q; @XQ,, where Q;is the
tautological quaternion Azumaya algebra over the ith factor BPGL, of B(PGL,)™.

By Proposition 5.1,

(7.1) BS,, ¥ sBBPGL) "D,

Consider the composition

([12)2 ~ Hj3 — O; = PGL,,

where the first isomorphism takes (x, y) to (x, xy, y).
By Lemma 4.6, every fiber of B(u,)> -» BPGL,; is a rational variety. In fact, this
map takesa pair {a, b} of elements in K* to the quaternion algebra (a, b) over K. The
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restriction of the algebra D,, under the map B(u,)’™ —» B(PGL,)™ is the algebra A,
defined in the previous section. Therefore, the fiber of the natural morphism

SB(B(uZ)m,A m) S sB B(PGL,)™,D m)
is arational variety. By Lemma 2.1,

SB(B(y )™ A
It follows from (7.1) that

S{S BPGL T, D,l).

) s;l').

(7.2) BS, ¥ s B(u A,

Then (5.5) and (7.2) yield the following:

Theorem 7.3. Letn= 2m+ 1 0or n= 2m+ 2 for some m. Let S,, be the factor group
(SL,)™/ C,,, where C,, is the kemel of the product homomorphism (u,)™— w,. Then

B Spin,, '~ BS.

Note that the group S, is a semisimple group of type 4; + - --+ 4; (mtimes) and
Spin,, is a simply connected semisimple group of type B, if nis odd and of type D+ if
niseven.
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