RATIONALITY PROBLEM FOR CLASSIFYING SPACES OF SPINOR GROUPS

ALEXANDER S. MERKURJEV

Abstract. We study stably rationality and retract rationality properties of the classi-fying spaces of split spinor groups \mathbf{Spin}_n over a field F of characteristic not 2.

1. Introduction

Let G be an algebraic group over a field F, V a generically free representation of (i.G. the stabilizer of the generic point in V is trivial) and $U \subset V$ a G-invariant open subset such that there is a G-torsor $f: U \to U/G$. This is a *versal* G-torsor, i.e., every G-torsor over a field extension K/F with K infinite is isomorphic to the fiber of f over a K-point of U/G. Thus, the K-points of U/G parameterize all G-torsors over Spec(K).

The stable rationality (respectively, retract rationality) classes of U/G are independent of the choice of V and U. We call the variety U/G the classifying space of G and denote it by BG. The space BG is retract rational if and only if all the G-torsors over field extensions of F can be parameterized by algebraically independent variables (Proposition 3.2).

We study the classifying spaces of split spinor groups \mathbf{Spin}_n over a field F of characteristic not 2. The \mathbf{Spin}_n -torsors over a field extension K/F parameterize nondegenerate quadratic forms of dimension n over K of trivial discriminant and Clifford invariant. If $n \le 6$, all such forms are isomorphic, hence B \mathbf{Spin}_n is stably rational. We also show that B \mathbf{Spin}_n is stably rational if $n \le 10$ (at least over F = C) and retract rational if $n \le 16$.

We prove several reincarnations of the space B \mathbf{Spin}_n . We show that B \mathbf{Spin}_n is stably birational to the Severi-Brauer variety over the classifying space B \mathbf{O}^+ of the special orthogonal group corresponding to the Azumaya algebra whose class in the Brauer group if the Clifford invariant. As a consequence we show that B \mathbf{Spin}_n is stably birational to B \mathbf{Spin}_{n-1} if n is even. We also prove that B \mathbf{Spin}_n is stably birational to the classifying space of an extraspecial finite group of order 2^n if n is odd and 2^{n-1} if n is even.

We use the following notation.

A *variety* over a field F is an integral separated scheme of finite type over F. An *algebraic group* over F is an affine group scheme of finite type over F. A_F^n the affine space over F.

 $\mathbf{G_m} = \mathbf{A}_F^1 \setminus \{0\}$ the multiplicative group (torus).

The work has been supported by the NSF grant DMS #1801530.

2. Rational and retract rational varieties

If X and Y are varieties over F, we write $X \approx Y$ if X and Y are birationally isomorphic, i.e., the rational function fields F(X) and F(Y) are isomorphic over F and $X^{s,b} \approx Y$ if X and Y are stably birational, i.e., $X \times A_F^m \approx Y \times A_F^n$ for some M and M.

We say that X is a *rational* variety if $X \approx A \cap_F^n$ for some n and *stably rational* if $X \stackrel{\text{s.b.}}{\approx} A \cap_F^0 = \operatorname{Spec}$

F We will use the following elementary lemma.

Lemma 2.1. Let $f: Y \to X$ be a morphism of varieties over F. Suppose that for every field extension K/F and every point $x \in X(K)$, the fiber of f over x is a rational variety over K. Then $Y \stackrel{\text{s.b.}}{\approx} X$.

Proof. By assumption, the generic fiber Z of the morphism f is a rational variety therefunction field F(X). The result follows since $F(Y) \simeq F(X)(Z)$.

A morphism of varieties $f: Y \to X$ over a field F is called *weakly split* if there rational morphism $g: X \dashrightarrow Y$ such that $f \circ g$ is the identity of X. We say that f is *split* if for every nonempty open subset $U \subset Y$ there is a rational morphism $g: X \dashrightarrow Y$ such that $\operatorname{Im}(g) \cap U = \emptyset$ and $f \circ g = \operatorname{id}_X$.

A variety X over F is weakly retract rational (respectively, retract rational) if there is a nonempty open subvariety $Y \subset A_F^n$ for some n and a weakly split (respectively, split) morphism $f: Y \to X$ over F.

Every stably rational variety is retract rational and hence weakly retract rational (see [11, §2]).

3. Versal torsors and classifying

Let G be an algebraic group over F. A G-torsor $Y \to X$ over a variety X is called *versal* if for every G-torsor $E \to \operatorname{Spec}(K)$ for a field extension K/F with K an **fieldhibe** every nonempty open subset $U \subset X$, there is a point $x \in U(K)$ such that the G-torsor $E \to \operatorname{Spec}(K)$ is isomorphic to the pull-back of $Y \to X$ with respect to X [6]. Thus a versal G-torsor $Y \to X$ parameterizes all G-torsors over field extensions K/F by the points of X over K.

Let G be an algebraic group over F, V a generically free representation of G over F. A nonempty G-invariant open subset U of the affine space A(V) of V such that there exists a G-torsor $U \to U/G$ for a variety U/G over F is called a *friendly open subset* of V or a *friendly G-variety*. Friendly open subset always exist (see [14, Proposition 4.7]) and the torsor $U \to U/G$ is versal (see [6]). It is called a *standard versal* G-torsor.

Example 3.1. Let $G = (\mu_n)^r$ for some n and r, where μ_n is the group of roots of unity of degree n. Then the natural representation F^r of G is generically free and $(\mathbf{G_m})^r$ is a friendly open subset of $A_F^r = A(F^r)$ with the G-torsor $(\mathbf{G_m})^r \to (\mathbf{G_m})^r/G = (\mathbf{G_m})^r$, so $(\mathbf{G_m})^r$ is an approximation of BG. Note that a G-torsor over a field extension K/F is isomorphic to Spec $K(\alpha_1^{1/n}, \alpha_2^{1/n}, \ldots, \alpha_n^{1/n}) \to \operatorname{Spec} K$ for a point $(\alpha_1, \alpha_2, \ldots, \alpha_n) \in (\mathbf{G_m})^r(K)$ with $\alpha_i \in K^{\times}$.

We call the variety U/G the *classifying space* of G and denote it by BG. The stable rationality class of U/G is independent of the choice of V and U. Indeed, if U' is another friendly open subset in a space V', then the variety $Y:=(U\times U')/G$ is an open subset in evector bundle $(U\times V')/G$ over U/G, and hence $U/G\overset{s.b.}{\approx} Y$. Similarly, $U'/G\overset{s.b.}{\approx} Y$, therefore $U/G\overset{s.b.}{\approx} U'/G$. Hence the formulas $BG\overset{s.b.}{\approx} X$ and $BG\overset{s.b.}{\approx} BG'$ for some **Gramps** G' and varieties X, and also the property of the space BG to be stably rational or retract rational make sense.

We say that the *G*-torsors over field extensions of *F* are *rationally parameterized* if there is a versal *G*-torsor $Y \to X$ with X a rational variety. The following statement **paraw**ed in [11, Corollary 5.9].

Proposition 3.2. The G-torsors over field extensions of F are rationally parameterized if and only if the classifying space BG is retract rational over F.

Let *U* be a friendly *G*-variety and let $H \subset G$ be a subgroup. Then *U* is a friendly *H*-variety. We think of the natural morphism $U/H \to U/G$ as an approximation of **the**rphism $BH \to BG$.

Let x be a K-point of U/G for a field extension K/F and J the corresponding G-torsor over K, i.e., J is the inverse image of x under $U \to U/G$. It follows that the fiber of **the**rphism $U/H \to U/G$ over x is equal to J/H. Lemma 2.1 then yields the **followitio**on.

Proposition 3.3. Let G be an algebraic group over F and $H \subset G$ a subgroup. Suppose that for every field extension K/F, and every G-torsor J over K, the variety J/H is rational over K. Then $BH^{s.b.} \bowtie BG$.

Example 3.4. Let G be a reductive algebraic group over F and $T \subset G$ a maximal torus over F. Let N be the normalizer of T in G. For a G-torsor J the group $G^J := \operatorname{Aut}_{tt}(J)$ is the twist of G by J. The morphism from J to the variety $\operatorname{MaxTori}(G^J)$ of maximal tori in G^J taking j in J to the maximal torus of all φ in G^J such that $\varphi(j) \in jT$ yields an isomorphism $J/N \to \operatorname{MaxTori}(G^J)$ (This is the twist of the isomorphism G/N MaxTori(G) taking gN to $gT g^{-1}$.) The variety $\operatorname{MaxTori}(G^J)$ is known to be rational [3,

Theorem 7.9]. Hence $BN \stackrel{s.b.}{\approx} BG$. This was proved in [1, Lemma 2.4] when F is algebraically closed.

4. Quadratic forms

The references for the algebraic theory of quadratic forms are [10], [8] Let F be a field of characteristic different from 2 and let $q: V \to F$ be a nondegenerate quadratic form of dimension n over F. In an orthogonal basis of V the form q is diagonal: $q(x) = a_1 x_1^2 + a_2 x_2^2 + \cdots + a_n x_n^2$ for $a_1, a_2, \ldots, a_n \in F$. We write

$$(4.1) q=\langle a_1, a_2, \ldots,$$

The discriminant of q is $\operatorname{disc}(q) = {}^{a_{n-1}/2}a_{1}a_{2}\cdots a_{n} \in F^{\times}/F^{\times 2}$.

Write C(q) for the *Clifford algebra* of q (of dimension 2^n) and $C_0(q)$ for the *even Clifford algebra*. If n is even (respectively, odd), C(q) (respectively, $C_0(q)$) is a central simple algebra over F.

If n is even and $\operatorname{disc}(q)$ is trivial, $C_0(q)$ is the product of two copies of a central simple algebra $C^+(q)$. If n is odd, we set $C^+(q) := C_0(q)$. Thus, $C^+(q)$ is a central simple algebra over F of degree 2^m , where m is so that

$$n = \begin{cases} 2m + 1, & \text{if } n \text{ is odd;} \\ 2m + 2, & \text{if } n \text{ is even.} \end{cases}$$

The class of $C^+(q)$ in the Brauer group Br(F) is the *Clifford invariant* of q.

If R is a commutative ring with $2 \in R^*$ and $a, b \in R^*$, we write (a, b) for the *(generalized) quaternion R-algebra* generated by two elements x and y that are subject to the relations $x^2 = a$, $y^2 = b$ and yx = -xy. It is an *Azumaya algebra* of rank 4 over R. If q is a form as in (4.1), the algebra $C^+(q)$ is the tensor product of m F-algebrasion

(4.2)
$$C^{+}(q) = \begin{cases} (a_{1}, a_{2}) \otimes (-a_{1}a_{2}, a_{1}, a_{2}) \otimes (-a_{1}a_{2}, a_{1}, a_{2}) \otimes & \text{if } n \text{ is odd;} \\ (-a_{1}a_{2}, -a_{1}a_{3}) \otimes (a_{1}a_{2}a_{3}a_{4}, a_{1}a_{2}a_{3}a_{5}) \otimes & \text{if } n \text{ is even.} \end{cases}$$

We write $\mathbf{O}(q)$ and $\mathbf{O}^+(q)$ for the *orthogonal* and *special orthogonal* groups, respectively. The *even Clifford group* $\mathbf{\Gamma}^+(q)$ is a subgroup of the multiplicative group of the even Clifford algebra $C_0(q)$. For a field extension K/F the group $\mathbf{\Gamma}^+(q)(K)$ of K-points consists of all products of even number of anisotropic vectors in the space $V_K = V \otimes_F K$. The *spinor Spin*(q) is the kernel of the *spinor norm* homomorphism $\mathrm{Sn}: \mathbf{\Gamma}^-(q) \to \mathbf{G_m}$ taking $v_1v_2\cdots v_{2s}$ to the product $q(v_1)q(v_2)\cdots q(v_{2s})$.

Let $q_h = \langle 1, -1, 1, \dots, (-1)^{n-1} \rangle$. This is a *split form*, i.e., a quadratic form of dimension n over F, trivial discriminant and maximal Witt index. The form q_h is hyperbolic if n is even.

We write \mathbf{O}_n , \mathbf{O}_n^+ $\mathbf{\Gamma}_n^+$ and \mathbf{Spin}_n for $\mathbf{O}(q_h)$, $\mathbf{O}^+(q_h)$, $\mathbf{\Gamma}^+(q_h)$ and $\mathbf{Spin}(q_h)$, respectively. The groups \mathbf{O}_n^+ and \mathbf{Spin}_n are split semisimple groups.

By [8, Chaper VII], there are the following bijections:

$$\mathbf{O}_n^+$$
 -torsors over $K \longleftrightarrow \bigcap$ Quadratic forms of dimension n over K of trivial discriminant

The connecting map
$$H'(K, \mathbf{Q}_n^{\mathsf{t}} \to H^2(K, \mathbf{G}_{\mathbf{m}}) = \operatorname{Br}(K)$$
 for the exact) sequence $\mathbf{1} \to \mathbf{G}_{\mathbf{m}} \to \mathbf{\Gamma}_n^+ \xrightarrow{\theta} \mathbf{O}_n^+ \to \mathbf{1}$,

where θ sends the product $v_1v_2\cdots v_{2s}$ to the product of reflections with respect to the v_i 's, takes a quadratic form q to the Clifford invariant of q. It follows that there is a bijection

$$\Gamma_n^+$$
 -torsors over $K \longleftrightarrow \bigcap$ Quadratic forms of dimension n over K of trivial discriminant and Clifford invariant

Quadratic forms of dimension n of trivial discriminant and Clifford invariant are parameterized by independent parameters if $n \le 14$ (see [12, Theorem 4.4]). In other byoPdsposition 3.2, the space $B\Gamma_n$ is retract rational if $n \le 14$.

Lemma 4.3. Let $1 \to H \to G \to G_m \to 1$ be an exact sequence. Then $BH \approx BG$.

Proof. The morphism $BH \to BG$ is approximated by $f: U/H \to U/G$ for a friendly G-variety U. The morphism f is a $\mathbf{G}_{\mathbf{m}}$ torsor, hence it is generically split. Thus $BH \approx BG \times \mathbf{G}_{\mathbf{m}} \overset{\mathrm{s.b.}}{\approx} BG$.

Corollary 4.4. The spaces B \mathbf{Spin}_n and B $\mathbf{\Gamma}_n^+$ are stably birational. In particular, B \mathbf{Spin}_n is retract rational if $n \le 14$.

Proof. Apply the Lemma 4.3 to the exact sequence

$$1 \to \operatorname{\mathbf{Spin}}_n \to \Gamma_n^+ \xrightarrow{\operatorname{Sn}} \mathbf{G_m} \to 1.$$
 Q

Remark 4.5. It is proved in [12, Theorem 4.4] (see also [4, Theorem 4.15]) that B \mathbf{Spin}_n

is weakly retract rational if $n \le 14$.

6 in split quadrating from Bilt risis applies at in This interpolar thin spaties that the spaties of diagrams is Brest in a restably rational if $n \le 6$. We will see (Remark 5.8) that this is actually true for $n \le 10$ if F = C.

Let $q:V\to F$ be a nondegenerate quadratic form of dimension n over F of acteristic not 2. An *orthogonal decomposition* of V is a tuple $L=(L_1,L_2,\ldots,L_n)$ of 1-dimensional subspaces of V such that $V=L_1\perp L_2\perp\cdots\perp L_n$. Orthogonal dempositions of V form a variety $\mathrm{Orth}(q)$ over F. Every orthogonal decomposition yields a full flag of subspaces $V_i=L_1\perp\cdots\perp L_i$ of V. Conversely, every full flag (V_i) of subspaces of V such that the restriction of Q to every V_i is nondegenerate, yields an orthogonal decomposition L with L_i the orthogonal complement of V_{i-1} in V_i . It follows evariety $\mathrm{Orth}(Q)$ is birational to the full flag variety of V and therefore, $\mathrm{Orth}(Q)$ is a rational variety.

Choose an orthogonal decomposition L and consider the subgroup H(q) of all in \mathbf{O} -fights \mathbf{E} in \mathbf{O} -fights \mathbf{O} -

The group H(q) is canonically isomorphic to the kernel of the product $(\mu h) \tilde{m} m \mu p h \ln H(q)$ -torsor over F is given by a tuple $a = (a_1, a_2, \ldots, a_n)$ of ither \tilde{m} into \tilde{m} into \tilde{m} into \tilde{m} induces a map taking an n-tuple a to the quadratic form $L_{i=1}^n a_i(q|_{L_i})$.

An $\mathbf{O}^+(q)$ -torsor J over a field extension K/F is the variety of isomorphisms between q_K and a quadratic form q' over K of the same dimension and discriminant as q_K . Moreover, the variety J/H(q) is isomorphic to $\mathbf{O}^+(q')/H(q') = \operatorname{Orth}(q')$. Hence the fiber of the natural morphism

$$BH(q) \rightarrow BO^{+}(q)$$

over q' is isomorphic to Orth(q'), and therefore, is a rational variety. We have proved the following lemma.

Lemma 4.6. For every $\mathbf{O}^+(q)$ -torsor J over a field extension K/F, the variety J/H(q) is rational over K. Each fiber of the natural morphism $BH(q) \to B\mathbf{O}$ (q) is a rational variety.

5. Severi-Brauer varieties

Let A be an Azumaya algebra of degree n over a variety X over F and let SB(X, A) be the Severi-Brauer variety over X (see [7]). By definition SB(X, A) is an Xsolvely eisomorphic to the projective space P^{n-1} for the 'etale topology on X. The fiber over a point $x \in X(K)$ is the variety of right ideals of dimension n in the central simple K-algebra A(x).

Suppose we have an exact sequence

$$1 \to \boldsymbol{\mu} \xrightarrow{i} G \to N \to 1,$$

where μ is subgroup of $\mathbf{G_m}$ (thus, $\mu = \mathbf{G_m}$ or μ_n for some n) and a representation $\rho: G \to \mathbf{GL}(V)$ such that the composition $\rho \circ i$ coincides with the natural embedding $\mu \leftrightarrow \mathbf{G_m} \leftrightarrow \mathbf{GL}(V)$. We then have an induced homomorphism $N \to \mathbf{PCAh}(N)$ torsor J over a variety X yields then an Azumaya algebra

$$A := (\operatorname{End}(V) \times J)/N$$

over X that is the twist of A by J. The twist

$$P(V)^{J} := (P(V) \times J)/N$$

of the projective space P(V) is the Severi-Brauer variety SB(X, A) over X.

Let W be a generically free representation of N and $U \subset W$ a friendly open subset. Then the twist by the standard versal N -torsor $U \to U/N$ yields an Azumaya algebra A over the approximation U/N of BN and a Severi-Brauer variety

$$(P(V) \times U)/N$$

over U/N which we denote by SB(BN, A). The stable birational type of SB(BN, A) **dots** depend on the choice of W and U.

Proposition 5.1. The classifying space BG is stably birational to SB(BN, A).

Proof. Let $\tilde{G} := (\mathbf{G_m} \times G)/\mu$, where μ is embedded into $\mathbf{G_m} \times G$ via $s \mapsto (s, p)$ resentation ρ extends to a homomorphism $\tilde{\rho} : \tilde{G} \to \mathbf{GL}(V)$. Moreover, $\mathbf{G_m}$ is subgroup of \tilde{G} and $\tilde{G}/\mathbf{G_m} \simeq N$. Then

$$SB(BN, A) = (P(V) \times U)/N = ((V \setminus O) \times U$$

and $(V \setminus o) \times U$ is a friendly open subset in $V \oplus W$ for the group G, i.e., $((V \setminus o) \times U)/G$ is an approximation of $B\tilde{G}$, hence $SB(BN, A) \stackrel{\text{s.b.}}{\approx} B\tilde{G}$.

On the other hand, G is a subgroup of \tilde{G} and the group $\tilde{G/G} \simeq \mathbf{G_m}/\mu$ is either trivial or isomorphic to $\mathbf{G_m}$. Therefore, $\mathbf{B}\tilde{G}^{\mathrm{s.b.}} \approx \mathbf{B}\tilde{G}$ by Lemma Q 4.3 Consider the exact sequence

$$1 \rightarrow \boldsymbol{\mu}_2 \rightarrow \mathbf{Spin}_n \rightarrow \mathbf{O}_n^+ \rightarrow$$

and a (half-)spin representation $\mathbf{Spin} \xrightarrow{n} \mathbf{GL} (C) = \mathbf{GL}_{m_2}$. We have then a projective representation $\mathbf{O}_n^+ \to \mathbf{PGL}_{2^m}$ and the associated Azumaya algebra C_n^+ over \mathbf{BO}_n^+ . The fiber of C_n^+ over a quadratic form q of trivial discriminant (that is an \mathbf{O} -torsor) is the algebra $C^+(q)$.

By Proposition

(5.1) B **Spin**_n
$$\stackrel{\text{s.b.}}{\approx}$$
 SB BO_n, $\stackrel{\text{f. }}{\varsigma}$.

Let $q_h = \langle 1, -1, 1, \dots, (-1)^{n-1} \rangle$ be a split quadratic form of dimension n and H_n $H(q_n)$ the finite subgroup of \mathbf{O}_n^+ defined in Section 4 for the standard orthogonal basis. Write B_n for the pull-back of C_n under the morphism BH_n BO_n If $b = (b_1, b_2, \dots, b_n)$ is a tuple representing an $H_{\overline{n}}$ torsor, then the fiber of B_n over b is the algebra C(q(b)), where

(5.3)
$$q(b) = \langle b_1, -b_2, b_3, \dots, (-1)^{n-1} b_n \rangle$$

We have a pull-back diagram

$$SB(BH_n, B_n) \longrightarrow SB(B\mathbf{Q}_n, \frac{1}{n})$$

$$B\underline{H_n} \longrightarrow SB(B\mathbf{Q}_n, \frac{1}{n})$$

The fiber of the top morphism over a K-point x of SB(BQ), $^{+}_{n}C$) is naturally **tsotherphic** of the bottom map over the image of x in $BO_{n}^{+}(K)$. By Lemma 4.6, all such fibers are rational varieties. In view of Lemma 2.1 and equation (5.2),

(5.4) B **Spin**_n
$$\stackrel{\text{s.b.}}{\approx}$$
 SB BO_n , $\stackrel{\text{c}}{\varsigma}$ $\stackrel{\text{s.b.}}{\approx}$ SB BH_n , $\stackrel{\text{g}}{\bowtie}$.

Write as above, n = 2m + 1 if n is odd and n = 2m + 2 if n is even. Consider to the $(\mathbf{G_m})^{2m}$ with coordinates $x_1, \ldots, x_m, y_1, \ldots, y_m$ as an approximation of $B(\boldsymbol{\mu}_2)^{2m}$ (see Example 3.1). Write A_m for the tensor product

$$(x_1, y_1) \otimes (x_2, y_2) \dots \otimes (x_m, y_m)$$

of m quaternion algebras over the Laurent polynomial algebra

$$F[(\mathbf{G_m})^{3m}] = F[x_1^{\pm 1}, \ldots, x_n^{\pm 1}, y_1^{\pm 1}, \ldots, y_1^{\pm 1}].$$

Thus A_m is an Azumaya algebra over $B(\mu_2)^{2m}$.

The kernel T of the product homomorphism $(\mathbf{G_m})^n \to \mathbf{G_m}$ is an approximation of the classifying space BH_n . If $b = (b_1, b_2, \ldots, b_n)$ is a point of T, it follows from (4.2) and (5.3) that in the case n is odd, we have

$$B(b) = C(q_b) = (b_1, -b_2) \otimes (b_1b_2b_3, -b_1b_2b_4) \otimes (b_1b_2b_3, -b_1b_2b_4) \otimes (b_1b_2b_3, -b_1b_2b_4)$$

is a tensor product of m quaternion algebras. The isomorphism between T and $(\mathbf{G_m})^{2m}$ defined by $x_1 = b_1$, $y_1 = -b_2$, $x_2 = b_1b_2b_3$, $y_2 = -b_1b_2b_4$, . . . takes the algebra B_n to A_m . If n is even, we have

$$C^+(q) = (b_1b_2, -b_1b_3) \otimes (b_1b_2b_3b_4, -b_1b_2b_3b_5) \otimes \cdots$$

is a tensor product of m quaternion algebras. The isomorphism between T and $\mathbf{G_m} \times (\mathbf{G_m})^{2m}$ (with coordinates t, x_i and y_i) defined by $t = b_1$, $x_1 = b_1b_2$, $y_1 = -b_1b_3$, $x_2 = b_1b_2b_3b_4$, $y_2 = -b_1b_2b_3b_5$, . . . takes the algebra B_n to the pull-back of A_m with respect to the projection $\mathbf{G_m} \times (\mathbf{G_m})^{2m} \to (\mathbf{G_m})^{2m}$.

We have shown that in eather case,

$$SB^{(}BH_n, B_n) \overset{s.b.}{\approx} SB B(\mu_2)^m, A_m$$
.

It follows from (5.4) that

(5.5) B **Spin**_n
$$\stackrel{\text{s.b.}}{\approx}$$
 SB B(μ_2 $\stackrel{\text{3}}{\Rightarrow}$ NR $\stackrel{\text{3.b.}}{\approx}$ SB ($G_{\mathbf{n}}$ $\stackrel{\text{2}}{\Rightarrow}$ NR $\stackrel{\text{3.b.}}{\approx}$ SB ($G_{\mathbf{n}}$ $\stackrel{\text{2}}{\Rightarrow}$ NR $\stackrel{\text{3}}{\approx}$ SB ($G_{\mathbf{n}}$ $\stackrel{\text{3}}{\Rightarrow}$ NR $\stackrel{\text{3}}{\approx}$ SB ($G_{\mathbf{n}}$ $\stackrel{\text{3}}{\Rightarrow}$ NR $\stackrel{\text{3}}{\approx}$ SB ($G_{\mathbf{n}}$ $\stackrel{\text{3}}{\Rightarrow}$ NR $\stackrel{\text{3}}{\approx}$ N

We have proved the following theorem.

Theorem 5.6. Let n=2m+1 or n=2m+2 for some m. Let A_m be the tensor product $(x_1, y_1) \otimes (x_2, y_2) \ldots \otimes (x_m, y_m)$ of m quaternion Azumaya algebras over $(\mathbf{G_m})^{2m}$ $\operatorname{Spec} F[x_1^{\pm 1}, \ldots, x_m^{\pm 1}, y_1^{\pm 1}, \ldots, y_m^{\pm 1}]$. Then

B **Spin**_n
$$\stackrel{\text{s.b.}}{\approx}$$
 $\stackrel{\text{SB}}{\text{SB}} (\mathbf{G_m}^2)^n, \mathbf{A}_m$.

Corollary 5.7. The classifying spaces $B \operatorname{\mathbf{Spin}}_{2m+1}$ and $B \operatorname{\mathbf{Spin}}_{2m+2}$ are stably birational.

Corollary 5.8. If F = C, the classifying space B**Spin**_n is stably rational for $n \le 10$.

Proof. We have noticed that B **Spin**_n is stably rational for $n \le 6$ (over any field). It is proved in [9] that B **Spin**_n is stably rational for n = 7 and n = 10 if F = Q

C. Let A_m be the pull-back of A_m to the generic point of $(\mathbf{G_m})^{2m}$, i.e, A_m is the tensor product of quaternion algebras (x_i, y_i) over the field of rational functions K = F(x, y). The reduced norm map $\operatorname{Nrd}_m : A_m \to K$ for the algebra A_m is given by a polynomial m variables: 2^{2m} coordinate functions on A_m (in some basis for A_m) and

 $x_1, \ldots, x_m, y_1, \ldots, y_m$. This polynomial is homogeneous of degree 2^m in the first set of 2^{2m} variables. By [13, Theorem 4.2], the Severi-Brauer variety is stably birational to the hypersurface given by the reduced norm polynomial.

(Derafilm:) Space AThe classifying space quasiprinity is stably birational to the hypersurface in

6. Comparison with the classifying space of finite groups

Suppose a quadratic form $q: V \to F$ over a field F with $\operatorname{char}(F)/= 2$ admits orthogonal basis v_1, v_2, \ldots, v_n such that $q(v_i) = 1$ for all i, i.e., q is the sum of squares in that basis. Consider the subgroup H(q) corresponding to the orthogonal decomposition of V into orthogonal sum of the subspaces Fv_i (see Section 4). Write D_n for the pre-image of H(q) under the natural homomorphism $\mathbf{Spin}(q) \to {}^n\mathbf{O}$

Since the group H(q) consists of all products of even numberholder lections with respect to the vectors v_i , the group D_n consists of all products $\pm v_{i_1} v_{i_2} \cdots v_{i_k}$ in the Clifford algebra of q with $i_1 < i_2 < \cdots < i_k \le n$ and k even. In particular, D_n is a finite constant group of order 2^n .

The group D_n is generated by the following elements:

$$c := -1$$
, $x_i := v_0 v_i \in D_n$ for $i = 1, 2, ..., n-1$.

We have the following relations:

$$c^2 = [c, x_i] = 1$$
 and $x_i^2 = [x_i, x_j] = c$ for all $i/= j$.

Thus, D_n is a central extension of an elementary abelian 2-group of order 2^{n-1} generated by the cosets of the x_i 's by the cyclic subgroup of order 2 generated by c.

Theorem 6.1. Let q be the sum of n squares over a field F of characteristic different from 2.

Then
$$\mathbf{Spin}(q) \approx \mathrm{B}D_n^{\mathrm{s.b}} f - 1$$
 is a square in F, then $\mathbf{Spin}_n \approx \mathrm{B}D_n^{\mathrm{s.b.}}$

Proof. Let I be a **Spin**(q)-torsor over a field extension K/F. Write J for the push-forward of I with respect to the natural homomorphism **Spin**(q) \rightarrow **O** (q), i.e., $J = I/\mu_2$. Thus, J is an **O** $^+(q)$ -torsor over K. By Lemma 4.6, the variety

$$I/D_n \simeq J/H_n$$

is rational. It follows from Proposition 3.3 applied to the subgroup D_n of $\mathbf{Spin}(q)$ that $\mathbf{Spin}(q) \overset{\text{s.b.}}{\approx} BD_n$. If -1 is a square in F, the form q is split and $\mathbf{Spin}(q) = \mathbf{Spin}_n$. Q

If n = 2m + 1, the center $C = \{1, c\}$ of D_n is cyclic of order 2 and the factor G_n is an extraspecial 2-group. Corollary 5.7 yields the following statement.

Corollary 6.2. Let -1 be a square in F and let n = 2m + 1 or n = 2m + 2 for some m. Then B \mathbf{Spin}_n is stably birational to the classifying space $\mathrm{B}D_{2m+1}$ of the extraspecial

2-group D_{2m+1} . In particular, BD_{2m+1} is retract rational for $m \le 6$.

Remark 6.3. There are exactly two extraspecial 2-groups of order 2^{2m+1} up to iso-abgriphiscallyteliss pulofied directly that this trick assifying faptoits is a square in F.

7. More on quaternion algebras

In this section we prove that the classifying space of **Spin**_n is stably birational to that of a certain semisimple group of type A.

The center of $(\mathbf{SL}_2)^m$ is the group $(\boldsymbol{\mu}_2)^m$. Let C_m be the kernel of the product homomorphism $(\boldsymbol{\mu}_2)^m \to \boldsymbol{\mu}_2$. Write S_m for the factor group $(\mathbf{SL}_2)^m/C_m$, thus, we have

sequence
$$1 \rightarrow \mu_2 \rightarrow S_m \rightarrow (\mathbf{PGL}_2)^m \rightarrow$$

The mth tensor power $(\mathbf{SL}_2)^{\mathbf{I}_m} \to \mathbf{GL}_{2^m}$ of the tautological representation of \mathbf{SL} yields a representation $S_m \to \mathbf{GL}_{2^m}$ and a homomorphism $(\mathbf{PGL}_2)^m \to \mathbf{PGL}_{2^m}$. The associated Azumaya algebra D_m on $B(\mathbf{PGL}_2)^m$ is the tensor product $Q_1 \otimes \otimes Q_m$, where Q_i is the tautological quaternion Azumaya algebra over the ith factor $B\mathbf{PGL}_2$ of $B(\mathbf{PGL}_2)^m$.

By Proposition 5.1,

(7.1)
$$BS_m \stackrel{\text{s.b.}}{\approx} SB \left(B(\mathbf{PGL})^m, D_m \right)$$

Consider the composition

$$(\boldsymbol{\mu}_2)^2 \simeq H_3 \leftrightarrow \mathbf{O}_3^+ \simeq \mathbf{PGL}_2$$

where the first isomorphism takes (x, y) to (x, xy, y).

By Lemma 4.6, every fiber of $B(\mu_2)^2 \to BPGL_2$ is a rational variety. In fact, this map takes a pair $\{a, b\}$ of elements in K^* to the quaternion algebra (a, b) over K. The

restriction of the algebra D_m under the map $B(\boldsymbol{\mu}_2)^{2m} \to B(\mathbf{PGL}_2)^m$ is the algebra A_m defined in the previous section. Therefore, the fiber of the natural morphism $SB^{(}B(\boldsymbol{\mu}_2)^{2m},A_m^{)} \to SB^{(}B(\mathbf{PGL}_2)^m,D_m^{)}$

$$SB^{(B(\mu_2)^{2m},A_m)} \rightarrow SB^{(B(PGL_2)^m,D_m)}$$

is a rational variety. By Lemma 2.1,

$$SB \stackrel{(}{B}(\mu_{2})^{2m}, A_{m} \stackrel{s.b.}{\approx} SB B(PGL_{2})^{n}, D_{n}$$

It follows from (7.1) that

(7.2)
$$BS_m \stackrel{\text{s.b.}}{\approx} SB B(\boldsymbol{\mu}^{3m}, A_m).$$

Then (5.5) and (7.2) yield the following:

Theorem 7.3. Let n = 2m + 1 or n = 2m + 2 for some m. Let S_m be the factor group $(\mathbf{SL}_2)^m/C_m$, where C_m is the kernel of the product homomorphism $(\boldsymbol{\mu}_2)^m \to \boldsymbol{\mu}_2$. Then

B **Spin**_n
$$\stackrel{\text{s.b.}}{\approx}$$
 BS_m.

Note that the group S_m is a semisimple group of type $A_1 + \cdots + A_1$ (m times) and **Spin**_n is a simply connected semisimple group of type B_m if n is odd and of type D_{m+1} if n is even.

References

- 1 F. A. Bogomolov, Stable rationality of quotient spaces for simply connected groups, Mat. Sb. (N.S.) **130(172)** (1986), no. 1, 3–17, 128.
- 2 F. A. Bogomolov and C. B"ohning, Isoclinism and stable cohomology of wreath products, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham, 2013, pp. 57-76.
- 3 A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II, Tohoku Math. J. (2) **20** (1968), 443–497.
- 4 J.-L. Colliot-Th'el'ene and J.-J. Sansuc, The rationality problem for fields of invariants under line ear algebraic groups (with special regards to the Brauer group), Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, pp. 113-186.
- 5 R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society, Providence, RI, 2008.
- 6 R. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in galois cohomology, American Mathematical Society, Providence, RI, 2003.
- 7 A. Grothendieck, Le groupe de Brauer. I. Alg'ebres d'Azumaya et interpr'etations diverses, Dix Expos'es sur la Cohomologie des Sch'emas, North-Holland, Amsterdam, 1968, pp. 46–66.
- 8 M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, *The book of involutions*, American Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.
- V. E. Kordonski, Stable rationality of the group Spin₁₀, Uspekhi Mat. Nauk 55 (2000), no. 1(331), 171–
- 10 T. Y. Lam, *Introduction to quadratic forms* over fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005.
- 11 A. Merkurjev, *Versal torsors and retracts*, Preprint, (2018) http://www.math.ucla.edu/ merkurev/papers/new-retract3.pdf, to appear in Transformation groups.
- 12 A. Merkurjev, Invariants of algebraic groups and retract rationality of classifying spaces, groups: structure and actions, Proc. Sympos. Pure Math., vol. 94, Amer. Math. Soc., Providence, RI, 2017, pp. 277–294.
- 13 D. Saltman, Norm polynomials and algebras, J. Algebra 62 (1980), no. 2, 333–345.

[14] R. W. Thomason, *Comparison of equivariant algebraic and topological K-theory*, Duke Math. J. **53** (1986), no. 3, 795–825.

Department of Mathematics, University of California, Los Angeles, CA, 90095-1555, USA

E-mail address: merkurev at math.ucla.edu